Statistics
| Branch: | Revision:

root / hw / m48t59.c @ 868d585a

History | View | Annotate | Download (16.5 kB)

1
/*
2
 * QEMU M48T59 and M48T08 NVRAM emulation for PPC PREP and Sparc platforms
3
 *
4
 * Copyright (c) 2003-2005, 2007 Jocelyn Mayer
5
 *
6
 * Permission is hereby granted, free of charge, to any person obtaining a copy
7
 * of this software and associated documentation files (the "Software"), to deal
8
 * in the Software without restriction, including without limitation the rights
9
 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10
 * copies of the Software, and to permit persons to whom the Software is
11
 * furnished to do so, subject to the following conditions:
12
 *
13
 * The above copyright notice and this permission notice shall be included in
14
 * all copies or substantial portions of the Software.
15
 *
16
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21
 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22
 * THE SOFTWARE.
23
 */
24
#include "vl.h"
25
#include "m48t59.h"
26

    
27
//#define DEBUG_NVRAM
28

    
29
#if defined(DEBUG_NVRAM)
30
#define NVRAM_PRINTF(fmt, args...) do { printf(fmt , ##args); } while (0)
31
#else
32
#define NVRAM_PRINTF(fmt, args...) do { } while (0)
33
#endif
34

    
35
/*
36
 * The M48T08 and M48T59 chips are very similar. The newer '59 has
37
 * alarm and a watchdog timer and related control registers. In the
38
 * PPC platform there is also a nvram lock function.
39
 */
40
struct m48t59_t {
41
    /* Model parameters */
42
    int type; // 8 = m48t08, 59 = m48t59
43
    /* Hardware parameters */
44
    qemu_irq IRQ;
45
    int mem_index;
46
    target_phys_addr_t mem_base;
47
    uint32_t io_base;
48
    uint16_t size;
49
    /* RTC management */
50
    time_t   time_offset;
51
    time_t   stop_time;
52
    /* Alarm & watchdog */
53
    time_t   alarm;
54
    struct QEMUTimer *alrm_timer;
55
    struct QEMUTimer *wd_timer;
56
    /* NVRAM storage */
57
    uint8_t  lock;
58
    uint16_t addr;
59
    uint8_t *buffer;
60
};
61

    
62
/* Fake timer functions */
63
/* Generic helpers for BCD */
64
static inline uint8_t toBCD (uint8_t value)
65
{
66
    return (((value / 10) % 10) << 4) | (value % 10);
67
}
68

    
69
static inline uint8_t fromBCD (uint8_t BCD)
70
{
71
    return ((BCD >> 4) * 10) + (BCD & 0x0F);
72
}
73

    
74
/* RTC management helpers */
75
static void get_time (m48t59_t *NVRAM, struct tm *tm)
76
{
77
    time_t t;
78

    
79
    t = time(NULL) + NVRAM->time_offset;
80
#ifdef _WIN32
81
    memcpy(tm,localtime(&t),sizeof(*tm));
82
#else
83
    if (rtc_utc)
84
        gmtime_r (&t, tm);
85
    else
86
        localtime_r (&t, tm) ;
87
#endif
88
}
89

    
90
static void set_time (m48t59_t *NVRAM, struct tm *tm)
91
{
92
    time_t now, new_time;
93

    
94
    new_time = mktime(tm);
95
    now = time(NULL);
96
    NVRAM->time_offset = new_time - now;
97
}
98

    
99
/* Alarm management */
100
static void alarm_cb (void *opaque)
101
{
102
    struct tm tm, tm_now;
103
    uint64_t next_time;
104
    m48t59_t *NVRAM = opaque;
105

