Statistics
| Branch: | Revision:

root / hw / cuda.c @ 87ecb68b

History | View | Annotate | Download (17.9 kB)

1
/*
2
 * QEMU PowerMac CUDA device support
3
 *
4
 * Copyright (c) 2004-2007 Fabrice Bellard
5
 * Copyright (c) 2007 Jocelyn Mayer
6
 *
7
 * Permission is hereby granted, free of charge, to any person obtaining a copy
8
 * of this software and associated documentation files (the "Software"), to deal
9
 * in the Software without restriction, including without limitation the rights
10
 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
11
 * copies of the Software, and to permit persons to whom the Software is
12
 * furnished to do so, subject to the following conditions:
13
 *
14
 * The above copyright notice and this permission notice shall be included in
15
 * all copies or substantial portions of the Software.
16
 *
17
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
18
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
19
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
20
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
21
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
22
 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
23
 * THE SOFTWARE.
24
 */
25
#include "hw.h"
26
#include "ppc_mac.h"
27
#include "qemu-timer.h"
28
#include "sysemu.h"
29

    
30
/* XXX: implement all timer modes */
31

    
32
//#define DEBUG_CUDA
33
//#define DEBUG_CUDA_PACKET
34

    
35
/* Bits in B data register: all active low */
36
#define TREQ                0x08                /* Transfer request (input) */
37
#define TACK                0x10                /* Transfer acknowledge (output) */
38
#define TIP                0x20                /* Transfer in progress (output) */
39

    
40
/* Bits in ACR */
41
#define SR_CTRL                0x1c                /* Shift register control bits */
42
#define SR_EXT                0x0c                /* Shift on external clock */
43
#define SR_OUT                0x10                /* Shift out if 1 */
44

    
45
/* Bits in IFR and IER */
46
#define IER_SET                0x80                /* set bits in IER */
47
#define IER_CLR                0                /* clear bits in IER */
48
#define SR_INT                0x04                /* Shift register full/empty */
49
#define T1_INT          0x40            /* Timer 1 interrupt */
50
#define T2_INT          0x20            /* Timer 2 interrupt */
51

    
52
/* Bits in ACR */
53
#define T1MODE          0xc0            /* Timer 1 mode */
54
#define T1MODE_CONT     0x40            /*  continuous interrupts */
55

    
56
/* commands (1st byte) */
57
#define ADB_PACKET        0
58
#define CUDA_PACKET        1
59
#define ERROR_PACKET        2
60
#define TIMER_PACKET        3
61
#define POWER_PACKET        4
62
#define MACIIC_PACKET        5
63
#define PMU_PACKET        6
64

    
65

    
66
/* CUDA commands (2nd byte) */
67
#define CUDA_WARM_START                        0x0
68
#define CUDA_AUTOPOLL                        0x1
69
#define CUDA_GET_6805_ADDR                0x2
70
#define CUDA_GET_TIME                        0x3
71
#define CUDA_GET_PRAM                        0x7
72
#define CUDA_SET_6805_ADDR                0x8
73
#define CUDA_SET_TIME                        0x9
74
#define CUDA_POWERDOWN                        0xa
75
#define CUDA_POWERUP_TIME                0xb
76
#define CUDA_SET_PRAM                        0xc
77
#define CUDA_MS_RESET                        0xd
78
#define CUDA_SEND_DFAC                        0xe
79
#define CUDA_BATTERY_SWAP_SENSE                0x10
80
#define CUDA_RESET_SYSTEM                0x11
81
#define CUDA_SET_IPL                        0x12
82
#define CUDA_FILE_SERVER_FLAG                0x13
83
#define CUDA_SET_AUTO_RATE                0x14
84
#define CUDA_GET_AUTO_RATE                0x16
85
#define CUDA_SET_DEVICE_LIST                0x19
86
#define CUDA_GET_DEVICE_LIST                0x1a
87
#define CUDA_SET_ONE_SECOND_MODE        0x1b
88
#define CUDA_SET_POWER_MESSAGES                0x21
89
#define CUDA_GET_SET_IIC                0x22
90
#define CUDA_WAKEUP                        0x23
91
#define CUDA_TIMER_TICKLE                0x24
92
#define CUDA_COMBINED_FORMAT_IIC        0x25
93

