Statistics
| Branch: | Revision:

root / cpus.c @ 89b9ba66

History | View | Annotate | Download (25.7 kB)

1
/*
2
 * QEMU System Emulator
3
 *
4
 * Copyright (c) 2003-2008 Fabrice Bellard
5
 *
6
 * Permission is hereby granted, free of charge, to any person obtaining a copy
7
 * of this software and associated documentation files (the "Software"), to deal
8
 * in the Software without restriction, including without limitation the rights
9
 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10
 * copies of the Software, and to permit persons to whom the Software is
11
 * furnished to do so, subject to the following conditions:
12
 *
13
 * The above copyright notice and this permission notice shall be included in
14
 * all copies or substantial portions of the Software.
15
 *
16
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21
 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22
 * THE SOFTWARE.
23
 */
24

    
25
/* Needed early for CONFIG_BSD etc. */
26
#include "config-host.h"
27

    
28
#include "monitor.h"
29
#include "sysemu.h"
30
#include "gdbstub.h"
31
#include "dma.h"
32
#include "kvm.h"
33

    
34
#include "qemu-thread.h"
35
#include "cpus.h"
36

    
37
#ifndef _WIN32
38
#include "compatfd.h"
39
#endif
40

    
41
#ifdef SIGRTMIN
42
#define SIG_IPI (SIGRTMIN+4)
43
#else
44
#define SIG_IPI SIGUSR1
45
#endif
46

    
47
#ifdef CONFIG_LINUX
48

    
49
#include <sys/prctl.h>
50

    
51
#ifndef PR_MCE_KILL
52
#define PR_MCE_KILL 33
53
#endif
54

    
55
#ifndef PR_MCE_KILL_SET
56
#define PR_MCE_KILL_SET 1
57
#endif
58

    
59
#ifndef PR_MCE_KILL_EARLY
60
#define PR_MCE_KILL_EARLY 1
61
#endif
62

    
63
#endif /* CONFIG_LINUX */
64

    
65
static CPUState *next_cpu;
66

    
67
/***********************************************************/
68
void hw_error(const char *fmt, ...)
69
{
70
    va_list ap;
71
    CPUState *env;
72

    
73
    va_start(ap, fmt);
74
    fprintf(stderr, "qemu: hardware error: ");
75
    vfprintf(stderr, fmt, ap);
76
    fprintf(stderr, "\n");
77
    for(env = first_cpu; env != NULL; env = env->next_cpu) {
78
        fprintf(stderr, "CPU #%d:\n", env->cpu_index);
79
#ifdef TARGET_I386
80
        cpu_dump_state(env, stderr, fprintf, X86_DUMP_FPU);
81
#else
82
        cpu_dump_state(env, stderr, fprintf, 0);
83
#endif
84
    }
85
    va_end(ap);
86
    abort();
87
}
88

    
89
void cpu_synchronize_all_states(void)
90
{
91
    CPUState *cpu;
92

    
93
    for (cpu = first_cpu; cpu; cpu = cpu->next_cpu) {
94
        cpu_synchronize_state(cpu);
95
    }
96
}
97

    
98
void cpu_synchronize_all_post_reset(void)
99
{
100
    CPUState *cpu;
101

    
102
    for (cpu = first_cpu; cpu; cpu = cpu->next_cpu) {
103
        cpu_synchronize_post_reset(cpu);
104
    }
105
}
106

    
107
void cpu_synchronize_all_post_init(void)
108
{
109
    CPUState *cpu;
110

    
111
    for (cpu = first_cpu; cpu; cpu = cpu->next_cpu) {
112
        cpu_synchronize_post_init(cpu);
113
    }
114
}
115

    
116
int cpu_is_stopped(CPUState *env)
117
{
118
    return !vm_running || env->stopped;
119
}
120

    
121
static void do_vm_stop(int reason)
122
{
123
    if (vm_running) {
124
        cpu_disable_ticks();
125
        vm_running = 0;
126
        pause_all_vcpus();
127
        vm_state_notify(0, reason);
128
        qemu_aio_flush();
129
        bdrv_flush_all();
130
        monitor_protocol_event(QEVENT_STOP, NULL);
131
    }
132
}
133

    
134
static int cpu_can_run(CPUState *env)
135
{
136
    if (env->stop) {
137
        return 0;
138
    }
139
    if (env->stopped || !vm_running) {
140
        return 0;
141
    }
142
    return 1;
143
}
144

    
145
static bool cpu_thread_is_idle(CPUState *env)
146
{
147
    if (env->stop || env->queued_work_first) {
148
        return false;
149
    }
150
    if (env->stopped || !vm_running) {
151
        return true;
152
    }
153
    if (!env->halted || qemu_cpu_has_work(env) ||
154
        (kvm_enabled() && kvm_irqchip_in_kernel())) {
155
        return false;
156
    }
157
    return true;
158
}
159

