Statistics
| Branch: | Revision:

root / cpus.c @ 84b4915d

History | View | Annotate | Download (22.5 kB)

1
/*
2
 * QEMU System Emulator
3
 *
4
 * Copyright (c) 2003-2008 Fabrice Bellard
5
 *
6
 * Permission is hereby granted, free of charge, to any person obtaining a copy
7
 * of this software and associated documentation files (the "Software"), to deal
8
 * in the Software without restriction, including without limitation the rights
9
 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10
 * copies of the Software, and to permit persons to whom the Software is
11
 * furnished to do so, subject to the following conditions:
12
 *
13
 * The above copyright notice and this permission notice shall be included in
14
 * all copies or substantial portions of the Software.
15
 *
16
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21
 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22
 * THE SOFTWARE.
23
 */
24

    
25
/* Needed early for CONFIG_BSD etc. */
26
#include "config-host.h"
27

    
28
#include "monitor.h"
29
#include "sysemu.h"
30
#include "gdbstub.h"
31
#include "dma.h"
32
#include "kvm.h"
33
#include "exec-all.h"
34

    
35
#include "cpus.h"
36
#include "compatfd.h"
37
#ifdef CONFIG_LINUX
38
#include <sys/prctl.h>
39
#endif
40

    
41
#ifdef SIGRTMIN
42
#define SIG_IPI (SIGRTMIN+4)
43
#else
44
#define SIG_IPI SIGUSR1
45
#endif
46

    
47
#ifndef PR_MCE_KILL
48
#define PR_MCE_KILL 33
49
#endif
50

    
51
static CPUState *next_cpu;
52

    
53
/***********************************************************/
54
void hw_error(const char *fmt, ...)
55
{
56
    va_list ap;
57
    CPUState *env;
58

    
59
    va_start(ap, fmt);
60
    fprintf(stderr, "qemu: hardware error: ");
61
    vfprintf(stderr, fmt, ap);
62
    fprintf(stderr, "\n");
63
    for(env = first_cpu; env != NULL; env = env->next_cpu) {
64
        fprintf(stderr, "CPU #%d:\n", env->cpu_index);
65
#ifdef TARGET_I386
66
        cpu_dump_state(env, stderr, fprintf, X86_DUMP_FPU);
67
#else
68
        cpu_dump_state(env, stderr, fprintf, 0);
69
#endif
70
    }
71
    va_end(ap);
72
    abort();
73
}
74

    
75
void cpu_synchronize_all_states(void)
76
{
77
    CPUState *cpu;
78

    
79
    for (cpu = first_cpu; cpu; cpu = cpu->next_cpu) {
80
        cpu_synchronize_state(cpu);
81
    }
82
}
83

    
84
void cpu_synchronize_all_post_reset(void)
85
{
86
    CPUState *cpu;
87

    
88
    for (cpu = first_cpu; cpu; cpu = cpu->next_cpu) {
89
        cpu_synchronize_post_reset(cpu);
90
    }
91
}
92

    
93
void cpu_synchronize_all_post_init(void)
94
{
95
    CPUState *cpu;
96

    
97
    for (cpu = first_cpu; cpu; cpu = cpu->next_cpu) {
98
        cpu_synchronize_post_init(cpu);
99
    }
100
}
101

    
102
int cpu_is_stopped(CPUState *env)
103
{
104
    return !vm_running || env->stopped;
105
}
106

    
107
static void do_vm_stop(int reason)
108
{
109
    if (vm_running) {
110
        cpu_disable_ticks();
111
        vm_running = 0;
112
        pause_all_vcpus();
113
        vm_state_notify(0, reason);
114
        qemu_aio_flush();
115
        bdrv_flush_all();
116
        monitor_protocol_event(QEVENT_STOP, NULL);
117
    }
118
}
119

    
120
static int cpu_can_run(CPUState *env)
121
{
122
    if (env->stop)
123
        return 0;
124
    if (env->stopped || !vm_running)
125
        return 0;
126
    return 1;
127
}
128

