Statistics
| Branch: | Revision:

root / block-qcow.c @ 8c5e95d8

History | View | Annotate | Download (28 kB)

1
/*
2
 * Block driver for the QCOW format
3
 *
4
 * Copyright (c) 2004-2006 Fabrice Bellard
5
 *
6
 * Permission is hereby granted, free of charge, to any person obtaining a copy
7
 * of this software and associated documentation files (the "Software"), to deal
8
 * in the Software without restriction, including without limitation the rights
9
 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10
 * copies of the Software, and to permit persons to whom the Software is
11
 * furnished to do so, subject to the following conditions:
12
 *
13
 * The above copyright notice and this permission notice shall be included in
14
 * all copies or substantial portions of the Software.
15
 *
16
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21
 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22
 * THE SOFTWARE.
23
 */
24
#include "qemu-common.h"
25
#include "block_int.h"
26
#include <zlib.h>
27
#include "aes.h"
28

    
29
/**************************************************************/
30
/* QEMU COW block driver with compression and encryption support */
31

    
32
#define QCOW_MAGIC (('Q' << 24) | ('F' << 16) | ('I' << 8) | 0xfb)
33
#define QCOW_VERSION 1
34

    
35
#define QCOW_CRYPT_NONE 0
36
#define QCOW_CRYPT_AES  1
37

    
38
#define QCOW_OFLAG_COMPRESSED (1LL << 63)
39

    
40
typedef struct QCowHeader {
41
    uint32_t magic;
42
    uint32_t version;
43
    uint64_t backing_file_offset;
44
    uint32_t backing_file_size;
45
    uint32_t mtime;
46
    uint64_t size; /* in bytes */
47
    uint8_t cluster_bits;
48
    uint8_t l2_bits;
49
    uint32_t crypt_method;
50
    uint64_t l1_table_offset;
51
} QCowHeader;
52

    
53
#define L2_CACHE_SIZE 16
54

    
55
typedef struct BDRVQcowState {
56
    BlockDriverState *hd;
57
    int cluster_bits;
58
    int cluster_size;
59
    int cluster_sectors;
60
    int l2_bits;
61
    int l2_size;
62
    int l1_size;
63
    uint64_t cluster_offset_mask;
64
    uint64_t l1_table_offset;
65
    uint64_t *l1_table;
66
    uint64_t *l2_cache;
67
    uint64_t l2_cache_offsets[L2_CACHE_SIZE];
68
    uint32_t l2_cache_counts[L2_CACHE_SIZE];
69
    uint8_t *cluster_cache;
70
    uint8_t *cluster_data;
71
    uint64_t cluster_cache_offset;
72
    uint32_t crypt_method; /* current crypt method, 0 if no key yet */
73
    uint32_t crypt_method_header;
74
    AES_KEY aes_encrypt_key;
75
    AES_KEY aes_decrypt_key;
76
} BDRVQcowState;
77

    
78
static int decompress_cluster(BDRVQcowState *s, uint64_t cluster_offset);
79

    
80
static int qcow_probe(const uint8_t *buf, int buf_size, const char *filename)
81
{
82
    const QCowHeader *cow_header = (const void *)buf;
83

    
84
    if (buf_size >= sizeof(QCowHeader) &&
85
        be32_to_cpu(cow_header->magic) == QCOW_MAGIC &&
86
        be32_to_cpu(cow_header->version) == QCOW_VERSION)
87
        return 100;
88
    else
89
        return 0;
90
}
91

    
92
static int qcow_open(BlockDriverState *bs, const char *filename, int flags)
93
{
94
    BDRVQcowState *s = bs->opaque;
95
    int len, i, shift, ret;
96
    QCowHeader header;
97

    
98
    ret = bdrv_file_open(&s->hd, filename, flags);
99
    if (ret < 0)
100
        return ret;
101
    if (bdrv_pread(s->hd, 0, &header, sizeof(header)) != sizeof(header))
102
        goto fail;
103
    be32_to_cpus(&header.magic);
104
    be32_to_cpus(&header.version);
105
    be64_to_cpus(&header.backing_file_offset);
106
    be32_to_cpus(&header.backing_file_size);
107
    be32_to_cpus(&header.mtime);
108
    be64_to_cpus(&header.size);
109
    be32_to_cpus(&header.crypt_method);
110
    be64_to_cpus(&header.l1_table_offset);
111