    
160
bool all_cpu_threads_idle(void)
161
{
162
    CPUState *env;
163

    
164
    for (env = first_cpu; env != NULL; env = env->next_cpu) {
165
        if (!cpu_thread_is_idle(env)) {
166
            return false;
167
        }
168
    }
169
    return true;
170
}
171

    
172
static void cpu_handle_guest_debug(CPUState *env)
173
{
174
    gdb_set_stop_cpu(env);
175
    qemu_system_debug_request();
176
#ifdef CONFIG_IOTHREAD
177
    env->stopped = 1;
178
#endif
179
}
180

    
181
#ifdef CONFIG_IOTHREAD
182
static void cpu_signal(int sig)
183
{
184
    if (cpu_single_env) {
185
        cpu_exit(cpu_single_env);
186
    }
187
    exit_request = 1;
188
}
189
#endif
190

    
191
#ifdef CONFIG_LINUX
192
static void sigbus_reraise(void)
193
{
194
    sigset_t set;
195
    struct sigaction action;
196

    
197
    memset(&action, 0, sizeof(action));
198
    action.sa_handler = SIG_DFL;
199
    if (!sigaction(SIGBUS, &action, NULL)) {
200
        raise(SIGBUS);
201
        sigemptyset(&set);
202
        sigaddset(&set, SIGBUS);
203
        sigprocmask(SIG_UNBLOCK, &set, NULL);
204
    }
205
    perror("Failed to re-raise SIGBUS!\n");
206
    abort();
207
}
208

    
209
static void sigbus_handler(int n, struct qemu_signalfd_siginfo *siginfo,
210
                           void *ctx)
211
{
212
    if (kvm_on_sigbus(siginfo->ssi_code,
213
                      (void *)(intptr_t)siginfo->ssi_addr)) {
214
        sigbus_reraise();
215
    }
216
}
217

    
218
static void qemu_init_sigbus(void)
219
{
220
    struct sigaction action;
221

    
222
    memset(&action, 0, sizeof(action));
223
    action.sa_flags = SA_SIGINFO;
224
    action.sa_sigaction = (void (*)(int, siginfo_t*, void*))sigbus_handler;
225
    sigaction(SIGBUS, &action, NULL);
226

    
227
    prctl(PR_MCE_KILL, PR_MCE_KILL_SET, PR_MCE_KILL_EARLY, 0, 0);
228
}
229

    
230
static void qemu_kvm_eat_signals(CPUState *env)
231
{
232
    struct timespec ts = { 0, 0 };
233
    siginfo_t siginfo;
234
    sigset_t waitset;
235
    sigset_t chkset;
236
    int r;
237

    
238
    sigemptyset(&waitset);
239
    sigaddset(&waitset, SIG_IPI);
240
    sigaddset(&waitset, SIGBUS);
241

    
242
    do {
243
        r = sigtimedwait(&waitset, &siginfo, &ts);
244
        if (r == -1 && !(errno == EAGAIN || errno == EINTR)) {
245
            perror("sigtimedwait");
246
            exit(1);
247
        }
248

    
249
        switch (r) {
250
        case SIGBUS:
251
            if (kvm_on_sigbus_vcpu(env, siginfo.si_code, siginfo.si_addr)) {
252
                sigbus_reraise();
253
            }
254
            break;
255
        default:
256
            break;
257
        }
258

    
259
        r = sigpending(&chkset);
260
        if (r == -1) {
261
            perror("sigpending");
262
            exit(1);
263
        }
264
    } while (sigismember(&chkset, SIG_IPI) || sigismember(&chkset, SIGBUS));
265

    
266
#ifndef CONFIG_IOTHREAD
267
    if (sigismember(&chkset, SIGIO) || sigismember(&chkset, SIGALRM)) {
268
        qemu_notify_event();
269
    }
270
#endif
271
}
272

    
273
#else /* !CONFIG_LINUX */
274

    
275
static void qemu_init_sigbus(void)
276
{
277
}
278

    
279
static void qemu_kvm_eat_signals(CPUState *env)
280
{
281
}
282
#endif /* !CONFIG_LINUX */
283

    
284
#ifndef _WIN32
285
static int io_thread_fd = -1;
286

    
287
static void qemu_event_increment(void)
288
{
289
    /* Write 8 bytes to be compatible with eventfd.  */
290
    static const uint64_t val = 1;
291
    ssize_t ret;
292

    
293
    if (io_thread_fd == -1) {
294
        return;
295
    }
296
    do {
297
        ret = write(io_thread_fd, &val, sizeof(val));
298
    } while (ret < 0 && errno == EINTR);
299

    
300
    /* EAGAIN is fine, a read must be pending.  */
301
    if (ret < 0 && errno != EAGAIN) {
302
        fprintf(stderr, "qemu_event_increment: write() failed: %s\n",
303
                strerror(errno));
304
        exit (1);
305
    }
306
}
307

