Statistics
| Branch: | Revision:

root / target-i386 / kvm.c @ 8c6c919e

History | View | Annotate | Download (16.7 kB)

1
/*
2
 * QEMU KVM support
3
 *
4
 * Copyright (C) 2006-2008 Qumranet Technologies
5
 * Copyright IBM, Corp. 2008
6
 *
7
 * Authors:
8
 *  Anthony Liguori   <aliguori@us.ibm.com>
9
 *
10
 * This work is licensed under the terms of the GNU GPL, version 2 or later.
11
 * See the COPYING file in the top-level directory.
12
 *
13
 */
14

    
15
#include <sys/types.h>
16
#include <sys/ioctl.h>
17
#include <sys/mman.h>
18

    
19
#include <linux/kvm.h>
20

    
21
#include "qemu-common.h"
22
#include "sysemu.h"
23
#include "kvm.h"
24
#include "cpu.h"
25

    
26
//#define DEBUG_KVM
27

    
28
#ifdef DEBUG_KVM
29
#define dprintf(fmt, ...) \
30
    do { fprintf(stderr, fmt, ## __VA_ARGS__); } while (0)
31
#else
32
#define dprintf(fmt, ...) \
33
    do { } while (0)
34
#endif
35

    
36
int kvm_arch_init_vcpu(CPUState *env)
37
{
38
    struct {
39
        struct kvm_cpuid cpuid;
40
        struct kvm_cpuid_entry entries[100];
41
    } __attribute__((packed)) cpuid_data;
42
    uint32_t limit, i, cpuid_i;
43
    uint32_t eax, ebx, ecx, edx;
44

    
45
    cpuid_i = 0;
46

    
47
    cpu_x86_cpuid(env, 0, &eax, &ebx, &ecx, &edx);
48
    limit = eax;
49

    
50
    for (i = 0; i <= limit; i++) {
51
        struct kvm_cpuid_entry *c = &cpuid_data.entries[cpuid_i++];
52

    
53
        cpu_x86_cpuid(env, i, &eax, &ebx, &ecx, &edx);
54
        c->function = i;
55
        c->eax = eax;
56
        c->ebx = ebx;
57
        c->ecx = ecx;
58
        c->edx = edx;
59
    }
60

    
61
    cpu_x86_cpuid(env, 0x80000000, &eax, &ebx, &ecx, &edx);
62
    limit = eax;
63

    
64
    for (i = 0x80000000; i <= limit; i++) {
65
        struct kvm_cpuid_entry *c = &cpuid_data.entries[cpuid_i++];
66

    
67
        cpu_x86_cpuid(env, i, &eax, &ebx, &ecx, &edx);
68
        c->function = i;
69
        c->eax = eax;
70
        c->ebx = ebx;
71
        c->ecx = ecx;
72
        c->edx = edx;
73
    }
74

    
75
    cpuid_data.cpuid.nent = cpuid_i;
76

    
77
    return kvm_vcpu_ioctl(env, KVM_SET_CPUID, &cpuid_data);
78
}
79

    
80
static int kvm_has_msr_star(CPUState *env)
81
{
82
    static int has_msr_star;
83
    int ret;
84

    
85
    /* first time */
86
    if (has_msr_star == 0) {        
87
        struct kvm_msr_list msr_list, *kvm_msr_list;
88

    
89
        has_msr_star = -1;
90

    
91
        /* Obtain MSR list from KVM.  These are the MSRs that we must
92
         * save/restore */
93
        msr_list.nmsrs = 0;
94
        ret = kvm_ioctl(env->kvm_state, KVM_GET_MSR_INDEX_LIST, &msr_list);
95
        if (ret < 0)
96
            return 0;
97

    
98
        kvm_msr_list = qemu_mallocz(sizeof(msr_list) +
99
                                    msr_list.nmsrs * sizeof(msr_list.indices[0]));
100
        if (kvm_msr_list == NULL)
101
            return 0;
102

