Revision 8ac5c651

b/hw/arm/Makefile.objs
7 7
obj-y += a15mpcore.o
8 8
obj-y += armv7m_nvic.o
9 9
obj-y += pxa2xx_dma.o
10
obj-y += pxa2xx_mmci.o pxa2xx_pcmcia.o
10
obj-y += pxa2xx_pcmcia.o
11 11
obj-y += zaurus.o
12
obj-y += omap_dma.o omap_clk.o omap_mmc.o \
12
obj-y += omap_dma.o omap_clk.o \
13 13
                omap_gpio.o omap_intc.o
14 14
obj-y += soc_dma.o \
15 15
                omap_gpmc.o omap_sdrc.o omap_tap.o omap_l4.o
b/hw/lm32/Makefile.objs
2 2
obj-y += lm32_pic.o
3 3
obj-y += lm32_sys.o
4 4
obj-y += milkymist-hpdmc.o
5
obj-y += milkymist-memcard.o
6 5
obj-y += milkymist-pfpu.o
7 6

  
8 7
obj-y := $(addprefix ../,$(obj-y))
/dev/null
1
/*
2
 *  QEMU model of the Milkymist SD Card Controller.
3
 *
4
 *  Copyright (c) 2010 Michael Walle <michael@walle.cc>
5
 *
6
 * This library is free software; you can redistribute it and/or
7
 * modify it under the terms of the GNU Lesser General Public
8
 * License as published by the Free Software Foundation; either
9
 * version 2 of the License, or (at your option) any later version.
10
 *
11
 * This library is distributed in the hope that it will be useful,
12
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14
 * Lesser General Public License for more details.
15
 *
16
 * You should have received a copy of the GNU Lesser General Public
17
 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18
 *
19
 *
20
 * Specification available at:
21
 *   http://www.milkymist.org/socdoc/memcard.pdf
22
 */
23

  
24
#include "hw/hw.h"
25
#include "hw/sysbus.h"
26
#include "sysemu/sysemu.h"
27
#include "trace.h"
28
#include "qemu/error-report.h"
29
#include "sysemu/blockdev.h"
30
#include "hw/sd.h"
31

  
32
enum {
33
    ENABLE_CMD_TX   = (1<<0),
34
    ENABLE_CMD_RX   = (1<<1),
35
    ENABLE_DAT_TX   = (1<<2),
36
    ENABLE_DAT_RX   = (1<<3),
37
};
38

  
39
enum {
40
    PENDING_CMD_TX   = (1<<0),
41
    PENDING_CMD_RX   = (1<<1),
42
    PENDING_DAT_TX   = (1<<2),
43
    PENDING_DAT_RX   = (1<<3),
44
};
45

  
46
enum {
47
    START_CMD_TX    = (1<<0),
48
    START_DAT_RX    = (1<<1),
49
};
50

  
51
enum {
52
    R_CLK2XDIV = 0,
53
    R_ENABLE,
54
    R_PENDING,
55
    R_START,
56
    R_CMD,
57
    R_DAT,
58
    R_MAX
59
};
60

  
61
struct MilkymistMemcardState {
62
    SysBusDevice busdev;
63
    MemoryRegion regs_region;
64
    SDState *card;
65

  
66
    int command_write_ptr;
67
    int response_read_ptr;
68
    int response_len;
69
    int ignore_next_cmd;
70
    int enabled;
71
    uint8_t command[6];
72
    uint8_t response[17];
73
    uint32_t regs[R_MAX];
74
};
75
typedef struct MilkymistMemcardState MilkymistMemcardState;
76

  
77
static void update_pending_bits(MilkymistMemcardState *s)
78
{
79
    /* transmits are instantaneous, thus tx pending bits are never set */
80
    s->regs[R_PENDING] = 0;
81
    /* if rx is enabled the corresponding pending bits are always set */
82
    if (s->regs[R_ENABLE] & ENABLE_CMD_RX) {
83
        s->regs[R_PENDING] |= PENDING_CMD_RX;
84
    }
85
    if (s->regs[R_ENABLE] & ENABLE_DAT_RX) {
86
        s->regs[R_PENDING] |= PENDING_DAT_RX;
87
    }
88
}
89

  
90
static void memcard_sd_command(MilkymistMemcardState *s)
91
{
92
    SDRequest req;
93

  
94
    req.cmd = s->command[0] & 0x3f;
95
    req.arg = (s->command[1] << 24) | (s->command[2] << 16)
96
              | (s->command[3] << 8) | s->command[4];
97
    req.crc = s->command[5];
98

  
99
    s->response[0] = req.cmd;
100
    s->response_len = sd_do_command(s->card, &req, s->response+1);
101
    s->response_read_ptr = 0;
102

  
103
    if (s->response_len == 16) {
104
        /* R2 response */
105
        s->response[0] = 0x3f;
106
        s->response_len += 1;
107
    } else if (s->response_len == 4) {
108
        /* no crc calculation, insert dummy byte */
109
        s->response[5] = 0;
110
        s->response_len += 2;
111
    }
112

  
113
    if (req.cmd == 0) {
114
        /* next write is a dummy byte to clock the initialization of the sd
115
         * card */
116
        s->ignore_next_cmd = 1;
117
    }
118
}
119

  
120
static uint64_t memcard_read(void *opaque, hwaddr addr,
121
                             unsigned size)
122
{
123
    MilkymistMemcardState *s = opaque;
124
    uint32_t r = 0;
125

  
126
    addr >>= 2;
127
    switch (addr) {
128
    case R_CMD:
129
        if (!s->enabled) {
130
            r = 0xff;
131
        } else {
132
            r = s->response[s->response_read_ptr++];
133
            if (s->response_read_ptr > s->response_len) {
134
                error_report("milkymist_memcard: "
135
                        "read more cmd bytes than available. Clipping.");
136
                s->response_read_ptr = 0;
137
            }
138
        }
139
        break;
140
    case R_DAT:
141
        if (!s->enabled) {
142
            r = 0xffffffff;
143
        } else {
144
            r = 0;
145
            r |= sd_read_data(s->card) << 24;
146
            r |= sd_read_data(s->card) << 16;
147
            r |= sd_read_data(s->card) << 8;
148
            r |= sd_read_data(s->card);
149
        }
150
        break;
151
    case R_CLK2XDIV:
152
    case R_ENABLE:
153
    case R_PENDING:
154
    case R_START:
155
        r = s->regs[addr];
156
        break;
157

  
158
    default:
159
        error_report("milkymist_memcard: read access to unknown register 0x"
160
                TARGET_FMT_plx, addr << 2);
161
        break;
162
    }
163

  
164
    trace_milkymist_memcard_memory_read(addr << 2, r);
165

  
166
    return r;
167
}
168

  
169
static void memcard_write(void *opaque, hwaddr addr, uint64_t value,
170
                          unsigned size)
171
{
172
    MilkymistMemcardState *s = opaque;
173

