Statistics
| Branch: | Revision:

root / fpu / softfloat.h @ 8443effb

History | View | Annotate | Download (18.9 kB)

1
/*============================================================================
2

3
This C header file is part of the SoftFloat IEC/IEEE Floating-point Arithmetic
4
Package, Release 2b.
5

6
Written by John R. Hauser.  This work was made possible in part by the
7
International Computer Science Institute, located at Suite 600, 1947 Center
8
Street, Berkeley, California 94704.  Funding was partially provided by the
9
National Science Foundation under grant MIP-9311980.  The original version
10
of this code was written as part of a project to build a fixed-point vector
11
processor in collaboration with the University of California at Berkeley,
12
overseen by Profs. Nelson Morgan and John Wawrzynek.  More information
13
is available through the Web page `http://www.cs.berkeley.edu/~jhauser/
14
arithmetic/SoftFloat.html'.
15

16
THIS SOFTWARE IS DISTRIBUTED AS IS, FOR FREE.  Although reasonable effort has
17
been made to avoid it, THIS SOFTWARE MAY CONTAIN FAULTS THAT WILL AT TIMES
18
RESULT IN INCORRECT BEHAVIOR.  USE OF THIS SOFTWARE IS RESTRICTED TO PERSONS
19
AND ORGANIZATIONS WHO CAN AND WILL TAKE FULL RESPONSIBILITY FOR ALL LOSSES,
20
COSTS, OR OTHER PROBLEMS THEY INCUR DUE TO THE SOFTWARE, AND WHO FURTHERMORE
21
EFFECTIVELY INDEMNIFY JOHN HAUSER AND THE INTERNATIONAL COMPUTER SCIENCE
22
INSTITUTE (possibly via similar legal warning) AGAINST ALL LOSSES, COSTS, OR
23
OTHER PROBLEMS INCURRED BY THEIR CUSTOMERS AND CLIENTS DUE TO THE SOFTWARE.
24

25
Derivative works are acceptable, even for commercial purposes, so long as
26
(1) the source code for the derivative work includes prominent notice that
27
the work is derivative, and (2) the source code includes prominent notice with
28
these four paragraphs for those parts of this code that are retained.
29

30
=============================================================================*/
31

    
32
#ifndef SOFTFLOAT_H
33
#define SOFTFLOAT_H
34

    
35
#if defined(CONFIG_SOLARIS) && defined(CONFIG_NEEDS_LIBSUNMATH)
36
#include <sunmath.h>
37
#endif
38

    
39
#include <inttypes.h>
40
#include "config.h"
41

    
42
/*----------------------------------------------------------------------------
43
| Each of the following `typedef's defines the most convenient type that holds
44
| integers of at least as many bits as specified.  For example, `uint8' should
45
| be the most convenient type that can hold unsigned integers of as many as
46
| 8 bits.  The `flag' type must be able to hold either a 0 or 1.  For most
47
| implementations of C, `flag', `uint8', and `int8' should all be `typedef'ed
48
| to the same as `int'.
49
*----------------------------------------------------------------------------*/
50
typedef uint8_t flag;
51
typedef uint8_t uint8;
52
typedef int8_t int8;
53
#ifndef _AIX
54
typedef int uint16;
55
typedef int int16;
56
#endif
57
typedef unsigned int uint32;
58
typedef signed int int32;
59
typedef uint64_t uint64;
60
typedef int64_t int64;
61

    
62
/*----------------------------------------------------------------------------
63
| Each of the following `typedef's defines a type that holds integers
64
| of _exactly_ the number of bits specified.  For instance, for most
65
| implementation of C, `bits16' and `sbits16' should be `typedef'ed to
66
| `unsigned short int' and `signed short int' (or `short int'), respectively.
67
*----------------------------------------------------------------------------*/
68
typedef uint8_t bits8;
69
typedef int8_t sbits8;
70
typedef uint16_t bits16;
71
typedef int16_t sbits16;
72
typedef uint32_t bits32;
73
typedef int32_t sbits32;
74
typedef uint64_t bits64;
75
typedef int64_t sbits64;
76

