Statistics
| Branch: | Revision:

root / hw / mcf_fec.c @ 87ecb68b

History | View | Annotate | Download (11.7 kB)

1
/*
2
 * ColdFire Fast Ethernet Controller emulation.
3
 *
4
 * Copyright (c) 2007 CodeSourcery.
5
 *
6
 * This code is licenced under the GPL
7
 */
8
#include "hw.h"
9
#include "net.h"
10
#include "mcf.h"
11
/* For crc32 */
12
#include <zlib.h>
13

    
14
//#define DEBUG_FEC 1
15

    
16
#ifdef DEBUG_FEC
17
#define DPRINTF(fmt, args...) \
18
do { printf("mcf_fec: " fmt , ##args); } while (0)
19
#else
20
#define DPRINTF(fmt, args...) do {} while(0)
21
#endif
22

    
23
#define FEC_MAX_FRAME_SIZE 2032
24

    
25
typedef struct {
26
    qemu_irq *irq;
27
    VLANClientState *vc;
28
    uint32_t irq_state;
29
    uint32_t eir;
30
    uint32_t eimr;
31
    int rx_enabled;
32
    uint32_t rx_descriptor;
33
    uint32_t tx_descriptor;
34
    uint32_t ecr;
35
    uint32_t mmfr;
36
    uint32_t mscr;
37
    uint32_t rcr;
38
    uint32_t tcr;
39
    uint32_t tfwr;
40
    uint32_t rfsr;
41
    uint32_t erdsr;
42
    uint32_t etdsr;
43
    uint32_t emrbr;
44
    uint8_t macaddr[6];
45
} mcf_fec_state;
46

    
47
#define FEC_INT_HB   0x80000000
48
#define FEC_INT_BABR 0x40000000
49
#define FEC_INT_BABT 0x20000000
50
#define FEC_INT_GRA  0x10000000
51
#define FEC_INT_TXF  0x08000000
52
#define FEC_INT_TXB  0x04000000
53
#define FEC_INT_RXF  0x02000000
54
#define FEC_INT_RXB  0x01000000
55
#define FEC_INT_MII  0x00800000
56
#define FEC_INT_EB   0x00400000
57
#define FEC_INT_LC   0x00200000
58
#define FEC_INT_RL   0x00100000
59
#define FEC_INT_UN   0x00080000
60

    
61
#define FEC_EN      2
62
#define FEC_RESET   1
63

    
64
/* Map interrupt flags onto IRQ lines.  */
65
#define FEC_NUM_IRQ 13
66
static const uint32_t mcf_fec_irq_map[FEC_NUM_IRQ] = {
67
    FEC_INT_TXF,
68
    FEC_INT_TXB,
69
    FEC_INT_UN,
70
    FEC_INT_RL,
71
    FEC_INT_RXF,
72
    FEC_INT_RXB,
73
    FEC_INT_MII,
74
    FEC_INT_LC,
75
    FEC_INT_HB,
76
    FEC_INT_GRA,
77
    FEC_INT_EB,
78
    FEC_INT_BABT,
79
    FEC_INT_BABR
80
};
81

    
82
/* Buffer Descriptor.  */
83
typedef struct {
84
    uint16_t flags;
85
    uint16_t length;
86
    uint32_t data;
87
} mcf_fec_bd;
88

    
89
#define FEC_BD_R    0x8000
90
#define FEC_BD_E    0x8000
91
#define FEC_BD_O1   0x4000
92
#define FEC_BD_W    0x2000
93
#define FEC_BD_O2   0x1000
94
#define FEC_BD_L    0x0800
95
#define FEC_BD_TC   0x0400
96
#define FEC_BD_ABC  0x0200
97
#define FEC_BD_M    0x0100
98
#define FEC_BD_BC   0x0080
99
#define FEC_BD_MC   0x0040
100
#define FEC_BD_LG   0x0020
101
#define FEC_BD_NO   0x0010
102
#define FEC_BD_CR   0x0004
103
#define FEC_BD_OV   0x0002
104
#define FEC_BD_TR   0x0001
105

    
106
static void mcf_fec_read_bd(mcf_fec_bd *bd, uint32_t addr)
107
{
108
    cpu_physical_memory_read(addr, (uint8_t *)bd, sizeof(*bd));
109
    be16_to_cpus(&bd->flags);
110
    be16_to_cpus(&bd->length);
111
    be32_to_cpus(&bd->data);
112
}
113