  
174
    trace_milkymist_memcard_memory_write(addr, value);
175

  
176
    addr >>= 2;
177
    switch (addr) {
178
    case R_PENDING:
179
        /* clear rx pending bits */
180
        s->regs[R_PENDING] &= ~(value & (PENDING_CMD_RX | PENDING_DAT_RX));
181
        update_pending_bits(s);
182
        break;
183
    case R_CMD:
184
        if (!s->enabled) {
185
            break;
186
        }
187
        if (s->ignore_next_cmd) {
188
            s->ignore_next_cmd = 0;
189
            break;
190
        }
191
        s->command[s->command_write_ptr] = value & 0xff;
192
        s->command_write_ptr = (s->command_write_ptr + 1) % 6;
193
        if (s->command_write_ptr == 0) {
194
            memcard_sd_command(s);
195
        }
196
        break;
197
    case R_DAT:
198
        if (!s->enabled) {
199
            break;
200
        }
201
        sd_write_data(s->card, (value >> 24) & 0xff);
202
        sd_write_data(s->card, (value >> 16) & 0xff);
203
        sd_write_data(s->card, (value >> 8) & 0xff);
204
        sd_write_data(s->card, value & 0xff);
205
        break;
206
    case R_ENABLE:
207
        s->regs[addr] = value;
208
        update_pending_bits(s);
209
        break;
210
    case R_CLK2XDIV:
211
    case R_START:
212
        s->regs[addr] = value;
213
        break;
214

  
215
    default:
216
        error_report("milkymist_memcard: write access to unknown register 0x"
217
                TARGET_FMT_plx, addr << 2);
218
        break;
219
    }
220
}
221

  
222
static const MemoryRegionOps memcard_mmio_ops = {
223
    .read = memcard_read,
224
    .write = memcard_write,
225
    .valid = {
226
        .min_access_size = 4,
227
        .max_access_size = 4,
228
    },
229
    .endianness = DEVICE_NATIVE_ENDIAN,
230
};
231

  
232
static void milkymist_memcard_reset(DeviceState *d)
233
{
234
    MilkymistMemcardState *s =
235
            container_of(d, MilkymistMemcardState, busdev.qdev);
236
    int i;
237

  
238
    s->command_write_ptr = 0;
239
    s->response_read_ptr = 0;
240
    s->response_len = 0;
241

  
242
    for (i = 0; i < R_MAX; i++) {
243
        s->regs[i] = 0;
244
    }
245
}
246

  
247
static int milkymist_memcard_init(SysBusDevice *dev)
248
{
249
    MilkymistMemcardState *s = FROM_SYSBUS(typeof(*s), dev);
250
    DriveInfo *dinfo;
251

  
252
    dinfo = drive_get_next(IF_SD);
253
    s->card = sd_init(dinfo ? dinfo->bdrv : NULL, 0);
254
    s->enabled = dinfo ? bdrv_is_inserted(dinfo->bdrv) : 0;
255

  
256
    memory_region_init_io(&s->regs_region, &memcard_mmio_ops, s,
257
            "milkymist-memcard", R_MAX * 4);
258
    sysbus_init_mmio(dev, &s->regs_region);
259

  
260
    return 0;
261
}
262

  
263
static const VMStateDescription vmstate_milkymist_memcard = {
264
    .name = "milkymist-memcard",
265
    .version_id = 1,
266
    .minimum_version_id = 1,
267
    .minimum_version_id_old = 1,
268
    .fields      = (VMStateField[]) {
269
        VMSTATE_INT32(command_write_ptr, MilkymistMemcardState),
270
        VMSTATE_INT32(response_read_ptr, MilkymistMemcardState),
271
        VMSTATE_INT32(response_len, MilkymistMemcardState),
272
        VMSTATE_INT32(ignore_next_cmd, MilkymistMemcardState),
273
        VMSTATE_INT32(enabled, MilkymistMemcardState),
274
        VMSTATE_UINT8_ARRAY(command, MilkymistMemcardState, 6),
275
        VMSTATE_UINT8_ARRAY(response, MilkymistMemcardState, 17),
276
        VMSTATE_UINT32_ARRAY(regs, MilkymistMemcardState, R_MAX),
277
        VMSTATE_END_OF_LIST()
278
    }
279
};
280

  
281
static void milkymist_memcard_class_init(ObjectClass *klass, void *data)
282
{
283
    DeviceClass *dc = DEVICE_CLASS(klass);
284
    SysBusDeviceClass *k = SYS_BUS_DEVICE_CLASS(klass);
285

  
286
    k->init = milkymist_memcard_init;
287
    dc->reset = milkymist_memcard_reset;
288
    dc->vmsd = &vmstate_milkymist_memcard;
289
}
290

  
291
static const TypeInfo milkymist_memcard_info = {
292
    .name          = "milkymist-memcard",
293
    .parent        = TYPE_SYS_BUS_DEVICE,
294
    .instance_size = sizeof(MilkymistMemcardState),
295
    .class_init    = milkymist_memcard_class_init,
296
};
297

  
298
static void milkymist_memcard_register_types(void)
299
{
300
    type_register_static(&milkymist_memcard_info);
301
}
302

  
303
type_init(milkymist_memcard_register_types)
/dev/null
1
/*
2
 * OMAP on-chip MMC/SD host emulation.
3
 *
4
 * Copyright (C) 2006-2007 Andrzej Zaborowski  <balrog@zabor.org>
5
 *
6
 * This program is free software; you can redistribute it and/or
7
 * modify it under the terms of the GNU General Public License as
8
 * published by the Free Software Foundation; either version 2 or
9
 * (at your option) version 3 of the License.
10
 *
11
 * This program is distributed in the hope that it will be useful,
12
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14
 * GNU General Public License for more details.
15
 *
16
 * You should have received a copy of the GNU General Public License along
17
 * with this program; if not, see <http://www.gnu.org/licenses/>.
18
 */
19
#include "hw/hw.h"
20
#include "hw/arm/omap.h"
21
#include "hw/sd.h"
22

  
23
struct omap_mmc_s {
24
    qemu_irq irq;
25
    qemu_irq *dma;
26
    qemu_irq coverswitch;
27
    MemoryRegion iomem;
28
    omap_clk clk;
29
    SDState *card;
30
    uint16_t last_cmd;
31
    uint16_t sdio;
32
    uint16_t rsp[8];
33
    uint32_t arg;
34
    int lines;
35
    int dw;
36
    int mode;
37
    int enable;
38
    int be;
39
    int rev;
40
    uint16_t status;
41
    uint16_t mask;
42
    uint8_t cto;
43
    uint16_t dto;
44
    int clkdiv;
45
    uint16_t fifo[32];
46
    int fifo_start;
47
    int fifo_len;
48
    uint16_t blen;
49
    uint16_t blen_counter;
50
    uint16_t nblk;
51
    uint16_t nblk_counter;
52
    int tx_dma;
53
    int rx_dma;
54
    int af_level;
55
    int ae_level;
56