    
94
#define CUDA_TIMER_FREQ (4700000 / 6)
95
#define CUDA_ADB_POLL_FREQ 50
96

    
97
/* CUDA returns time_t's offset from Jan 1, 1904, not 1970 */
98
#define RTC_OFFSET                      2082844800
99

    
100
typedef struct CUDATimer {
101
    int index;
102
    uint16_t latch;
103
    uint16_t counter_value; /* counter value at load time */
104
    int64_t load_time;
105
    int64_t next_irq_time;
106
    QEMUTimer *timer;
107
} CUDATimer;
108

    
109
typedef struct CUDAState {
110
    /* cuda registers */
111
    uint8_t b;      /* B-side data */
112
    uint8_t a;      /* A-side data */
113
    uint8_t dirb;   /* B-side direction (1=output) */
114
    uint8_t dira;   /* A-side direction (1=output) */
115
    uint8_t sr;     /* Shift register */
116
    uint8_t acr;    /* Auxiliary control register */
117
    uint8_t pcr;    /* Peripheral control register */
118
    uint8_t ifr;    /* Interrupt flag register */
119
    uint8_t ier;    /* Interrupt enable register */
120
    uint8_t anh;    /* A-side data, no handshake */
121

    
122
    CUDATimer timers[2];
123

    
124
    uint8_t last_b; /* last value of B register */
125
    uint8_t last_acr; /* last value of B register */
126

    
127
    int data_in_size;
128
    int data_in_index;
129
    int data_out_index;
130

    
131
    qemu_irq irq;
132
    uint8_t autopoll;
133
    uint8_t data_in[128];
134
    uint8_t data_out[16];
135
    QEMUTimer *adb_poll_timer;
136
} CUDAState;
137

    
138
static CUDAState cuda_state;
139
ADBBusState adb_bus;
140

    
141
static void cuda_update(CUDAState *s);
142
static void cuda_receive_packet_from_host(CUDAState *s,
143
                                          const uint8_t *data, int len);
144
static void cuda_timer_update(CUDAState *s, CUDATimer *ti,
145
                              int64_t current_time);
146

    
147
static void cuda_update_irq(CUDAState *s)
148
{
149
    if (s->ifr & s->ier & (SR_INT | T1_INT)) {
150
        qemu_irq_raise(s->irq);
151
    } else {
152
        qemu_irq_lower(s->irq);
153
    }
154
}
155

    
156
static unsigned int get_counter(CUDATimer *s)
157
{
158
    int64_t d;
159
    unsigned int counter;
160

    
161
    d = muldiv64(qemu_get_clock(vm_clock) - s->load_time,
162
                 CUDA_TIMER_FREQ, ticks_per_sec);
163
    if (s->index == 0) {
164
        /* the timer goes down from latch to -1 (period of latch + 2) */
165
        if (d <= (s->counter_value + 1)) {
166
            counter = (s->counter_value - d) & 0xffff;
167
        } else {
168
            counter = (d - (s->counter_value + 1)) % (s->latch + 2);
169
            counter = (s->latch - counter) & 0xffff;
170
        }
171
    } else {
172
        counter = (s->counter_value - d) & 0xffff;
173
    }
174
    return counter;
175
}
176

    
177
static void set_counter(CUDAState *s, CUDATimer *ti, unsigned int val)
178
{
179
#ifdef DEBUG_CUDA
180
    printf("cuda: T%d.counter=%d\n",
181
           1 + (ti->timer == NULL), val);
182
#endif
183
    ti->load_time = qemu_get_clock(vm_clock);
184
    ti->counter_value = val;
185
    cuda_timer_update(s, ti, ti->load_time);
186
}
187

    
188
static int64_t get_next_irq_time(CUDATimer *s, int64_t current_time)
189
{
190
    int64_t d, next_time;
191
    unsigned int counter;
192