    
106
    qemu_set_irq(NVRAM->IRQ, 1);
107
    if ((NVRAM->buffer[0x1FF5] & 0x80) == 0 &&
108
        (NVRAM->buffer[0x1FF4] & 0x80) == 0 &&
109
        (NVRAM->buffer[0x1FF3] & 0x80) == 0 &&
110
        (NVRAM->buffer[0x1FF2] & 0x80) == 0) {
111
        /* Repeat once a month */
112
        get_time(NVRAM, &tm_now);
113
        memcpy(&tm, &tm_now, sizeof(struct tm));
114
        tm.tm_mon++;
115
        if (tm.tm_mon == 13) {
116
            tm.tm_mon = 1;
117
            tm.tm_year++;
118
        }
119
        next_time = mktime(&tm);
120
    } else if ((NVRAM->buffer[0x1FF5] & 0x80) != 0 &&
121
               (NVRAM->buffer[0x1FF4] & 0x80) == 0 &&
122
               (NVRAM->buffer[0x1FF3] & 0x80) == 0 &&
123
               (NVRAM->buffer[0x1FF2] & 0x80) == 0) {
124
        /* Repeat once a day */
125
        next_time = 24 * 60 * 60 + mktime(&tm_now);
126
    } else if ((NVRAM->buffer[0x1FF5] & 0x80) != 0 &&
127
               (NVRAM->buffer[0x1FF4] & 0x80) != 0 &&
128
               (NVRAM->buffer[0x1FF3] & 0x80) == 0 &&
129
               (NVRAM->buffer[0x1FF2] & 0x80) == 0) {
130
        /* Repeat once an hour */
131
        next_time = 60 * 60 + mktime(&tm_now);
132
    } else if ((NVRAM->buffer[0x1FF5] & 0x80) != 0 &&
133
               (NVRAM->buffer[0x1FF4] & 0x80) != 0 &&
134
               (NVRAM->buffer[0x1FF3] & 0x80) != 0 &&
135
               (NVRAM->buffer[0x1FF2] & 0x80) == 0) {
136
        /* Repeat once a minute */
137
        next_time = 60 + mktime(&tm_now);
138
    } else {
139
        /* Repeat once a second */
140
        next_time = 1 + mktime(&tm_now);
141
    }
142
    qemu_mod_timer(NVRAM->alrm_timer, next_time * 1000);
143
    qemu_set_irq(NVRAM->IRQ, 0);
144
}
145

    
146

    
147
static void get_alarm (m48t59_t *NVRAM, struct tm *tm)
148
{
149
#ifdef _WIN32
150
    memcpy(tm,localtime(&NVRAM->alarm),sizeof(*tm));
151
#else
152
    if (rtc_utc)
153
        gmtime_r (&NVRAM->alarm, tm);
154
    else
155
        localtime_r (&NVRAM->alarm, tm);
156
#endif
157
}
158

    
159
static void set_alarm (m48t59_t *NVRAM, struct tm *tm)
160
{
161
    NVRAM->alarm = mktime(tm);
162
    if (NVRAM->alrm_timer != NULL) {
163
        qemu_del_timer(NVRAM->alrm_timer);
164
        if (NVRAM->alarm - time(NULL) > 0)
165
            qemu_mod_timer(NVRAM->alrm_timer, NVRAM->alarm * 1000);
166
    }
167
}
168

    
169
/* Watchdog management */
170
static void watchdog_cb (void *opaque)
171
{
172
    m48t59_t *NVRAM = opaque;
173

    
174
    NVRAM->buffer[0x1FF0] |= 0x80;
175
    if (NVRAM->buffer[0x1FF7] & 0x80) {
176
        NVRAM->buffer[0x1FF7] = 0x00;
177
        NVRAM->buffer[0x1FFC] &= ~0x40;
178
        /* May it be a hw CPU Reset instead ? */
179
        qemu_system_reset_request();
180
    } else {
181
        qemu_set_irq(NVRAM->IRQ, 1);
182
        qemu_set_irq(NVRAM->IRQ, 0);
183
    }
184
}
185

    
186
static void set_up_watchdog (m48t59_t *NVRAM, uint8_t value)
187
{
188
    uint64_t interval; /* in 1/16 seconds */
189

    
190
    NVRAM->buffer[0x1FF0] &= ~0x80;
191
    if (NVRAM->wd_timer != NULL) {
192
        qemu_del_timer(NVRAM->wd_timer);
193
        if (value != 0) {
194
            interval = (1 << (2 * (value & 0x03))) * ((value >> 2) & 0x1F);
195
            qemu_mod_timer(NVRAM->wd_timer, ((uint64_t)time(NULL) * 1000) +
196
                           ((interval * 1000) >> 4));
197
        }
198
    }
199
}
200

    
201
/* Direct access to NVRAM */
202
void m48t59_write (m48t59_t *NVRAM, uint32_t addr, uint32_t val)
203
{
204
    struct tm tm;
205
    int tmp;
206