    
114
static void mcf_fec_write_bd(mcf_fec_bd *bd, uint32_t addr)
115
{
116
    mcf_fec_bd tmp;
117
    tmp.flags = cpu_to_be16(bd->flags);
118
    tmp.length = cpu_to_be16(bd->length);
119
    tmp.data = cpu_to_be32(bd->data);
120
    cpu_physical_memory_write(addr, (uint8_t *)&tmp, sizeof(tmp));
121
}
122

    
123
static void mcf_fec_update(mcf_fec_state *s)
124
{
125
    uint32_t active;
126
    uint32_t changed;
127
    uint32_t mask;
128
    int i;
129

    
130
    active = s->eir & s->eimr;
131
    changed = active ^s->irq_state;
132
    for (i = 0; i < FEC_NUM_IRQ; i++) {
133
        mask = mcf_fec_irq_map[i];
134
        if (changed & mask) {
135
            DPRINTF("IRQ %d = %d\n", i, (active & mask) != 0);
136
            qemu_set_irq(s->irq[i], (active & mask) != 0);
137
        }
138
    }
139
    s->irq_state = active;
140
}
141

    
142
static void mcf_fec_do_tx(mcf_fec_state *s)
143
{
144
    uint32_t addr;
145
    mcf_fec_bd bd;
146
    int frame_size;
147
    int len;
148
    uint8_t frame[FEC_MAX_FRAME_SIZE];
149
    uint8_t *ptr;
150

    
151
    DPRINTF("do_tx\n");
152
    ptr = frame;
153
    frame_size = 0;
154
    addr = s->tx_descriptor;
155
    while (1) {
156
        mcf_fec_read_bd(&bd, addr);
157
        DPRINTF("tx_bd %x flags %04x len %d data %08x\n",
158
                addr, bd.flags, bd.length, bd.data);
159
        if ((bd.flags & FEC_BD_R) == 0) {
160
            /* Run out of descriptors to transmit.  */
161
            break;
162
        }
163
        len = bd.length;
164
        if (frame_size + len > FEC_MAX_FRAME_SIZE) {
165
            len = FEC_MAX_FRAME_SIZE - frame_size;
166
            s->eir |= FEC_INT_BABT;
167
        }
168
        cpu_physical_memory_read(bd.data, ptr, len);
169
        ptr += len;
170
        frame_size += len;
171
        if (bd.flags & FEC_BD_L) {
172
            /* Last buffer in frame.  */
173
            DPRINTF("Sending packet\n");
174
            qemu_send_packet(s->vc, frame, len);
175
            ptr = frame;
176
            frame_size = 0;
177
            s->eir |= FEC_INT_TXF;
178
        }
179
        s->eir |= FEC_INT_TXB;
180
        bd.flags &= ~FEC_BD_R;
181
        /* Write back the modified descriptor.  */
182
        mcf_fec_write_bd(&bd, addr);
183
        /* Advance to the next descriptor.  */
184
        if ((bd.flags & FEC_BD_W) != 0) {
185
            addr = s->etdsr;
186
        } else {
187
            addr += 8;
188
        }
189
    }
190
    s->tx_descriptor = addr;
191
}
192

    
193
static void mcf_fec_enable_rx(mcf_fec_state *s)
194
{
195
    mcf_fec_bd bd;
196

    
197
    mcf_fec_read_bd(&bd, s->rx_descriptor);
198
    s->rx_enabled = ((bd.flags & FEC_BD_E) != 0);
199
    if (!s->rx_enabled)
200
        DPRINTF("RX buffer full\n");
201
}
202

    
203
static void mcf_fec_reset(mcf_fec_state *s)
204
{
205
    s->eir = 0;
206
    s->eimr = 0;
207
    s->rx_enabled = 0;
208
    s->ecr = 0;
209
    s->mscr = 0;
210
    s->rcr = 0x05ee0001;
211
    s->tcr = 0;
212
    s->tfwr = 0;
213
    s->rfsr = 0x500;
214
}
215

