Statistics
| Branch: | Revision:

root / hw / slavio_misc.c @ 87ecb68b

History | View | Annotate | Download (10.1 kB)

1
/*
2
 * QEMU Sparc SLAVIO aux io port emulation
3
 *
4
 * Copyright (c) 2005 Fabrice Bellard
5
 *
6
 * Permission is hereby granted, free of charge, to any person obtaining a copy
7
 * of this software and associated documentation files (the "Software"), to deal
8
 * in the Software without restriction, including without limitation the rights
9
 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10
 * copies of the Software, and to permit persons to whom the Software is
11
 * furnished to do so, subject to the following conditions:
12
 *
13
 * The above copyright notice and this permission notice shall be included in
14
 * all copies or substantial portions of the Software.
15
 *
16
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21
 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22
 * THE SOFTWARE.
23
 */
24
#include "hw.h"
25
#include "sun4m.h"
26
#include "sysemu.h"
27

    
28
/* debug misc */
29
//#define DEBUG_MISC
30

    
31
/*
32
 * This is the auxio port, chip control and system control part of
33
 * chip STP2001 (Slave I/O), also produced as NCR89C105. See
34
 * http://www.ibiblio.org/pub/historic-linux/early-ports/Sparc/NCR/NCR89C105.txt
35
 *
36
 * This also includes the PMC CPU idle controller.
37
 */
38

    
39
#ifdef DEBUG_MISC
40
#define MISC_DPRINTF(fmt, args...) \
41
do { printf("MISC: " fmt , ##args); } while (0)
42
#else
43
#define MISC_DPRINTF(fmt, args...)
44
#endif
45

    
46
typedef struct MiscState {
47
    qemu_irq irq;
48
    uint8_t config;
49
    uint8_t aux1, aux2;
50
    uint8_t diag, mctrl;
51
    uint32_t sysctrl;
52
    uint16_t leds;
53
} MiscState;
54

    
55
#define MISC_SIZE 1
56
#define SYSCTRL_MAXADDR 3
57
#define SYSCTRL_SIZE (SYSCTRL_MAXADDR + 1)
58
#define LED_MAXADDR 2
59
#define LED_SIZE (LED_MAXADDR + 1)
60

    
61
static void slavio_misc_update_irq(void *opaque)
62
{
63
    MiscState *s = opaque;
64

    
65
    if ((s->aux2 & 0x4) && (s->config & 0x8)) {
66
        MISC_DPRINTF("Raise IRQ\n");
67
        qemu_irq_raise(s->irq);
68
    } else {
69
        MISC_DPRINTF("Lower IRQ\n");
70
        qemu_irq_lower(s->irq);
71
    }
72
}
73

    
74
static void slavio_misc_reset(void *opaque)
75
{
76
    MiscState *s = opaque;
77

    
78
    // Diagnostic and system control registers not cleared in reset
79
    s->config = s->aux1 = s->aux2 = s->mctrl = 0;
80
}
81

    
82
void slavio_set_power_fail(void *opaque, int power_failing)
83
{
84
    MiscState *s = opaque;
85

    
86
    MISC_DPRINTF("Power fail: %d, config: %d\n", power_failing, s->config);
87
    if (power_failing && (s->config & 0x8)) {
88
        s->aux2 |= 0x4;
89
    } else {
90
        s->aux2 &= ~0x4;
91
    }
92
    slavio_misc_update_irq(s);
93
}
94

    
95
static void slavio_misc_mem_writeb(void *opaque, target_phys_addr_t addr,
96
                                   uint32_t val)
97
{
98
    MiscState *s = opaque;
99

    
100
    switch (addr & 0xfff0000) {
101
    case 0x1800000:
102
        MISC_DPRINTF("Write config %2.2x\n", val & 0xff);
103
        s->config = val & 0xff;
104
        slavio_misc_update_irq(s);
105
        break;
106
    case 0x1900000:
107
        MISC_DPRINTF("Write aux1 %2.2x\n", val & 0xff);
108
        s->aux1 = val & 0xff;
109
        break;
110
    case 0x1910000:
111
        val &= 0x3;
112
        MISC_DPRINTF("Write aux2 %2.2x\n", val);
113
        val |= s->aux2 & 0x4;
114
        if (val & 0x2) // Clear Power Fail int
115
            val &= 0x1;
116
        s->aux2 = val;
117
        if (val & 1)
118
            qemu_system_shutdown_request();
119
        slavio_misc_update_irq(s);
120
        break;
121
    case 0x1a00000:
122
        MISC_DPRINTF("Write diag %2.2x\n", val & 0xff);
123
        s->diag = val & 0xff;
124
        break;
125
    case 0x1b00000:
126
        MISC_DPRINTF("Write modem control %2.2x\n", val & 0xff);
127
        s->mctrl = val & 0xff;
128
        break;
129
    case 0xa000000:
130
        MISC_DPRINTF("Write power management %2.2x\n", val & 0xff);
131
        cpu_interrupt(cpu_single_env, CPU_INTERRUPT_HALT);
132
        break;
133
    }
134
}
135