    
308
static void qemu_event_read(void *opaque)
309
{
310
    int fd = (intptr_t)opaque;
311
    ssize_t len;
312
    char buffer[512];
313

    
314
    /* Drain the notify pipe.  For eventfd, only 8 bytes will be read.  */
315
    do {
316
        len = read(fd, buffer, sizeof(buffer));
317
    } while ((len == -1 && errno == EINTR) || len == sizeof(buffer));
318
}
319

    
320
static int qemu_event_init(void)
321
{
322
    int err;
323
    int fds[2];
324

    
325
    err = qemu_eventfd(fds);
326
    if (err == -1) {
327
        return -errno;
328
    }
329
    err = fcntl_setfl(fds[0], O_NONBLOCK);
330
    if (err < 0) {
331
        goto fail;
332
    }
333
    err = fcntl_setfl(fds[1], O_NONBLOCK);
334
    if (err < 0) {
335
        goto fail;
336
    }
337
    qemu_set_fd_handler2(fds[0], NULL, qemu_event_read, NULL,
338
                         (void *)(intptr_t)fds[0]);
339

    
340
    io_thread_fd = fds[1];
341
    return 0;
342

    
343
fail:
344
    close(fds[0]);
345
    close(fds[1]);
346
    return err;
347
}
348

    
349
static void dummy_signal(int sig)
350
{
351
}
352

    
353
/* If we have signalfd, we mask out the signals we want to handle and then
354
 * use signalfd to listen for them.  We rely on whatever the current signal
355
 * handler is to dispatch the signals when we receive them.
356
 */
357
static void sigfd_handler(void *opaque)
358
{
359
    int fd = (intptr_t)opaque;
360
    struct qemu_signalfd_siginfo info;
361
    struct sigaction action;
362
    ssize_t len;
363

    
364
    while (1) {
365
        do {
366
            len = read(fd, &info, sizeof(info));
367
        } while (len == -1 && errno == EINTR);
368

    
369
        if (len == -1 && errno == EAGAIN) {
370
            break;
371
        }
372

    
373
        if (len != sizeof(info)) {
374
            printf("read from sigfd returned %zd: %m\n", len);
375
            return;
376
        }
377

    
378
        sigaction(info.ssi_signo, NULL, &action);
379
        if ((action.sa_flags & SA_SIGINFO) && action.sa_sigaction) {
380
            action.sa_sigaction(info.ssi_signo,
381
                                (siginfo_t *)&info, NULL);
382
        } else if (action.sa_handler) {
383
            action.sa_handler(info.ssi_signo);
384
        }
385
    }
386
}
387

    
388
static int qemu_signal_init(void)
389
{
390
    int sigfd;
391
    sigset_t set;
392

    
393
#ifdef CONFIG_IOTHREAD
394
    /* SIGUSR2 used by posix-aio-compat.c */
395
    sigemptyset(&set);
396
    sigaddset(&set, SIGUSR2);
397
    pthread_sigmask(SIG_UNBLOCK, &set, NULL);
398

    
399
    /*
400
     * SIG_IPI must be blocked in the main thread and must not be caught
401
     * by sigwait() in the signal thread. Otherwise, the cpu thread will
402
     * not catch it reliably.
403
     */
404
    sigemptyset(&set);
405
    sigaddset(&set, SIG_IPI);
406
    pthread_sigmask(SIG_BLOCK, &set, NULL);
407

    
408
    sigemptyset(&set);
409
    sigaddset(&set, SIGIO);
410
    sigaddset(&set, SIGALRM);
411
    sigaddset(&set, SIGBUS);
412
#else
413
    sigemptyset(&set);
414
    sigaddset(&set, SIGBUS);
415
    if (kvm_enabled()) {
416
        /*
417
         * We need to process timer signals synchronously to avoid a race
418
         * between exit_request check and KVM vcpu entry.
419
         */
420
        sigaddset(&set, SIGIO);
421
        sigaddset(&set, SIGALRM);
422
    }
423
#endif
424
    pthread_sigmask(SIG_BLOCK, &set, NULL);
425

    
426
    sigfd = qemu_signalfd(&set);
427
    if (sigfd == -1) {
428
        fprintf(stderr, "failed to create signalfd\n");
429
        return -errno;
430
    }
431

    
432
    fcntl_setfl(sigfd, O_NONBLOCK);
433

    
434
    qemu_set_fd_handler2(sigfd, NULL, sigfd_handler, NULL,
435
                         (void *)(intptr_t)sigfd);
436

    
437
    return 0;
438
}
439

    
440
static void qemu_kvm_init_cpu_signals(CPUState *env)
441
{
442
    int r;
443
    sigset_t set;
444
    struct sigaction sigact;
445