    
129
static int cpu_has_work(CPUState *env)
130
{
131
    if (env->stop)
132
        return 1;
133
    if (env->queued_work_first)
134
        return 1;
135
    if (env->stopped || !vm_running)
136
        return 0;
137
    if (!env->halted)
138
        return 1;
139
    if (qemu_cpu_has_work(env))
140
        return 1;
141
    return 0;
142
}
143

    
144
static int any_cpu_has_work(void)
145
{
146
    CPUState *env;
147

    
148
    for (env = first_cpu; env != NULL; env = env->next_cpu)
149
        if (cpu_has_work(env))
150
            return 1;
151
    return 0;
152
}
153

    
154
static void cpu_debug_handler(CPUState *env)
155
{
156
    gdb_set_stop_cpu(env);
157
    debug_requested = EXCP_DEBUG;
158
    vm_stop(EXCP_DEBUG);
159
}
160

    
161
#ifndef _WIN32
162
static int io_thread_fd = -1;
163

    
164
static void qemu_event_increment(void)
165
{
166
    /* Write 8 bytes to be compatible with eventfd.  */
167
    static const uint64_t val = 1;
168
    ssize_t ret;
169

    
170
    if (io_thread_fd == -1)
171
        return;
172

    
173
    do {
174
        ret = write(io_thread_fd, &val, sizeof(val));
175
    } while (ret < 0 && errno == EINTR);
176

    
177
    /* EAGAIN is fine, a read must be pending.  */
178
    if (ret < 0 && errno != EAGAIN) {
179
        fprintf(stderr, "qemu_event_increment: write() filed: %s\n",
180
                strerror(errno));
181
        exit (1);
182
    }
183
}
184

    
185
static void qemu_event_read(void *opaque)
186
{
187
    int fd = (unsigned long)opaque;
188
    ssize_t len;
189
    char buffer[512];
190

    
191
    /* Drain the notify pipe.  For eventfd, only 8 bytes will be read.  */
192
    do {
193
        len = read(fd, buffer, sizeof(buffer));
194
    } while ((len == -1 && errno == EINTR) || len == sizeof(buffer));
195
}
196

    
197
static int qemu_event_init(void)
198
{
199
    int err;
200
    int fds[2];
201

    
202
    err = qemu_eventfd(fds);
203
    if (err == -1)
204
        return -errno;
205

    
206
    err = fcntl_setfl(fds[0], O_NONBLOCK);
207
    if (err < 0)
208
        goto fail;
209

    
210
    err = fcntl_setfl(fds[1], O_NONBLOCK);
211
    if (err < 0)
212
        goto fail;
213

    
214
    qemu_set_fd_handler2(fds[0], NULL, qemu_event_read, NULL,
215
                         (void *)(unsigned long)fds[0]);
216

    
217
    io_thread_fd = fds[1];
218
    return 0;
219

    
220
fail:
221
    close(fds[0]);
222
    close(fds[1]);
223
    return err;
224
}
225
#else
226
HANDLE qemu_event_handle;
227

    
228
static void dummy_event_handler(void *opaque)
229
{
230
}
231

    
232
static int qemu_event_init(void)
233
{
234
    qemu_event_handle = CreateEvent(NULL, FALSE, FALSE, NULL);
235
    if (!qemu_event_handle) {
236
        fprintf(stderr, "Failed CreateEvent: %ld\n", GetLastError());
237
        return -1;
238
    }
239
    qemu_add_wait_object(qemu_event_handle, dummy_event_handler, NULL);
240
    return 0;
241
}
242

    
243
static void qemu_event_increment(void)
244
{
245
    if (!SetEvent(qemu_event_handle)) {
246
        fprintf(stderr, "qemu_event_increment: SetEvent failed: %ld\n",
247
                GetLastError());
248
        exit (1);
249
    }
250
}
251
#endif
252

    
253
#ifndef CONFIG_IOTHREAD
254
int qemu_init_main_loop(void)
255
{
256
    cpu_set_debug_excp_handler(cpu_debug_handler);
257

    
258
    return qemu_event_init();
259
}
260

    
261
void qemu_main_loop_start(void)
262
{
263
}
264

    
265
void qemu_init_vcpu(void *_env)
266
{
267
    CPUState *env = _env;
268
    int r;
269

