Statistics
| Branch: | Revision:

root / hw / cuda.c @ 8217606e

History | View | Annotate | Download (21.1 kB)

1
/*
2
 * QEMU PowerMac CUDA device support
3
 *
4
 * Copyright (c) 2004-2007 Fabrice Bellard
5
 * Copyright (c) 2007 Jocelyn Mayer
6
 *
7
 * Permission is hereby granted, free of charge, to any person obtaining a copy
8
 * of this software and associated documentation files (the "Software"), to deal
9
 * in the Software without restriction, including without limitation the rights
10
 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
11
 * copies of the Software, and to permit persons to whom the Software is
12
 * furnished to do so, subject to the following conditions:
13
 *
14
 * The above copyright notice and this permission notice shall be included in
15
 * all copies or substantial portions of the Software.
16
 *
17
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
18
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
19
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
20
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
21
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
22
 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
23
 * THE SOFTWARE.
24
 */
25
#include "hw.h"
26
#include "ppc_mac.h"
27
#include "qemu-timer.h"
28
#include "sysemu.h"
29

    
30
/* XXX: implement all timer modes */
31

    
32
/* debug CUDA */
33
//#define DEBUG_CUDA
34

    
35
/* debug CUDA packets */
36
//#define DEBUG_CUDA_PACKET
37

    
38
#ifdef DEBUG_CUDA
39
#define CUDA_DPRINTF(fmt, ...)                                  \
40
    do { printf("CUDA: " fmt , ## __VA_ARGS__); } while (0)
41
#else
42
#define CUDA_DPRINTF(fmt, ...)
43
#endif
44

    
45
/* Bits in B data register: all active low */
46
#define TREQ                0x08                /* Transfer request (input) */
47
#define TACK                0x10                /* Transfer acknowledge (output) */
48
#define TIP                0x20                /* Transfer in progress (output) */
49

    
50
/* Bits in ACR */
51
#define SR_CTRL                0x1c                /* Shift register control bits */
52
#define SR_EXT                0x0c                /* Shift on external clock */
53
#define SR_OUT                0x10                /* Shift out if 1 */
54

    
55
/* Bits in IFR and IER */
56
#define IER_SET                0x80                /* set bits in IER */
57
#define IER_CLR                0                /* clear bits in IER */
58
#define SR_INT                0x04                /* Shift register full/empty */
59
#define T1_INT          0x40            /* Timer 1 interrupt */
60
#define T2_INT          0x20            /* Timer 2 interrupt */
61

    
62
/* Bits in ACR */
63
#define T1MODE          0xc0            /* Timer 1 mode */
64
#define T1MODE_CONT     0x40            /*  continuous interrupts */
65

    
66
/* commands (1st byte) */
67
#define ADB_PACKET        0
68
#define CUDA_PACKET        1
69
#define ERROR_PACKET        2
70
#define TIMER_PACKET        3
71
#define POWER_PACKET        4
72
#define MACIIC_PACKET        5
73
#define PMU_PACKET        6
74

    
75

    
76
/* CUDA commands (2nd byte) */
77
#define CUDA_WARM_START                        0x0
78
#define CUDA_AUTOPOLL                        0x1
79
#define CUDA_GET_6805_ADDR                0x2
80
#define CUDA_GET_TIME                        0x3
81
#define CUDA_GET_PRAM                        0x7
82
#define CUDA_SET_6805_ADDR                0x8
83
#define CUDA_SET_TIME                        0x9
84
#define CUDA_POWERDOWN                        0xa
85
#define CUDA_POWERUP_TIME                0xb
86
#define CUDA_SET_PRAM                        0xc
87
#define CUDA_MS_RESET                        0xd
88
#define CUDA_SEND_DFAC                        0xe
89
#define CUDA_BATTERY_SWAP_SENSE                0x10
90
#define CUDA_RESET_SYSTEM                0x11
91
#define CUDA_SET_IPL                        0x12
92
#define CUDA_FILE_SERVER_FLAG                0x13
93
#define CUDA_SET_AUTO_RATE                0x14
94
#define CUDA_GET_AUTO_RATE                0x16
95
#define CUDA_SET_DEVICE_LIST                0x19
96
#define CUDA_GET_DEVICE_LIST                0x1a
97
#define CUDA_SET_ONE_SECOND_MODE        0x1b
98
#define CUDA_SET_POWER_MESSAGES                0x21
99
#define CUDA_GET_SET_IIC                0x22
100
#define CUDA_WAKEUP                        0x23
101
#define CUDA_TIMER_TICKLE                0x24
102
#define CUDA_COMBINED_FORMAT_IIC        0x25
103