    
446
    memset(&sigact, 0, sizeof(sigact));
447
    sigact.sa_handler = dummy_signal;
448
    sigaction(SIG_IPI, &sigact, NULL);
449

    
450
#ifdef CONFIG_IOTHREAD
451
    pthread_sigmask(SIG_BLOCK, NULL, &set);
452
    sigdelset(&set, SIG_IPI);
453
    sigdelset(&set, SIGBUS);
454
    r = kvm_set_signal_mask(env, &set);
455
    if (r) {
456
        fprintf(stderr, "kvm_set_signal_mask: %s\n", strerror(-r));
457
        exit(1);
458
    }
459
#else
460
    sigemptyset(&set);
461
    sigaddset(&set, SIG_IPI);
462
    sigaddset(&set, SIGIO);
463
    sigaddset(&set, SIGALRM);
464
    pthread_sigmask(SIG_BLOCK, &set, NULL);
465

    
466
    pthread_sigmask(SIG_BLOCK, NULL, &set);
467
    sigdelset(&set, SIGIO);
468
    sigdelset(&set, SIGALRM);
469
#endif
470
    sigdelset(&set, SIG_IPI);
471
    sigdelset(&set, SIGBUS);
472
    r = kvm_set_signal_mask(env, &set);
473
    if (r) {
474
        fprintf(stderr, "kvm_set_signal_mask: %s\n", strerror(-r));
475
        exit(1);
476
    }
477
}
478

    
479
static void qemu_tcg_init_cpu_signals(void)
480
{
481
#ifdef CONFIG_IOTHREAD
482
    sigset_t set;
483
    struct sigaction sigact;
484

    
485
    memset(&sigact, 0, sizeof(sigact));
486
    sigact.sa_handler = cpu_signal;
487
    sigaction(SIG_IPI, &sigact, NULL);
488

    
489
    sigemptyset(&set);
490
    sigaddset(&set, SIG_IPI);
491
    pthread_sigmask(SIG_UNBLOCK, &set, NULL);
492
#endif
493
}
494

    
495
#else /* _WIN32 */
496

    
497
HANDLE qemu_event_handle;
498

    
499
static void dummy_event_handler(void *opaque)
500
{
501
}
502

    
503
static int qemu_event_init(void)
504
{
505
    qemu_event_handle = CreateEvent(NULL, FALSE, FALSE, NULL);
506
    if (!qemu_event_handle) {
507
        fprintf(stderr, "Failed CreateEvent: %ld\n", GetLastError());
508
        return -1;
509
    }
510
    qemu_add_wait_object(qemu_event_handle, dummy_event_handler, NULL);
511
    return 0;
512
}
513

    
514
static void qemu_event_increment(void)
515
{
516
    if (!SetEvent(qemu_event_handle)) {
517
        fprintf(stderr, "qemu_event_increment: SetEvent failed: %ld\n",
518
                GetLastError());
519
        exit (1);
520
    }
521
}
522

    
523
static int qemu_signal_init(void)
524
{
525
    return 0;
526
}
527

    
528
static void qemu_kvm_init_cpu_signals(CPUState *env)
529
{
530
    abort();
531
}
532

    
533
static void qemu_tcg_init_cpu_signals(void)
534
{
535
}
536
#endif /* _WIN32 */
537

    
538
#ifndef CONFIG_IOTHREAD
539
int qemu_init_main_loop(void)
540
{
541
    int ret;
542

    
543
    ret = qemu_signal_init();
544
    if (ret) {
545
        return ret;
546
    }
547

    
548
    qemu_init_sigbus();
549

    
550
    return qemu_event_init();
551
}
552

    
553
void qemu_main_loop_start(void)
554
{
555
}
556

    
557
void qemu_init_vcpu(void *_env)
558
{
559
    CPUState *env = _env;
560
    int r;
561

    
562
    env->nr_cores = smp_cores;
563
    env->nr_threads = smp_threads;
564

    
565
    if (kvm_enabled()) {
566
        r = kvm_init_vcpu(env);
567
        if (r < 0) {
568
            fprintf(stderr, "kvm_init_vcpu failed: %s\n", strerror(-r));
569
            exit(1);
570
        }
571
        qemu_kvm_init_cpu_signals(env);
572
    } else {
573
        qemu_tcg_init_cpu_signals();
574
    }
575
}
576

    
577
int qemu_cpu_is_self(void *env)
578
{
579
    return 1;
580
}
581

    
582
void run_on_cpu(CPUState *env, void (*func)(void *data), void *data)
583
{
584
    func(data);
585
}
586

    
587
void resume_all_vcpus(void)
588
{
589
}
590

    
591
void pause_all_vcpus(void)
592
{
593
}
594

    
595
void qemu_cpu_kick(void *env)
596
{
597
}
598

    
599
void qemu_cpu_kick_self(void)
600
{
601
#ifndef _WIN32
602
    assert(cpu_single_env);
603