  
57
    int ddir;
58
    int transfer;
59

  
60
    int cdet_wakeup;
61
    int cdet_enable;
62
    int cdet_state;
63
    qemu_irq cdet;
64
};
65

  
66
static void omap_mmc_interrupts_update(struct omap_mmc_s *s)
67
{
68
    qemu_set_irq(s->irq, !!(s->status & s->mask));
69
}
70

  
71
static void omap_mmc_fifolevel_update(struct omap_mmc_s *host)
72
{
73
    if (!host->transfer && !host->fifo_len) {
74
        host->status &= 0xf3ff;
75
        return;
76
    }
77

  
78
    if (host->fifo_len > host->af_level && host->ddir) {
79
        if (host->rx_dma) {
80
            host->status &= 0xfbff;
81
            qemu_irq_raise(host->dma[1]);
82
        } else
83
            host->status |= 0x0400;
84
    } else {
85
        host->status &= 0xfbff;
86
        qemu_irq_lower(host->dma[1]);
87
    }
88

  
89
    if (host->fifo_len < host->ae_level && !host->ddir) {
90
        if (host->tx_dma) {
91
            host->status &= 0xf7ff;
92
            qemu_irq_raise(host->dma[0]);
93
        } else
94
            host->status |= 0x0800;
95
    } else {
96
        qemu_irq_lower(host->dma[0]);
97
        host->status &= 0xf7ff;
98
    }
99
}
100

  
101
typedef enum {
102
    sd_nore = 0,	/* no response */
103
    sd_r1,		/* normal response command */
104
    sd_r2,		/* CID, CSD registers */
105
    sd_r3,		/* OCR register */
106
    sd_r6 = 6,		/* Published RCA response */
107
    sd_r1b = -1,
108
} sd_rsp_type_t;
109

  
110
static void omap_mmc_command(struct omap_mmc_s *host, int cmd, int dir,
111
                sd_cmd_type_t type, int busy, sd_rsp_type_t resptype, int init)
112
{
113
    uint32_t rspstatus, mask;
114
    int rsplen, timeout;
115
    SDRequest request;
116
    uint8_t response[16];
117

  
118
    if (init && cmd == 0) {
119
        host->status |= 0x0001;
120
        return;
121
    }
122

  
123
    if (resptype == sd_r1 && busy)
124
        resptype = sd_r1b;
125

  
126
    if (type == sd_adtc) {
127
        host->fifo_start = 0;
128
        host->fifo_len = 0;
129
        host->transfer = 1;
130
        host->ddir = dir;
131
    } else
132
        host->transfer = 0;
133
    timeout = 0;
134
    mask = 0;
135
    rspstatus = 0;
136

  
137
    request.cmd = cmd;
138
    request.arg = host->arg;
139
    request.crc = 0; /* FIXME */
140

  
141
    rsplen = sd_do_command(host->card, &request, response);
142

  
143
    /* TODO: validate CRCs */
144
    switch (resptype) {
145
    case sd_nore:
146
        rsplen = 0;
147
        break;
148

  
149
    case sd_r1:
150
    case sd_r1b:
151
        if (rsplen < 4) {
152
            timeout = 1;
153
            break;
154
        }
155
        rsplen = 4;
156

  
157
        mask = OUT_OF_RANGE | ADDRESS_ERROR | BLOCK_LEN_ERROR |
158
                ERASE_SEQ_ERROR | ERASE_PARAM | WP_VIOLATION |
159
                LOCK_UNLOCK_FAILED | COM_CRC_ERROR | ILLEGAL_COMMAND |
160
                CARD_ECC_FAILED | CC_ERROR | SD_ERROR |
161
                CID_CSD_OVERWRITE;
162
        if (host->sdio & (1 << 13))
163
            mask |= AKE_SEQ_ERROR;
164
        rspstatus = (response[0] << 24) | (response[1] << 16) |
165
                (response[2] << 8) | (response[3] << 0);
166
        break;
167

  
168
    case sd_r2:
169
        if (rsplen < 16) {
170
            timeout = 1;
171
            break;
172
        }
173
        rsplen = 16;
174
        break;
175

  
176
    case sd_r3:
177
        if (rsplen < 4) {
178
            timeout = 1;
179
            break;
180
        }
181
        rsplen = 4;
182

  
183
        rspstatus = (response[0] << 24) | (response[1] << 16) |
184
                (response[2] << 8) | (response[3] << 0);
185
        if (rspstatus & 0x80000000)
186
            host->status &= 0xe000;
187
        else
188
            host->status |= 0x1000;
189
        break;
190

  
191
    case sd_r6:
192
        if (rsplen < 4) {
193
            timeout = 1;
194
            break;
195
        }
196
        rsplen = 4;
197

  
198
        mask = 0xe000 | AKE_SEQ_ERROR;
199
        rspstatus = (response[2] << 8) | (response[3] << 0);
200
    }
201

  
202
    if (rspstatus & mask)
203
        host->status |= 0x4000;
204
    else
205
        host->status &= 0xb000;
206

  
207
    if (rsplen)
208
        for (rsplen = 0; rsplen < 8; rsplen ++)
209
            host->rsp[~rsplen & 7] = response[(rsplen << 1) | 1] |
210
                    (response[(rsplen << 1) | 0] << 8);
211

  
212
    if (timeout)
213
        host->status |= 0x0080;
214
    else if (cmd == 12)
215
        host->status |= 0x0005;	/* Makes it more real */
216
    else
217
        host->status |= 0x0001;
218
}
219

  
220
static void omap_mmc_transfer(struct omap_mmc_s *host)
221
{
222
    uint8_t value;
223

  
224
    if (!host->transfer)
225
        return;
226

  
227
    while (1) {
228
        if (host->ddir) {
229
            if (host->fifo_len > host->af_level)
230
                break;
231

  
232
            value = sd_read_data(host->card);
233
            host->fifo[(host->fifo_start + host->fifo_len) & 31] = value;
234
            if (-- host->blen_counter) {
235
                value = sd_read_data(host->card);
236
                host->fifo[(host->fifo_start + host->fifo_len) & 31] |=
237
                        value << 8;
238
                host->blen_counter --;
239
            }
240

  
241
            host->fifo_len ++;
242
        } else {
243
            if (!host->fifo_len)
244
                break;
245

  
246
            value = host->fifo[host->fifo_start] & 0xff;
247
            sd_write_data(host->card, value);
248
            if (-- host->blen_counter) {
249
                value = host->fifo[host->fifo_start] >> 8;
250
                sd_write_data(host->card, value);
251
                host->blen_counter --;
252
            }
253

  
254
            host->fifo_start ++;
255
            host->fifo_len --;
256
            host->fifo_start &= 31;
257
        }
258

  
259
        if (host->blen_counter == 0) {
260
            host->nblk_counter --;
261
            host->blen_counter = host->blen;
262

  
263
            if (host->nblk_counter == 0) {
264
                host->nblk_counter = host->nblk;
265
                host->transfer = 0;
266
                host->status |= 0x0008;
267
                break;
268
            }
269
        }
270
    }
271
}
272