    
104
#define CUDA_TIMER_FREQ (4700000 / 6)
105
#define CUDA_ADB_POLL_FREQ 50
106

    
107
/* CUDA returns time_t's offset from Jan 1, 1904, not 1970 */
108
#define RTC_OFFSET                      2082844800
109

    
110
typedef struct CUDATimer {
111
    int index;
112
    uint16_t latch;
113
    uint16_t counter_value; /* counter value at load time */
114
    int64_t load_time;
115
    int64_t next_irq_time;
116
    QEMUTimer *timer;
117
} CUDATimer;
118

    
119
typedef struct CUDAState {
120
    /* cuda registers */
121
    uint8_t b;      /* B-side data */
122
    uint8_t a;      /* A-side data */
123
    uint8_t dirb;   /* B-side direction (1=output) */
124
    uint8_t dira;   /* A-side direction (1=output) */
125
    uint8_t sr;     /* Shift register */
126
    uint8_t acr;    /* Auxiliary control register */
127
    uint8_t pcr;    /* Peripheral control register */
128
    uint8_t ifr;    /* Interrupt flag register */
129
    uint8_t ier;    /* Interrupt enable register */
130
    uint8_t anh;    /* A-side data, no handshake */
131

    
132
    CUDATimer timers[2];
133

    
134
    uint32_t tick_offset;
135

    
136
    uint8_t last_b; /* last value of B register */
137
    uint8_t last_acr; /* last value of B register */
138

    
139
    int data_in_size;
140
    int data_in_index;
141
    int data_out_index;
142

    
143
    qemu_irq irq;
144
    uint8_t autopoll;
145
    uint8_t data_in[128];
146
    uint8_t data_out[16];
147
    QEMUTimer *adb_poll_timer;
148
} CUDAState;
149

    
150
static CUDAState cuda_state;
151
ADBBusState adb_bus;
152

    
153
static void cuda_update(CUDAState *s);
154
static void cuda_receive_packet_from_host(CUDAState *s,
155
                                          const uint8_t *data, int len);
156
static void cuda_timer_update(CUDAState *s, CUDATimer *ti,
157
                              int64_t current_time);
158

    
159
static void cuda_update_irq(CUDAState *s)
160
{
161
    if (s->ifr & s->ier & (SR_INT | T1_INT)) {
162
        qemu_irq_raise(s->irq);
163
    } else {
164
        qemu_irq_lower(s->irq);
165
    }
166
}
167

    
168
static unsigned int get_counter(CUDATimer *s)
169
{
170
    int64_t d;
171
    unsigned int counter;
172

    
173
    d = muldiv64(qemu_get_clock(vm_clock) - s->load_time,
174
                 CUDA_TIMER_FREQ, ticks_per_sec);
175
    if (s->index == 0) {
176
        /* the timer goes down from latch to -1 (period of latch + 2) */
177
        if (d <= (s->counter_value + 1)) {
178
            counter = (s->counter_value - d) & 0xffff;
179
        } else {
180
            counter = (d - (s->counter_value + 1)) % (s->latch + 2);
181
            counter = (s->latch - counter) & 0xffff;
182
        }
183
    } else {
184
        counter = (s->counter_value - d) & 0xffff;
185
    }
186
    return counter;
187
}
188

    
189
static void set_counter(CUDAState *s, CUDATimer *ti, unsigned int val)
190
{
191
    CUDA_DPRINTF("T%d.counter=%d\n", 1 + (ti->timer == NULL), val);
192
    ti->load_time = qemu_get_clock(vm_clock);
193
    ti->counter_value = val;
194
    cuda_timer_update(s, ti, ti->load_time);
195
}
196

    
197
static int64_t get_next_irq_time(CUDATimer *s, int64_t current_time)
198
{
199
    int64_t d, next_time;
200
    unsigned int counter;
201