    
193
    /* current counter value */
194
    d = muldiv64(current_time - s->load_time,
195
                 CUDA_TIMER_FREQ, ticks_per_sec);
196
    /* the timer goes down from latch to -1 (period of latch + 2) */
197
    if (d <= (s->counter_value + 1)) {
198
        counter = (s->counter_value - d) & 0xffff;
199
    } else {
200
        counter = (d - (s->counter_value + 1)) % (s->latch + 2);
201
        counter = (s->latch - counter) & 0xffff;
202
    }
203

    
204
    /* Note: we consider the irq is raised on 0 */
205
    if (counter == 0xffff) {
206
        next_time = d + s->latch + 1;
207
    } else if (counter == 0) {
208
        next_time = d + s->latch + 2;
209
    } else {
210
        next_time = d + counter;
211
    }
212
#if 0
213
#ifdef DEBUG_CUDA
214
    printf("latch=%d counter=%" PRId64 " delta_next=%" PRId64 "\n",
215
           s->latch, d, next_time - d);
216
#endif
217
#endif
218
    next_time = muldiv64(next_time, ticks_per_sec, CUDA_TIMER_FREQ) +
219
        s->load_time;
220
    if (next_time <= current_time)
221
        next_time = current_time + 1;
222
    return next_time;
223
}
224

    
225
static void cuda_timer_update(CUDAState *s, CUDATimer *ti,
226
                              int64_t current_time)
227
{
228
    if (!ti->timer)
229
        return;
230
    if ((s->acr & T1MODE) != T1MODE_CONT) {
231
        qemu_del_timer(ti->timer);
232
    } else {
233
        ti->next_irq_time = get_next_irq_time(ti, current_time);
234
        qemu_mod_timer(ti->timer, ti->next_irq_time);
235
    }
236
}
237

    
238
static void cuda_timer1(void *opaque)
239
{
240
    CUDAState *s = opaque;
241
    CUDATimer *ti = &s->timers[0];
242

    
243
    cuda_timer_update(s, ti, ti->next_irq_time);
244
    s->ifr |= T1_INT;
245
    cuda_update_irq(s);
246
}
247

    
248
static uint32_t cuda_readb(void *opaque, target_phys_addr_t addr)
249
{
250
    CUDAState *s = opaque;
251
    uint32_t val;
252

    
253
    addr = (addr >> 9) & 0xf;
254
    switch(addr) {
255
    case 0:
256
        val = s->b;
257
        break;
258
    case 1:
259
        val = s->a;
260
        break;
261
    case 2:
262
        val = s->dirb;
263
        break;
264
    case 3:
265
        val = s->dira;
266
        break;
267
    case 4:
268
        val = get_counter(&s->timers[0]) & 0xff;
269
        s->ifr &= ~T1_INT;
270
        cuda_update_irq(s);
271
        break;
272
    case 5:
273
        val = get_counter(&s->timers[0]) >> 8;
274
        cuda_update_irq(s);
275
        break;
276
    case 6:
277
        val = s->timers[0].latch & 0xff;
278
        break;
279
    case 7:
280
        /* XXX: check this */
281
        val = (s->timers[0].latch >> 8) & 0xff;
282
        break;
283
    case 8:
284
        val = get_counter(&s->timers[1]) & 0xff;
285
        s->ifr &= ~T2_INT;
286
        break;
287
    case 9:
288
        val = get_counter(&s->timers[1]) >> 8;
289
        break;
290
    case 10:
291
        val = s->sr;
292
        s->ifr &= ~SR_INT;
293
        cuda_update_irq(s);
294
        break;
295
    case 11:
296
        val = s->acr;
297
        break;
298
    case 12:
299
        val = s->pcr;
300
        break;
301
    case 13:
302
        val = s->ifr;
303
        if (s->ifr & s->ier)
304
            val |= 0x80;
305
        break;
306
    case 14:
307
        val = s->ier | 0x80;
308
        break;
309
    default:
310
    case 15:
311
        val = s->anh;
312
        break;
313
    }
314
#ifdef DEBUG_CUDA
315
    if (addr != 13 || val != 0)
316
        printf("cuda: read: reg=0x%x val=%02x\n", addr, val);
317
#endif
318
    return val;
319
}
320