    
270
    env->nr_cores = smp_cores;
271
    env->nr_threads = smp_threads;
272

    
273
    if (kvm_enabled()) {
274
        r = kvm_init_vcpu(env);
275
        if (r < 0) {
276
            fprintf(stderr, "kvm_init_vcpu failed: %s\n", strerror(-r));
277
            exit(1);
278
        }
279
    }
280
}
281

    
282
int qemu_cpu_self(void *env)
283
{
284
    return 1;
285
}
286

    
287
void run_on_cpu(CPUState *env, void (*func)(void *data), void *data)
288
{
289
    func(data);
290
}
291

    
292
void resume_all_vcpus(void)
293
{
294
}
295

    
296
void pause_all_vcpus(void)
297
{
298
}
299

    
300
void qemu_cpu_kick(void *env)
301
{
302
    return;
303
}
304

    
305
void qemu_notify_event(void)
306
{
307
    CPUState *env = cpu_single_env;
308

    
309
    qemu_event_increment ();
310
    if (env) {
311
        cpu_exit(env);
312
    }
313
    if (next_cpu && env != next_cpu) {
314
        cpu_exit(next_cpu);
315
    }
316
    exit_request = 1;
317
}
318

    
319
void qemu_mutex_lock_iothread(void) {}
320
void qemu_mutex_unlock_iothread(void) {}
321

    
322
void cpu_stop_current(void)
323
{
324
}
325

    
326
void vm_stop(int reason)
327
{
328
    do_vm_stop(reason);
329
}
330

    
331
#else /* CONFIG_IOTHREAD */
332

    
333
#include "qemu-thread.h"
334

    
335
QemuMutex qemu_global_mutex;
336
static QemuMutex qemu_fair_mutex;
337

    
338
static QemuThread io_thread;
339

    
340
static QemuThread *tcg_cpu_thread;
341
static QemuCond *tcg_halt_cond;
342

    
343
static int qemu_system_ready;
344
/* cpu creation */
345
static QemuCond qemu_cpu_cond;
346
/* system init */
347
static QemuCond qemu_system_cond;
348
static QemuCond qemu_pause_cond;
349
static QemuCond qemu_work_cond;
350

    
351
static void tcg_init_ipi(void);
352
static void kvm_init_ipi(CPUState *env);
353
static sigset_t block_io_signals(void);
354

    
355
/* If we have signalfd, we mask out the signals we want to handle and then
356
 * use signalfd to listen for them.  We rely on whatever the current signal
357
 * handler is to dispatch the signals when we receive them.
358
 */
359
static void sigfd_handler(void *opaque)
360
{
361
    int fd = (unsigned long) opaque;
362
    struct qemu_signalfd_siginfo info;
363
    struct sigaction action;
364
    ssize_t len;
365

    
366
    while (1) {
367
        do {
368
            len = read(fd, &info, sizeof(info));
369
        } while (len == -1 && errno == EINTR);
370

    
371
        if (len == -1 && errno == EAGAIN) {
372
            break;
373
        }
374

    
375
        if (len != sizeof(info)) {
376
            printf("read from sigfd returned %zd: %m\n", len);
377
            return;
378
        }
379

    
380
        sigaction(info.ssi_signo, NULL, &action);
381
        if ((action.sa_flags & SA_SIGINFO) && action.sa_sigaction) {
382
            action.sa_sigaction(info.ssi_signo,
383
                                (siginfo_t *)&info, NULL);
384
        } else if (action.sa_handler) {
385
            action.sa_handler(info.ssi_signo);
386
        }
387
    }
388
}
389

    
390
static int qemu_signalfd_init(sigset_t mask)
391
{
392
    int sigfd;
393

    
394
    sigfd = qemu_signalfd(&mask);
395
    if (sigfd == -1) {
396
        fprintf(stderr, "failed to create signalfd\n");
397
        return -errno;
398
    }
399

    
400
    fcntl_setfl(sigfd, O_NONBLOCK);
401

    
402
    qemu_set_fd_handler2(sigfd, NULL, sigfd_handler, NULL,
403
                         (void *)(unsigned long) sigfd);
404