    
207
    if (addr > 0x1FF8 && addr < 0x2000)
208
        NVRAM_PRINTF("%s: 0x%08x => 0x%08x\n", __func__, addr, val);
209
    if (NVRAM->type == 8 &&
210
        (addr >= 0x1ff0 && addr <= 0x1ff7))
211
        goto do_write;
212
    switch (addr) {
213
    case 0x1FF0:
214
        /* flags register : read-only */
215
        break;
216
    case 0x1FF1:
217
        /* unused */
218
        break;
219
    case 0x1FF2:
220
        /* alarm seconds */
221
        tmp = fromBCD(val & 0x7F);
222
        if (tmp >= 0 && tmp <= 59) {
223
            get_alarm(NVRAM, &tm);
224
            tm.tm_sec = tmp;
225
            NVRAM->buffer[0x1FF2] = val;
226
            set_alarm(NVRAM, &tm);
227
        }
228
        break;
229
    case 0x1FF3:
230
        /* alarm minutes */
231
        tmp = fromBCD(val & 0x7F);
232
        if (tmp >= 0 && tmp <= 59) {
233
            get_alarm(NVRAM, &tm);
234
            tm.tm_min = tmp;
235
            NVRAM->buffer[0x1FF3] = val;
236
            set_alarm(NVRAM, &tm);
237
        }
238
        break;
239
    case 0x1FF4:
240
        /* alarm hours */
241
        tmp = fromBCD(val & 0x3F);
242
        if (tmp >= 0 && tmp <= 23) {
243
            get_alarm(NVRAM, &tm);
244
            tm.tm_hour = tmp;
245
            NVRAM->buffer[0x1FF4] = val;
246
            set_alarm(NVRAM, &tm);
247
        }
248
        break;
249
    case 0x1FF5:
250
        /* alarm date */
251
        tmp = fromBCD(val & 0x1F);
252
        if (tmp != 0) {
253
            get_alarm(NVRAM, &tm);
254
            tm.tm_mday = tmp;
255
            NVRAM->buffer[0x1FF5] = val;
256
            set_alarm(NVRAM, &tm);
257
        }
258
        break;
259
    case 0x1FF6:
260
        /* interrupts */
261
        NVRAM->buffer[0x1FF6] = val;
262
        break;
263
    case 0x1FF7:
264
        /* watchdog */
265
        NVRAM->buffer[0x1FF7] = val;
266
        set_up_watchdog(NVRAM, val);
267
        break;
268
    case 0x1FF8:
269
        /* control */
270
        NVRAM->buffer[0x1FF8] = (val & ~0xA0) | 0x90;
271
        break;
272
    case 0x1FF9:
273
        /* seconds (BCD) */
274
        tmp = fromBCD(val & 0x7F);
275
        if (tmp >= 0 && tmp <= 59) {
276
            get_time(NVRAM, &tm);
277
            tm.tm_sec = tmp;
278
            set_time(NVRAM, &tm);
279
        }
280
        if ((val & 0x80) ^ (NVRAM->buffer[0x1FF9] & 0x80)) {
281
            if (val & 0x80) {
282
                NVRAM->stop_time = time(NULL);
283
            } else {
284
                NVRAM->time_offset += NVRAM->stop_time - time(NULL);
285
                NVRAM->stop_time = 0;
286
            }
287
        }
288
        NVRAM->buffer[0x1FF9] = val & 0x80;
289
        break;
290
    case 0x1FFA:
291
        /* minutes (BCD) */
292
        tmp = fromBCD(val & 0x7F);
293
        if (tmp >= 0 && tmp <= 59) {
294
            get_time(NVRAM, &tm);
295
            tm.tm_min = tmp;
296
            set_time(NVRAM, &tm);
297
        }
298
        break;
299
    case 0x1FFB:
300
        /* hours (BCD) */
301
        tmp = fromBCD(val & 0x3F);
302
        if (tmp >= 0 && tmp <= 23) {
303
            get_time(NVRAM, &tm);
304
            tm.tm_hour = tmp;
305
            set_time(NVRAM, &tm);
306
        }
307
        break;
308
    case 0x1FFC:
309
        /* day of the week / century */
310
        tmp = fromBCD(val & 0x07);
311
        get_time(NVRAM, &tm);
312
        tm.tm_wday = tmp;
313
        set_time(NVRAM, &tm);
314
        NVRAM->buffer[0x1FFC] = val & 0x40;
315
        break;
316
    case 0x1FFD:
317
        /* date */
318
        tmp = fromBCD(val & 0x1F);
319
        if (tmp != 0) {
320
            get_time(NVRAM, &tm);
321
            tm.tm_mday = tmp;
322
            set_time(NVRAM, &tm);
323
        }
324
        break;
325
    case 0x1FFE:
326
        /* month */
327
        tmp = fromBCD(val & 0x1F);
328
        if (tmp >= 1 && tmp <= 12) {
329
            get_time(NVRAM, &tm);
330
            tm.tm_mon = tmp - 1;
331
            set_time(NVRAM, &tm);
332
        }
333
        break;
334
    case 0x1FFF:
335
        /* year */
336
        tmp = fromBCD(val);
337
        if (tmp >= 0 && tmp <= 99) {
338
            get_time(NVRAM, &tm);
339
            if (NVRAM->type == 8)
340
                tm.tm_year = fromBCD(val) + 68; // Base year is 1968
341
            else
342
                tm.tm_year = fromBCD(val);
343
            set_time(NVRAM, &tm);
344
        }
345
        break;
346
    default:
347
        /* Check lock registers state */
348
        if (addr >= 0x20 && addr <= 0x2F && (NVRAM->lock & 1))
349
            break;
350
        if (addr >= 0x30 && addr <= 0x3F && (NVRAM->lock & 2))
351
            break;
352
    do_write:
353
        if (addr < NVRAM->size) {
354
            NVRAM->buffer[addr] = val & 0xFF;
355
        }
356
        break;
357
    }
358
}
359