    
604
    raise(SIG_IPI);
605
#else
606
    abort();
607
#endif
608
}
609

    
610
void qemu_notify_event(void)
611
{
612
    CPUState *env = cpu_single_env;
613

    
614
    qemu_event_increment ();
615
    if (env) {
616
        cpu_exit(env);
617
    }
618
    if (next_cpu && env != next_cpu) {
619
        cpu_exit(next_cpu);
620
    }
621
    exit_request = 1;
622
}
623

    
624
void qemu_mutex_lock_iothread(void) {}
625
void qemu_mutex_unlock_iothread(void) {}
626

    
627
void cpu_stop_current(void)
628
{
629
}
630

    
631
void vm_stop(int reason)
632
{
633
    do_vm_stop(reason);
634
}
635

    
636
#else /* CONFIG_IOTHREAD */
637

    
638
QemuMutex qemu_global_mutex;
639
static QemuMutex qemu_fair_mutex;
640

    
641
static QemuThread io_thread;
642

    
643
static QemuThread *tcg_cpu_thread;
644
static QemuCond *tcg_halt_cond;
645

    
646
static int qemu_system_ready;
647
/* cpu creation */
648
static QemuCond qemu_cpu_cond;
649
/* system init */
650
static QemuCond qemu_system_cond;
651
static QemuCond qemu_pause_cond;
652
static QemuCond qemu_work_cond;
653

    
654
int qemu_init_main_loop(void)
655
{
656
    int ret;
657

    
658
    qemu_init_sigbus();
659

    
660
    ret = qemu_signal_init();
661
    if (ret) {
662
        return ret;
663
    }
664

    
665
    /* Note eventfd must be drained before signalfd handlers run */
666
    ret = qemu_event_init();
667
    if (ret) {
668
        return ret;
669
    }
670

    
671
    qemu_cond_init(&qemu_cpu_cond);
672
    qemu_cond_init(&qemu_system_cond);
673
    qemu_cond_init(&qemu_pause_cond);
674
    qemu_cond_init(&qemu_work_cond);
675
    qemu_mutex_init(&qemu_fair_mutex);
676
    qemu_mutex_init(&qemu_global_mutex);
677
    qemu_mutex_lock(&qemu_global_mutex);
678

    
679
    qemu_thread_get_self(&io_thread);
680

    
681
    return 0;
682
}
683

    
684
void qemu_main_loop_start(void)
685
{
686
    qemu_system_ready = 1;
687
    qemu_cond_broadcast(&qemu_system_cond);
688
}
689

    
690
void run_on_cpu(CPUState *env, void (*func)(void *data), void *data)
691
{
692
    struct qemu_work_item wi;
693

    
694
    if (qemu_cpu_is_self(env)) {
695
        func(data);
696
        return;
697
    }
698

    
699
    wi.func = func;
700
    wi.data = data;
701
    if (!env->queued_work_first) {
702
        env->queued_work_first = &wi;
703
    } else {
704
        env->queued_work_last->next = &wi;
705
    }
706
    env->queued_work_last = &wi;
707
    wi.next = NULL;
708
    wi.done = false;
709

    
710
    qemu_cpu_kick(env);
711
    while (!wi.done) {
712
        CPUState *self_env = cpu_single_env;
713

    
714
        qemu_cond_wait(&qemu_work_cond, &qemu_global_mutex);
715
        cpu_single_env = self_env;
716
    }
717
}
718

    
719
static void flush_queued_work(CPUState *env)
720
{
721
    struct qemu_work_item *wi;
722

    
723
    if (!env->queued_work_first) {
724
        return;
725
    }
726

    
727
    while ((wi = env->queued_work_first)) {
728
        env->queued_work_first = wi->next;
729
        wi->func(wi->data);
730
        wi->done = true;
731
    }
732
    env->queued_work_last = NULL;
733
    qemu_cond_broadcast(&qemu_work_cond);
734
}
735

    
736
static void qemu_wait_io_event_common(CPUState *env)
737
{
738
    if (env->stop) {
739
        env->stop = 0;
740
        env->stopped = 1;
741
        qemu_cond_signal(&qemu_pause_cond);
742
    }
743
    flush_queued_work(env);
744
    env->thread_kicked = false;
745
}
746

    
747
static void qemu_tcg_wait_io_event(void)
748
{
749
    CPUState *env;
750

    
751
    while (all_cpu_threads_idle()) {
752
       /* Start accounting real time to the virtual clock if the CPUs
753
          are idle.  */
754
        qemu_clock_warp(vm_clock);
755
        qemu_cond_wait(tcg_halt_cond, &qemu_global_mutex);
756
    }
757

    
758
    qemu_mutex_unlock(&qemu_global_mutex);
759

    
760
    /*
761
     * Users of qemu_global_mutex can be starved, having no chance
762
     * to acquire it since this path will get to it first.
763
     * So use another lock to provide fairness.
764
     */
765
    qemu_mutex_lock(&qemu_fair_mutex);
766
    qemu_mutex_unlock(&qemu_fair_mutex);
767