    
112
    if (header.magic != QCOW_MAGIC || header.version != QCOW_VERSION)
113
        goto fail;
114
    if (header.size <= 1 || header.cluster_bits < 9)
115
        goto fail;
116
    if (header.crypt_method > QCOW_CRYPT_AES)
117
        goto fail;
118
    s->crypt_method_header = header.crypt_method;
119
    if (s->crypt_method_header)
120
        bs->encrypted = 1;
121
    s->cluster_bits = header.cluster_bits;
122
    s->cluster_size = 1 << s->cluster_bits;
123
    s->cluster_sectors = 1 << (s->cluster_bits - 9);
124
    s->l2_bits = header.l2_bits;
125
    s->l2_size = 1 << s->l2_bits;
126
    bs->total_sectors = header.size / 512;
127
    s->cluster_offset_mask = (1LL << (63 - s->cluster_bits)) - 1;
128

    
129
    /* read the level 1 table */
130
    shift = s->cluster_bits + s->l2_bits;
131
    s->l1_size = (header.size + (1LL << shift) - 1) >> shift;
132

    
133
    s->l1_table_offset = header.l1_table_offset;
134
    s->l1_table = qemu_malloc(s->l1_size * sizeof(uint64_t));
135
    if (!s->l1_table)
136
        goto fail;
137
    if (bdrv_pread(s->hd, s->l1_table_offset, s->l1_table, s->l1_size * sizeof(uint64_t)) !=
138
        s->l1_size * sizeof(uint64_t))
139
        goto fail;
140
    for(i = 0;i < s->l1_size; i++) {
141
        be64_to_cpus(&s->l1_table[i]);
142
    }
143
    /* alloc L2 cache */
144
    s->l2_cache = qemu_malloc(s->l2_size * L2_CACHE_SIZE * sizeof(uint64_t));
145
    if (!s->l2_cache)
146
        goto fail;
147
    s->cluster_cache = qemu_malloc(s->cluster_size);
148
    if (!s->cluster_cache)
149
        goto fail;
150
    s->cluster_data = qemu_malloc(s->cluster_size);
151
    if (!s->cluster_data)
152
        goto fail;
153
    s->cluster_cache_offset = -1;
154

    
155
    /* read the backing file name */
156
    if (header.backing_file_offset != 0) {
157
        len = header.backing_file_size;
158
        if (len > 1023)
159
            len = 1023;
160
        if (bdrv_pread(s->hd, header.backing_file_offset, bs->backing_file, len) != len)
161
            goto fail;
162
        bs->backing_file[len] = '\0';
163
    }
164
    return 0;
165

    
166
 fail:
167
    qemu_free(s->l1_table);
168
    qemu_free(s->l2_cache);
169
    qemu_free(s->cluster_cache);
170
    qemu_free(s->cluster_data);
171
    bdrv_delete(s->hd);
172
    return -1;
173
}
174

    
175
static int qcow_set_key(BlockDriverState *bs, const char *key)
176
{
177
    BDRVQcowState *s = bs->opaque;
178
    uint8_t keybuf[16];
179
    int len, i;
180

    
181
    memset(keybuf, 0, 16);
182
    len = strlen(key);
183
    if (len > 16)
184
        len = 16;
185
    /* XXX: we could compress the chars to 7 bits to increase
186
       entropy */
187
    for(i = 0;i < len;i++) {
188
        keybuf[i] = key[i];
189
    }
190
    s->crypt_method = s->crypt_method_header;
191

    
192
    if (AES_set_encrypt_key(keybuf, 128, &s->aes_encrypt_key) != 0)
193
        return -1;
194
    if (AES_set_decrypt_key(keybuf, 128, &s->aes_decrypt_key) != 0)
195
        return -1;
196
#if 0
197
    /* test */
198
    {
199
        uint8_t in[16];
200
        uint8_t out[16];
201
        uint8_t tmp[16];
202
        for(i=0;i<16;i++)
203
            in[i] = i;
204
        AES_encrypt(in, tmp, &s->aes_encrypt_key);
205
        AES_decrypt(tmp, out, &s->aes_decrypt_key);
206
        for(i = 0; i < 16; i++)
207
            printf(" %02x", tmp[i]);
208
        printf("\n");
209
        for(i = 0; i < 16; i++)
210
            printf(" %02x", out[i]);
211
        printf("\n");
212
    }
213
#endif
214
    return 0;
215
}
216

    
217
/* The crypt function is compatible with the linux cryptoloop
218
   algorithm for < 4 GB images. NOTE: out_buf == in_buf is
219
   supported */
220
static void encrypt_sectors(BDRVQcowState *s, int64_t sector_num,
221
                            uint8_t *out_buf, const uint8_t *in_buf,
222
                            int nb_sectors, int enc,
223
                            const AES_KEY *key)
224
{
225
    union {
226
        uint64_t ll[2];
227
        uint8_t b[16];
228
    } ivec;
229
    int i;
230