    
216
static uint32_t mcf_fec_read(void *opaque, target_phys_addr_t addr)
217
{
218
    mcf_fec_state *s = (mcf_fec_state *)opaque;
219
    switch (addr & 0x3ff) {
220
    case 0x004: return s->eir;
221
    case 0x008: return s->eimr;
222
    case 0x010: return s->rx_enabled ? (1 << 24) : 0; /* RDAR */
223
    case 0x014: return 0; /* TDAR */
224
    case 0x024: return s->ecr;
225
    case 0x040: return s->mmfr;
226
    case 0x044: return s->mscr;
227
    case 0x064: return 0; /* MIBC */
228
    case 0x084: return s->rcr;
229
    case 0x0c4: return s->tcr;
230
    case 0x0e4: /* PALR */
231
        return (s->macaddr[0] << 24) | (s->macaddr[1] << 16)
232
              | (s->macaddr[2] << 8) | s->macaddr[3];
233
        break;
234
    case 0x0e8: /* PAUR */
235
        return (s->macaddr[4] << 24) | (s->macaddr[5] << 16) | 0x8808;
236
    case 0x0ec: return 0x10000; /* OPD */
237
    case 0x118: return 0;
238
    case 0x11c: return 0;
239
    case 0x120: return 0;
240
    case 0x124: return 0;
241
    case 0x144: return s->tfwr;
242
    case 0x14c: return 0x600;
243
    case 0x150: return s->rfsr;
244
    case 0x180: return s->erdsr;
245
    case 0x184: return s->etdsr;
246
    case 0x188: return s->emrbr;
247
    default:
248
        cpu_abort(cpu_single_env, "mcf_fec_read: Bad address 0x%x\n",
249
                  (int)addr);
250
        return 0;
251
    }
252
}
253

    
254
void mcf_fec_write(void *opaque, target_phys_addr_t addr, uint32_t value)
255
{
256
    mcf_fec_state *s = (mcf_fec_state *)opaque;
257
    switch (addr & 0x3ff) {
258
    case 0x004:
259
        s->eir &= ~value;
260
        break;
261
    case 0x008:
262
        s->eimr = value;
263
        break;
264
    case 0x010: /* RDAR */
265
        if ((s->ecr & FEC_EN) && !s->rx_enabled) {
266
            DPRINTF("RX enable\n");
267
            mcf_fec_enable_rx(s);
268
        }
269
        break;
270
    case 0x014: /* TDAR */
271
        if (s->ecr & FEC_EN) {
272
            mcf_fec_do_tx(s);
273
        }
274
        break;
275
    case 0x024:
276
        s->ecr = value;
277
        if (value & FEC_RESET) {
278
            DPRINTF("Reset\n");
279
            mcf_fec_reset(s);
280
        }
281
        if ((s->ecr & FEC_EN) == 0) {
282
            s->rx_enabled = 0;
283
        }
284
        break;
285
    case 0x040:
286
        /* TODO: Implement MII.  */
287
        s->mmfr = value;
288
        break;
289
    case 0x044:
290
        s->mscr = value & 0xfe;
291
        break;
292
    case 0x064:
293
        /* TODO: Implement MIB.  */
294
        break;
295
    case 0x084:
296
        s->rcr = value & 0x07ff003f;
297
        /* TODO: Implement LOOP mode.  */
298
        break;
299
    case 0x0c4: /* TCR */
300
        /* We transmit immediately, so raise GRA immediately.  */
301
        s->tcr = value;
302
        if (value & 1)
303
            s->eir |= FEC_INT_GRA;
304
        break;
305
    case 0x0e4: /* PALR */
306
        s->macaddr[0] = value >> 24;
307
        s->macaddr[1] = value >> 16;
308
        s->macaddr[2] = value >> 8;
309
        s->macaddr[3] = value;
310
        break;
311
    case 0x0e8: /* PAUR */
312
        s->macaddr[4] = value >> 24;
313
        s->macaddr[5] = value >> 16;
314
        break;
315
    case 0x0ec:
316
        /* OPD */
317
        break;
318
    case 0x118:
319
    case 0x11c:
320
    case 0x120:
321
    case 0x124:
322
        /* TODO: implement MAC hash filtering.  */
323
        break;
324
    case 0x144:
325
        s->tfwr = value & 3;
326
        break;
327
    case 0x14c:
328
        /* FRBR writes ignored.  */
329
        break;
330
    case 0x150:
331
        s->rfsr = (value & 0x3fc) | 0x400;
332
        break;
333
    case 0x180:
334
        s->erdsr = value & ~3;
335
        s->rx_descriptor = s->erdsr;
336
        break;
337
    case 0x184:
338
        s->etdsr = value & ~3;
339
        s->tx_descriptor = s->etdsr;
340
        break;
341
    case 0x188:
342
        s->emrbr = value & 0x7f0;
343
        break;
344
    default:
345
        cpu_abort(cpu_single_env, "mcf_fec_write Bad address 0x%x\n",
346
                  (int)addr);
347
    }
348
    mcf_fec_update(s);
349
}
350