    
360
uint32_t m48t59_read (m48t59_t *NVRAM, uint32_t addr)
361
{
362
    struct tm tm;
363
    uint32_t retval = 0xFF;
364

    
365
    if (NVRAM->type == 8 &&
366
        (addr >= 0x1ff0 && addr <= 0x1ff7))
367
        goto do_read;
368
    switch (addr) {
369
    case 0x1FF0:
370
        /* flags register */
371
        goto do_read;
372
    case 0x1FF1:
373
        /* unused */
374
        retval = 0;
375
        break;
376
    case 0x1FF2:
377
        /* alarm seconds */
378
        goto do_read;
379
    case 0x1FF3:
380
        /* alarm minutes */
381
        goto do_read;
382
    case 0x1FF4:
383
        /* alarm hours */
384
        goto do_read;
385
    case 0x1FF5:
386
        /* alarm date */
387
        goto do_read;
388
    case 0x1FF6:
389
        /* interrupts */
390
        goto do_read;
391
    case 0x1FF7:
392
        /* A read resets the watchdog */
393
        set_up_watchdog(NVRAM, NVRAM->buffer[0x1FF7]);
394
        goto do_read;
395
    case 0x1FF8:
396
        /* control */
397
        goto do_read;
398
    case 0x1FF9:
399
        /* seconds (BCD) */
400
        get_time(NVRAM, &tm);
401
        retval = (NVRAM->buffer[0x1FF9] & 0x80) | toBCD(tm.tm_sec);
402
        break;
403
    case 0x1FFA:
404
        /* minutes (BCD) */
405
        get_time(NVRAM, &tm);
406
        retval = toBCD(tm.tm_min);
407
        break;
408
    case 0x1FFB:
409
        /* hours (BCD) */
410
        get_time(NVRAM, &tm);
411
        retval = toBCD(tm.tm_hour);
412
        break;
413
    case 0x1FFC:
414
        /* day of the week / century */
415
        get_time(NVRAM, &tm);
416
        retval = NVRAM->buffer[0x1FFC] | tm.tm_wday;
417
        break;
418
    case 0x1FFD:
419
        /* date */
420
        get_time(NVRAM, &tm);
421
        retval = toBCD(tm.tm_mday);
422
        break;
423
    case 0x1FFE:
424
        /* month */
425
        get_time(NVRAM, &tm);
426
        retval = toBCD(tm.tm_mon + 1);
427
        break;
428
    case 0x1FFF:
429
        /* year */
430
        get_time(NVRAM, &tm);
431
        if (NVRAM->type == 8)
432
            retval = toBCD(tm.tm_year - 68); // Base year is 1968
433
        else
434
            retval = toBCD(tm.tm_year);
435
        break;
436
    default:
437
        /* Check lock registers state */
438
        if (addr >= 0x20 && addr <= 0x2F && (NVRAM->lock & 1))
439
            break;
440
        if (addr >= 0x30 && addr <= 0x3F && (NVRAM->lock & 2))
441
            break;
442
    do_read:
443
        if (addr < NVRAM->size) {
444
            retval = NVRAM->buffer[addr];
445
        }
446
        break;
447
    }
448
    if (addr > 0x1FF9 && addr < 0x2000)
449
        NVRAM_PRINTF("0x%08x <= 0x%08x\n", addr, retval);
450