    
321
static void cuda_writeb(void *opaque, target_phys_addr_t addr, uint32_t val)
322
{
323
    CUDAState *s = opaque;
324

    
325
    addr = (addr >> 9) & 0xf;
326
#ifdef DEBUG_CUDA
327
    printf("cuda: write: reg=0x%x val=%02x\n", addr, val);
328
#endif
329

    
330
    switch(addr) {
331
    case 0:
332
        s->b = val;
333
        cuda_update(s);
334
        break;
335
    case 1:
336
        s->a = val;
337
        break;
338
    case 2:
339
        s->dirb = val;
340
        break;
341
    case 3:
342
        s->dira = val;
343
        break;
344
    case 4:
345
        s->timers[0].latch = (s->timers[0].latch & 0xff00) | val;
346
        cuda_timer_update(s, &s->timers[0], qemu_get_clock(vm_clock));
347
        break;
348
    case 5:
349
        s->timers[0].latch = (s->timers[0].latch & 0xff) | (val << 8);
350
        s->ifr &= ~T1_INT;
351
        set_counter(s, &s->timers[0], s->timers[0].latch);
352
        break;
353
    case 6:
354
        s->timers[0].latch = (s->timers[0].latch & 0xff00) | val;
355
        cuda_timer_update(s, &s->timers[0], qemu_get_clock(vm_clock));
356
        break;
357
    case 7:
358
        s->timers[0].latch = (s->timers[0].latch & 0xff) | (val << 8);
359
        s->ifr &= ~T1_INT;
360
        cuda_timer_update(s, &s->timers[0], qemu_get_clock(vm_clock));
361
        break;
362
    case 8:
363
        s->timers[1].latch = val;
364
        set_counter(s, &s->timers[1], val);
365
        break;
366
    case 9:
367
        set_counter(s, &s->timers[1], (val << 8) | s->timers[1].latch);
368
        break;
369
    case 10:
370
        s->sr = val;
371
        break;
372
    case 11:
373
        s->acr = val;
374
        cuda_timer_update(s, &s->timers[0], qemu_get_clock(vm_clock));
375
        cuda_update(s);
376
        break;
377
    case 12:
378
        s->pcr = val;
379
        break;
380
    case 13:
381
        /* reset bits */
382
        s->ifr &= ~val;
383
        cuda_update_irq(s);
384
        break;
385
    case 14:
386
        if (val & IER_SET) {
387
            /* set bits */
388
            s->ier |= val & 0x7f;
389
        } else {
390
            /* reset bits */
391
            s->ier &= ~val;
392
        }
393
        cuda_update_irq(s);
394
        break;
395
    default:
396
    case 15:
397
        s->anh = val;
398
        break;
399
    }
400
}
401

    
402
/* NOTE: TIP and TREQ are negated */
403
static void cuda_update(CUDAState *s)
404
{
405
    int packet_received, len;
406

    
407
    packet_received = 0;
408
    if (!(s->b & TIP)) {
409
        /* transfer requested from host */
410

    
411
        if (s->acr & SR_OUT) {
412
            /* data output */
413
            if ((s->b & (TACK | TIP)) != (s->last_b & (TACK | TIP))) {
414
                if (s->data_out_index < sizeof(s->data_out)) {
415
#ifdef DEBUG_CUDA
416
                    printf("cuda: send: %02x\n", s->sr);
417
#endif
418
                    s->data_out[s->data_out_index++] = s->sr;
419
                    s->ifr |= SR_INT;
420
                    cuda_update_irq(s);
421
                }
422
            }
423
        } else {
424
            if (s->data_in_index < s->data_in_size) {
425
                /* data input */
426
                if ((s->b & (TACK | TIP)) != (s->last_b & (TACK | TIP))) {
427
                    s->sr = s->data_in[s->data_in_index++];
428
#ifdef DEBUG_CUDA
429
                    printf("cuda: recv: %02x\n", s->sr);
430
#endif
431
                    /* indicate end of transfer */
432
                    if (s->data_in_index >= s->data_in_size) {
433
                        s->b = (s->b | TREQ);
434
                    }
435
                    s->ifr |= SR_INT;
436
                    cuda_update_irq(s);
437
                }
438
            }
439
        }
440
    } else {
441
        /* no transfer requested: handle sync case */
442
        if ((s->last_b & TIP) && (s->b & TACK) != (s->last_b & TACK)) {
443
            /* update TREQ state each time TACK change state */
444
            if (s->b & TACK)
445
                s->b = (s->b | TREQ);
446
            else
447
                s->b = (s->b & ~TREQ);
448
            s->ifr |= SR_INT;
449
            cuda_update_irq(s);
450
        } else {
451
            if (!(s->last_b & TIP)) {
452
                /* handle end of host to cuda transfer */
453
                packet_received = (s->data_out_index > 0);
454
                /* always an IRQ at the end of transfer */
455
                s->ifr |= SR_INT;
456
                cuda_update_irq(s);
457
            }
458
            /* signal if there is data to read */
459
            if (s->data_in_index < s->data_in_size) {
460
                s->b = (s->b & ~TREQ);
461
            }
462
        }
463
    }
464