    
405
    return 0;
406
}
407

    
408
int qemu_init_main_loop(void)
409
{
410
    int ret;
411
    sigset_t blocked_signals;
412

    
413
    cpu_set_debug_excp_handler(cpu_debug_handler);
414

    
415
    blocked_signals = block_io_signals();
416

    
417
    ret = qemu_signalfd_init(blocked_signals);
418
    if (ret)
419
        return ret;
420

    
421
    /* Note eventfd must be drained before signalfd handlers run */
422
    ret = qemu_event_init();
423
    if (ret)
424
        return ret;
425

    
426
    qemu_cond_init(&qemu_pause_cond);
427
    qemu_cond_init(&qemu_system_cond);
428
    qemu_mutex_init(&qemu_fair_mutex);
429
    qemu_mutex_init(&qemu_global_mutex);
430
    qemu_mutex_lock(&qemu_global_mutex);
431

    
432
    qemu_thread_self(&io_thread);
433

    
434
    return 0;
435
}
436

    
437
void qemu_main_loop_start(void)
438
{
439
    qemu_system_ready = 1;
440
    qemu_cond_broadcast(&qemu_system_cond);
441
}
442

    
443
void run_on_cpu(CPUState *env, void (*func)(void *data), void *data)
444
{
445
    struct qemu_work_item wi;
446

    
447
    if (qemu_cpu_self(env)) {
448
        func(data);
449
        return;
450
    }
451

    
452
    wi.func = func;
453
    wi.data = data;
454
    if (!env->queued_work_first)
455
        env->queued_work_first = &wi;
456
    else
457
        env->queued_work_last->next = &wi;
458
    env->queued_work_last = &wi;
459
    wi.next = NULL;
460
    wi.done = false;
461

    
462
    qemu_cpu_kick(env);
463
    while (!wi.done) {
464
        CPUState *self_env = cpu_single_env;
465

    
466
        qemu_cond_wait(&qemu_work_cond, &qemu_global_mutex);
467
        cpu_single_env = self_env;
468
    }
469
}
470

    
471
static void flush_queued_work(CPUState *env)
472
{
473
    struct qemu_work_item *wi;
474

    
475
    if (!env->queued_work_first)
476
        return;
477

    
478
    while ((wi = env->queued_work_first)) {
479
        env->queued_work_first = wi->next;
480
        wi->func(wi->data);
481
        wi->done = true;
482
    }
483
    env->queued_work_last = NULL;
484
    qemu_cond_broadcast(&qemu_work_cond);
485
}
486

    
487
static void qemu_wait_io_event_common(CPUState *env)
488
{
489
    if (env->stop) {
490
        env->stop = 0;
491
        env->stopped = 1;
492
        qemu_cond_signal(&qemu_pause_cond);
493
    }
494
    flush_queued_work(env);
495
    env->thread_kicked = false;
496
}
497

    
498
static void qemu_tcg_wait_io_event(void)
499
{
500
    CPUState *env;
501

    
502
    while (!any_cpu_has_work())
503
        qemu_cond_timedwait(tcg_halt_cond, &qemu_global_mutex, 1000);
504

    
505
    qemu_mutex_unlock(&qemu_global_mutex);
506

    
507
    /*
508
     * Users of qemu_global_mutex can be starved, having no chance
509
     * to acquire it since this path will get to it first.
510
     * So use another lock to provide fairness.
511
     */
512
    qemu_mutex_lock(&qemu_fair_mutex);
513
    qemu_mutex_unlock(&qemu_fair_mutex);
514

    
515
    qemu_mutex_lock(&qemu_global_mutex);
516

    
517
    for (env = first_cpu; env != NULL; env = env->next_cpu) {
518
        qemu_wait_io_event_common(env);
519
    }
520
}
521

    
522
static void sigbus_reraise(void)
523
{
524
    sigset_t set;
525
    struct sigaction action;
526

    
527
    memset(&action, 0, sizeof(action));
528
    action.sa_handler = SIG_DFL;
529
    if (!sigaction(SIGBUS, &action, NULL)) {
530
        raise(SIGBUS);
531
        sigemptyset(&set);
532
        sigaddset(&set, SIGBUS);
533
        sigprocmask(SIG_UNBLOCK, &set, NULL);
534
    }
535
    perror("Failed to re-raise SIGBUS!\n");
536
    abort();
537
}
538