    
451
    return retval;
452
}
453

    
454
void m48t59_set_addr (m48t59_t *NVRAM, uint32_t addr)
455
{
456
    NVRAM->addr = addr;
457
}
458

    
459
void m48t59_toggle_lock (m48t59_t *NVRAM, int lock)
460
{
461
    NVRAM->lock ^= 1 << lock;
462
}
463

    
464
/* IO access to NVRAM */
465
static void NVRAM_writeb (void *opaque, uint32_t addr, uint32_t val)
466
{
467
    m48t59_t *NVRAM = opaque;
468

    
469
    addr -= NVRAM->io_base;
470
    NVRAM_PRINTF("0x%08x => 0x%08x\n", addr, val);
471
    switch (addr) {
472
    case 0:
473
        NVRAM->addr &= ~0x00FF;
474
        NVRAM->addr |= val;
475
        break;
476
    case 1:
477
        NVRAM->addr &= ~0xFF00;
478
        NVRAM->addr |= val << 8;
479
        break;
480
    case 3:
481
        m48t59_write(NVRAM, val, NVRAM->addr);
482
        NVRAM->addr = 0x0000;
483
        break;
484
    default:
485
        break;
486
    }
487
}
488

    
489
static uint32_t NVRAM_readb (void *opaque, uint32_t addr)
490
{
491
    m48t59_t *NVRAM = opaque;
492
    uint32_t retval;
493

    
494
    addr -= NVRAM->io_base;
495
    switch (addr) {
496
    case 3:
497
        retval = m48t59_read(NVRAM, NVRAM->addr);
498
        break;
499
    default:
500
        retval = -1;
501
        break;
502
    }
503
    NVRAM_PRINTF("0x%08x <= 0x%08x\n", addr, retval);
504

    
505
    return retval;
506
}
507

    
508
static void nvram_writeb (void *opaque, target_phys_addr_t addr, uint32_t value)
509
{
510
    m48t59_t *NVRAM = opaque;
511

    
512
    addr -= NVRAM->mem_base;
513
    m48t59_write(NVRAM, addr, value & 0xff);
514
}
515

    
516
static void nvram_writew (void *opaque, target_phys_addr_t addr, uint32_t value)
517
{
518
    m48t59_t *NVRAM = opaque;
519

    
520
    addr -= NVRAM->mem_base;
521
    m48t59_write(NVRAM, addr, (value >> 8) & 0xff);
522
    m48t59_write(NVRAM, addr + 1, value & 0xff);
523
}
524

    
525
static void nvram_writel (void *opaque, target_phys_addr_t addr, uint32_t value)
526
{
527
    m48t59_t *NVRAM = opaque;
528

    
529
    addr -= NVRAM->mem_base;
530
    m48t59_write(NVRAM, addr, (value >> 24) & 0xff);
531
    m48t59_write(NVRAM, addr + 1, (value >> 16) & 0xff);
532
    m48t59_write(NVRAM, addr + 2, (value >> 8) & 0xff);
533
    m48t59_write(NVRAM, addr + 3, value & 0xff);
534
}
535

    
536
static uint32_t nvram_readb (void *opaque, target_phys_addr_t addr)
537
{
538
    m48t59_t *NVRAM = opaque;
539
    uint32_t retval;
540

    
541
    addr -= NVRAM->mem_base;
542
    retval = m48t59_read(NVRAM, addr);
543
    return retval;
544
}
545