    
103
        kvm_msr_list->nmsrs = msr_list.nmsrs;
104
        ret = kvm_ioctl(env->kvm_state, KVM_GET_MSR_INDEX_LIST, kvm_msr_list);
105
        if (ret >= 0) {
106
            int i;
107

    
108
            for (i = 0; i < kvm_msr_list->nmsrs; i++) {
109
                if (kvm_msr_list->indices[i] == MSR_STAR) {
110
                    has_msr_star = 1;
111
                    break;
112
                }
113
            }
114
        }
115

    
116
        free(kvm_msr_list);
117
    }
118

    
119
    if (has_msr_star == 1)
120
        return 1;
121
    return 0;
122
}
123

    
124
int kvm_arch_init(KVMState *s, int smp_cpus)
125
{
126
    int ret;
127

    
128
    /* create vm86 tss.  KVM uses vm86 mode to emulate 16-bit code
129
     * directly.  In order to use vm86 mode, a TSS is needed.  Since this
130
     * must be part of guest physical memory, we need to allocate it.  Older
131
     * versions of KVM just assumed that it would be at the end of physical
132
     * memory but that doesn't work with more than 4GB of memory.  We simply
133
     * refuse to work with those older versions of KVM. */
134
    ret = kvm_ioctl(s, KVM_CHECK_EXTENSION, KVM_CAP_SET_TSS_ADDR);
135
    if (ret <= 0) {
136
        fprintf(stderr, "kvm does not support KVM_CAP_SET_TSS_ADDR\n");
137
        return ret;
138
    }
139

    
140
    /* this address is 3 pages before the bios, and the bios should present
141
     * as unavaible memory.  FIXME, need to ensure the e820 map deals with
142
     * this?
143
     */
144
    return kvm_vm_ioctl(s, KVM_SET_TSS_ADDR, 0xfffbd000);
145
}
146
                    
147
static void set_v8086_seg(struct kvm_segment *lhs, const SegmentCache *rhs)
148
{
149
    lhs->selector = rhs->selector;
150
    lhs->base = rhs->base;
151
    lhs->limit = rhs->limit;
152
    lhs->type = 3;
153
    lhs->present = 1;
154
    lhs->dpl = 3;
155
    lhs->db = 0;
156
    lhs->s = 1;
157
    lhs->l = 0;
158
    lhs->g = 0;
159
    lhs->avl = 0;
160
    lhs->unusable = 0;
161
}
162

    
163
static void set_seg(struct kvm_segment *lhs, const SegmentCache *rhs)
164
{
165
    unsigned flags = rhs->flags;
166
    lhs->selector = rhs->selector;
167
    lhs->base = rhs->base;
168
    lhs->limit = rhs->limit;
169
    lhs->type = (flags >> DESC_TYPE_SHIFT) & 15;
170
    lhs->present = (flags & DESC_P_MASK) != 0;
171
    lhs->dpl = rhs->selector & 3;
172
    lhs->db = (flags >> DESC_B_SHIFT) & 1;
173
    lhs->s = (flags & DESC_S_MASK) != 0;
174
    lhs->l = (flags >> DESC_L_SHIFT) & 1;
175
    lhs->g = (flags & DESC_G_MASK) != 0;
176
    lhs->avl = (flags & DESC_AVL_MASK) != 0;
177
    lhs->unusable = 0;
178
}
179

    
180
static void get_seg(SegmentCache *lhs, const struct kvm_segment *rhs)
181
{
182
    lhs->selector = rhs->selector;
183
    lhs->base = rhs->base;
184
    lhs->limit = rhs->limit;
185
    lhs->flags =
186
        (rhs->type << DESC_TYPE_SHIFT)
187
        | (rhs->present * DESC_P_MASK)
188
        | (rhs->dpl << DESC_DPL_SHIFT)
189
        | (rhs->db << DESC_B_SHIFT)
190
        | (rhs->s * DESC_S_MASK)
191
        | (rhs->l << DESC_L_SHIFT)
192
        | (rhs->g * DESC_G_MASK)
193
        | (rhs->avl * DESC_AVL_MASK);
194
}
195