    
768
    qemu_mutex_lock(&qemu_global_mutex);
769

    
770
    for (env = first_cpu; env != NULL; env = env->next_cpu) {
771
        qemu_wait_io_event_common(env);
772
    }
773
}
774

    
775
static void qemu_kvm_wait_io_event(CPUState *env)
776
{
777
    while (cpu_thread_is_idle(env)) {
778
        qemu_cond_wait(env->halt_cond, &qemu_global_mutex);
779
    }
780

    
781
    qemu_kvm_eat_signals(env);
782
    qemu_wait_io_event_common(env);
783
}
784

    
785
static void *qemu_kvm_cpu_thread_fn(void *arg)
786
{
787
    CPUState *env = arg;
788
    int r;
789

    
790
    qemu_mutex_lock(&qemu_global_mutex);
791
    qemu_thread_get_self(env->thread);
792
    env->thread_id = qemu_get_thread_id();
793

    
794
    r = kvm_init_vcpu(env);
795
    if (r < 0) {
796
        fprintf(stderr, "kvm_init_vcpu failed: %s\n", strerror(-r));
797
        exit(1);
798
    }
799

    
800
    qemu_kvm_init_cpu_signals(env);
801

    
802
    /* signal CPU creation */
803
    env->created = 1;
804
    qemu_cond_signal(&qemu_cpu_cond);
805

    
806
    /* and wait for machine initialization */
807
    while (!qemu_system_ready) {
808
        qemu_cond_wait(&qemu_system_cond, &qemu_global_mutex);
809
    }
810

    
811
    while (1) {
812
        if (cpu_can_run(env)) {
813
            r = kvm_cpu_exec(env);
814
            if (r == EXCP_DEBUG) {
815
                cpu_handle_guest_debug(env);
816
            }
817
        }
818
        qemu_kvm_wait_io_event(env);
819
    }
820

    
821
    return NULL;
822
}
823

    
824
static void *qemu_tcg_cpu_thread_fn(void *arg)
825
{
826
    CPUState *env = arg;
827

    
828
    qemu_tcg_init_cpu_signals();
829
    qemu_thread_get_self(env->thread);
830

    
831
    /* signal CPU creation */
832
    qemu_mutex_lock(&qemu_global_mutex);
833
    for (env = first_cpu; env != NULL; env = env->next_cpu) {
834
        env->thread_id = qemu_get_thread_id();
835
        env->created = 1;
836
    }
837
    qemu_cond_signal(&qemu_cpu_cond);
838

    
839
    /* and wait for machine initialization */
840
    while (!qemu_system_ready) {
841
        qemu_cond_wait(&qemu_system_cond, &qemu_global_mutex);
842
    }
843

    
844
    while (1) {
845
        cpu_exec_all();
846
        if (use_icount && qemu_next_icount_deadline() <= 0) {
847
            qemu_notify_event();
848
        }
849
        qemu_tcg_wait_io_event();
850
    }
851

    
852
    return NULL;
853
}
854

    
855
static void qemu_cpu_kick_thread(CPUState *env)
856
{
857
#ifndef _WIN32
858
    int err;
859

    
860
    err = pthread_kill(env->thread->thread, SIG_IPI);
861
    if (err) {
862
        fprintf(stderr, "qemu:%s: %s", __func__, strerror(err));
863
        exit(1);
864
    }
865
#else /* _WIN32 */
866
    if (!qemu_cpu_is_self(env)) {
867
        SuspendThread(env->thread->thread);
868
        cpu_signal(0);
869
        ResumeThread(env->thread->thread);
870
    }
871
#endif
872
}
873

    
874
void qemu_cpu_kick(void *_env)
875
{
876
    CPUState *env = _env;
877

    
878
    qemu_cond_broadcast(env->halt_cond);
879
    if (!env->thread_kicked) {
880
        qemu_cpu_kick_thread(env);
881
        env->thread_kicked = true;
882
    }
883
}
884

    
885
void qemu_cpu_kick_self(void)
886
{
887
#ifndef _WIN32
888
    assert(cpu_single_env);
889

    
890
    if (!cpu_single_env->thread_kicked) {
891
        qemu_cpu_kick_thread(cpu_single_env);
892
        cpu_single_env->thread_kicked = true;
893
    }
894
#else
895
    abort();
896
#endif
897
}
898