    
539
static void sigbus_handler(int n, struct qemu_signalfd_siginfo *siginfo,
540
                           void *ctx)
541
{
542
#if defined(TARGET_I386)
543
    if (kvm_on_sigbus(siginfo->ssi_code, (void *)(intptr_t)siginfo->ssi_addr))
544
#endif
545
        sigbus_reraise();
546
}
547

    
548
static void qemu_kvm_eat_signal(CPUState *env, int timeout)
549
{
550
    struct timespec ts;
551
    int r, e;
552
    siginfo_t siginfo;
553
    sigset_t waitset;
554
    sigset_t chkset;
555

    
556
    ts.tv_sec = timeout / 1000;
557
    ts.tv_nsec = (timeout % 1000) * 1000000;
558

    
559
    sigemptyset(&waitset);
560
    sigaddset(&waitset, SIG_IPI);
561
    sigaddset(&waitset, SIGBUS);
562

    
563
    do {
564
        qemu_mutex_unlock(&qemu_global_mutex);
565

    
566
        r = sigtimedwait(&waitset, &siginfo, &ts);
567
        e = errno;
568

    
569
        qemu_mutex_lock(&qemu_global_mutex);
570

    
571
        if (r == -1 && !(e == EAGAIN || e == EINTR)) {
572
            fprintf(stderr, "sigtimedwait: %s\n", strerror(e));
573
            exit(1);
574
        }
575

    
576
        switch (r) {
577
        case SIGBUS:
578
#ifdef TARGET_I386
579
            if (kvm_on_sigbus_vcpu(env, siginfo.si_code, siginfo.si_addr))
580
#endif
581
                sigbus_reraise();
582
            break;
583
        default:
584
            break;
585
        }
586

    
587
        r = sigpending(&chkset);
588
        if (r == -1) {
589
            fprintf(stderr, "sigpending: %s\n", strerror(e));
590
            exit(1);
591
        }
592
    } while (sigismember(&chkset, SIG_IPI) || sigismember(&chkset, SIGBUS));
593
}
594

    
595
static void qemu_kvm_wait_io_event(CPUState *env)
596
{
597
    while (!cpu_has_work(env))
598
        qemu_cond_timedwait(env->halt_cond, &qemu_global_mutex, 1000);
599

    
600
    qemu_kvm_eat_signal(env, 0);
601
    qemu_wait_io_event_common(env);
602
}
603

    
604
static int qemu_cpu_exec(CPUState *env);
605

    
606
static void *kvm_cpu_thread_fn(void *arg)
607
{
608
    CPUState *env = arg;
609
    int r;
610

    
611
    qemu_mutex_lock(&qemu_global_mutex);
612
    qemu_thread_self(env->thread);
613

    
614
    r = kvm_init_vcpu(env);
615
    if (r < 0) {
616
        fprintf(stderr, "kvm_init_vcpu failed: %s\n", strerror(-r));
617
        exit(1);
618
    }
619

    
620
    kvm_init_ipi(env);
621

    
622
    /* signal CPU creation */
623
    env->created = 1;
624
    qemu_cond_signal(&qemu_cpu_cond);
625

    
626
    /* and wait for machine initialization */
627
    while (!qemu_system_ready)
628
        qemu_cond_timedwait(&qemu_system_cond, &qemu_global_mutex, 100);
629

    
630
    while (1) {
631
        if (cpu_can_run(env))
632
            qemu_cpu_exec(env);
633
        qemu_kvm_wait_io_event(env);
634
    }
635

    
636
    return NULL;
637
}
638

    
639
static void *tcg_cpu_thread_fn(void *arg)
640
{
641
    CPUState *env = arg;
642

    
643
    tcg_init_ipi();
644
    qemu_thread_self(env->thread);
645

    
646
    /* signal CPU creation */
647
    qemu_mutex_lock(&qemu_global_mutex);
648
    for (env = first_cpu; env != NULL; env = env->next_cpu)
649
        env->created = 1;
650
    qemu_cond_signal(&qemu_cpu_cond);
651