    
202
    /* current counter value */
203
    d = muldiv64(current_time - s->load_time,
204
                 CUDA_TIMER_FREQ, ticks_per_sec);
205
    /* the timer goes down from latch to -1 (period of latch + 2) */
206
    if (d <= (s->counter_value + 1)) {
207
        counter = (s->counter_value - d) & 0xffff;
208
    } else {
209
        counter = (d - (s->counter_value + 1)) % (s->latch + 2);
210
        counter = (s->latch - counter) & 0xffff;
211
    }
212

    
213
    /* Note: we consider the irq is raised on 0 */
214
    if (counter == 0xffff) {
215
        next_time = d + s->latch + 1;
216
    } else if (counter == 0) {
217
        next_time = d + s->latch + 2;
218
    } else {
219
        next_time = d + counter;
220
    }
221
    CUDA_DPRINTF("latch=%d counter=%" PRId64 " delta_next=%" PRId64 "\n",
222
                 s->latch, d, next_time - d);
223
    next_time = muldiv64(next_time, ticks_per_sec, CUDA_TIMER_FREQ) +
224
        s->load_time;
225
    if (next_time <= current_time)
226
        next_time = current_time + 1;
227
    return next_time;
228
}
229

    
230
static void cuda_timer_update(CUDAState *s, CUDATimer *ti,
231
                              int64_t current_time)
232
{
233
    if (!ti->timer)
234
        return;
235
    if ((s->acr & T1MODE) != T1MODE_CONT) {
236
        qemu_del_timer(ti->timer);
237
    } else {
238
        ti->next_irq_time = get_next_irq_time(ti, current_time);
239
        qemu_mod_timer(ti->timer, ti->next_irq_time);
240
    }
241
}
242

    
243
static void cuda_timer1(void *opaque)
244
{
245
    CUDAState *s = opaque;
246
    CUDATimer *ti = &s->timers[0];
247

    
248
    cuda_timer_update(s, ti, ti->next_irq_time);
249
    s->ifr |= T1_INT;
250
    cuda_update_irq(s);
251
}
252

    
253
static uint32_t cuda_readb(void *opaque, target_phys_addr_t addr)
254
{
255
    CUDAState *s = opaque;
256
    uint32_t val;
257

    
258
    addr = (addr >> 9) & 0xf;
259
    switch(addr) {
260
    case 0:
261
        val = s->b;
262
        break;
263
    case 1:
264
        val = s->a;
265
        break;
266
    case 2:
267
        val = s->dirb;
268
        break;
269
    case 3:
270
        val = s->dira;
271
        break;
272
    case 4:
273
        val = get_counter(&s->timers[0]) & 0xff;
274
        s->ifr &= ~T1_INT;
275
        cuda_update_irq(s);
276
        break;
277
    case 5:
278
        val = get_counter(&s->timers[0]) >> 8;
279
        cuda_update_irq(s);
280
        break;
281
    case 6:
282
        val = s->timers[0].latch & 0xff;
283
        break;
284
    case 7:
285
        /* XXX: check this */
286
        val = (s->timers[0].latch >> 8) & 0xff;
287
        break;
288
    case 8:
289
        val = get_counter(&s->timers[1]) & 0xff;
290
        s->ifr &= ~T2_INT;
291
        break;
292
    case 9:
293
        val = get_counter(&s->timers[1]) >> 8;
294
        break;
295
    case 10:
296
        val = s->sr;
297
        s->ifr &= ~SR_INT;
298
        cuda_update_irq(s);
299
        break;
300
    case 11:
301
        val = s->acr;
302
        break;
303
    case 12:
304
        val = s->pcr;
305
        break;
306
    case 13:
307
        val = s->ifr;
308
        if (s->ifr & s->ier)
309
            val |= 0x80;
310
        break;
311
    case 14:
312
        val = s->ier | 0x80;
313
        break;
314
    default:
315
    case 15:
316
        val = s->anh;
317
        break;
318
    }
319
    if (addr != 13 || val != 0)
320
        CUDA_DPRINTF("read: reg=0x%x val=%02x\n", (int)addr, val);
321
    return val;
322
}
323

    
324
static void cuda_writeb(void *opaque, target_phys_addr_t addr, uint32_t val)
325
{
326
    CUDAState *s = opaque;
327

    
328
    addr = (addr >> 9) & 0xf;
329
    CUDA_DPRINTF("write: reg=0x%x val=%02x\n", (int)addr, val);
330