    
77
#define LIT64( a ) a##LL
78
#define INLINE static inline
79

    
80
/*----------------------------------------------------------------------------
81
| The macro `FLOATX80' must be defined to enable the extended double-precision
82
| floating-point format `floatx80'.  If this macro is not defined, the
83
| `floatx80' type will not be defined, and none of the functions that either
84
| input or output the `floatx80' type will be defined.  The same applies to
85
| the `FLOAT128' macro and the quadruple-precision format `float128'.
86
*----------------------------------------------------------------------------*/
87
#ifdef CONFIG_SOFTFLOAT
88
/* bit exact soft float support */
89
#define FLOATX80
90
#define FLOAT128
91
#else
92
/* native float support */
93
#if (defined(__i386__) || defined(__x86_64__)) && !defined(CONFIG_BSD)
94
#define FLOATX80
95
#endif
96
#endif /* !CONFIG_SOFTFLOAT */
97

    
98
#define STATUS_PARAM , float_status *status
99
#define STATUS(field) status->field
100
#define STATUS_VAR , status
101

    
102
/*----------------------------------------------------------------------------
103
| Software IEC/IEEE floating-point ordering relations
104
*----------------------------------------------------------------------------*/
105
enum {
106
    float_relation_less      = -1,
107
    float_relation_equal     =  0,
108
    float_relation_greater   =  1,
109
    float_relation_unordered =  2
110
};
111

    
112
#ifdef CONFIG_SOFTFLOAT
113
/*----------------------------------------------------------------------------
114
| Software IEC/IEEE floating-point types.
115
*----------------------------------------------------------------------------*/
116
/* Use structures for soft-float types.  This prevents accidentally mixing
117
   them with native int/float types.  A sufficiently clever compiler and
118
   sane ABI should be able to see though these structs.  However
119
   x86/gcc 3.x seems to struggle a bit, so leave them disabled by default.  */
120
//#define USE_SOFTFLOAT_STRUCT_TYPES
121
#ifdef USE_SOFTFLOAT_STRUCT_TYPES
122
typedef struct {
123
    uint32_t v;
124
} float32;
125
/* The cast ensures an error if the wrong type is passed.  */
126
#define float32_val(x) (((float32)(x)).v)
127
#define make_float32(x) __extension__ ({ float32 f32_val = {x}; f32_val; })
128
typedef struct {
129
    uint64_t v;
130
} float64;
131
#define float64_val(x) (((float64)(x)).v)
132
#define make_float64(x) __extension__ ({ float64 f64_val = {x}; f64_val; })
133
#else
134
typedef uint32_t float32;
135
typedef uint64_t float64;
136
#define float32_val(x) (x)
137
#define float64_val(x) (x)
138
#define make_float32(x) (x)
139
#define make_float64(x) (x)
140
#endif
141
#ifdef FLOATX80
142
typedef struct {
143
    uint64_t low;
144
    uint16_t high;
145
} floatx80;
146
#endif
147
#ifdef FLOAT128
148
typedef struct {
149
#ifdef HOST_WORDS_BIGENDIAN
150
    uint64_t high, low;
151
#else
152
    uint64_t low, high;
153
#endif
154
} float128;
155
#endif
156

    
157
/*----------------------------------------------------------------------------
158
| Software IEC/IEEE floating-point underflow tininess-detection mode.
159
*----------------------------------------------------------------------------*/
160
enum {
161
    float_tininess_after_rounding  = 0,
162
    float_tininess_before_rounding = 1
163
};
164

    
165
/*----------------------------------------------------------------------------
166
| Software IEC/IEEE floating-point rounding mode.
167
*----------------------------------------------------------------------------*/
168
enum {
169
    float_round_nearest_even = 0,
170
    float_round_down         = 1,
171
    float_round_up           = 2,
172
    float_round_to_zero      = 3
173
};
174