    
196
static void kvm_getput_reg(__u64 *kvm_reg, target_ulong *qemu_reg, int set)
197
{
198
    if (set)
199
        *kvm_reg = *qemu_reg;
200
    else
201
        *qemu_reg = *kvm_reg;
202
}
203

    
204
static int kvm_getput_regs(CPUState *env, int set)
205
{
206
    struct kvm_regs regs;
207
    int ret = 0;
208

    
209
    if (!set) {
210
        ret = kvm_vcpu_ioctl(env, KVM_GET_REGS, &regs);
211
        if (ret < 0)
212
            return ret;
213
    }
214

    
215
    kvm_getput_reg(&regs.rax, &env->regs[R_EAX], set);
216
    kvm_getput_reg(&regs.rbx, &env->regs[R_EBX], set);
217
    kvm_getput_reg(&regs.rcx, &env->regs[R_ECX], set);
218
    kvm_getput_reg(&regs.rdx, &env->regs[R_EDX], set);
219
    kvm_getput_reg(&regs.rsi, &env->regs[R_ESI], set);
220
    kvm_getput_reg(&regs.rdi, &env->regs[R_EDI], set);
221
    kvm_getput_reg(&regs.rsp, &env->regs[R_ESP], set);
222
    kvm_getput_reg(&regs.rbp, &env->regs[R_EBP], set);
223
#ifdef TARGET_X86_64
224
    kvm_getput_reg(&regs.r8, &env->regs[8], set);
225
    kvm_getput_reg(&regs.r9, &env->regs[9], set);
226
    kvm_getput_reg(&regs.r10, &env->regs[10], set);
227
    kvm_getput_reg(&regs.r11, &env->regs[11], set);
228
    kvm_getput_reg(&regs.r12, &env->regs[12], set);
229
    kvm_getput_reg(&regs.r13, &env->regs[13], set);
230
    kvm_getput_reg(&regs.r14, &env->regs[14], set);
231
    kvm_getput_reg(&regs.r15, &env->regs[15], set);
232
#endif
233

    
234
    kvm_getput_reg(&regs.rflags, &env->eflags, set);
235
    kvm_getput_reg(&regs.rip, &env->eip, set);
236

    
237
    if (set)
238
        ret = kvm_vcpu_ioctl(env, KVM_SET_REGS, &regs);
239

    
240
    return ret;
241
}
242

    
243
static int kvm_put_fpu(CPUState *env)
244
{
245
    struct kvm_fpu fpu;
246
    int i;
247

    
248
    memset(&fpu, 0, sizeof fpu);
249
    fpu.fsw = env->fpus & ~(7 << 11);
250
    fpu.fsw |= (env->fpstt & 7) << 11;
251
    fpu.fcw = env->fpuc;
252
    for (i = 0; i < 8; ++i)
253
        fpu.ftwx |= (!env->fptags[i]) << i;
254
    memcpy(fpu.fpr, env->fpregs, sizeof env->fpregs);
255
    memcpy(fpu.xmm, env->xmm_regs, sizeof env->xmm_regs);
256
    fpu.mxcsr = env->mxcsr;
257

    
258
    return kvm_vcpu_ioctl(env, KVM_SET_FPU, &fpu);
259
}
260

    
261
static int kvm_put_sregs(CPUState *env)
262
{
263
    struct kvm_sregs sregs;
264

    
265
    memcpy(sregs.interrupt_bitmap,
266
           env->interrupt_bitmap,
267
           sizeof(sregs.interrupt_bitmap));
268