    
546
static uint32_t nvram_readw (void *opaque, target_phys_addr_t addr)
547
{
548
    m48t59_t *NVRAM = opaque;
549
    uint32_t retval;
550

    
551
    addr -= NVRAM->mem_base;
552
    retval = m48t59_read(NVRAM, addr) << 8;
553
    retval |= m48t59_read(NVRAM, addr + 1);
554
    return retval;
555
}
556

    
557
static uint32_t nvram_readl (void *opaque, target_phys_addr_t addr)
558
{
559
    m48t59_t *NVRAM = opaque;
560
    uint32_t retval;
561

    
562
    addr -= NVRAM->mem_base;
563
    retval = m48t59_read(NVRAM, addr) << 24;
564
    retval |= m48t59_read(NVRAM, addr + 1) << 16;
565
    retval |= m48t59_read(NVRAM, addr + 2) << 8;
566
    retval |= m48t59_read(NVRAM, addr + 3);
567
    return retval;
568
}
569

    
570
static CPUWriteMemoryFunc *nvram_write[] = {
571
    &nvram_writeb,
572
    &nvram_writew,
573
    &nvram_writel,
574
};
575

    
576
static CPUReadMemoryFunc *nvram_read[] = {
577
    &nvram_readb,
578
    &nvram_readw,
579
    &nvram_readl,
580
};
581

    
582
static void m48t59_save(QEMUFile *f, void *opaque)
583
{
584
    m48t59_t *s = opaque;
585

    
586
    qemu_put_8s(f, &s->lock);
587
    qemu_put_be16s(f, &s->addr);
588
    qemu_put_buffer(f, s->buffer, s->size);
589
}
590

    
591
static int m48t59_load(QEMUFile *f, void *opaque, int version_id)
592
{
593
    m48t59_t *s = opaque;
594

    
595
    if (version_id != 1)
596
        return -EINVAL;
597

    
598
    qemu_get_8s(f, &s->lock);
599
    qemu_get_be16s(f, &s->addr);
600
    qemu_get_buffer(f, s->buffer, s->size);
601

    
602
    return 0;
603
}
604

    
605
static void m48t59_reset(void *opaque)
606
{
607
    m48t59_t *NVRAM = opaque;
608

    
609
    if (NVRAM->alrm_timer != NULL)
610
        qemu_del_timer(NVRAM->alrm_timer);
611

    
612
    if (NVRAM->wd_timer != NULL)
613
        qemu_del_timer(NVRAM->wd_timer);
614
}
615

    
616
/* Initialisation routine */
617
m48t59_t *m48t59_init (qemu_irq IRQ, target_phys_addr_t mem_base,
618
                       uint32_t io_base, uint16_t size,
619
                       int type)
620
{
621
    m48t59_t *s;
622
    target_phys_addr_t save_base;
623

    
624
    s = qemu_mallocz(sizeof(m48t59_t));
625
    if (!s)
626
        return NULL;
627
    s->buffer = qemu_mallocz(size);
628
    if (!s->buffer) {
629
        qemu_free(s);
630
        return NULL;
631
    }
632
    s->IRQ = IRQ;
633
    s->size = size;
634
    s->mem_base = mem_base;
635
    s->io_base = io_base;
636
    s->addr = 0;
637
    s->type = type;
638
    if (io_base != 0) {
639
        register_ioport_read(io_base, 0x04, 1, NVRAM_readb, s);
640
        register_ioport_write(io_base, 0x04, 1, NVRAM_writeb, s);
641
    }
642
    if (mem_base != 0) {
643
        s->mem_index = cpu_register_io_memory(0, nvram_read, nvram_write, s);
644
        cpu_register_physical_memory(mem_base, 0x4000, s->mem_index);
645
    }
646
    if (type == 59) {
647
        s->alrm_timer = qemu_new_timer(vm_clock, &alarm_cb, s);
648
        s->wd_timer = qemu_new_timer(vm_clock, &watchdog_cb, s);
649
    }
650
    s->lock = 0;
651

    
652
    qemu_register_reset(m48t59_reset, s);
653
    save_base = mem_base ? mem_base : io_base;
654
    register_savevm("m48t59", save_base, 1, m48t59_save, m48t59_load, s);
655

    
656
    return s;
657
}