  
273
static void omap_mmc_update(void *opaque)
274
{
275
    struct omap_mmc_s *s = opaque;
276
    omap_mmc_transfer(s);
277
    omap_mmc_fifolevel_update(s);
278
    omap_mmc_interrupts_update(s);
279
}
280

  
281
void omap_mmc_reset(struct omap_mmc_s *host)
282
{
283
    host->last_cmd = 0;
284
    memset(host->rsp, 0, sizeof(host->rsp));
285
    host->arg = 0;
286
    host->dw = 0;
287
    host->mode = 0;
288
    host->enable = 0;
289
    host->status = 0;
290
    host->mask = 0;
291
    host->cto = 0;
292
    host->dto = 0;
293
    host->fifo_len = 0;
294
    host->blen = 0;
295
    host->blen_counter = 0;
296
    host->nblk = 0;
297
    host->nblk_counter = 0;
298
    host->tx_dma = 0;
299
    host->rx_dma = 0;
300
    host->ae_level = 0x00;
301
    host->af_level = 0x1f;
302
    host->transfer = 0;
303
    host->cdet_wakeup = 0;
304
    host->cdet_enable = 0;
305
    qemu_set_irq(host->coverswitch, host->cdet_state);
306
    host->clkdiv = 0;
307
}
308

  
309
static uint64_t omap_mmc_read(void *opaque, hwaddr offset,
310
                              unsigned size)
311
{
312
    uint16_t i;
313
    struct omap_mmc_s *s = (struct omap_mmc_s *) opaque;
314

  
315
    if (size != 2) {
316
        return omap_badwidth_read16(opaque, offset);
317
    }
318

  
319
    switch (offset) {
320
    case 0x00:	/* MMC_CMD */
321
        return s->last_cmd;
322

  
323
    case 0x04:	/* MMC_ARGL */
324
        return s->arg & 0x0000ffff;
325

  
326
    case 0x08:	/* MMC_ARGH */
327
        return s->arg >> 16;
328

  
329
    case 0x0c:	/* MMC_CON */
330
        return (s->dw << 15) | (s->mode << 12) | (s->enable << 11) | 
331
                (s->be << 10) | s->clkdiv;
332

  
333
    case 0x10:	/* MMC_STAT */
334
        return s->status;
335

  
336
    case 0x14:	/* MMC_IE */
337
        return s->mask;
338

  
339
    case 0x18:	/* MMC_CTO */
340
        return s->cto;
341

  
342
    case 0x1c:	/* MMC_DTO */
343
        return s->dto;
344

  
345
    case 0x20:	/* MMC_DATA */
346
        /* TODO: support 8-bit access */
347
        i = s->fifo[s->fifo_start];
348
        if (s->fifo_len == 0) {
349
            printf("MMC: FIFO underrun\n");
350
            return i;
351
        }
352
        s->fifo_start ++;
353
        s->fifo_len --;
354
        s->fifo_start &= 31;
355
        omap_mmc_transfer(s);
356
        omap_mmc_fifolevel_update(s);
357
        omap_mmc_interrupts_update(s);
358
        return i;
359

  
360
    case 0x24:	/* MMC_BLEN */
361
        return s->blen_counter;
362

  
363
    case 0x28:	/* MMC_NBLK */
364
        return s->nblk_counter;
365

  
366
    case 0x2c:	/* MMC_BUF */
367
        return (s->rx_dma << 15) | (s->af_level << 8) |
368
            (s->tx_dma << 7) | s->ae_level;
369

  
370
    case 0x30:	/* MMC_SPI */
371
        return 0x0000;
372
    case 0x34:	/* MMC_SDIO */
373
        return (s->cdet_wakeup << 2) | (s->cdet_enable) | s->sdio;
374
    case 0x38:	/* MMC_SYST */
375
        return 0x0000;
376

  
377
    case 0x3c:	/* MMC_REV */
378
        return s->rev;
379

  
380
    case 0x40:	/* MMC_RSP0 */
381
    case 0x44:	/* MMC_RSP1 */
382
    case 0x48:	/* MMC_RSP2 */
383
    case 0x4c:	/* MMC_RSP3 */
384
    case 0x50:	/* MMC_RSP4 */
385
    case 0x54:	/* MMC_RSP5 */
386
    case 0x58:	/* MMC_RSP6 */
387
    case 0x5c:	/* MMC_RSP7 */
388
        return s->rsp[(offset - 0x40) >> 2];
389

  
390
    /* OMAP2-specific */
391
    case 0x60:	/* MMC_IOSR */
392
    case 0x64:	/* MMC_SYSC */
393
        return 0;
394
    case 0x68:	/* MMC_SYSS */
395
        return 1;						/* RSTD */
396
    }
397

  
398
    OMAP_BAD_REG(offset);
399
    return 0;
400
}
401

  
402
static void omap_mmc_write(void *opaque, hwaddr offset,
403
                           uint64_t value, unsigned size)
404
{
405
    int i;
406
    struct omap_mmc_s *s = (struct omap_mmc_s *) opaque;
407

  
408
    if (size != 2) {
409
        return omap_badwidth_write16(opaque, offset, value);
410
    }
411

  
412
    switch (offset) {
413
    case 0x00:	/* MMC_CMD */
414
        if (!s->enable)
415
            break;
416

  
417
        s->last_cmd = value;
418
        for (i = 0; i < 8; i ++)
419
            s->rsp[i] = 0x0000;
420
        omap_mmc_command(s, value & 63, (value >> 15) & 1,
421
                (sd_cmd_type_t) ((value >> 12) & 3),
422
                (value >> 11) & 1,
423
                (sd_rsp_type_t) ((value >> 8) & 7),
424
                (value >> 7) & 1);
425
        omap_mmc_update(s);
426
        break;
427

  
428
    case 0x04:	/* MMC_ARGL */
429
        s->arg &= 0xffff0000;
430
        s->arg |= 0x0000ffff & value;
431
        break;
432

  
433
    case 0x08:	/* MMC_ARGH */
434
        s->arg &= 0x0000ffff;
435
        s->arg |= value << 16;
436
        break;
437

  
438
    case 0x0c:	/* MMC_CON */
439
        s->dw = (value >> 15) & 1;
440
        s->mode = (value >> 12) & 3;
441
        s->enable = (value >> 11) & 1;
442
        s->be = (value >> 10) & 1;
443
        s->clkdiv = (value >> 0) & (s->rev >= 2 ? 0x3ff : 0xff);
444
        if (s->mode != 0)
445
            printf("SD mode %i unimplemented!\n", s->mode);
446
        if (s->be != 0)
447
            printf("SD FIFO byte sex unimplemented!\n");
448
        if (s->dw != 0 && s->lines < 4)
449
            printf("4-bit SD bus enabled\n");
450
        if (!s->enable)
451
            omap_mmc_reset(s);
452
        break;
453