    
652
    /* and wait for machine initialization */
653
    while (!qemu_system_ready)
654
        qemu_cond_timedwait(&qemu_system_cond, &qemu_global_mutex, 100);
655

    
656
    while (1) {
657
        cpu_exec_all();
658
        qemu_tcg_wait_io_event();
659
    }
660

    
661
    return NULL;
662
}
663

    
664
void qemu_cpu_kick(void *_env)
665
{
666
    CPUState *env = _env;
667
    qemu_cond_broadcast(env->halt_cond);
668
    if (!env->thread_kicked) {
669
        qemu_thread_signal(env->thread, SIG_IPI);
670
        env->thread_kicked = true;
671
    }
672
}
673

    
674
int qemu_cpu_self(void *_env)
675
{
676
    CPUState *env = _env;
677
    QemuThread this;
678

    
679
    qemu_thread_self(&this);
680

    
681
    return qemu_thread_equal(&this, env->thread);
682
}
683

    
684
static void cpu_signal(int sig)
685
{
686
    if (cpu_single_env)
687
        cpu_exit(cpu_single_env);
688
    exit_request = 1;
689
}
690

    
691
static void tcg_init_ipi(void)
692
{
693
    sigset_t set;
694
    struct sigaction sigact;
695

    
696
    memset(&sigact, 0, sizeof(sigact));
697
    sigact.sa_handler = cpu_signal;
698
    sigaction(SIG_IPI, &sigact, NULL);
699

    
700
    sigemptyset(&set);
701
    sigaddset(&set, SIG_IPI);
702
    pthread_sigmask(SIG_UNBLOCK, &set, NULL);
703
}
704

    
705
static void dummy_signal(int sig)
706
{
707
}
708

    
709
static void kvm_init_ipi(CPUState *env)
710
{
711
    int r;
712
    sigset_t set;
713
    struct sigaction sigact;
714

    
715
    memset(&sigact, 0, sizeof(sigact));
716
    sigact.sa_handler = dummy_signal;
717
    sigaction(SIG_IPI, &sigact, NULL);
718

    
719
    pthread_sigmask(SIG_BLOCK, NULL, &set);
720
    sigdelset(&set, SIG_IPI);
721
    sigdelset(&set, SIGBUS);
722
    r = kvm_set_signal_mask(env, &set);
723
    if (r) {
724
        fprintf(stderr, "kvm_set_signal_mask: %s\n", strerror(r));
725
        exit(1);
726
    }
727
}
728

    
729
static sigset_t block_io_signals(void)
730
{
731
    sigset_t set;
732
    struct sigaction action;
733

    
734
    /* SIGUSR2 used by posix-aio-compat.c */
735
    sigemptyset(&set);
736
    sigaddset(&set, SIGUSR2);
737
    pthread_sigmask(SIG_UNBLOCK, &set, NULL);
738

    
739
    sigemptyset(&set);
740
    sigaddset(&set, SIGIO);
741
    sigaddset(&set, SIGALRM);
742
    sigaddset(&set, SIG_IPI);
743
    sigaddset(&set, SIGBUS);
744
    pthread_sigmask(SIG_BLOCK, &set, NULL);
745

    
746
    memset(&action, 0, sizeof(action));
747
    action.sa_flags = SA_SIGINFO;
748
    action.sa_sigaction = (void (*)(int, siginfo_t*, void*))sigbus_handler;
749
    sigaction(SIGBUS, &action, NULL);
750
    prctl(PR_MCE_KILL, 1, 1, 0, 0);
751

    
752
    return set;
753
}
754

    
755
void qemu_mutex_lock_iothread(void)
756
{
757
    if (kvm_enabled()) {
758
        qemu_mutex_lock(&qemu_global_mutex);
759
    } else {
760
        qemu_mutex_lock(&qemu_fair_mutex);
761
        if (qemu_mutex_trylock(&qemu_global_mutex)) {
762
            qemu_thread_signal(tcg_cpu_thread, SIG_IPI);
763
            qemu_mutex_lock(&qemu_global_mutex);
764
        }
765
        qemu_mutex_unlock(&qemu_fair_mutex);
766
    }
767
}
768