    
269
    if ((env->eflags & VM_MASK)) {
270
            set_v8086_seg(&sregs.cs, &env->segs[R_CS]);
271
            set_v8086_seg(&sregs.ds, &env->segs[R_DS]);
272
            set_v8086_seg(&sregs.es, &env->segs[R_ES]);
273
            set_v8086_seg(&sregs.fs, &env->segs[R_FS]);
274
            set_v8086_seg(&sregs.gs, &env->segs[R_GS]);
275
            set_v8086_seg(&sregs.ss, &env->segs[R_SS]);
276
    } else {
277
            set_seg(&sregs.cs, &env->segs[R_CS]);
278
            set_seg(&sregs.ds, &env->segs[R_DS]);
279
            set_seg(&sregs.es, &env->segs[R_ES]);
280
            set_seg(&sregs.fs, &env->segs[R_FS]);
281
            set_seg(&sregs.gs, &env->segs[R_GS]);
282
            set_seg(&sregs.ss, &env->segs[R_SS]);
283

    
284
            if (env->cr[0] & CR0_PE_MASK) {
285
                /* force ss cpl to cs cpl */
286
                sregs.ss.selector = (sregs.ss.selector & ~3) |
287
                        (sregs.cs.selector & 3);
288
                sregs.ss.dpl = sregs.ss.selector & 3;
289
            }
290
    }
291

    
292
    set_seg(&sregs.tr, &env->tr);
293
    set_seg(&sregs.ldt, &env->ldt);
294

    
295
    sregs.idt.limit = env->idt.limit;
296
    sregs.idt.base = env->idt.base;
297
    sregs.gdt.limit = env->gdt.limit;
298
    sregs.gdt.base = env->gdt.base;
299

    
300
    sregs.cr0 = env->cr[0];
301
    sregs.cr2 = env->cr[2];
302
    sregs.cr3 = env->cr[3];
303
    sregs.cr4 = env->cr[4];
304

    
305
    sregs.cr8 = cpu_get_apic_tpr(env);
306
    sregs.apic_base = cpu_get_apic_base(env);
307

    
308
    sregs.efer = env->efer;
309

    
310
    return kvm_vcpu_ioctl(env, KVM_SET_SREGS, &sregs);
311
}
312

    
313
static void kvm_msr_entry_set(struct kvm_msr_entry *entry,
314
                              uint32_t index, uint64_t value)
315
{
316
    entry->index = index;
317
    entry->data = value;
318
}
319

    
320
static int kvm_put_msrs(CPUState *env)
321
{
322
    struct {
323
        struct kvm_msrs info;
324
        struct kvm_msr_entry entries[100];
325
    } msr_data;
326
    struct kvm_msr_entry *msrs = msr_data.entries;
327
    int n = 0;
328

    
329
    kvm_msr_entry_set(&msrs[n++], MSR_IA32_SYSENTER_CS, env->sysenter_cs);
330
    kvm_msr_entry_set(&msrs[n++], MSR_IA32_SYSENTER_ESP, env->sysenter_esp);
331
    kvm_msr_entry_set(&msrs[n++], MSR_IA32_SYSENTER_EIP, env->sysenter_eip);
332
    if (kvm_has_msr_star(env))
333
        kvm_msr_entry_set(&msrs[n++], MSR_STAR, env->star);
334
    kvm_msr_entry_set(&msrs[n++], MSR_IA32_TSC, env->tsc);
335
#ifdef TARGET_X86_64
336
    /* FIXME if lm capable */
337
    kvm_msr_entry_set(&msrs[n++], MSR_CSTAR, env->cstar);
338
    kvm_msr_entry_set(&msrs[n++], MSR_KERNELGSBASE, env->kernelgsbase);
339
    kvm_msr_entry_set(&msrs[n++], MSR_FMASK, env->fmask);
340
    kvm_msr_entry_set(&msrs[n++], MSR_LSTAR, env->lstar);
341
#endif
342
    msr_data.info.nmsrs = n;
343