    
231
    for(i = 0; i < nb_sectors; i++) {
232
        ivec.ll[0] = cpu_to_le64(sector_num);
233
        ivec.ll[1] = 0;
234
        AES_cbc_encrypt(in_buf, out_buf, 512, key,
235
                        ivec.b, enc);
236
        sector_num++;
237
        in_buf += 512;
238
        out_buf += 512;
239
    }
240
}
241

    
242
/* 'allocate' is:
243
 *
244
 * 0 to not allocate.
245
 *
246
 * 1 to allocate a normal cluster (for sector indexes 'n_start' to
247
 * 'n_end')
248
 *
249
 * 2 to allocate a compressed cluster of size
250
 * 'compressed_size'. 'compressed_size' must be > 0 and <
251
 * cluster_size
252
 *
253
 * return 0 if not allocated.
254
 */
255
static uint64_t get_cluster_offset(BlockDriverState *bs,
256
                                   uint64_t offset, int allocate,
257
                                   int compressed_size,
258
                                   int n_start, int n_end)
259
{
260
    BDRVQcowState *s = bs->opaque;
261
    int min_index, i, j, l1_index, l2_index;
262
    uint64_t l2_offset, *l2_table, cluster_offset, tmp;
263
    uint32_t min_count;
264
    int new_l2_table;
265

    
266
    l1_index = offset >> (s->l2_bits + s->cluster_bits);
267
    l2_offset = s->l1_table[l1_index];
268
    new_l2_table = 0;
269
    if (!l2_offset) {
270
        if (!allocate)
271
            return 0;
272
        /* allocate a new l2 entry */
273
        l2_offset = bdrv_getlength(s->hd);
274
        /* round to cluster size */
275
        l2_offset = (l2_offset + s->cluster_size - 1) & ~(s->cluster_size - 1);
276
        /* update the L1 entry */
277
        s->l1_table[l1_index] = l2_offset;
278
        tmp = cpu_to_be64(l2_offset);
279
        if (bdrv_pwrite(s->hd, s->l1_table_offset + l1_index * sizeof(tmp),
280
                        &tmp, sizeof(tmp)) != sizeof(tmp))
281
            return 0;
282
        new_l2_table = 1;
283
    }
284
    for(i = 0; i < L2_CACHE_SIZE; i++) {
285
        if (l2_offset == s->l2_cache_offsets[i]) {
286
            /* increment the hit count */
287
            if (++s->l2_cache_counts[i] == 0xffffffff) {
288
                for(j = 0; j < L2_CACHE_SIZE; j++) {
289
                    s->l2_cache_counts[j] >>= 1;
290
                }
291
            }
292
            l2_table = s->l2_cache + (i << s->l2_bits);
293
            goto found;
294
        }
295
    }
296
    /* not found: load a new entry in the least used one */
297
    min_index = 0;
298
    min_count = 0xffffffff;
299
    for(i = 0; i < L2_CACHE_SIZE; i++) {
300
        if (s->l2_cache_counts[i] < min_count) {
301
            min_count = s->l2_cache_counts[i];
302
            min_index = i;
303
        }
304
    }
305
    l2_table = s->l2_cache + (min_index << s->l2_bits);
306
    if (new_l2_table) {
307
        memset(l2_table, 0, s->l2_size * sizeof(uint64_t));
308
        if (bdrv_pwrite(s->hd, l2_offset, l2_table, s->l2_size * sizeof(uint64_t)) !=
309
            s->l2_size * sizeof(uint64_t))
310
            return 0;
311
    } else {
312
        if (bdrv_pread(s->hd, l2_offset, l2_table, s->l2_size * sizeof(uint64_t)) !=
313
            s->l2_size * sizeof(uint64_t))
314
            return 0;
315
    }
316
    s->l2_cache_offsets[min_index] = l2_offset;
317
    s->l2_cache_counts[min_index] = 1;
318
 found:
319
    l2_index = (offset >> s->cluster_bits) & (s->l2_size - 1);
320
    cluster_offset = be64_to_cpu(l2_table[l2_index]);
321
    if (!cluster_offset ||
322
        ((cluster_offset & QCOW_OFLAG_COMPRESSED) && allocate == 1)) {
323
        if (!allocate)
324
            return 0;
325
        /* allocate a new cluster */
326
        if ((cluster_offset & QCOW_OFLAG_COMPRESSED) &&
327
            (n_end - n_start) < s->cluster_sectors) {
328
            /* if the cluster is already compressed, we must
329
               decompress it in the case it is not completely
330
               overwritten */
331
            if (decompress_cluster(s, cluster_offset) < 0)
332
                return 0;
333
            cluster_offset = bdrv_getlength(s->hd);
334
            cluster_offset = (cluster_offset + s->cluster_size - 1) &
335
                ~(s->cluster_size - 1);
336
            /* write the cluster content */
337
            if (bdrv_pwrite(s->hd, cluster_offset, s->cluster_cache, s->cluster_size) !=
338
                s->cluster_size)
339
                return -1;
340
        } else {
341
            cluster_offset = bdrv_getlength(s->hd);
342
            /* round to cluster size */
343
            cluster_offset = (cluster_offset + s->cluster_size - 1) &
344
                ~(s->cluster_size - 1);
345
            bdrv_truncate(s->hd, cluster_offset + s->cluster_size);
346
            /* if encrypted, we must initialize the cluster
347
               content which won't be written */
348
            if (s->crypt_method &&
349
                (n_end - n_start) < s->cluster_sectors) {
350
                uint64_t start_sect;
351
                start_sect = (offset & ~(s->cluster_size - 1)) >> 9;
352
                memset(s->cluster_data + 512, 0x00, 512);
353
                for(i = 0; i < s->cluster_sectors; i++) {
354
                    if (i < n_start || i >= n_end) {
355
                        encrypt_sectors(s, start_sect + i,
356
                                        s->cluster_data,
357
                                        s->cluster_data + 512, 1, 1,
358
                                        &s->aes_encrypt_key);
359
                        if (bdrv_pwrite(s->hd, cluster_offset + i * 512,
360
                                        s->cluster_data, 512) != 512)
361
                            return -1;
362
                    }
363
                }
364
            }
365
        }
366
        /* update L2 table */
367
        tmp = cpu_to_be64(cluster_offset);
368
        l2_table[l2_index] = tmp;
369
        if (bdrv_pwrite(s->hd,
370
                        l2_offset + l2_index * sizeof(tmp), &tmp, sizeof(tmp)) != sizeof(tmp))
371
            return 0;
372
    }
373
    return cluster_offset;
374
}
375