  
454
    case 0x10:	/* MMC_STAT */
455
        s->status &= ~value;
456
        omap_mmc_interrupts_update(s);
457
        break;
458

  
459
    case 0x14:	/* MMC_IE */
460
        s->mask = value & 0x7fff;
461
        omap_mmc_interrupts_update(s);
462
        break;
463

  
464
    case 0x18:	/* MMC_CTO */
465
        s->cto = value & 0xff;
466
        if (s->cto > 0xfd && s->rev <= 1)
467
            printf("MMC: CTO of 0xff and 0xfe cannot be used!\n");
468
        break;
469

  
470
    case 0x1c:	/* MMC_DTO */
471
        s->dto = value & 0xffff;
472
        break;
473

  
474
    case 0x20:	/* MMC_DATA */
475
        /* TODO: support 8-bit access */
476
        if (s->fifo_len == 32)
477
            break;
478
        s->fifo[(s->fifo_start + s->fifo_len) & 31] = value;
479
        s->fifo_len ++;
480
        omap_mmc_transfer(s);
481
        omap_mmc_fifolevel_update(s);
482
        omap_mmc_interrupts_update(s);
483
        break;
484

  
485
    case 0x24:	/* MMC_BLEN */
486
        s->blen = (value & 0x07ff) + 1;
487
        s->blen_counter = s->blen;
488
        break;
489

  
490
    case 0x28:	/* MMC_NBLK */
491
        s->nblk = (value & 0x07ff) + 1;
492
        s->nblk_counter = s->nblk;
493
        s->blen_counter = s->blen;
494
        break;
495

  
496
    case 0x2c:	/* MMC_BUF */
497
        s->rx_dma = (value >> 15) & 1;
498
        s->af_level = (value >> 8) & 0x1f;
499
        s->tx_dma = (value >> 7) & 1;
500
        s->ae_level = value & 0x1f;
501

  
502
        if (s->rx_dma)
503
            s->status &= 0xfbff;
504
        if (s->tx_dma)
505
            s->status &= 0xf7ff;
506
        omap_mmc_fifolevel_update(s);
507
        omap_mmc_interrupts_update(s);
508
        break;
509

  
510
    /* SPI, SDIO and TEST modes unimplemented */
511
    case 0x30:	/* MMC_SPI (OMAP1 only) */
512
        break;
513
    case 0x34:	/* MMC_SDIO */
514
        s->sdio = value & (s->rev >= 2 ? 0xfbf3 : 0x2020);
515
        s->cdet_wakeup = (value >> 9) & 1;
516
        s->cdet_enable = (value >> 2) & 1;
517
        break;
518
    case 0x38:	/* MMC_SYST */
519
        break;
520

  
521
    case 0x3c:	/* MMC_REV */
522
    case 0x40:	/* MMC_RSP0 */
523
    case 0x44:	/* MMC_RSP1 */
524
    case 0x48:	/* MMC_RSP2 */
525
    case 0x4c:	/* MMC_RSP3 */
526
    case 0x50:	/* MMC_RSP4 */
527
    case 0x54:	/* MMC_RSP5 */
528
    case 0x58:	/* MMC_RSP6 */
529
    case 0x5c:	/* MMC_RSP7 */
530
        OMAP_RO_REG(offset);
531
        break;
532

  
533
    /* OMAP2-specific */
534
    case 0x60:	/* MMC_IOSR */
535
        if (value & 0xf)
536
            printf("MMC: SDIO bits used!\n");
537
        break;
538
    case 0x64:	/* MMC_SYSC */
539
        if (value & (1 << 2))					/* SRTS */
540
            omap_mmc_reset(s);
541
        break;
542
    case 0x68:	/* MMC_SYSS */
543
        OMAP_RO_REG(offset);
544
        break;
545

  
546
    default:
547
        OMAP_BAD_REG(offset);
548
    }
549
}
550

  
551
static const MemoryRegionOps omap_mmc_ops = {
552
    .read = omap_mmc_read,
553
    .write = omap_mmc_write,
554
    .endianness = DEVICE_NATIVE_ENDIAN,
555
};
556

  
557
static void omap_mmc_cover_cb(void *opaque, int line, int level)
558
{
559
    struct omap_mmc_s *host = (struct omap_mmc_s *) opaque;
560

  
561
    if (!host->cdet_state && level) {
562
        host->status |= 0x0002;
563
        omap_mmc_interrupts_update(host);
564
        if (host->cdet_wakeup) {
565
            /* TODO: Assert wake-up */
566
        }
567
    }
568

  
569
    if (host->cdet_state != level) {
570
        qemu_set_irq(host->coverswitch, level);
571
        host->cdet_state = level;
572
    }
573
}
574

  
575
struct omap_mmc_s *omap_mmc_init(hwaddr base,
576
                MemoryRegion *sysmem,
577
                BlockDriverState *bd,
578
                qemu_irq irq, qemu_irq dma[], omap_clk clk)
579
{
580
    struct omap_mmc_s *s = (struct omap_mmc_s *)
581
            g_malloc0(sizeof(struct omap_mmc_s));
582

  
583
    s->irq = irq;
584
    s->dma = dma;
585
    s->clk = clk;
586
    s->lines = 1;	/* TODO: needs to be settable per-board */
587
    s->rev = 1;
588

  
589
    omap_mmc_reset(s);
590

  
591
    memory_region_init_io(&s->iomem, &omap_mmc_ops, s, "omap.mmc", 0x800);
592
    memory_region_add_subregion(sysmem, base, &s->iomem);
593

  
594
    /* Instantiate the storage */
595
    s->card = sd_init(bd, 0);
596

  
597
    return s;
598
}
599

  
600
struct omap_mmc_s *omap2_mmc_init(struct omap_target_agent_s *ta,
601
                BlockDriverState *bd, qemu_irq irq, qemu_irq dma[],
602
                omap_clk fclk, omap_clk iclk)
603
{
604
    struct omap_mmc_s *s = (struct omap_mmc_s *)
605
            g_malloc0(sizeof(struct omap_mmc_s));
606

  
607
    s->irq = irq;
608
    s->dma = dma;
609
    s->clk = fclk;
610
    s->lines = 4;
611
    s->rev = 2;
612

  
613
    omap_mmc_reset(s);
614

  
615
    memory_region_init_io(&s->iomem, &omap_mmc_ops, s, "omap.mmc",
616
                          omap_l4_region_size(ta, 0));
617
    omap_l4_attach(ta, 0, &s->iomem);
618

  
619
    /* Instantiate the storage */
620
    s->card = sd_init(bd, 0);
621

  
622
    s->cdet = qemu_allocate_irqs(omap_mmc_cover_cb, s, 1)[0];
623
    sd_set_cb(s->card, NULL, s->cdet);
624

  
625
    return s;
626
}
627

  
628
void omap_mmc_handlers(struct omap_mmc_s *s, qemu_irq ro, qemu_irq cover)
629
{
630
    if (s->cdet) {
631
        sd_set_cb(s->card, ro, s->cdet);
632
        s->coverswitch = cover;
633
        qemu_set_irq(cover, s->cdet_state);
634
    } else
635
        sd_set_cb(s->card, ro, cover);
636
}
637