    
344
    return kvm_vcpu_ioctl(env, KVM_SET_MSRS, &msr_data);
345

    
346
}
347

    
348

    
349
static int kvm_get_fpu(CPUState *env)
350
{
351
    struct kvm_fpu fpu;
352
    int i, ret;
353

    
354
    ret = kvm_vcpu_ioctl(env, KVM_GET_FPU, &fpu);
355
    if (ret < 0)
356
        return ret;
357

    
358
    env->fpstt = (fpu.fsw >> 11) & 7;
359
    env->fpus = fpu.fsw;
360
    env->fpuc = fpu.fcw;
361
    for (i = 0; i < 8; ++i)
362
        env->fptags[i] = !((fpu.ftwx >> i) & 1);
363
    memcpy(env->fpregs, fpu.fpr, sizeof env->fpregs);
364
    memcpy(env->xmm_regs, fpu.xmm, sizeof env->xmm_regs);
365
    env->mxcsr = fpu.mxcsr;
366

    
367
    return 0;
368
}
369

    
370
static int kvm_get_sregs(CPUState *env)
371
{
372
    struct kvm_sregs sregs;
373
    uint32_t hflags;
374
    int ret;
375

    
376
    ret = kvm_vcpu_ioctl(env, KVM_GET_SREGS, &sregs);
377
    if (ret < 0)
378
        return ret;
379

    
380
    memcpy(env->interrupt_bitmap, 
381
           sregs.interrupt_bitmap,
382
           sizeof(sregs.interrupt_bitmap));
383

    
384
    get_seg(&env->segs[R_CS], &sregs.cs);
385
    get_seg(&env->segs[R_DS], &sregs.ds);
386
    get_seg(&env->segs[R_ES], &sregs.es);
387
    get_seg(&env->segs[R_FS], &sregs.fs);
388
    get_seg(&env->segs[R_GS], &sregs.gs);
389
    get_seg(&env->segs[R_SS], &sregs.ss);
390

    
391
    get_seg(&env->tr, &sregs.tr);
392
    get_seg(&env->ldt, &sregs.ldt);
393

    
394
    env->idt.limit = sregs.idt.limit;
395
    env->idt.base = sregs.idt.base;
396
    env->gdt.limit = sregs.gdt.limit;
397
    env->gdt.base = sregs.gdt.base;
398

    
399
    env->cr[0] = sregs.cr0;
400
    env->cr[2] = sregs.cr2;
401
    env->cr[3] = sregs.cr3;
402
    env->cr[4] = sregs.cr4;
403

    
404
    cpu_set_apic_base(env, sregs.apic_base);
405

    
406
    env->efer = sregs.efer;
407
    //cpu_set_apic_tpr(env, sregs.cr8);
408

    
409
#define HFLAG_COPY_MASK ~( \
410
                        HF_CPL_MASK | HF_PE_MASK | HF_MP_MASK | HF_EM_MASK | \
411
                        HF_TS_MASK | HF_TF_MASK | HF_VM_MASK | HF_IOPL_MASK | \
412
                        HF_OSFXSR_MASK | HF_LMA_MASK | HF_CS32_MASK | \
413
                        HF_SS32_MASK | HF_CS64_MASK | HF_ADDSEG_MASK)
414

    
415

    
416

    
417
    hflags = (env->segs[R_CS].flags >> DESC_DPL_SHIFT) & HF_CPL_MASK;
418
    hflags |= (env->cr[0] & CR0_PE_MASK) << (HF_PE_SHIFT - CR0_PE_SHIFT);
419
    hflags |= (env->cr[0] << (HF_MP_SHIFT - CR0_MP_SHIFT)) &
420
            (HF_MP_MASK | HF_EM_MASK | HF_TS_MASK);
421
    hflags |= (env->eflags & (HF_TF_MASK | HF_VM_MASK | HF_IOPL_MASK));
422
    hflags |= (env->cr[4] & CR4_OSFXSR_MASK) <<
423
            (HF_OSFXSR_SHIFT - CR4_OSFXSR_SHIFT);
424