    
376
static int qcow_is_allocated(BlockDriverState *bs, int64_t sector_num,
377
                             int nb_sectors, int *pnum)
378
{
379
    BDRVQcowState *s = bs->opaque;
380
    int index_in_cluster, n;
381
    uint64_t cluster_offset;
382

    
383
    cluster_offset = get_cluster_offset(bs, sector_num << 9, 0, 0, 0, 0);
384
    index_in_cluster = sector_num & (s->cluster_sectors - 1);
385
    n = s->cluster_sectors - index_in_cluster;
386
    if (n > nb_sectors)
387
        n = nb_sectors;
388
    *pnum = n;
389
    return (cluster_offset != 0);
390
}
391

    
392
static int decompress_buffer(uint8_t *out_buf, int out_buf_size,
393
                             const uint8_t *buf, int buf_size)
394
{
395
    z_stream strm1, *strm = &strm1;
396
    int ret, out_len;
397

    
398
    memset(strm, 0, sizeof(*strm));
399

    
400
    strm->next_in = (uint8_t *)buf;
401
    strm->avail_in = buf_size;
402
    strm->next_out = out_buf;
403
    strm->avail_out = out_buf_size;
404

    
405
    ret = inflateInit2(strm, -12);
406
    if (ret != Z_OK)
407
        return -1;
408
    ret = inflate(strm, Z_FINISH);
409
    out_len = strm->next_out - out_buf;
410
    if ((ret != Z_STREAM_END && ret != Z_BUF_ERROR) ||
411
        out_len != out_buf_size) {
412
        inflateEnd(strm);
413
        return -1;
414
    }
415
    inflateEnd(strm);
416
    return 0;
417
}
418

    
419
static int decompress_cluster(BDRVQcowState *s, uint64_t cluster_offset)
420
{
421
    int ret, csize;
422
    uint64_t coffset;
423

    
424
    coffset = cluster_offset & s->cluster_offset_mask;
425
    if (s->cluster_cache_offset != coffset) {
426
        csize = cluster_offset >> (63 - s->cluster_bits);
427
        csize &= (s->cluster_size - 1);
428
        ret = bdrv_pread(s->hd, coffset, s->cluster_data, csize);
429
        if (ret != csize)
430
            return -1;
431
        if (decompress_buffer(s->cluster_cache, s->cluster_size,
432
                              s->cluster_data, csize) < 0) {
433
            return -1;
434
        }
435
        s->cluster_cache_offset = coffset;
436
    }
437
    return 0;
438
}
439

    
440
#if 0
441

442
static int qcow_read(BlockDriverState *bs, int64_t sector_num,
443
                     uint8_t *buf, int nb_sectors)
444
{
445
    BDRVQcowState *s = bs->opaque;
446
    int ret, index_in_cluster, n;
447
    uint64_t cluster_offset;
448