    
136
static uint32_t slavio_misc_mem_readb(void *opaque, target_phys_addr_t addr)
137
{
138
    MiscState *s = opaque;
139
    uint32_t ret = 0;
140

    
141
    switch (addr & 0xfff0000) {
142
    case 0x1800000:
143
        ret = s->config;
144
        MISC_DPRINTF("Read config %2.2x\n", ret);
145
        break;
146
    case 0x1900000:
147
        ret = s->aux1;
148
        MISC_DPRINTF("Read aux1 %2.2x\n", ret);
149
        break;
150
    case 0x1910000:
151
        ret = s->aux2;
152
        MISC_DPRINTF("Read aux2 %2.2x\n", ret);
153
        break;
154
    case 0x1a00000:
155
        ret = s->diag;
156
        MISC_DPRINTF("Read diag %2.2x\n", ret);
157
        break;
158
    case 0x1b00000:
159
        ret = s->mctrl;
160
        MISC_DPRINTF("Read modem control %2.2x\n", ret);
161
        break;
162
    case 0xa000000:
163
        MISC_DPRINTF("Read power management %2.2x\n", ret);
164
        break;
165
    }
166
    return ret;
167
}
168

    
169
static CPUReadMemoryFunc *slavio_misc_mem_read[3] = {
170
    slavio_misc_mem_readb,
171
    slavio_misc_mem_readb,
172
    slavio_misc_mem_readb,
173
};
174

    
175
static CPUWriteMemoryFunc *slavio_misc_mem_write[3] = {
176
    slavio_misc_mem_writeb,
177
    slavio_misc_mem_writeb,
178
    slavio_misc_mem_writeb,
179
};
180

    
181
static uint32_t slavio_sysctrl_mem_readl(void *opaque, target_phys_addr_t addr)
182
{
183
    MiscState *s = opaque;
184
    uint32_t ret = 0, saddr;
185

    
186
    saddr = addr & SYSCTRL_MAXADDR;
187
    switch (saddr) {
188
    case 0:
189
        ret = s->sysctrl;
190
        break;
191
    default:
192
        break;
193
    }
194
    MISC_DPRINTF("Read system control reg 0x" TARGET_FMT_plx " = %x\n", addr,
195
                 ret);
196
    return ret;
197
}
198

    
199
static void slavio_sysctrl_mem_writel(void *opaque, target_phys_addr_t addr,
200
                                      uint32_t val)
201
{
202
    MiscState *s = opaque;
203
    uint32_t saddr;
204

    
205
    saddr = addr & SYSCTRL_MAXADDR;
206
    MISC_DPRINTF("Write system control reg 0x" TARGET_FMT_plx " =  %x\n", addr,
207
                 val);
208
    switch (saddr) {
209
    case 0:
210
        if (val & 1) {
211
            s->sysctrl = 0x2;
212
            qemu_system_reset_request();
213
        }
214
        break;
215
    default:
216
        break;
217
    }
218
}
219

    
220
static CPUReadMemoryFunc *slavio_sysctrl_mem_read[3] = {
221
    slavio_sysctrl_mem_readl,
222
    slavio_sysctrl_mem_readl,
223
    slavio_sysctrl_mem_readl,
224
};
225

    
226
static CPUWriteMemoryFunc *slavio_sysctrl_mem_write[3] = {
227
    slavio_sysctrl_mem_writel,
228
    slavio_sysctrl_mem_writel,
229
    slavio_sysctrl_mem_writel,
230
};
231

    
232
static uint32_t slavio_led_mem_reads(void *opaque, target_phys_addr_t addr)
233
{
234
    MiscState *s = opaque;
235
    uint32_t ret = 0, saddr;
236

    
237
    saddr = addr & LED_MAXADDR;
238
    switch (saddr) {
239
    case 0:
240
        ret = s->leds;
241
        break;
242
    default:
243
        break;
244
    }
245
    MISC_DPRINTF("Read diagnostic LED reg 0x" TARGET_FMT_plx " = %x\n", addr,
246
                 ret);
247
    return ret;
248
}
249

    
250
static void slavio_led_mem_writes(void *opaque, target_phys_addr_t addr,
251
                                  uint32_t val)
252
{
253
    MiscState *s = opaque;
254
    uint32_t saddr;
255