    
331
    switch(addr) {
332
    case 0:
333
        s->b = val;
334
        cuda_update(s);
335
        break;
336
    case 1:
337
        s->a = val;
338
        break;
339
    case 2:
340
        s->dirb = val;
341
        break;
342
    case 3:
343
        s->dira = val;
344
        break;
345
    case 4:
346
        s->timers[0].latch = (s->timers[0].latch & 0xff00) | val;
347
        cuda_timer_update(s, &s->timers[0], qemu_get_clock(vm_clock));
348
        break;
349
    case 5:
350
        s->timers[0].latch = (s->timers[0].latch & 0xff) | (val << 8);
351
        s->ifr &= ~T1_INT;
352
        set_counter(s, &s->timers[0], s->timers[0].latch);
353
        break;
354
    case 6:
355
        s->timers[0].latch = (s->timers[0].latch & 0xff00) | val;
356
        cuda_timer_update(s, &s->timers[0], qemu_get_clock(vm_clock));
357
        break;
358
    case 7:
359
        s->timers[0].latch = (s->timers[0].latch & 0xff) | (val << 8);
360
        s->ifr &= ~T1_INT;
361
        cuda_timer_update(s, &s->timers[0], qemu_get_clock(vm_clock));
362
        break;
363
    case 8:
364
        s->timers[1].latch = val;
365
        set_counter(s, &s->timers[1], val);
366
        break;
367
    case 9:
368
        set_counter(s, &s->timers[1], (val << 8) | s->timers[1].latch);
369
        break;
370
    case 10:
371
        s->sr = val;
372
        break;
373
    case 11:
374
        s->acr = val;
375
        cuda_timer_update(s, &s->timers[0], qemu_get_clock(vm_clock));
376
        cuda_update(s);
377
        break;
378
    case 12:
379
        s->pcr = val;
380
        break;
381
    case 13:
382
        /* reset bits */
383
        s->ifr &= ~val;
384
        cuda_update_irq(s);
385
        break;
386
    case 14:
387
        if (val & IER_SET) {
388
            /* set bits */
389
            s->ier |= val & 0x7f;
390
        } else {
391
            /* reset bits */
392
            s->ier &= ~val;
393
        }
394
        cuda_update_irq(s);
395
        break;
396
    default:
397
    case 15:
398
        s->anh = val;
399
        break;
400
    }
401
}
402

    
403
/* NOTE: TIP and TREQ are negated */
404
static void cuda_update(CUDAState *s)
405
{
406
    int packet_received, len;
407

    
408
    packet_received = 0;
409
    if (!(s->b & TIP)) {
410
        /* transfer requested from host */
411

    
412
        if (s->acr & SR_OUT) {
413
            /* data output */
414
            if ((s->b & (TACK | TIP)) != (s->last_b & (TACK | TIP))) {
415
                if (s->data_out_index < sizeof(s->data_out)) {
416
                    CUDA_DPRINTF("send: %02x\n", s->sr);
417
                    s->data_out[s->data_out_index++] = s->sr;
418
                    s->ifr |= SR_INT;
419
                    cuda_update_irq(s);
420
                }
421
            }
422
        } else {
423
            if (s->data_in_index < s->data_in_size) {
424
                /* data input */
425
                if ((s->b & (TACK | TIP)) != (s->last_b & (TACK | TIP))) {
426
                    s->sr = s->data_in[s->data_in_index++];
427
                    CUDA_DPRINTF("recv: %02x\n", s->sr);
428
                    /* indicate end of transfer */
429
                    if (s->data_in_index >= s->data_in_size) {
430
                        s->b = (s->b | TREQ);
431
                    }
432
                    s->ifr |= SR_INT;
433
                    cuda_update_irq(s);
434
                }
435
            }
436
        }
437
    } else {
438
        /* no transfer requested: handle sync case */
439
        if ((s->last_b & TIP) && (s->b & TACK) != (s->last_b & TACK)) {
440
            /* update TREQ state each time TACK change state */
441
            if (s->b & TACK)
442
                s->b = (s->b | TREQ);
443
            else
444
                s->b = (s->b & ~TREQ);
445
            s->ifr |= SR_INT;
446
            cuda_update_irq(s);
447
        } else {
448
            if (!(s->last_b & TIP)) {
449
                /* handle end of host to cuda transfer */
450
                packet_received = (s->data_out_index > 0);
451
                /* always an IRQ at the end of transfer */
452
                s->ifr |= SR_INT;
453
                cuda_update_irq(s);
454
            }
455
            /* signal if there is data to read */
456
            if (s->data_in_index < s->data_in_size) {
457
                s->b = (s->b & ~TREQ);
458
            }
459
        }
460
    }
461