449
    while (nb_sectors > 0) {
450
        cluster_offset = get_cluster_offset(bs, sector_num << 9, 0, 0, 0, 0);
451
        index_in_cluster = sector_num & (s->cluster_sectors - 1);
452
        n = s->cluster_sectors - index_in_cluster;
453
        if (n > nb_sectors)
454
            n = nb_sectors;
455
        if (!cluster_offset) {
456
            if (bs->backing_hd) {
457
                /* read from the base image */
458
                ret = bdrv_read(bs->backing_hd, sector_num, buf, n);
459
                if (ret < 0)
460
                    return -1;
461
            } else {
462
                memset(buf, 0, 512 * n);
463
            }
464
        } else if (cluster_offset & QCOW_OFLAG_COMPRESSED) {
465
            if (decompress_cluster(s, cluster_offset) < 0)
466
                return -1;
467
            memcpy(buf, s->cluster_cache + index_in_cluster * 512, 512 * n);
468
        } else {
469
            ret = bdrv_pread(s->hd, cluster_offset + index_in_cluster * 512, buf, n * 512);
470
            if (ret != n * 512)
471
                return -1;
472
            if (s->crypt_method) {
473
                encrypt_sectors(s, sector_num, buf, buf, n, 0,
474
                                &s->aes_decrypt_key);
475
            }
476
        }
477
        nb_sectors -= n;
478
        sector_num += n;
479
        buf += n * 512;
480
    }
481
    return 0;
482
}
483
#endif
484

    
485
static int qcow_write(BlockDriverState *bs, int64_t sector_num,
486
                     const uint8_t *buf, int nb_sectors)
487
{
488
    BDRVQcowState *s = bs->opaque;
489
    int ret, index_in_cluster, n;
490
    uint64_t cluster_offset;
491

    
492
    while (nb_sectors > 0) {
493
        index_in_cluster = sector_num & (s->cluster_sectors - 1);
494
        n = s->cluster_sectors - index_in_cluster;
495
        if (n > nb_sectors)
496
            n = nb_sectors;
497
        cluster_offset = get_cluster_offset(bs, sector_num << 9, 1, 0,
498
                                            index_in_cluster,
499
                                            index_in_cluster + n);
500
        if (!cluster_offset)
501
            return -1;
502
        if (s->crypt_method) {
503
            encrypt_sectors(s, sector_num, s->cluster_data, buf, n, 1,
504
                            &s->aes_encrypt_key);
505
            ret = bdrv_pwrite(s->hd, cluster_offset + index_in_cluster * 512,
506
                              s->cluster_data, n * 512);
507
        } else {
508
            ret = bdrv_pwrite(s->hd, cluster_offset + index_in_cluster * 512, buf, n * 512);
509
        }
510
        if (ret != n * 512)
511
            return -1;
512
        nb_sectors -= n;
513
        sector_num += n;
514
        buf += n * 512;
515
    }
516
    s->cluster_cache_offset = -1; /* disable compressed cache */
517
    return 0;
518
}
519

    
520
typedef struct QCowAIOCB {
521
    BlockDriverAIOCB common;
522
    int64_t sector_num;
523
    uint8_t *buf;
524
    int nb_sectors;
525
    int n;
526
    uint64_t cluster_offset;
527
    uint8_t *cluster_data;
528
    BlockDriverAIOCB *hd_aiocb;
529
} QCowAIOCB;
530

    
531
static void qcow_aio_read_cb(void *opaque, int ret)
532
{
533
    QCowAIOCB *acb = opaque;
534
    BlockDriverState *bs = acb->common.bs;
535
    BDRVQcowState *s = bs->opaque;
536
    int index_in_cluster;
537

    
538
    acb->hd_aiocb = NULL;
539
    if (ret < 0) {
540
    fail:
541
        acb->common.cb(acb->common.opaque, ret);
542
        qemu_aio_release(acb);
543
        return;
544
    }
545

    
546
 redo:
547
    /* post process the read buffer */
548
    if (!acb->cluster_offset) {
549
        /* nothing to do */
550
    } else if (acb->cluster_offset & QCOW_OFLAG_COMPRESSED) {
551
        /* nothing to do */
552
    } else {
553
        if (s->crypt_method) {
554
            encrypt_sectors(s, acb->sector_num, acb->buf, acb->buf,
555
                            acb->n, 0,
556
                            &s->aes_decrypt_key);
557
        }
558
    }
559

    
560
    acb->nb_sectors -= acb->n;
561
    acb->sector_num += acb->n;
562
    acb->buf += acb->n * 512;
563