  
638
void omap_mmc_enable(struct omap_mmc_s *s, int enable)
639
{
640
    sd_enable(s->card, enable);
641
}
/dev/null
1
/*
2
 * Intel XScale PXA255/270 MultiMediaCard/SD/SDIO Controller emulation.
3
 *
4
 * Copyright (c) 2006 Openedhand Ltd.
5
 * Written by Andrzej Zaborowski <balrog@zabor.org>
6
 *
7
 * This code is licensed under the GPLv2.
8
 *
9
 * Contributions after 2012-01-13 are licensed under the terms of the
10
 * GNU GPL, version 2 or (at your option) any later version.
11
 */
12

  
13
#include "hw/hw.h"
14
#include "hw/arm/pxa.h"
15
#include "hw/sd.h"
16
#include "hw/qdev.h"
17

  
18
struct PXA2xxMMCIState {
19
    MemoryRegion iomem;
20
    qemu_irq irq;
21
    qemu_irq rx_dma;
22
    qemu_irq tx_dma;
23

  
24
    SDState *card;
25

  
26
    uint32_t status;
27
    uint32_t clkrt;
28
    uint32_t spi;
29
    uint32_t cmdat;
30
    uint32_t resp_tout;
31
    uint32_t read_tout;
32
    int blklen;
33
    int numblk;
34
    uint32_t intmask;
35
    uint32_t intreq;
36
    int cmd;
37
    uint32_t arg;
38

  
39
    int active;
40
    int bytesleft;
41
    uint8_t tx_fifo[64];
42
    int tx_start;
43
    int tx_len;
44
    uint8_t rx_fifo[32];
45
    int rx_start;
46
    int rx_len;
47
    uint16_t resp_fifo[9];
48
    int resp_len;
49

  
50
    int cmdreq;
51
    int ac_width;
52
};
53

  
54
#define MMC_STRPCL	0x00	/* MMC Clock Start/Stop register */
55
#define MMC_STAT	0x04	/* MMC Status register */
56
#define MMC_CLKRT	0x08	/* MMC Clock Rate register */
57
#define MMC_SPI		0x0c	/* MMC SPI Mode register */
58
#define MMC_CMDAT	0x10	/* MMC Command/Data register */
59
#define MMC_RESTO	0x14	/* MMC Response Time-Out register */
60
#define MMC_RDTO	0x18	/* MMC Read Time-Out register */
61
#define MMC_BLKLEN	0x1c	/* MMC Block Length register */
62
#define MMC_NUMBLK	0x20	/* MMC Number of Blocks register */
63
#define MMC_PRTBUF	0x24	/* MMC Buffer Partly Full register */
64
#define MMC_I_MASK	0x28	/* MMC Interrupt Mask register */
65
#define MMC_I_REG	0x2c	/* MMC Interrupt Request register */
66
#define MMC_CMD		0x30	/* MMC Command register */
67
#define MMC_ARGH	0x34	/* MMC Argument High register */
68
#define MMC_ARGL	0x38	/* MMC Argument Low register */
69
#define MMC_RES		0x3c	/* MMC Response FIFO */
70
#define MMC_RXFIFO	0x40	/* MMC Receive FIFO */
71
#define MMC_TXFIFO	0x44	/* MMC Transmit FIFO */
72
#define MMC_RDWAIT	0x48	/* MMC RD_WAIT register */
73
#define MMC_BLKS_REM	0x4c	/* MMC Blocks Remaining register */
74

  
75
/* Bitfield masks */
76
#define STRPCL_STOP_CLK	(1 << 0)
77
#define STRPCL_STRT_CLK	(1 << 1)
78
#define STAT_TOUT_RES	(1 << 1)
79
#define STAT_CLK_EN	(1 << 8)
80
#define STAT_DATA_DONE	(1 << 11)
81
#define STAT_PRG_DONE	(1 << 12)
82
#define STAT_END_CMDRES	(1 << 13)
83
#define SPI_SPI_MODE	(1 << 0)
84
#define CMDAT_RES_TYPE	(3 << 0)
85
#define CMDAT_DATA_EN	(1 << 2)
86
#define CMDAT_WR_RD	(1 << 3)
87
#define CMDAT_DMA_EN	(1 << 7)
88
#define CMDAT_STOP_TRAN	(1 << 10)
89
#define INT_DATA_DONE	(1 << 0)
90
#define INT_PRG_DONE	(1 << 1)
91
#define INT_END_CMD	(1 << 2)
92
#define INT_STOP_CMD	(1 << 3)
93
#define INT_CLK_OFF	(1 << 4)
94
#define INT_RXFIFO_REQ	(1 << 5)
95
#define INT_TXFIFO_REQ	(1 << 6)
96
#define INT_TINT	(1 << 7)
97
#define INT_DAT_ERR	(1 << 8)
98
#define INT_RES_ERR	(1 << 9)
99
#define INT_RD_STALLED	(1 << 10)
100
#define INT_SDIO_INT	(1 << 11)
101
#define INT_SDIO_SACK	(1 << 12)
102
#define PRTBUF_PRT_BUF	(1 << 0)
103

  
104
/* Route internal interrupt lines to the global IC and DMA */
105
static void pxa2xx_mmci_int_update(PXA2xxMMCIState *s)
106
{
107
    uint32_t mask = s->intmask;
108
    if (s->cmdat & CMDAT_DMA_EN) {
109
        mask |= INT_RXFIFO_REQ | INT_TXFIFO_REQ;
110

  
111
        qemu_set_irq(s->rx_dma, !!(s->intreq & INT_RXFIFO_REQ));
112
        qemu_set_irq(s->tx_dma, !!(s->intreq & INT_TXFIFO_REQ));
113
    }
114

  
115
    qemu_set_irq(s->irq, !!(s->intreq & ~mask));
116
}
117

  
118
static void pxa2xx_mmci_fifo_update(PXA2xxMMCIState *s)
119
{
120
    if (!s->active)
121
        return;
122

  
123
    if (s->cmdat & CMDAT_WR_RD) {
124
        while (s->bytesleft && s->tx_len) {
125
            sd_write_data(s->card, s->tx_fifo[s->tx_start ++]);
126
            s->tx_start &= 0x1f;
127
            s->tx_len --;
128
            s->bytesleft --;
129
        }
130
        if (s->bytesleft)
131
            s->intreq |= INT_TXFIFO_REQ;
132
    } else
133
        while (s->bytesleft && s->rx_len < 32) {
134
            s->rx_fifo[(s->rx_start + (s->rx_len ++)) & 0x1f] =
135
                sd_read_data(s->card);
136
            s->bytesleft --;
137
            s->intreq |= INT_RXFIFO_REQ;
138
        }
139

  
140
    if (!s->bytesleft) {
141
        s->active = 0;
142
        s->intreq |= INT_DATA_DONE;
143
        s->status |= STAT_DATA_DONE;
144