    
175
/*----------------------------------------------------------------------------
176
| Software IEC/IEEE floating-point exception flags.
177
*----------------------------------------------------------------------------*/
178
enum {
179
    float_flag_invalid   =  1,
180
    float_flag_divbyzero =  4,
181
    float_flag_overflow  =  8,
182
    float_flag_underflow = 16,
183
    float_flag_inexact   = 32
184
};
185

    
186
typedef struct float_status {
187
    signed char float_detect_tininess;
188
    signed char float_rounding_mode;
189
    signed char float_exception_flags;
190
#ifdef FLOATX80
191
    signed char floatx80_rounding_precision;
192
#endif
193
    flag flush_to_zero;
194
    flag default_nan_mode;
195
} float_status;
196

    
197
void set_float_rounding_mode(int val STATUS_PARAM);
198
void set_float_exception_flags(int val STATUS_PARAM);
199
INLINE void set_flush_to_zero(flag val STATUS_PARAM)
200
{
201
    STATUS(flush_to_zero) = val;
202
}
203
INLINE void set_default_nan_mode(flag val STATUS_PARAM)
204
{
205
    STATUS(default_nan_mode) = val;
206
}
207
INLINE int get_float_exception_flags(float_status *status)
208
{
209
    return STATUS(float_exception_flags);
210
}
211
#ifdef FLOATX80
212
void set_floatx80_rounding_precision(int val STATUS_PARAM);
213
#endif
214

    
215
/*----------------------------------------------------------------------------
216
| Routine to raise any or all of the software IEC/IEEE floating-point
217
| exception flags.
218
*----------------------------------------------------------------------------*/
219
void float_raise( int8 flags STATUS_PARAM);
220

    
221
/*----------------------------------------------------------------------------
222
| Software IEC/IEEE integer-to-floating-point conversion routines.
223
*----------------------------------------------------------------------------*/
224
float32 int32_to_float32( int STATUS_PARAM );
225
float64 int32_to_float64( int STATUS_PARAM );
226
float32 uint32_to_float32( unsigned int STATUS_PARAM );
227
float64 uint32_to_float64( unsigned int STATUS_PARAM );
228
#ifdef FLOATX80
229
floatx80 int32_to_floatx80( int STATUS_PARAM );
230
#endif
231
#ifdef FLOAT128
232
float128 int32_to_float128( int STATUS_PARAM );
233
#endif
234
float32 int64_to_float32( int64_t STATUS_PARAM );
235
float32 uint64_to_float32( uint64_t STATUS_PARAM );
236
float64 int64_to_float64( int64_t STATUS_PARAM );
237
float64 uint64_to_float64( uint64_t STATUS_PARAM );
238
#ifdef FLOATX80
239
floatx80 int64_to_floatx80( int64_t STATUS_PARAM );
240
#endif
241
#ifdef FLOAT128
242
float128 int64_to_float128( int64_t STATUS_PARAM );
243
#endif
244

    
245
/*----------------------------------------------------------------------------
246
| Software half-precision conversion routines.
247
*----------------------------------------------------------------------------*/
248
bits16 float32_to_float16( float32, flag STATUS_PARAM );
249
float32 float16_to_float32( bits16, flag STATUS_PARAM );
250

    
251
/*----------------------------------------------------------------------------
252
| Software IEC/IEEE single-precision conversion routines.
253
*----------------------------------------------------------------------------*/
254
int float32_to_int32( float32 STATUS_PARAM );
255
int float32_to_int32_round_to_zero( float32 STATUS_PARAM );
256
unsigned int float32_to_uint32( float32 STATUS_PARAM );
257
unsigned int float32_to_uint32_round_to_zero( float32 STATUS_PARAM );
258
int64_t float32_to_int64( float32 STATUS_PARAM );
259
int64_t float32_to_int64_round_to_zero( float32 STATUS_PARAM );
260
float64 float32_to_float64( float32 STATUS_PARAM );
261
#ifdef FLOATX80
262
floatx80 float32_to_floatx80( float32 STATUS_PARAM );
263
#endif
264
#ifdef FLOAT128
265
float128 float32_to_float128( float32 STATUS_PARAM );
266
#endif
267