    
462
    s->last_acr = s->acr;
463
    s->last_b = s->b;
464

    
465
    /* NOTE: cuda_receive_packet_from_host() can call cuda_update()
466
       recursively */
467
    if (packet_received) {
468
        len = s->data_out_index;
469
        s->data_out_index = 0;
470
        cuda_receive_packet_from_host(s, s->data_out, len);
471
    }
472
}
473

    
474
static void cuda_send_packet_to_host(CUDAState *s,
475
                                     const uint8_t *data, int len)
476
{
477
#ifdef DEBUG_CUDA_PACKET
478
    {
479
        int i;
480
        printf("cuda_send_packet_to_host:\n");
481
        for(i = 0; i < len; i++)
482
            printf(" %02x", data[i]);
483
        printf("\n");
484
    }
485
#endif
486
    memcpy(s->data_in, data, len);
487
    s->data_in_size = len;
488
    s->data_in_index = 0;
489
    cuda_update(s);
490
    s->ifr |= SR_INT;
491
    cuda_update_irq(s);
492
}
493

    
494
static void cuda_adb_poll(void *opaque)
495
{
496
    CUDAState *s = opaque;
497
    uint8_t obuf[ADB_MAX_OUT_LEN + 2];
498
    int olen;
499

    
500
    olen = adb_poll(&adb_bus, obuf + 2);
501
    if (olen > 0) {
502
        obuf[0] = ADB_PACKET;
503
        obuf[1] = 0x40; /* polled data */
504
        cuda_send_packet_to_host(s, obuf, olen + 2);
505
    }
506
    qemu_mod_timer(s->adb_poll_timer,
507
                   qemu_get_clock(vm_clock) +
508
                   (ticks_per_sec / CUDA_ADB_POLL_FREQ));
509
}
510

    
511
static void cuda_receive_packet(CUDAState *s,
512
                                const uint8_t *data, int len)
513
{
514
    uint8_t obuf[16];
515
    int autopoll;
516
    uint32_t ti;
517

    
518
    switch(data[0]) {
519
    case CUDA_AUTOPOLL:
520
        autopoll = (data[1] != 0);
521
        if (autopoll != s->autopoll) {
522
            s->autopoll = autopoll;
523
            if (autopoll) {
524
                qemu_mod_timer(s->adb_poll_timer,
525
                               qemu_get_clock(vm_clock) +
526
                               (ticks_per_sec / CUDA_ADB_POLL_FREQ));
527
            } else {
528
                qemu_del_timer(s->adb_poll_timer);
529
            }
530
        }
531
        obuf[0] = CUDA_PACKET;
532
        obuf[1] = data[1];
533
        cuda_send_packet_to_host(s, obuf, 2);
534
        break;
535
    case CUDA_SET_TIME:
536
        ti = (((uint32_t)data[1]) << 24) + (((uint32_t)data[2]) << 16) + (((uint32_t)data[3]) << 8) + data[4];
537
        s->tick_offset = ti - (qemu_get_clock(vm_clock) / ticks_per_sec);
538
        obuf[0] = CUDA_PACKET;
539
        obuf[1] = 0;
540
        obuf[2] = 0;
541
        cuda_send_packet_to_host(s, obuf, 3);
542
        break;
543
    case CUDA_GET_TIME:
544
        ti = s->tick_offset + (qemu_get_clock(vm_clock) / ticks_per_sec);
545
        obuf[0] = CUDA_PACKET;
546
        obuf[1] = 0;
547
        obuf[2] = 0;
548
        obuf[3] = ti >> 24;
549
        obuf[4] = ti >> 16;
550
        obuf[5] = ti >> 8;
551
        obuf[6] = ti;
552
        cuda_send_packet_to_host(s, obuf, 7);
553
        break;
554
    case CUDA_FILE_SERVER_FLAG:
555
    case CUDA_SET_DEVICE_LIST:
556
    case CUDA_SET_AUTO_RATE:
557
    case CUDA_SET_POWER_MESSAGES:
558
        obuf[0] = CUDA_PACKET;
559
        obuf[1] = 0;
560
        cuda_send_packet_to_host(s, obuf, 2);
561
        break;
562
    case CUDA_POWERDOWN:
563
        obuf[0] = CUDA_PACKET;
564
        obuf[1] = 0;
565
        cuda_send_packet_to_host(s, obuf, 2);
566
        qemu_system_shutdown_request();
567
        break;
568
    case CUDA_RESET_SYSTEM:
569
        obuf[0] = CUDA_PACKET;
570
        obuf[1] = 0;
571
        cuda_send_packet_to_host(s, obuf, 2);
572
        qemu_system_reset_request();
573
        break;
574
    default:
575
        break;
576
    }
577
}
578