    
564
    if (acb->nb_sectors == 0) {
565
        /* request completed */
566
        acb->common.cb(acb->common.opaque, 0);
567
        qemu_aio_release(acb);
568
        return;
569
    }
570

    
571
    /* prepare next AIO request */
572
    acb->cluster_offset = get_cluster_offset(bs, acb->sector_num << 9,
573
                                             0, 0, 0, 0);
574
    index_in_cluster = acb->sector_num & (s->cluster_sectors - 1);
575
    acb->n = s->cluster_sectors - index_in_cluster;
576
    if (acb->n > acb->nb_sectors)
577
        acb->n = acb->nb_sectors;
578

    
579
    if (!acb->cluster_offset) {
580
        if (bs->backing_hd) {
581
            /* read from the base image */
582
            acb->hd_aiocb = bdrv_aio_read(bs->backing_hd,
583
                acb->sector_num, acb->buf, acb->n, qcow_aio_read_cb, acb);
584
            if (acb->hd_aiocb == NULL)
585
                goto fail;
586
        } else {
587
            /* Note: in this case, no need to wait */
588
            memset(acb->buf, 0, 512 * acb->n);
589
            goto redo;
590
        }
591
    } else if (acb->cluster_offset & QCOW_OFLAG_COMPRESSED) {
592
        /* add AIO support for compressed blocks ? */
593
        if (decompress_cluster(s, acb->cluster_offset) < 0)
594
            goto fail;
595
        memcpy(acb->buf,
596
               s->cluster_cache + index_in_cluster * 512, 512 * acb->n);
597
        goto redo;
598
    } else {
599
        if ((acb->cluster_offset & 511) != 0) {
600
            ret = -EIO;
601
            goto fail;
602
        }
603
        acb->hd_aiocb = bdrv_aio_read(s->hd,
604
                            (acb->cluster_offset >> 9) + index_in_cluster,
605
                            acb->buf, acb->n, qcow_aio_read_cb, acb);
606
        if (acb->hd_aiocb == NULL)
607
            goto fail;
608
    }
609
}
610

    
611
static BlockDriverAIOCB *qcow_aio_read(BlockDriverState *bs,
612
        int64_t sector_num, uint8_t *buf, int nb_sectors,
613
        BlockDriverCompletionFunc *cb, void *opaque)
614
{
615
    QCowAIOCB *acb;
616

    
617
    acb = qemu_aio_get(bs, cb, opaque);
618
    if (!acb)
619
        return NULL;
620
    acb->hd_aiocb = NULL;
621
    acb->sector_num = sector_num;
622
    acb->buf = buf;
623
    acb->nb_sectors = nb_sectors;
624
    acb->n = 0;
625
    acb->cluster_offset = 0;
626

    
627
    qcow_aio_read_cb(acb, 0);
628
    return &acb->common;
629
}
630

    
631
static void qcow_aio_write_cb(void *opaque, int ret)
632
{
633
    QCowAIOCB *acb = opaque;
634
    BlockDriverState *bs = acb->common.bs;
635
    BDRVQcowState *s = bs->opaque;
636
    int index_in_cluster;
637
    uint64_t cluster_offset;
638
    const uint8_t *src_buf;
639

    
640
    acb->hd_aiocb = NULL;
641

    
642
    if (ret < 0) {
643
    fail:
644
        acb->common.cb(acb->common.opaque, ret);
645
        qemu_aio_release(acb);
646
        return;
647
    }
648

    
649
    acb->nb_sectors -= acb->n;
650
    acb->sector_num += acb->n;
651
    acb->buf += acb->n * 512;
652

    
653
    if (acb->nb_sectors == 0) {
654
        /* request completed */
655
        acb->common.cb(acb->common.opaque, 0);
656
        qemu_aio_release(acb);
657
        return;
658
    }
659

    
660
    index_in_cluster = acb->sector_num & (s->cluster_sectors - 1);
661
    acb->n = s->cluster_sectors - index_in_cluster;
662
    if (acb->n > acb->nb_sectors)
663
        acb->n = acb->nb_sectors;
664
    cluster_offset = get_cluster_offset(bs, acb->sector_num << 9, 1, 0,
665
                                        index_in_cluster,
666
                                        index_in_cluster + acb->n);
667
    if (!cluster_offset || (cluster_offset & 511) != 0) {
668
        ret = -EIO;
669
        goto fail;
670
    }
671
    if (s->crypt_method) {
672
        if (!acb->cluster_data) {
673
            acb->cluster_data = qemu_mallocz(s->cluster_size);
674
            if (!acb->cluster_data) {
675
                ret = -ENOMEM;
676
                goto fail;
677
            }
678
        }
679
        encrypt_sectors(s, acb->sector_num, acb->cluster_data, acb->buf,
680
                        acb->n, 1, &s->aes_encrypt_key);
681
        src_buf = acb->cluster_data;
682
    } else {
683
        src_buf = acb->buf;
684
    }
685
    acb->hd_aiocb = bdrv_aio_write(s->hd,
686
                                   (cluster_offset >> 9) + index_in_cluster,
687
                                   src_buf, acb->n,
688
                                   qcow_aio_write_cb, acb);
689
    if (acb->hd_aiocb == NULL)
690
        goto fail;
691
}
692