    
268
/*----------------------------------------------------------------------------
269
| Software IEC/IEEE single-precision operations.
270
*----------------------------------------------------------------------------*/
271
float32 float32_round_to_int( float32 STATUS_PARAM );
272
float32 float32_add( float32, float32 STATUS_PARAM );
273
float32 float32_sub( float32, float32 STATUS_PARAM );
274
float32 float32_mul( float32, float32 STATUS_PARAM );
275
float32 float32_div( float32, float32 STATUS_PARAM );
276
float32 float32_rem( float32, float32 STATUS_PARAM );
277
float32 float32_sqrt( float32 STATUS_PARAM );
278
float32 float32_log2( float32 STATUS_PARAM );
279
int float32_eq( float32, float32 STATUS_PARAM );
280
int float32_le( float32, float32 STATUS_PARAM );
281
int float32_lt( float32, float32 STATUS_PARAM );
282
int float32_eq_signaling( float32, float32 STATUS_PARAM );
283
int float32_le_quiet( float32, float32 STATUS_PARAM );
284
int float32_lt_quiet( float32, float32 STATUS_PARAM );
285
int float32_compare( float32, float32 STATUS_PARAM );
286
int float32_compare_quiet( float32, float32 STATUS_PARAM );
287
int float32_is_nan( float32 );
288
int float32_is_signaling_nan( float32 );
289
float32 float32_scalbn( float32, int STATUS_PARAM );
290

    
291
INLINE float32 float32_abs(float32 a)
292
{
293
    return make_float32(float32_val(a) & 0x7fffffff);
294
}
295

    
296
INLINE float32 float32_chs(float32 a)
297
{
298
    return make_float32(float32_val(a) ^ 0x80000000);
299
}
300

    
301
INLINE int float32_is_infinity(float32 a)
302
{
303
    return (float32_val(a) & 0x7fffffff) == 0x7f800000;
304
}
305

    
306
INLINE int float32_is_neg(float32 a)
307
{
308
    return float32_val(a) >> 31;
309
}
310

    
311
INLINE int float32_is_zero(float32 a)
312
{
313
    return (float32_val(a) & 0x7fffffff) == 0;
314
}
315

    
316
#define float32_zero make_float32(0)
317
#define float32_one make_float32(0x3f800000)
318

    
319
/*----------------------------------------------------------------------------
320
| Software IEC/IEEE double-precision conversion routines.
321
*----------------------------------------------------------------------------*/
322
int float64_to_int32( float64 STATUS_PARAM );
323
int float64_to_int32_round_to_zero( float64 STATUS_PARAM );
324
unsigned int float64_to_uint32( float64 STATUS_PARAM );
325
unsigned int float64_to_uint32_round_to_zero( float64 STATUS_PARAM );
326
int64_t float64_to_int64( float64 STATUS_PARAM );
327
int64_t float64_to_int64_round_to_zero( float64 STATUS_PARAM );
328
uint64_t float64_to_uint64 (float64 a STATUS_PARAM);
329
uint64_t float64_to_uint64_round_to_zero (float64 a STATUS_PARAM);
330
float32 float64_to_float32( float64 STATUS_PARAM );
331
#ifdef FLOATX80
332
floatx80 float64_to_floatx80( float64 STATUS_PARAM );
333
#endif
334
#ifdef FLOAT128
335
float128 float64_to_float128( float64 STATUS_PARAM );
336
#endif
337