  
145
        if (s->cmdat & CMDAT_WR_RD) {
146
            s->intreq |= INT_PRG_DONE;
147
            s->status |= STAT_PRG_DONE;
148
        }
149
    }
150

  
151
    pxa2xx_mmci_int_update(s);
152
}
153

  
154
static void pxa2xx_mmci_wakequeues(PXA2xxMMCIState *s)
155
{
156
    int rsplen, i;
157
    SDRequest request;
158
    uint8_t response[16];
159

  
160
    s->active = 1;
161
    s->rx_len = 0;
162
    s->tx_len = 0;
163
    s->cmdreq = 0;
164

  
165
    request.cmd = s->cmd;
166
    request.arg = s->arg;
167
    request.crc = 0;	/* FIXME */
168

  
169
    rsplen = sd_do_command(s->card, &request, response);
170
    s->intreq |= INT_END_CMD;
171

  
172
    memset(s->resp_fifo, 0, sizeof(s->resp_fifo));
173
    switch (s->cmdat & CMDAT_RES_TYPE) {
174
#define PXAMMCI_RESP(wd, value0, value1)	\
175
        s->resp_fifo[(wd) + 0] |= (value0);	\
176
        s->resp_fifo[(wd) + 1] |= (value1) << 8;
177
    case 0:	/* No response */
178
        goto complete;
179

  
180
    case 1:	/* R1, R4, R5 or R6 */
181
        if (rsplen < 4)
182
            goto timeout;
183
        goto complete;
184

  
185
    case 2:	/* R2 */
186
        if (rsplen < 16)
187
            goto timeout;
188
        goto complete;
189

  
190
    case 3:	/* R3 */
191
        if (rsplen < 4)
192
            goto timeout;
193
        goto complete;
194

  
195
    complete:
196
        for (i = 0; rsplen > 0; i ++, rsplen -= 2) {
197
            PXAMMCI_RESP(i, response[i * 2], response[i * 2 + 1]);
198
        }
199
        s->status |= STAT_END_CMDRES;
200

  
201
        if (!(s->cmdat & CMDAT_DATA_EN))
202
            s->active = 0;
203
        else
204
            s->bytesleft = s->numblk * s->blklen;
205

  
206
        s->resp_len = 0;
207
        break;
208

  
209
    timeout:
210
        s->active = 0;
211
        s->status |= STAT_TOUT_RES;
212
        break;
213
    }
214

  
215
    pxa2xx_mmci_fifo_update(s);
216
}
217

  
218
static uint32_t pxa2xx_mmci_read(void *opaque, hwaddr offset)
219
{
220
    PXA2xxMMCIState *s = (PXA2xxMMCIState *) opaque;
221
    uint32_t ret;
222

  
223
    switch (offset) {
224
    case MMC_STRPCL:
225
        return 0;
226
    case MMC_STAT:
227
        return s->status;
228
    case MMC_CLKRT:
229
        return s->clkrt;
230
    case MMC_SPI:
231
        return s->spi;
232
    case MMC_CMDAT:
233
        return s->cmdat;
234
    case MMC_RESTO:
235
        return s->resp_tout;
236
    case MMC_RDTO:
237
        return s->read_tout;
238
    case MMC_BLKLEN:
239
        return s->blklen;
240
    case MMC_NUMBLK:
241
        return s->numblk;
242
    case MMC_PRTBUF:
243
        return 0;
244
    case MMC_I_MASK:
245
        return s->intmask;
246
    case MMC_I_REG:
247
        return s->intreq;
248
    case MMC_CMD:
249
        return s->cmd | 0x40;
250
    case MMC_ARGH:
251
        return s->arg >> 16;
252
    case MMC_ARGL:
253
        return s->arg & 0xffff;
254
    case MMC_RES:
255
        if (s->resp_len < 9)
256
            return s->resp_fifo[s->resp_len ++];
257
        return 0;
258
    case MMC_RXFIFO:
259
        ret = 0;
260
        while (s->ac_width -- && s->rx_len) {
261
            ret |= s->rx_fifo[s->rx_start ++] << (s->ac_width << 3);
262
            s->rx_start &= 0x1f;
263
            s->rx_len --;
264
        }
265
        s->intreq &= ~INT_RXFIFO_REQ;
266
        pxa2xx_mmci_fifo_update(s);
267
        return ret;
268
    case MMC_RDWAIT:
269
        return 0;
270
    case MMC_BLKS_REM:
271
        return s->numblk;
272
    default:
273
        hw_error("%s: Bad offset " REG_FMT "\n", __FUNCTION__, offset);
274
    }
275

  
276
    return 0;
277
}
278

  
279
static void pxa2xx_mmci_write(void *opaque,
280
                hwaddr offset, uint32_t value)
281
{
282
    PXA2xxMMCIState *s = (PXA2xxMMCIState *) opaque;
283

  
284
    switch (offset) {
285
    case MMC_STRPCL:
286
        if (value & STRPCL_STRT_CLK) {
287
            s->status |= STAT_CLK_EN;
288
            s->intreq &= ~INT_CLK_OFF;
289

  
290
            if (s->cmdreq && !(s->cmdat & CMDAT_STOP_TRAN)) {
291
                s->status &= STAT_CLK_EN;
292
                pxa2xx_mmci_wakequeues(s);
293
            }
294
        }
295

  
296
        if (value & STRPCL_STOP_CLK) {
297
            s->status &= ~STAT_CLK_EN;
298
            s->intreq |= INT_CLK_OFF;
299
            s->active = 0;
300
        }
301

  
302
        pxa2xx_mmci_int_update(s);
303
        break;
304

  
305
    case MMC_CLKRT:
306
        s->clkrt = value & 7;
307
        break;
308

  
309
    case MMC_SPI:
310
        s->spi = value & 0xf;
311
        if (value & SPI_SPI_MODE)
312
            printf("%s: attempted to use card in SPI mode\n", __FUNCTION__);
313
        break;
314

  
315
    case MMC_CMDAT:
316
        s->cmdat = value & 0x3dff;
317
        s->active = 0;
318
        s->cmdreq = 1;
319
        if (!(value & CMDAT_STOP_TRAN)) {
320
            s->status &= STAT_CLK_EN;
321

  
322
            if (s->status & STAT_CLK_EN)
323
                pxa2xx_mmci_wakequeues(s);
324
        }
325

  
326
        pxa2xx_mmci_int_update(s);
327
        break;
328

  
329
    case MMC_RESTO:
330
        s->resp_tout = value & 0x7f;
331
        break;
332

  
333
    case MMC_RDTO:
334
        s->read_tout = value & 0xffff;
335
        break;
336

  
337
    case MMC_BLKLEN:
338
        s->blklen = value & 0xfff;
339
        break;
340

  
341
    case MMC_NUMBLK:
342
        s->numblk = value & 0xffff;
343
        break;
344