    
256
    saddr = addr & LED_MAXADDR;
257
    MISC_DPRINTF("Write diagnostic LED reg 0x" TARGET_FMT_plx " =  %x\n", addr,
258
                 val);
259
    switch (saddr) {
260
    case 0:
261
        s->sysctrl = val;
262
        break;
263
    default:
264
        break;
265
    }
266
}
267

    
268
static CPUReadMemoryFunc *slavio_led_mem_read[3] = {
269
    slavio_led_mem_reads,
270
    slavio_led_mem_reads,
271
    slavio_led_mem_reads,
272
};
273

    
274
static CPUWriteMemoryFunc *slavio_led_mem_write[3] = {
275
    slavio_led_mem_writes,
276
    slavio_led_mem_writes,
277
    slavio_led_mem_writes,
278
};
279

    
280
static void slavio_misc_save(QEMUFile *f, void *opaque)
281
{
282
    MiscState *s = opaque;
283
    int tmp;
284
    uint8_t tmp8;
285

    
286
    tmp = 0;
287
    qemu_put_be32s(f, &tmp); /* ignored, was IRQ.  */
288
    qemu_put_8s(f, &s->config);
289
    qemu_put_8s(f, &s->aux1);
290
    qemu_put_8s(f, &s->aux2);
291
    qemu_put_8s(f, &s->diag);
292
    qemu_put_8s(f, &s->mctrl);
293
    tmp8 = s->sysctrl & 0xff;
294
    qemu_put_8s(f, &tmp8);
295
}
296

    
297
static int slavio_misc_load(QEMUFile *f, void *opaque, int version_id)
298
{
299
    MiscState *s = opaque;
300
    int tmp;
301
    uint8_t tmp8;
302

    
303
    if (version_id != 1)
304
        return -EINVAL;
305

    
306
    qemu_get_be32s(f, &tmp);
307
    qemu_get_8s(f, &s->config);
308
    qemu_get_8s(f, &s->aux1);
309
    qemu_get_8s(f, &s->aux2);
310
    qemu_get_8s(f, &s->diag);
311
    qemu_get_8s(f, &s->mctrl);
312
    qemu_get_8s(f, &tmp8);
313
    s->sysctrl = (uint32_t)tmp8;
314
    return 0;
315
}
316

    
317
void *slavio_misc_init(target_phys_addr_t base, target_phys_addr_t power_base,
318
                       qemu_irq irq)
319
{
320
    int slavio_misc_io_memory;
321
    MiscState *s;
322

    
323
    s = qemu_mallocz(sizeof(MiscState));
324
    if (!s)
325
        return NULL;
326

    
327
    /* 8 bit registers */
328
    slavio_misc_io_memory = cpu_register_io_memory(0, slavio_misc_mem_read,
329
                                                   slavio_misc_mem_write, s);
330
    // Slavio control
331
    cpu_register_physical_memory(base + 0x1800000, MISC_SIZE,
332
                                 slavio_misc_io_memory);
333
    // AUX 1
334
    cpu_register_physical_memory(base + 0x1900000, MISC_SIZE,
335
                                 slavio_misc_io_memory);
336
    // AUX 2
337
    cpu_register_physical_memory(base + 0x1910000, MISC_SIZE,
338
                                 slavio_misc_io_memory);
339
    // Diagnostics
340
    cpu_register_physical_memory(base + 0x1a00000, MISC_SIZE,
341
                                 slavio_misc_io_memory);
342
    // Modem control
343
    cpu_register_physical_memory(base + 0x1b00000, MISC_SIZE,
344
                                 slavio_misc_io_memory);
345
    // Power management
346
    cpu_register_physical_memory(power_base, MISC_SIZE, slavio_misc_io_memory);
347

    
348
    /* 16 bit registers */
349
    slavio_misc_io_memory = cpu_register_io_memory(0, slavio_led_mem_read,
350
                                                   slavio_led_mem_write, s);
351
    /* ss600mp diag LEDs */
352
    cpu_register_physical_memory(base + 0x1600000, MISC_SIZE,
353
                                 slavio_misc_io_memory);
354

    
355
    /* 32 bit registers */
356
    slavio_misc_io_memory = cpu_register_io_memory(0, slavio_sysctrl_mem_read,
357
                                                   slavio_sysctrl_mem_write,
358
                                                   s);
359
    // System control
360
    cpu_register_physical_memory(base + 0x1f00000, SYSCTRL_SIZE,
361
                                 slavio_misc_io_memory);
362

    
363
    s->irq = irq;
364

    
365
    register_savevm("slavio_misc", base, 1, slavio_misc_save, slavio_misc_load,
366
                    s);
367
    qemu_register_reset(slavio_misc_reset, s);
368
    slavio_misc_reset(s);
369
    return s;
370
}