    
693
static BlockDriverAIOCB *qcow_aio_write(BlockDriverState *bs,
694
        int64_t sector_num, const uint8_t *buf, int nb_sectors,
695
        BlockDriverCompletionFunc *cb, void *opaque)
696
{
697
    BDRVQcowState *s = bs->opaque;
698
    QCowAIOCB *acb;
699

    
700
    s->cluster_cache_offset = -1; /* disable compressed cache */
701

    
702
    acb = qemu_aio_get(bs, cb, opaque);
703
    if (!acb)
704
        return NULL;
705
    acb->hd_aiocb = NULL;
706
    acb->sector_num = sector_num;
707
    acb->buf = (uint8_t *)buf;
708
    acb->nb_sectors = nb_sectors;
709
    acb->n = 0;
710

    
711
    qcow_aio_write_cb(acb, 0);
712
    return &acb->common;
713
}
714

    
715
static void qcow_aio_cancel(BlockDriverAIOCB *blockacb)
716
{
717
    QCowAIOCB *acb = (QCowAIOCB *)blockacb;
718
    if (acb->hd_aiocb)
719
        bdrv_aio_cancel(acb->hd_aiocb);
720
    qemu_aio_release(acb);
721
}
722

    
723
static void qcow_close(BlockDriverState *bs)
724
{
725
    BDRVQcowState *s = bs->opaque;
726
    qemu_free(s->l1_table);
727
    qemu_free(s->l2_cache);
728
    qemu_free(s->cluster_cache);
729
    qemu_free(s->cluster_data);
730
    bdrv_delete(s->hd);
731
}
732

    
733
static int qcow_create(const char *filename, int64_t total_size,
734
                      const char *backing_file, int flags)
735
{
736
    int fd, header_size, backing_filename_len, l1_size, i, shift;
737
    QCowHeader header;
738
    uint64_t tmp;
739

    
740
    fd = open(filename, O_WRONLY | O_CREAT | O_TRUNC | O_BINARY, 0644);
741
    if (fd < 0)
742
        return -1;
743
    memset(&header, 0, sizeof(header));
744
    header.magic = cpu_to_be32(QCOW_MAGIC);
745
    header.version = cpu_to_be32(QCOW_VERSION);
746
    header.size = cpu_to_be64(total_size * 512);
747
    header_size = sizeof(header);
748
    backing_filename_len = 0;
749
    if (backing_file) {
750
        if (strcmp(backing_file, "fat:")) {
751
            header.backing_file_offset = cpu_to_be64(header_size);
752
            backing_filename_len = strlen(backing_file);
753
            header.backing_file_size = cpu_to_be32(backing_filename_len);
754
            header_size += backing_filename_len;
755
        } else {
756
            /* special backing file for vvfat */
757
            backing_file = NULL;
758
        }
759
        header.cluster_bits = 9; /* 512 byte cluster to avoid copying
760
                                    unmodifyed sectors */
761
        header.l2_bits = 12; /* 32 KB L2 tables */
762
    } else {
763
        header.cluster_bits = 12; /* 4 KB clusters */
764
        header.l2_bits = 9; /* 4 KB L2 tables */
765
    }
766
    header_size = (header_size + 7) & ~7;
767
    shift = header.cluster_bits + header.l2_bits;
768
    l1_size = ((total_size * 512) + (1LL << shift) - 1) >> shift;
769

    
770
    header.l1_table_offset = cpu_to_be64(header_size);
771
    if (flags & BLOCK_FLAG_ENCRYPT) {
772
        header.crypt_method = cpu_to_be32(QCOW_CRYPT_AES);
773
    } else {
774
        header.crypt_method = cpu_to_be32(QCOW_CRYPT_NONE);
775
    }
776

    
777
    /* write all the data */
778
    write(fd, &header, sizeof(header));
779
    if (backing_file) {
780
        write(fd, backing_file, backing_filename_len);
781
    }
782
    lseek(fd, header_size, SEEK_SET);
783
    tmp = 0;
784
    for(i = 0;i < l1_size; i++) {
785
        write(fd, &tmp, sizeof(tmp));
786
    }
787
    close(fd);
788
    return 0;
789
}
790