    
465
    s->last_acr = s->acr;
466
    s->last_b = s->b;
467

    
468
    /* NOTE: cuda_receive_packet_from_host() can call cuda_update()
469
       recursively */
470
    if (packet_received) {
471
        len = s->data_out_index;
472
        s->data_out_index = 0;
473
        cuda_receive_packet_from_host(s, s->data_out, len);
474
    }
475
}
476

    
477
static void cuda_send_packet_to_host(CUDAState *s,
478
                                     const uint8_t *data, int len)
479
{
480
#ifdef DEBUG_CUDA_PACKET
481
    {
482
        int i;
483
        printf("cuda_send_packet_to_host:\n");
484
        for(i = 0; i < len; i++)
485
            printf(" %02x", data[i]);
486
        printf("\n");
487
    }
488
#endif
489
    memcpy(s->data_in, data, len);
490
    s->data_in_size = len;
491
    s->data_in_index = 0;
492
    cuda_update(s);
493
    s->ifr |= SR_INT;
494
    cuda_update_irq(s);
495
}
496

    
497
static void cuda_adb_poll(void *opaque)
498
{
499
    CUDAState *s = opaque;
500
    uint8_t obuf[ADB_MAX_OUT_LEN + 2];
501
    int olen;
502

    
503
    olen = adb_poll(&adb_bus, obuf + 2);
504
    if (olen > 0) {
505
        obuf[0] = ADB_PACKET;
506
        obuf[1] = 0x40; /* polled data */
507
        cuda_send_packet_to_host(s, obuf, olen + 2);
508
    }
509
    qemu_mod_timer(s->adb_poll_timer,
510
                   qemu_get_clock(vm_clock) +
511
                   (ticks_per_sec / CUDA_ADB_POLL_FREQ));
512
}
513

    
514
static void cuda_receive_packet(CUDAState *s,
515
                                const uint8_t *data, int len)
516
{
517
    uint8_t obuf[16];
518
    int ti, autopoll;
519

    
520
    switch(data[0]) {
521
    case CUDA_AUTOPOLL:
522
        autopoll = (data[1] != 0);
523
        if (autopoll != s->autopoll) {
524
            s->autopoll = autopoll;
525
            if (autopoll) {
526
                qemu_mod_timer(s->adb_poll_timer,
527
                               qemu_get_clock(vm_clock) +
528
                               (ticks_per_sec / CUDA_ADB_POLL_FREQ));
529
            } else {
530
                qemu_del_timer(s->adb_poll_timer);
531
            }
532
        }
533
        obuf[0] = CUDA_PACKET;
534
        obuf[1] = data[1];
535
        cuda_send_packet_to_host(s, obuf, 2);
536
        break;
537
    case CUDA_GET_TIME:
538
    case CUDA_SET_TIME:
539
        /* XXX: add time support ? */
540
        ti = time(NULL) + RTC_OFFSET;
541
        obuf[0] = CUDA_PACKET;
542
        obuf[1] = 0;
543
        obuf[2] = 0;
544
        obuf[3] = ti >> 24;
545
        obuf[4] = ti >> 16;
546
        obuf[5] = ti >> 8;
547
        obuf[6] = ti;
548
        cuda_send_packet_to_host(s, obuf, 7);
549
        break;
550
    case CUDA_FILE_SERVER_FLAG:
551
    case CUDA_SET_DEVICE_LIST:
552
    case CUDA_SET_AUTO_RATE:
553
    case CUDA_SET_POWER_MESSAGES:
554
        obuf[0] = CUDA_PACKET;
555
        obuf[1] = 0;
556
        cuda_send_packet_to_host(s, obuf, 2);
557
        break;
558
    case CUDA_POWERDOWN:
559
        obuf[0] = CUDA_PACKET;
560
        obuf[1] = 0;
561
        cuda_send_packet_to_host(s, obuf, 2);
562
        qemu_system_shutdown_request();
563
        break;
564
    case CUDA_RESET_SYSTEM:
565
        obuf[0] = CUDA_PACKET;
566
        obuf[1] = 0;
567
        cuda_send_packet_to_host(s, obuf, 2);
568
        qemu_system_reset_request();
569
        break;
570
    default:
571
        break;
572
    }
573
}
574