    
351
static int mcf_fec_can_receive(void *opaque)
352
{
353
    mcf_fec_state *s = (mcf_fec_state *)opaque;
354
    return s->rx_enabled;
355
}
356

    
357
static void mcf_fec_receive(void *opaque, const uint8_t *buf, int size)
358
{
359
    mcf_fec_state *s = (mcf_fec_state *)opaque;
360
    mcf_fec_bd bd;
361
    uint32_t flags = 0;
362
    uint32_t addr;
363
    uint32_t crc;
364
    uint32_t buf_addr;
365
    uint8_t *crc_ptr;
366
    unsigned int buf_len;
367

    
368
    DPRINTF("do_rx len %d\n", size);
369
    if (!s->rx_enabled) {
370
        fprintf(stderr, "mcf_fec_receive: Unexpected packet\n");
371
    }
372
    /* 4 bytes for the CRC.  */
373
    size += 4;
374
    crc = cpu_to_be32(crc32(~0, buf, size));
375
    crc_ptr = (uint8_t *)&crc;
376
    /* Huge frames are truncted.  */
377
    if (size > FEC_MAX_FRAME_SIZE) {
378
        size = FEC_MAX_FRAME_SIZE;
379
        flags |= FEC_BD_TR | FEC_BD_LG;
380
    }
381
    /* Frames larger than the user limit just set error flags.  */
382
    if (size > (s->rcr >> 16)) {
383
        flags |= FEC_BD_LG;
384
    }
385
    addr = s->rx_descriptor;
386
    while (size > 0) {
387
        mcf_fec_read_bd(&bd, addr);
388
        if ((bd.flags & FEC_BD_E) == 0) {
389
            /* No descriptors available.  Bail out.  */
390
            /* FIXME: This is wrong.  We should probably either save the
391
               remainder for when more RX buffers are available, or
392
               flag an error.  */
393
            fprintf(stderr, "mcf_fec: Lost end of frame\n");
394
            break;
395
        }
396
        buf_len = (size <= s->emrbr) ? size: s->emrbr;
397
        bd.length = buf_len;
398
        size -= buf_len;
399
        DPRINTF("rx_bd %x length %d\n", addr, bd.length);
400
        /* The last 4 bytes are the CRC.  */
401
        if (size < 4)
402
            buf_len += size - 4;
403
        buf_addr = bd.data;
404
        cpu_physical_memory_write(buf_addr, buf, buf_len);
405
        buf += buf_len;
406
        if (size < 4) {
407
            cpu_physical_memory_write(buf_addr + buf_len, crc_ptr, 4 - size);
408
            crc_ptr += 4 - size;
409
        }
410
        bd.flags &= ~FEC_BD_E;
411
        if (size == 0) {
412
            /* Last buffer in frame.  */
413
            bd.flags |= flags | FEC_BD_L;
414
            DPRINTF("rx frame flags %04x\n", bd.flags);
415
            s->eir |= FEC_INT_RXF;
416
        } else {
417
            s->eir |= FEC_INT_RXB;
418
        }
419
        mcf_fec_write_bd(&bd, addr);
420
        /* Advance to the next descriptor.  */
421
        if ((bd.flags & FEC_BD_W) != 0) {
422
            addr = s->erdsr;
423
        } else {
424
            addr += 8;
425
        }
426
    }
427
    s->rx_descriptor = addr;
428
    mcf_fec_enable_rx(s);
429
    mcf_fec_update(s);
430
}
431

    
432
static CPUReadMemoryFunc *mcf_fec_readfn[] = {
433
   mcf_fec_read,
434
   mcf_fec_read,
435
   mcf_fec_read
436
};
437

    
438
static CPUWriteMemoryFunc *mcf_fec_writefn[] = {
439
   mcf_fec_write,
440
   mcf_fec_write,
441
   mcf_fec_write
442
};
443

    
444
void mcf_fec_init(NICInfo *nd, target_phys_addr_t base, qemu_irq *irq)
445
{
446
    mcf_fec_state *s;
447
    int iomemtype;
448

    
449
    s = (mcf_fec_state *)qemu_mallocz(sizeof(mcf_fec_state));
450
    s->irq = irq;
451
    iomemtype = cpu_register_io_memory(0, mcf_fec_readfn,
452
                                       mcf_fec_writefn, s);
453
    cpu_register_physical_memory(base, 0x400, iomemtype);
454

    
455
    s->vc = qemu_new_vlan_client(nd->vlan, mcf_fec_receive,
456
                                 mcf_fec_can_receive, s);
457
    memcpy(s->macaddr, nd->macaddr, 6);
458
}