    
579
static void cuda_receive_packet_from_host(CUDAState *s,
580
                                          const uint8_t *data, int len)
581
{
582
#ifdef DEBUG_CUDA_PACKET
583
    {
584
        int i;
585
        printf("cuda_receive_packet_from_host:\n");
586
        for(i = 0; i < len; i++)
587
            printf(" %02x", data[i]);
588
        printf("\n");
589
    }
590
#endif
591
    switch(data[0]) {
592
    case ADB_PACKET:
593
        {
594
            uint8_t obuf[ADB_MAX_OUT_LEN + 2];
595
            int olen;
596
            olen = adb_request(&adb_bus, obuf + 2, data + 1, len - 1);
597
            if (olen > 0) {
598
                obuf[0] = ADB_PACKET;
599
                obuf[1] = 0x00;
600
            } else {
601
                /* error */
602
                obuf[0] = ADB_PACKET;
603
                obuf[1] = -olen;
604
                olen = 0;
605
            }
606
            cuda_send_packet_to_host(s, obuf, olen + 2);
607
        }
608
        break;
609
    case CUDA_PACKET:
610
        cuda_receive_packet(s, data + 1, len - 1);
611
        break;
612
    }
613
}
614

    
615
static void cuda_writew (void *opaque, target_phys_addr_t addr, uint32_t value)
616
{
617
}
618

    
619
static void cuda_writel (void *opaque, target_phys_addr_t addr, uint32_t value)
620
{
621
}
622

    
623
static uint32_t cuda_readw (void *opaque, target_phys_addr_t addr)
624
{
625
    return 0;
626
}
627

    
628
static uint32_t cuda_readl (void *opaque, target_phys_addr_t addr)
629
{
630
    return 0;
631
}
632

    
633
static CPUWriteMemoryFunc *cuda_write[] = {
634
    &cuda_writeb,
635
    &cuda_writew,
636
    &cuda_writel,
637
};
638

    
639
static CPUReadMemoryFunc *cuda_read[] = {
640
    &cuda_readb,
641
    &cuda_readw,
642
    &cuda_readl,
643
};
644

    
645
static void cuda_save_timer(QEMUFile *f, CUDATimer *s)
646
{
647
    qemu_put_be16s(f, &s->latch);
648
    qemu_put_be16s(f, &s->counter_value);
649
    qemu_put_sbe64s(f, &s->load_time);
650
    qemu_put_sbe64s(f, &s->next_irq_time);
651
    if (s->timer)
652
        qemu_put_timer(f, s->timer);
653
}
654

    
655
static void cuda_save(QEMUFile *f, void *opaque)
656
{
657
    CUDAState *s = (CUDAState *)opaque;
658

    
659
    qemu_put_ubyte(f, s->b);
660
    qemu_put_ubyte(f, s->a);
661
    qemu_put_ubyte(f, s->dirb);
662
    qemu_put_ubyte(f, s->dira);
663
    qemu_put_ubyte(f, s->sr);
664
    qemu_put_ubyte(f, s->acr);
665
    qemu_put_ubyte(f, s->pcr);
666
    qemu_put_ubyte(f, s->ifr);
667
    qemu_put_ubyte(f, s->ier);
668
    qemu_put_ubyte(f, s->anh);
669
    qemu_put_sbe32s(f, &s->data_in_size);
670
    qemu_put_sbe32s(f, &s->data_in_index);
671
    qemu_put_sbe32s(f, &s->data_out_index);
672
    qemu_put_ubyte(f, s->autopoll);
673
    qemu_put_buffer(f, s->data_in, sizeof(s->data_in));
674
    qemu_put_buffer(f, s->data_out, sizeof(s->data_out));
675
    qemu_put_be32s(f, &s->tick_offset);
676
    cuda_save_timer(f, &s->timers[0]);
677
    cuda_save_timer(f, &s->timers[1]);
678
}
679