    
338
/*----------------------------------------------------------------------------
339
| Software IEC/IEEE double-precision operations.
340
*----------------------------------------------------------------------------*/
341
float64 float64_round_to_int( float64 STATUS_PARAM );
342
float64 float64_trunc_to_int( float64 STATUS_PARAM );
343
float64 float64_add( float64, float64 STATUS_PARAM );
344
float64 float64_sub( float64, float64 STATUS_PARAM );
345
float64 float64_mul( float64, float64 STATUS_PARAM );
346
float64 float64_div( float64, float64 STATUS_PARAM );
347
float64 float64_rem( float64, float64 STATUS_PARAM );
348
float64 float64_sqrt( float64 STATUS_PARAM );
349
float64 float64_log2( float64 STATUS_PARAM );
350
int float64_eq( float64, float64 STATUS_PARAM );
351
int float64_le( float64, float64 STATUS_PARAM );
352
int float64_lt( float64, float64 STATUS_PARAM );
353
int float64_eq_signaling( float64, float64 STATUS_PARAM );
354
int float64_le_quiet( float64, float64 STATUS_PARAM );
355
int float64_lt_quiet( float64, float64 STATUS_PARAM );
356
int float64_compare( float64, float64 STATUS_PARAM );
357
int float64_compare_quiet( float64, float64 STATUS_PARAM );
358
int float64_is_nan( float64 a );
359
int float64_is_signaling_nan( float64 );
360
float64 float64_scalbn( float64, int STATUS_PARAM );
361

    
362
INLINE float64 float64_abs(float64 a)
363
{
364
    return make_float64(float64_val(a) & 0x7fffffffffffffffLL);
365
}
366

    
367
INLINE float64 float64_chs(float64 a)
368
{
369
    return make_float64(float64_val(a) ^ 0x8000000000000000LL);
370
}
371

    
372
INLINE int float64_is_infinity(float64 a)
373
{
374
    return (float64_val(a) & 0x7fffffffffffffffLL ) == 0x7ff0000000000000LL;
375
}
376

    
377
INLINE int float64_is_neg(float64 a)
378
{
379
    return float64_val(a) >> 63;
380
}
381

    
382
INLINE int float64_is_zero(float64 a)
383
{
384
    return (float64_val(a) & 0x7fffffffffffffffLL) == 0;
385
}
386

    
387
#define float64_zero make_float64(0)
388
#define float64_one make_float64(0x3ff0000000000000LL)
389

    
390
#ifdef FLOATX80
391

    
392
/*----------------------------------------------------------------------------
393
| Software IEC/IEEE extended double-precision conversion routines.
394
*----------------------------------------------------------------------------*/
395
int floatx80_to_int32( floatx80 STATUS_PARAM );
396
int floatx80_to_int32_round_to_zero( floatx80 STATUS_PARAM );
397
int64_t floatx80_to_int64( floatx80 STATUS_PARAM );
398
int64_t floatx80_to_int64_round_to_zero( floatx80 STATUS_PARAM );
399
float32 floatx80_to_float32( floatx80 STATUS_PARAM );
400
float64 floatx80_to_float64( floatx80 STATUS_PARAM );
401
#ifdef FLOAT128
402
float128 floatx80_to_float128( floatx80 STATUS_PARAM );
403
#endif
404

    
405
/*----------------------------------------------------------------------------
406
| Software IEC/IEEE extended double-precision operations.
407
*----------------------------------------------------------------------------*/
408
floatx80 floatx80_round_to_int( floatx80 STATUS_PARAM );
409
floatx80 floatx80_add( floatx80, floatx80 STATUS_PARAM );
410
floatx80 floatx80_sub( floatx80, floatx80 STATUS_PARAM );
411
floatx80 floatx80_mul( floatx80, floatx80 STATUS_PARAM );
412
floatx80 floatx80_div( floatx80, floatx80 STATUS_PARAM );
413
floatx80 floatx80_rem( floatx80, floatx80 STATUS_PARAM );
414
floatx80 floatx80_sqrt( floatx80 STATUS_PARAM );
415
int floatx80_eq( floatx80, floatx80 STATUS_PARAM );
416
int floatx80_le( floatx80, floatx80 STATUS_PARAM );
417
int floatx80_lt( floatx80, floatx80 STATUS_PARAM );
418
int floatx80_eq_signaling( floatx80, floatx80 STATUS_PARAM );
419
int floatx80_le_quiet( floatx80, floatx80 STATUS_PARAM );
420
int floatx80_lt_quiet( floatx80, floatx80 STATUS_PARAM );
421
int floatx80_is_nan( floatx80 );
422
int floatx80_is_signaling_nan( floatx80 );
423
floatx80 floatx80_scalbn( floatx80, int STATUS_PARAM );
424