    
791
static int qcow_make_empty(BlockDriverState *bs)
792
{
793
    BDRVQcowState *s = bs->opaque;
794
    uint32_t l1_length = s->l1_size * sizeof(uint64_t);
795
    int ret;
796

    
797
    memset(s->l1_table, 0, l1_length);
798
    if (bdrv_pwrite(s->hd, s->l1_table_offset, s->l1_table, l1_length) < 0)
799
        return -1;
800
    ret = bdrv_truncate(s->hd, s->l1_table_offset + l1_length);
801
    if (ret < 0)
802
        return ret;
803

    
804
    memset(s->l2_cache, 0, s->l2_size * L2_CACHE_SIZE * sizeof(uint64_t));
805
    memset(s->l2_cache_offsets, 0, L2_CACHE_SIZE * sizeof(uint64_t));
806
    memset(s->l2_cache_counts, 0, L2_CACHE_SIZE * sizeof(uint32_t));
807

    
808
    return 0;
809
}
810

    
811
/* XXX: put compressed sectors first, then all the cluster aligned
812
   tables to avoid losing bytes in alignment */
813
static int qcow_write_compressed(BlockDriverState *bs, int64_t sector_num,
814
                                 const uint8_t *buf, int nb_sectors)
815
{
816
    BDRVQcowState *s = bs->opaque;
817
    z_stream strm;
818
    int ret, out_len;
819
    uint8_t *out_buf;
820
    uint64_t cluster_offset;
821

    
822
    if (nb_sectors != s->cluster_sectors)
823
        return -EINVAL;
824

    
825
    out_buf = qemu_malloc(s->cluster_size + (s->cluster_size / 1000) + 128);
826
    if (!out_buf)
827
        return -1;
828

    
829
    /* best compression, small window, no zlib header */
830
    memset(&strm, 0, sizeof(strm));
831
    ret = deflateInit2(&strm, Z_DEFAULT_COMPRESSION,
832
                       Z_DEFLATED, -12,
833
                       9, Z_DEFAULT_STRATEGY);
834
    if (ret != 0) {
835
        qemu_free(out_buf);
836
        return -1;
837
    }
838

    
839
    strm.avail_in = s->cluster_size;
840
    strm.next_in = (uint8_t *)buf;
841
    strm.avail_out = s->cluster_size;
842
    strm.next_out = out_buf;
843

    
844
    ret = deflate(&strm, Z_FINISH);
845
    if (ret != Z_STREAM_END && ret != Z_OK) {
846
        qemu_free(out_buf);
847
        deflateEnd(&strm);
848
        return -1;
849
    }
850
    out_len = strm.next_out - out_buf;
851

    
852
    deflateEnd(&strm);
853

    
854
    if (ret != Z_STREAM_END || out_len >= s->cluster_size) {
855
        /* could not compress: write normal cluster */
856
        qcow_write(bs, sector_num, buf, s->cluster_sectors);
857
    } else {
858
        cluster_offset = get_cluster_offset(bs, sector_num << 9, 2,
859
                                            out_len, 0, 0);
860
        cluster_offset &= s->cluster_offset_mask;
861
        if (bdrv_pwrite(s->hd, cluster_offset, out_buf, out_len) != out_len) {
862
            qemu_free(out_buf);
863
            return -1;
864
        }
865
    }
866

    
867
    qemu_free(out_buf);
868
    return 0;
869
}
870

    
871
static void qcow_flush(BlockDriverState *bs)
872
{
873
    BDRVQcowState *s = bs->opaque;
874
    bdrv_flush(s->hd);
875
}
876

    
877
static int qcow_get_info(BlockDriverState *bs, BlockDriverInfo *bdi)
878
{
879
    BDRVQcowState *s = bs->opaque;
880
    bdi->cluster_size = s->cluster_size;
881
    return 0;
882
}
883

    
884
BlockDriver bdrv_qcow = {
885
    "qcow",
886
    sizeof(BDRVQcowState),
887
    qcow_probe,
888
    qcow_open,
889
    NULL,
890
    NULL,
891
    qcow_close,
892
    qcow_create,
893
    qcow_flush,
894
    qcow_is_allocated,
895
    qcow_set_key,
896
    qcow_make_empty,
897

    
898
    .bdrv_aio_read = qcow_aio_read,
899
    .bdrv_aio_write = qcow_aio_write,
900
    .bdrv_aio_cancel = qcow_aio_cancel,
901
    .aiocb_size = sizeof(QCowAIOCB),
902
    .bdrv_write_compressed = qcow_write_compressed,
903
    .bdrv_get_info = qcow_get_info,
904
};