    
425
    if (env->efer & MSR_EFER_LMA) {
426
        hflags |= HF_LMA_MASK;
427
    }
428

    
429
    if ((hflags & HF_LMA_MASK) && (env->segs[R_CS].flags & DESC_L_MASK)) {
430
        hflags |= HF_CS32_MASK | HF_SS32_MASK | HF_CS64_MASK;
431
    } else {
432
        hflags |= (env->segs[R_CS].flags & DESC_B_MASK) >>
433
                (DESC_B_SHIFT - HF_CS32_SHIFT);
434
        hflags |= (env->segs[R_SS].flags & DESC_B_MASK) >>
435
                (DESC_B_SHIFT - HF_SS32_SHIFT);
436
        if (!(env->cr[0] & CR0_PE_MASK) ||
437
                   (env->eflags & VM_MASK) ||
438
                   !(hflags & HF_CS32_MASK)) {
439
                hflags |= HF_ADDSEG_MASK;
440
            } else {
441
                hflags |= ((env->segs[R_DS].base |
442
                                env->segs[R_ES].base |
443
                                env->segs[R_SS].base) != 0) <<
444
                    HF_ADDSEG_SHIFT;
445
            }
446
    }
447
    env->hflags = (env->hflags & HFLAG_COPY_MASK) | hflags;
448

    
449
    return 0;
450
}
451

    
452
static int kvm_get_msrs(CPUState *env)
453
{
454
    struct {
455
        struct kvm_msrs info;
456
        struct kvm_msr_entry entries[100];
457
    } msr_data;
458
    struct kvm_msr_entry *msrs = msr_data.entries;
459
    int ret, i, n;
460

    
461
    n = 0;
462
    msrs[n++].index = MSR_IA32_SYSENTER_CS;
463
    msrs[n++].index = MSR_IA32_SYSENTER_ESP;
464
    msrs[n++].index = MSR_IA32_SYSENTER_EIP;
465
    if (kvm_has_msr_star(env))
466
        msrs[n++].index = MSR_STAR;
467
    msrs[n++].index = MSR_IA32_TSC;
468
#ifdef TARGET_X86_64
469
    /* FIXME lm_capable_kernel */
470
    msrs[n++].index = MSR_CSTAR;
471
    msrs[n++].index = MSR_KERNELGSBASE;
472
    msrs[n++].index = MSR_FMASK;
473
    msrs[n++].index = MSR_LSTAR;
474
#endif
475
    msr_data.info.nmsrs = n;
476
    ret = kvm_vcpu_ioctl(env, KVM_GET_MSRS, &msr_data);
477
    if (ret < 0)
478
        return ret;
479

    
480
    for (i = 0; i < ret; i++) {
481
        switch (msrs[i].index) {
482
        case MSR_IA32_SYSENTER_CS:
483
            env->sysenter_cs = msrs[i].data;
484
            break;
485
        case MSR_IA32_SYSENTER_ESP:
486
            env->sysenter_esp = msrs[i].data;
487
            break;
488
        case MSR_IA32_SYSENTER_EIP:
489
            env->sysenter_eip = msrs[i].data;
490
            break;
491
        case MSR_STAR:
492
            env->star = msrs[i].data;
493
            break;
494
#ifdef TARGET_X86_64
495
        case MSR_CSTAR:
496
            env->cstar = msrs[i].data;
497
            break;
498
        case MSR_KERNELGSBASE:
499
            env->kernelgsbase = msrs[i].data;
500
            break;
501
        case MSR_FMASK:
502
            env->fmask = msrs[i].data;
503
            break;
504
        case MSR_LSTAR:
505
            env->lstar = msrs[i].data;
506
            break;
507
#endif
508
        case MSR_IA32_TSC:
509
            env->tsc = msrs[i].data;
510
            break;
511
        }
512
    }
513