    
769
void qemu_mutex_unlock_iothread(void)
770
{
771
    qemu_mutex_unlock(&qemu_global_mutex);
772
}
773

    
774
static int all_vcpus_paused(void)
775
{
776
    CPUState *penv = first_cpu;
777

    
778
    while (penv) {
779
        if (!penv->stopped)
780
            return 0;
781
        penv = (CPUState *)penv->next_cpu;
782
    }
783

    
784
    return 1;
785
}
786

    
787
void pause_all_vcpus(void)
788
{
789
    CPUState *penv = first_cpu;
790

    
791
    while (penv) {
792
        penv->stop = 1;
793
        qemu_cpu_kick(penv);
794
        penv = (CPUState *)penv->next_cpu;
795
    }
796

    
797
    while (!all_vcpus_paused()) {
798
        qemu_cond_timedwait(&qemu_pause_cond, &qemu_global_mutex, 100);
799
        penv = first_cpu;
800
        while (penv) {
801
            qemu_cpu_kick(penv);
802
            penv = (CPUState *)penv->next_cpu;
803
        }
804
    }
805
}
806

    
807
void resume_all_vcpus(void)
808
{
809
    CPUState *penv = first_cpu;
810

    
811
    while (penv) {
812
        penv->stop = 0;
813
        penv->stopped = 0;
814
        qemu_cpu_kick(penv);
815
        penv = (CPUState *)penv->next_cpu;
816
    }
817
}
818

    
819
static void tcg_init_vcpu(void *_env)
820
{
821
    CPUState *env = _env;
822
    /* share a single thread for all cpus with TCG */
823
    if (!tcg_cpu_thread) {
824
        env->thread = qemu_mallocz(sizeof(QemuThread));
825
        env->halt_cond = qemu_mallocz(sizeof(QemuCond));
826
        qemu_cond_init(env->halt_cond);
827
        qemu_thread_create(env->thread, tcg_cpu_thread_fn, env);
828
        while (env->created == 0)
829
            qemu_cond_timedwait(&qemu_cpu_cond, &qemu_global_mutex, 100);
830
        tcg_cpu_thread = env->thread;
831
        tcg_halt_cond = env->halt_cond;
832
    } else {
833
        env->thread = tcg_cpu_thread;
834
        env->halt_cond = tcg_halt_cond;
835
    }
836
}
837

    
838
static void kvm_start_vcpu(CPUState *env)
839
{
840
    env->thread = qemu_mallocz(sizeof(QemuThread));
841
    env->halt_cond = qemu_mallocz(sizeof(QemuCond));
842
    qemu_cond_init(env->halt_cond);
843
    qemu_thread_create(env->thread, kvm_cpu_thread_fn, env);
844
    while (env->created == 0)
845
        qemu_cond_timedwait(&qemu_cpu_cond, &qemu_global_mutex, 100);
846
}
847

    
848
void qemu_init_vcpu(void *_env)
849
{
850
    CPUState *env = _env;
851

    
852
    env->nr_cores = smp_cores;
853
    env->nr_threads = smp_threads;
854
    if (kvm_enabled())
855
        kvm_start_vcpu(env);
856
    else
857
        tcg_init_vcpu(env);
858
}
859

    
860
void qemu_notify_event(void)
861
{
862
    qemu_event_increment();
863
}
864

    
865
static void qemu_system_vmstop_request(int reason)
866
{
867
    vmstop_requested = reason;
868
    qemu_notify_event();
869
}
870

    
871
void cpu_stop_current(void)
872
{
873
    if (cpu_single_env) {
874
        cpu_single_env->stopped = 1;
875
        cpu_exit(cpu_single_env);
876
    }
877
}
878

    
879
void vm_stop(int reason)
880
{
881
    QemuThread me;
882
    qemu_thread_self(&me);
883

    
884
    if (!qemu_thread_equal(&me, &io_thread)) {
885
        qemu_system_vmstop_request(reason);
886
        /*
887
         * FIXME: should not return to device code in case
888
         * vm_stop() has been requested.
889
         */
890
        cpu_stop_current();
891
        return;
892
    }
893
    do_vm_stop(reason);
894
}
895