    
680
static void cuda_load_timer(QEMUFile *f, CUDATimer *s)
681
{
682
    qemu_get_be16s(f, &s->latch);
683
    qemu_get_be16s(f, &s->counter_value);
684
    qemu_get_sbe64s(f, &s->load_time);
685
    qemu_get_sbe64s(f, &s->next_irq_time);
686
    if (s->timer)
687
        qemu_get_timer(f, s->timer);
688
}
689

    
690
static int cuda_load(QEMUFile *f, void *opaque, int version_id)
691
{
692
    CUDAState *s = (CUDAState *)opaque;
693

    
694
    if (version_id != 1)
695
        return -EINVAL;
696

    
697
    s->b = qemu_get_ubyte(f);
698
    s->a = qemu_get_ubyte(f);
699
    s->dirb = qemu_get_ubyte(f);
700
    s->dira = qemu_get_ubyte(f);
701
    s->sr = qemu_get_ubyte(f);
702
    s->acr = qemu_get_ubyte(f);
703
    s->pcr = qemu_get_ubyte(f);
704
    s->ifr = qemu_get_ubyte(f);
705
    s->ier = qemu_get_ubyte(f);
706
    s->anh = qemu_get_ubyte(f);
707
    qemu_get_sbe32s(f, &s->data_in_size);
708
    qemu_get_sbe32s(f, &s->data_in_index);
709
    qemu_get_sbe32s(f, &s->data_out_index);
710
    s->autopoll = qemu_get_ubyte(f);
711
    qemu_get_buffer(f, s->data_in, sizeof(s->data_in));
712
    qemu_get_buffer(f, s->data_out, sizeof(s->data_out));
713
    qemu_get_be32s(f, &s->tick_offset);
714
    cuda_load_timer(f, &s->timers[0]);
715
    cuda_load_timer(f, &s->timers[1]);
716

    
717
    return 0;
718
}
719

    
720
static void cuda_reset(void *opaque)
721
{
722
    CUDAState *s = opaque;
723

    
724
    s->b = 0;
725
    s->a = 0;
726
    s->dirb = 0;
727
    s->dira = 0;
728
    s->sr = 0;
729
    s->acr = 0;
730
    s->pcr = 0;
731
    s->ifr = 0;
732
    s->ier = 0;
733
    //    s->ier = T1_INT | SR_INT;
734
    s->anh = 0;
735
    s->data_in_size = 0;
736
    s->data_in_index = 0;
737
    s->data_out_index = 0;
738
    s->autopoll = 0;
739

    
740
    s->timers[0].latch = 0xffff;
741
    set_counter(s, &s->timers[0], 0xffff);
742

    
743
    s->timers[1].latch = 0;
744
    set_counter(s, &s->timers[1], 0xffff);
745
}
746

    
747
void cuda_init (int *cuda_mem_index, qemu_irq irq)
748
{
749
    struct tm tm;
750
    CUDAState *s = &cuda_state;
751

    
752
    s->irq = irq;
753

    
754
    s->timers[0].index = 0;
755
    s->timers[0].timer = qemu_new_timer(vm_clock, cuda_timer1, s);
756

    
757
    s->timers[1].index = 1;
758

    
759
    qemu_get_timedate(&tm, 0);
760
    s->tick_offset = (uint32_t)mktimegm(&tm) + RTC_OFFSET;
761

    
762
    s->adb_poll_timer = qemu_new_timer(vm_clock, cuda_adb_poll, s);
763
    *cuda_mem_index = cpu_register_io_memory(0, cuda_read, cuda_write, s);
764
    register_savevm("cuda", -1, 1, cuda_save, cuda_load, s);
765
    qemu_register_reset(cuda_reset, 0, s);
766
    cuda_reset(s);
767
}