    
899
int qemu_cpu_is_self(void *_env)
900
{
901
    CPUState *env = _env;
902

    
903
    return qemu_thread_is_self(env->thread);
904
}
905

    
906
void qemu_mutex_lock_iothread(void)
907
{
908
    if (kvm_enabled()) {
909
        qemu_mutex_lock(&qemu_global_mutex);
910
    } else {
911
        qemu_mutex_lock(&qemu_fair_mutex);
912
        if (qemu_mutex_trylock(&qemu_global_mutex)) {
913
            qemu_cpu_kick_thread(first_cpu);
914
            qemu_mutex_lock(&qemu_global_mutex);
915
        }
916
        qemu_mutex_unlock(&qemu_fair_mutex);
917
    }
918
}
919

    
920
void qemu_mutex_unlock_iothread(void)
921
{
922
    qemu_mutex_unlock(&qemu_global_mutex);
923
}
924

    
925
static int all_vcpus_paused(void)
926
{
927
    CPUState *penv = first_cpu;
928

    
929
    while (penv) {
930
        if (!penv->stopped) {
931
            return 0;
932
        }
933
        penv = (CPUState *)penv->next_cpu;
934
    }
935

    
936
    return 1;
937
}
938

    
939
void pause_all_vcpus(void)
940
{
941
    CPUState *penv = first_cpu;
942

    
943
    while (penv) {
944
        penv->stop = 1;
945
        qemu_cpu_kick(penv);
946
        penv = (CPUState *)penv->next_cpu;
947
    }
948

    
949
    while (!all_vcpus_paused()) {
950
        qemu_cond_wait(&qemu_pause_cond, &qemu_global_mutex);
951
        penv = first_cpu;
952
        while (penv) {
953
            qemu_cpu_kick(penv);
954
            penv = (CPUState *)penv->next_cpu;
955
        }
956
    }
957
}
958

    
959
void resume_all_vcpus(void)
960
{
961
    CPUState *penv = first_cpu;
962

    
963
    while (penv) {
964
        penv->stop = 0;
965
        penv->stopped = 0;
966
        qemu_cpu_kick(penv);
967
        penv = (CPUState *)penv->next_cpu;
968
    }
969
}
970

    
971
static void qemu_tcg_init_vcpu(void *_env)
972
{
973
    CPUState *env = _env;
974

    
975
    /* share a single thread for all cpus with TCG */
976
    if (!tcg_cpu_thread) {
977
        env->thread = qemu_mallocz(sizeof(QemuThread));
978
        env->halt_cond = qemu_mallocz(sizeof(QemuCond));
979
        qemu_cond_init(env->halt_cond);
980
        qemu_thread_create(env->thread, qemu_tcg_cpu_thread_fn, env);
981
        while (env->created == 0) {
982
            qemu_cond_wait(&qemu_cpu_cond, &qemu_global_mutex);
983
        }
984
        tcg_cpu_thread = env->thread;
985
        tcg_halt_cond = env->halt_cond;
986
    } else {
987
        env->thread = tcg_cpu_thread;
988
        env->halt_cond = tcg_halt_cond;
989
    }
990
}
991

    
992
static void qemu_kvm_start_vcpu(CPUState *env)
993
{
994
    env->thread = qemu_mallocz(sizeof(QemuThread));
995
    env->halt_cond = qemu_mallocz(sizeof(QemuCond));
996
    qemu_cond_init(env->halt_cond);
997
    qemu_thread_create(env->thread, qemu_kvm_cpu_thread_fn, env);
998
    while (env->created == 0) {
999
        qemu_cond_wait(&qemu_cpu_cond, &qemu_global_mutex);
1000
    }
1001
}
1002

    
1003
void qemu_init_vcpu(void *_env)
1004
{
1005
    CPUState *env = _env;
1006

    
1007
    env->nr_cores = smp_cores;
1008
    env->nr_threads = smp_threads;
1009
    if (kvm_enabled()) {
1010
        qemu_kvm_start_vcpu(env);
1011
    } else {
1012
        qemu_tcg_init_vcpu(env);
1013
    }
1014
}
1015

    
1016
void qemu_notify_event(void)
1017
{
1018
    qemu_event_increment();
1019
}
1020

    
1021
void cpu_stop_current(void)
1022
{
1023
    if (cpu_single_env) {
1024
        cpu_single_env->stop = 0;
1025
        cpu_single_env->stopped = 1;
1026
        cpu_exit(cpu_single_env);
1027
        qemu_cond_signal(&qemu_pause_cond);
1028
    }
1029
}
1030

    
1031
void vm_stop(int reason)
1032
{
1033
    if (!qemu_thread_is_self(&io_thread)) {
1034
        qemu_system_vmstop_request(reason);
1035
        /*
1036
         * FIXME: should not return to device code in case
1037
         * vm_stop() has been requested.
1038
         */
1039
        cpu_stop_current();
1040
        return;
1041
    }
1042
    do_vm_stop(reason);
1043
}
1044

    
1045
#endif
1046

    
1047
static int tcg_cpu_exec(CPUState *env)
1048
{
1049
    int ret;
1050
#ifdef CONFIG_PROFILER
1051
    int64_t ti;
1052
#endif
1053