    
425
INLINE floatx80 floatx80_abs(floatx80 a)
426
{
427
    a.high &= 0x7fff;
428
    return a;
429
}
430

    
431
INLINE floatx80 floatx80_chs(floatx80 a)
432
{
433
    a.high ^= 0x8000;
434
    return a;
435
}
436

    
437
INLINE int floatx80_is_infinity(floatx80 a)
438
{
439
    return (a.high & 0x7fff) == 0x7fff && a.low == 0;
440
}
441

    
442
INLINE int floatx80_is_neg(floatx80 a)
443
{
444
    return a.high >> 15;
445
}
446

    
447
INLINE int floatx80_is_zero(floatx80 a)
448
{
449
    return (a.high & 0x7fff) == 0 && a.low == 0;
450
}
451

    
452
#endif
453

    
454
#ifdef FLOAT128
455

    
456
/*----------------------------------------------------------------------------
457
| Software IEC/IEEE quadruple-precision conversion routines.
458
*----------------------------------------------------------------------------*/
459
int float128_to_int32( float128 STATUS_PARAM );
460
int float128_to_int32_round_to_zero( float128 STATUS_PARAM );
461
int64_t float128_to_int64( float128 STATUS_PARAM );
462
int64_t float128_to_int64_round_to_zero( float128 STATUS_PARAM );
463
float32 float128_to_float32( float128 STATUS_PARAM );
464
float64 float128_to_float64( float128 STATUS_PARAM );
465
#ifdef FLOATX80
466
floatx80 float128_to_floatx80( float128 STATUS_PARAM );
467
#endif
468

    
469
/*----------------------------------------------------------------------------
470
| Software IEC/IEEE quadruple-precision operations.
471
*----------------------------------------------------------------------------*/
472
float128 float128_round_to_int( float128 STATUS_PARAM );
473
float128 float128_add( float128, float128 STATUS_PARAM );
474
float128 float128_sub( float128, float128 STATUS_PARAM );
475
float128 float128_mul( float128, float128 STATUS_PARAM );
476
float128 float128_div( float128, float128 STATUS_PARAM );
477
float128 float128_rem( float128, float128 STATUS_PARAM );
478
float128 float128_sqrt( float128 STATUS_PARAM );
479
int float128_eq( float128, float128 STATUS_PARAM );
480
int float128_le( float128, float128 STATUS_PARAM );
481
int float128_lt( float128, float128 STATUS_PARAM );
482
int float128_eq_signaling( float128, float128 STATUS_PARAM );
483
int float128_le_quiet( float128, float128 STATUS_PARAM );
484
int float128_lt_quiet( float128, float128 STATUS_PARAM );
485
int float128_compare( float128, float128 STATUS_PARAM );
486
int float128_compare_quiet( float128, float128 STATUS_PARAM );
487
int float128_is_nan( float128 );
488
int float128_is_signaling_nan( float128 );
489
float128 float128_scalbn( float128, int STATUS_PARAM );
490

    
491
INLINE float128 float128_abs(float128 a)
492
{
493
    a.high &= 0x7fffffffffffffffLL;
494
    return a;
495
}
496

    
497
INLINE float128 float128_chs(float128 a)
498
{
499
    a.high ^= 0x8000000000000000LL;
500
    return a;
501
}
502

    
503
INLINE int float128_is_infinity(float128 a)
504
{
505
    return (a.high & 0x7fffffffffffffffLL) == 0x7fff000000000000LL && a.low == 0;
506
}
507

    
508
INLINE int float128_is_neg(float128 a)
509
{
510
    return a.high >> 63;
511
}
512

    
513
INLINE int float128_is_zero(float128 a)
514
{
515
    return (a.high & 0x7fffffffffffffffLL) == 0 && a.low == 0;
516
}
517

    
518
#endif
519

    
520
#else /* CONFIG_SOFTFLOAT */
521

    
522
#include "softfloat-native.h"
523

    
524
#endif /* !CONFIG_SOFTFLOAT */
525

    
526
#endif /* !SOFTFLOAT_H */