    
514
    return 0;
515
}
516

    
517
int kvm_arch_put_registers(CPUState *env)
518
{
519
    int ret;
520

    
521
    ret = kvm_getput_regs(env, 1);
522
    if (ret < 0)
523
        return ret;
524

    
525
    ret = kvm_put_fpu(env);
526
    if (ret < 0)
527
        return ret;
528

    
529
    ret = kvm_put_sregs(env);
530
    if (ret < 0)
531
        return ret;
532

    
533
    ret = kvm_put_msrs(env);
534
    if (ret < 0)
535
        return ret;
536

    
537
    return 0;
538
}
539

    
540
int kvm_arch_get_registers(CPUState *env)
541
{
542
    int ret;
543

    
544
    ret = kvm_getput_regs(env, 0);
545
    if (ret < 0)
546
        return ret;
547

    
548
    ret = kvm_get_fpu(env);
549
    if (ret < 0)
550
        return ret;
551

    
552
    ret = kvm_get_sregs(env);
553
    if (ret < 0)
554
        return ret;
555

    
556
    ret = kvm_get_msrs(env);
557
    if (ret < 0)
558
        return ret;
559

    
560
    return 0;
561
}
562

    
563
int kvm_arch_pre_run(CPUState *env, struct kvm_run *run)
564
{
565
    /* Try to inject an interrupt if the guest can accept it */
566
    if (run->ready_for_interrupt_injection &&
567
        (env->interrupt_request & CPU_INTERRUPT_HARD) &&
568
        (env->eflags & IF_MASK)) {
569
        int irq;
570

    
571
        env->interrupt_request &= ~CPU_INTERRUPT_HARD;
572
        irq = cpu_get_pic_interrupt(env);
573
        if (irq >= 0) {
574
            struct kvm_interrupt intr;
575
            intr.irq = irq;
576
            /* FIXME: errors */
577
            dprintf("injected interrupt %d\n", irq);
578
            kvm_vcpu_ioctl(env, KVM_INTERRUPT, &intr);
579
        }
580
    }
581

    
582
    /* If we have an interrupt but the guest is not ready to receive an
583
     * interrupt, request an interrupt window exit.  This will
584
     * cause a return to userspace as soon as the guest is ready to
585
     * receive interrupts. */
586
    if ((env->interrupt_request & CPU_INTERRUPT_HARD))
587
        run->request_interrupt_window = 1;
588
    else
589
        run->request_interrupt_window = 0;
590

    
591
    dprintf("setting tpr\n");
592
    run->cr8 = cpu_get_apic_tpr(env);
593

    
594
    return 0;
595
}
596

    
597
int kvm_arch_post_run(CPUState *env, struct kvm_run *run)
598
{
599
    if (run->if_flag)
600
        env->eflags |= IF_MASK;
601
    else
602
        env->eflags &= ~IF_MASK;
603
    
604
    cpu_set_apic_tpr(env, run->cr8);
605
    cpu_set_apic_base(env, run->apic_base);
606

    
607
    return 0;
608
}
609

    
610
static int kvm_handle_halt(CPUState *env)
611
{
612
    if (!((env->interrupt_request & CPU_INTERRUPT_HARD) &&
613
          (env->eflags & IF_MASK)) &&
614
        !(env->interrupt_request & CPU_INTERRUPT_NMI)) {
615
        env->halted = 1;
616
        env->exception_index = EXCP_HLT;
617
        return 0;
618
    }
619

    
620
    return 1;
621
}
622

    
623
int kvm_arch_handle_exit(CPUState *env, struct kvm_run *run)
624
{
625
    int ret = 0;
626

    
627
    switch (run->exit_reason) {
628
    case KVM_EXIT_HLT:
629
        dprintf("handle_hlt\n");
630
        ret = kvm_handle_halt(env);
631
        break;
632
    }
633

    
634
    return ret;
635
}