    
1054
#ifdef CONFIG_PROFILER
1055
    ti = profile_getclock();
1056
#endif
1057
    if (use_icount) {
1058
        int64_t count;
1059
        int decr;
1060
        qemu_icount -= (env->icount_decr.u16.low + env->icount_extra);
1061
        env->icount_decr.u16.low = 0;
1062
        env->icount_extra = 0;
1063
        count = qemu_icount_round(qemu_next_icount_deadline());
1064
        qemu_icount += count;
1065
        decr = (count > 0xffff) ? 0xffff : count;
1066
        count -= decr;
1067
        env->icount_decr.u16.low = decr;
1068
        env->icount_extra = count;
1069
    }
1070
    ret = cpu_exec(env);
1071
#ifdef CONFIG_PROFILER
1072
    qemu_time += profile_getclock() - ti;
1073
#endif
1074
    if (use_icount) {
1075
        /* Fold pending instructions back into the
1076
           instruction counter, and clear the interrupt flag.  */
1077
        qemu_icount -= (env->icount_decr.u16.low
1078
                        + env->icount_extra);
1079
        env->icount_decr.u32 = 0;
1080
        env->icount_extra = 0;
1081
    }
1082
    return ret;
1083
}
1084

    
1085
bool cpu_exec_all(void)
1086
{
1087
    int r;
1088

    
1089
    /* Account partial waits to the vm_clock.  */
1090
    qemu_clock_warp(vm_clock);
1091

    
1092
    if (next_cpu == NULL) {
1093
        next_cpu = first_cpu;
1094
    }
1095
    for (; next_cpu != NULL && !exit_request; next_cpu = next_cpu->next_cpu) {
1096
        CPUState *env = next_cpu;
1097

    
1098
        qemu_clock_enable(vm_clock,
1099
                          (env->singlestep_enabled & SSTEP_NOTIMER) == 0);
1100

    
1101
#ifndef CONFIG_IOTHREAD
1102
        if (qemu_alarm_pending()) {
1103
            break;
1104
        }
1105
#endif
1106
        if (cpu_can_run(env)) {
1107
            if (kvm_enabled()) {
1108
                r = kvm_cpu_exec(env);
1109
                qemu_kvm_eat_signals(env);
1110
            } else {
1111
                r = tcg_cpu_exec(env);
1112
            }
1113
            if (r == EXCP_DEBUG) {
1114
                cpu_handle_guest_debug(env);
1115
                break;
1116
            }
1117
        } else if (env->stop || env->stopped) {
1118
            break;
1119
        }
1120
    }
1121
    exit_request = 0;
1122
    return !all_cpu_threads_idle();
1123
}
1124

    
1125
void set_numa_modes(void)
1126
{
1127
    CPUState *env;
1128
    int i;
1129

    
1130
    for (env = first_cpu; env != NULL; env = env->next_cpu) {
1131
        for (i = 0; i < nb_numa_nodes; i++) {
1132
            if (node_cpumask[i] & (1 << env->cpu_index)) {
1133
                env->numa_node = i;
1134
            }
1135
        }
1136
    }
1137
}
1138

    
1139
void set_cpu_log(const char *optarg)
1140
{
1141
    int mask;
1142
    const CPULogItem *item;
1143

    
1144
    mask = cpu_str_to_log_mask(optarg);
1145
    if (!mask) {
1146
        printf("Log items (comma separated):\n");
1147
        for (item = cpu_log_items; item->mask != 0; item++) {
1148
            printf("%-10s %s\n", item->name, item->help);
1149
        }
1150
        exit(1);
1151
    }
1152
    cpu_set_log(mask);
1153
}
1154

    
1155
void set_cpu_log_filename(const char *optarg)
1156
{
1157
    cpu_set_log_filename(optarg);
1158
}
1159

    
1160
/* Return the virtual CPU time, based on the instruction counter.  */
1161
int64_t cpu_get_icount(void)
1162
{
1163
    int64_t icount;
1164
    CPUState *env = cpu_single_env;;
1165

    
1166
    icount = qemu_icount;
1167
    if (env) {
1168
        if (!can_do_io(env)) {
1169
            fprintf(stderr, "Bad clock read\n");
1170
        }
1171
        icount -= (env->icount_decr.u16.low + env->icount_extra);
1172
    }
1173
    return qemu_icount_bias + (icount << icount_time_shift);
1174
}
1175

    
1176
void list_cpus(FILE *f, fprintf_function cpu_fprintf, const char *optarg)
1177
{
1178
    /* XXX: implement xxx_cpu_list for targets that still miss it */
1179
#if defined(cpu_list_id)
1180
    cpu_list_id(f, cpu_fprintf, optarg);
1181
#elif defined(cpu_list)
1182
    cpu_list(f, cpu_fprintf); /* deprecated */
1183
#endif
1184
}