    
896
#endif
897

    
898
static int qemu_cpu_exec(CPUState *env)
899
{
900
    int ret;
901
#ifdef CONFIG_PROFILER
902
    int64_t ti;
903
#endif
904

    
905
#ifdef CONFIG_PROFILER
906
    ti = profile_getclock();
907
#endif
908
    if (use_icount) {
909
        int64_t count;
910
        int decr;
911
        qemu_icount -= (env->icount_decr.u16.low + env->icount_extra);
912
        env->icount_decr.u16.low = 0;
913
        env->icount_extra = 0;
914
        count = qemu_icount_round (qemu_next_deadline());
915
        qemu_icount += count;
916
        decr = (count > 0xffff) ? 0xffff : count;
917
        count -= decr;
918
        env->icount_decr.u16.low = decr;
919
        env->icount_extra = count;
920
    }
921
    ret = cpu_exec(env);
922
#ifdef CONFIG_PROFILER
923
    qemu_time += profile_getclock() - ti;
924
#endif
925
    if (use_icount) {
926
        /* Fold pending instructions back into the
927
           instruction counter, and clear the interrupt flag.  */
928
        qemu_icount -= (env->icount_decr.u16.low
929
                        + env->icount_extra);
930
        env->icount_decr.u32 = 0;
931
        env->icount_extra = 0;
932
    }
933
    return ret;
934
}
935

    
936
bool cpu_exec_all(void)
937
{
938
    if (next_cpu == NULL)
939
        next_cpu = first_cpu;
940
    for (; next_cpu != NULL && !exit_request; next_cpu = next_cpu->next_cpu) {
941
        CPUState *env = next_cpu;
942

    
943
        qemu_clock_enable(vm_clock,
944
                          (env->singlestep_enabled & SSTEP_NOTIMER) == 0);
945

    
946
        if (qemu_alarm_pending())
947
            break;
948
        if (cpu_can_run(env)) {
949
            if (qemu_cpu_exec(env) == EXCP_DEBUG) {
950
                break;
951
            }
952
        } else if (env->stop) {
953
            break;
954
        }
955
    }
956
    exit_request = 0;
957
    return any_cpu_has_work();
958
}
959

    
960
void set_numa_modes(void)
961
{
962
    CPUState *env;
963
    int i;
964

    
965
    for (env = first_cpu; env != NULL; env = env->next_cpu) {
966
        for (i = 0; i < nb_numa_nodes; i++) {
967
            if (node_cpumask[i] & (1 << env->cpu_index)) {
968
                env->numa_node = i;
969
            }
970
        }
971
    }
972
}
973

    
974
void set_cpu_log(const char *optarg)
975
{
976
    int mask;
977
    const CPULogItem *item;
978

    
979
    mask = cpu_str_to_log_mask(optarg);
980
    if (!mask) {
981
        printf("Log items (comma separated):\n");
982
        for (item = cpu_log_items; item->mask != 0; item++) {
983
            printf("%-10s %s\n", item->name, item->help);
984
        }
985
        exit(1);
986
    }
987
    cpu_set_log(mask);
988
}
989

    
990
/* Return the virtual CPU time, based on the instruction counter.  */
991
int64_t cpu_get_icount(void)
992
{
993
    int64_t icount;
994
    CPUState *env = cpu_single_env;;
995

    
996
    icount = qemu_icount;
997
    if (env) {
998
        if (!can_do_io(env)) {
999
            fprintf(stderr, "Bad clock read\n");
1000
        }
1001
        icount -= (env->icount_decr.u16.low + env->icount_extra);
1002
    }
1003
    return qemu_icount_bias + (icount << icount_time_shift);
1004
}
1005

    
1006
void list_cpus(FILE *f, fprintf_function cpu_fprintf, const char *optarg)
1007
{
1008
    /* XXX: implement xxx_cpu_list for targets that still miss it */
1009
#if defined(cpu_list_id)
1010
    cpu_list_id(f, cpu_fprintf, optarg);
1011
#elif defined(cpu_list)
1012
    cpu_list(f, cpu_fprintf); /* deprecated */
1013
#endif
1014
}