  
345
    case MMC_PRTBUF:
346
        if (value & PRTBUF_PRT_BUF) {
347
            s->tx_start ^= 32;
348
            s->tx_len = 0;
349
        }
350
        pxa2xx_mmci_fifo_update(s);
351
        break;
352

  
353
    case MMC_I_MASK:
354
        s->intmask = value & 0x1fff;
355
        pxa2xx_mmci_int_update(s);
356
        break;
357

  
358
    case MMC_CMD:
359
        s->cmd = value & 0x3f;
360
        break;
361

  
362
    case MMC_ARGH:
363
        s->arg &= 0x0000ffff;
364
        s->arg |= value << 16;
365
        break;
366

  
367
    case MMC_ARGL:
368
        s->arg &= 0xffff0000;
369
        s->arg |= value & 0x0000ffff;
370
        break;
371

  
372
    case MMC_TXFIFO:
373
        while (s->ac_width -- && s->tx_len < 0x20)
374
            s->tx_fifo[(s->tx_start + (s->tx_len ++)) & 0x1f] =
375
                    (value >> (s->ac_width << 3)) & 0xff;
376
        s->intreq &= ~INT_TXFIFO_REQ;
377
        pxa2xx_mmci_fifo_update(s);
378
        break;
379

  
380
    case MMC_RDWAIT:
381
    case MMC_BLKS_REM:
382
        break;
383

  
384
    default:
385
        hw_error("%s: Bad offset " REG_FMT "\n", __FUNCTION__, offset);
386
    }
387
}
388

  
389
static uint32_t pxa2xx_mmci_readb(void *opaque, hwaddr offset)
390
{
391
    PXA2xxMMCIState *s = (PXA2xxMMCIState *) opaque;
392
    s->ac_width = 1;
393
    return pxa2xx_mmci_read(opaque, offset);
394
}
395

  
396
static uint32_t pxa2xx_mmci_readh(void *opaque, hwaddr offset)
397
{
398
    PXA2xxMMCIState *s = (PXA2xxMMCIState *) opaque;
399
    s->ac_width = 2;
400
    return pxa2xx_mmci_read(opaque, offset);
401
}
402

  
403
static uint32_t pxa2xx_mmci_readw(void *opaque, hwaddr offset)
404
{
405
    PXA2xxMMCIState *s = (PXA2xxMMCIState *) opaque;
406
    s->ac_width = 4;
407
    return pxa2xx_mmci_read(opaque, offset);
408
}
409

  
410
static void pxa2xx_mmci_writeb(void *opaque,
411
                hwaddr offset, uint32_t value)
412
{
413
    PXA2xxMMCIState *s = (PXA2xxMMCIState *) opaque;
414
    s->ac_width = 1;
415
    pxa2xx_mmci_write(opaque, offset, value);
416
}
417

  
418
static void pxa2xx_mmci_writeh(void *opaque,
419
                hwaddr offset, uint32_t value)
420
{
421
    PXA2xxMMCIState *s = (PXA2xxMMCIState *) opaque;
422
    s->ac_width = 2;
423
    pxa2xx_mmci_write(opaque, offset, value);
424
}
425

  
426
static void pxa2xx_mmci_writew(void *opaque,
427
                hwaddr offset, uint32_t value)
428
{
429
    PXA2xxMMCIState *s = (PXA2xxMMCIState *) opaque;
430
    s->ac_width = 4;
431
    pxa2xx_mmci_write(opaque, offset, value);
432
}
433

  
434
static const MemoryRegionOps pxa2xx_mmci_ops = {
435
    .old_mmio = {
436
        .read = { pxa2xx_mmci_readb,
437
                  pxa2xx_mmci_readh,
438
                  pxa2xx_mmci_readw, },
439
        .write = { pxa2xx_mmci_writeb,
440
                   pxa2xx_mmci_writeh,
441
                   pxa2xx_mmci_writew, },
442
    },
443
    .endianness = DEVICE_NATIVE_ENDIAN,
444
};
445

  
446
static void pxa2xx_mmci_save(QEMUFile *f, void *opaque)
447
{
448
    PXA2xxMMCIState *s = (PXA2xxMMCIState *) opaque;
449
    int i;
450

  
451
    qemu_put_be32s(f, &s->status);
452
    qemu_put_be32s(f, &s->clkrt);
453
    qemu_put_be32s(f, &s->spi);
454
    qemu_put_be32s(f, &s->cmdat);
455
    qemu_put_be32s(f, &s->resp_tout);
456
    qemu_put_be32s(f, &s->read_tout);
457
    qemu_put_be32(f, s->blklen);
458
    qemu_put_be32(f, s->numblk);
459
    qemu_put_be32s(f, &s->intmask);
460
    qemu_put_be32s(f, &s->intreq);
461
    qemu_put_be32(f, s->cmd);
462
    qemu_put_be32s(f, &s->arg);
463
    qemu_put_be32(f, s->cmdreq);
464
    qemu_put_be32(f, s->active);
465
    qemu_put_be32(f, s->bytesleft);
466

  
467
    qemu_put_byte(f, s->tx_len);
468
    for (i = 0; i < s->tx_len; i ++)
469
        qemu_put_byte(f, s->tx_fifo[(s->tx_start + i) & 63]);
470

  
471
    qemu_put_byte(f, s->rx_len);
472
    for (i = 0; i < s->rx_len; i ++)
473
        qemu_put_byte(f, s->rx_fifo[(s->rx_start + i) & 31]);
474

  
475
    qemu_put_byte(f, s->resp_len);
476
    for (i = s->resp_len; i < 9; i ++)
477
        qemu_put_be16s(f, &s->resp_fifo[i]);
478
}
479

  
480
static int pxa2xx_mmci_load(QEMUFile *f, void *opaque, int version_id)
481
{
482
    PXA2xxMMCIState *s = (PXA2xxMMCIState *) opaque;
483
    int i;
484

  
485
    qemu_get_be32s(f, &s->status);
486
    qemu_get_be32s(f, &s->clkrt);
487
    qemu_get_be32s(f, &s->spi);
488
    qemu_get_be32s(f, &s->cmdat);
489
    qemu_get_be32s(f, &s->resp_tout);
490
    qemu_get_be32s(f, &s->read_tout);
491
    s->blklen = qemu_get_be32(f);
492
    s->numblk = qemu_get_be32(f);
493
    qemu_get_be32s(f, &s->intmask);
494
    qemu_get_be32s(f, &s->intreq);
495
    s->cmd = qemu_get_be32(f);
496
    qemu_get_be32s(f, &s->arg);
497
    s->cmdreq = qemu_get_be32(f);
498
    s->active = qemu_get_be32(f);
499
    s->bytesleft = qemu_get_be32(f);
500

  
501
    s->tx_len = qemu_get_byte(f);
502
    s->tx_start = 0;
503
    if (s->tx_len >= sizeof(s->tx_fifo) || s->tx_len < 0)
... This diff was truncated because it exceeds the maximum size that can be displayed.

Also available in: Unified diff