    
575
static void cuda_receive_packet_from_host(CUDAState *s,
576
                                          const uint8_t *data, int len)
577
{
578
#ifdef DEBUG_CUDA_PACKET
579
    {
580
        int i;
581
        printf("cuda_receive_packet_from_host:\n");
582
        for(i = 0; i < len; i++)
583
            printf(" %02x", data[i]);
584
        printf("\n");
585
    }
586
#endif
587
    switch(data[0]) {
588
    case ADB_PACKET:
589
        {
590
            uint8_t obuf[ADB_MAX_OUT_LEN + 2];
591
            int olen;
592
            olen = adb_request(&adb_bus, obuf + 2, data + 1, len - 1);
593
            if (olen > 0) {
594
                obuf[0] = ADB_PACKET;
595
                obuf[1] = 0x00;
596
            } else {
597
                /* error */
598
                obuf[0] = ADB_PACKET;
599
                obuf[1] = -olen;
600
                olen = 0;
601
            }
602
            cuda_send_packet_to_host(s, obuf, olen + 2);
603
        }
604
        break;
605
    case CUDA_PACKET:
606
        cuda_receive_packet(s, data + 1, len - 1);
607
        break;
608
    }
609
}
610

    
611
static void cuda_writew (void *opaque, target_phys_addr_t addr, uint32_t value)
612
{
613
}
614

    
615
static void cuda_writel (void *opaque, target_phys_addr_t addr, uint32_t value)
616
{
617
}
618

    
619
static uint32_t cuda_readw (void *opaque, target_phys_addr_t addr)
620
{
621
    return 0;
622
}
623

    
624
static uint32_t cuda_readl (void *opaque, target_phys_addr_t addr)
625
{
626
    return 0;
627
}
628

    
629
static CPUWriteMemoryFunc *cuda_write[] = {
630
    &cuda_writeb,
631
    &cuda_writew,
632
    &cuda_writel,
633
};
634

    
635
static CPUReadMemoryFunc *cuda_read[] = {
636
    &cuda_readb,
637
    &cuda_readw,
638
    &cuda_readl,
639
};
640

    
641
void cuda_init (int *cuda_mem_index, qemu_irq irq)
642
{
643
    CUDAState *s = &cuda_state;
644

    
645
    s->irq = irq;
646

    
647
    s->timers[0].index = 0;
648
    s->timers[0].timer = qemu_new_timer(vm_clock, cuda_timer1, s);
649
    s->timers[0].latch = 0xffff;
650
    set_counter(s, &s->timers[0], 0xffff);
651

    
652
    s->timers[1].index = 1;
653
    s->timers[1].latch = 0;
654
    //    s->ier = T1_INT | SR_INT;
655
    s->ier = 0;
656
    set_counter(s, &s->timers[1], 0xffff);
657

    
658
    s->adb_poll_timer = qemu_new_timer(vm_clock, cuda_adb_poll, s);
659
    *cuda_mem_index = cpu_register_io_memory(0, cuda_read, cuda_write, s);
660
}