Statistics
| Branch: | Revision:

root / fpu / softfloat.h @ 8d725fac

History | View | Annotate | Download (24.9 kB)

1
/*
2
 * QEMU float support
3
 *
4
 * Derived from SoftFloat.
5
 */
6

    
7
/*============================================================================
8

9
This C header file is part of the SoftFloat IEC/IEEE Floating-point Arithmetic
10
Package, Release 2b.
11

12
Written by John R. Hauser.  This work was made possible in part by the
13
International Computer Science Institute, located at Suite 600, 1947 Center
14
Street, Berkeley, California 94704.  Funding was partially provided by the
15
National Science Foundation under grant MIP-9311980.  The original version
16
of this code was written as part of a project to build a fixed-point vector
17
processor in collaboration with the University of California at Berkeley,
18
overseen by Profs. Nelson Morgan and John Wawrzynek.  More information
19
is available through the Web page `http://www.cs.berkeley.edu/~jhauser/
20
arithmetic/SoftFloat.html'.
21

22
THIS SOFTWARE IS DISTRIBUTED AS IS, FOR FREE.  Although reasonable effort has
23
been made to avoid it, THIS SOFTWARE MAY CONTAIN FAULTS THAT WILL AT TIMES
24
RESULT IN INCORRECT BEHAVIOR.  USE OF THIS SOFTWARE IS RESTRICTED TO PERSONS
25
AND ORGANIZATIONS WHO CAN AND WILL TAKE FULL RESPONSIBILITY FOR ALL LOSSES,
26
COSTS, OR OTHER PROBLEMS THEY INCUR DUE TO THE SOFTWARE, AND WHO FURTHERMORE
27
EFFECTIVELY INDEMNIFY JOHN HAUSER AND THE INTERNATIONAL COMPUTER SCIENCE
28
INSTITUTE (possibly via similar legal warning) AGAINST ALL LOSSES, COSTS, OR
29
OTHER PROBLEMS INCURRED BY THEIR CUSTOMERS AND CLIENTS DUE TO THE SOFTWARE.
30

31
Derivative works are acceptable, even for commercial purposes, so long as
32
(1) the source code for the derivative work includes prominent notice that
33
the work is derivative, and (2) the source code includes prominent notice with
34
these four paragraphs for those parts of this code that are retained.
35

36
=============================================================================*/
37

    
38
#ifndef SOFTFLOAT_H
39
#define SOFTFLOAT_H
40

    
41
#if defined(CONFIG_SOLARIS) && defined(CONFIG_NEEDS_LIBSUNMATH)
42
#include <sunmath.h>
43
#endif
44

    
45
#include <inttypes.h>
46
#include "config.h"
47

    
48
/*----------------------------------------------------------------------------
49
| Each of the following `typedef's defines the most convenient type that holds
50
| integers of at least as many bits as specified.  For example, `uint8' should
51
| be the most convenient type that can hold unsigned integers of as many as
52
| 8 bits.  The `flag' type must be able to hold either a 0 or 1.  For most
53
| implementations of C, `flag', `uint8', and `int8' should all be `typedef'ed
54
| to the same as `int'.
55
*----------------------------------------------------------------------------*/
56
typedef uint8_t flag;
57
typedef uint8_t uint8;
58
typedef int8_t int8;
59
#ifndef _AIX
60
typedef int uint16;
61
typedef int int16;
62
#endif
63
typedef unsigned int uint32;
64
typedef signed int int32;
65
typedef uint64_t uint64;
66
typedef int64_t int64;
67

    
68
/*----------------------------------------------------------------------------
69
| Each of the following `typedef's defines a type that holds integers
70
| of _exactly_ the number of bits specified.  For instance, for most
71
| implementation of C, `bits16' and `sbits16' should be `typedef'ed to
72
| `unsigned short int' and `signed short int' (or `short int'), respectively.
73
*----------------------------------------------------------------------------*/
74
typedef uint8_t bits8;
75
typedef int8_t sbits8;
76
typedef uint16_t bits16;
77
typedef int16_t sbits16;
78
typedef uint32_t bits32;
79
typedef int32_t sbits32;
80
typedef uint64_t bits64;
81
typedef int64_t sbits64;
82

    
83
#define LIT64( a ) a##LL
84
#define INLINE static inline
85

    
86
#if defined(TARGET_MIPS) || defined(TARGET_SH4)
87
#define SNAN_BIT_IS_ONE                1
88
#else
89
#define SNAN_BIT_IS_ONE                0
90
#endif
91

    
92
/*----------------------------------------------------------------------------
93
| The macro `FLOATX80' must be defined to enable the extended double-precision
94
| floating-point format `floatx80'.  If this macro is not defined, the
95
| `floatx80' type will not be defined, and none of the functions that either
96
| input or output the `floatx80' type will be defined.  The same applies to
97
| the `FLOAT128' macro and the quadruple-precision format `float128'.
98
*----------------------------------------------------------------------------*/
99
#ifdef CONFIG_SOFTFLOAT
100
/* bit exact soft float support */
101
#define FLOATX80
102
#define FLOAT128
103
#else
104
/* native float support */
105
#if (defined(__i386__) || defined(__x86_64__)) && !defined(CONFIG_BSD)
106
#define FLOATX80
107
#endif
108
#endif /* !CONFIG_SOFTFLOAT */
109

    
110
#define STATUS_PARAM , float_status *status
111
#define STATUS(field) status->field
112
#define STATUS_VAR , status
113

    
114
/*----------------------------------------------------------------------------
115
| Software IEC/IEEE floating-point ordering relations
116
*----------------------------------------------------------------------------*/
117
enum {
118
    float_relation_less      = -1,
119
    float_relation_equal     =  0,
120
    float_relation_greater   =  1,
121
    float_relation_unordered =  2
122
};
123

    
124
#ifdef CONFIG_SOFTFLOAT
125
/*----------------------------------------------------------------------------
126
| Software IEC/IEEE floating-point types.
127
*----------------------------------------------------------------------------*/
128
/* Use structures for soft-float types.  This prevents accidentally mixing
129
   them with native int/float types.  A sufficiently clever compiler and
130
   sane ABI should be able to see though these structs.  However
131
   x86/gcc 3.x seems to struggle a bit, so leave them disabled by default.  */
132
//#define USE_SOFTFLOAT_STRUCT_TYPES
133
#ifdef USE_SOFTFLOAT_STRUCT_TYPES
134
typedef struct {
135
    uint16_t v;
136
} float16;
137
#define float16_val(x) (((float16)(x)).v)
138
#define make_float16(x) __extension__ ({ float16 f16_val = {x}; f16_val; })
139
#define const_float16(x) { x }
140
typedef struct {
141
    uint32_t v;
142
} float32;
143
/* The cast ensures an error if the wrong type is passed.  */
144
#define float32_val(x) (((float32)(x)).v)
145
#define make_float32(x) __extension__ ({ float32 f32_val = {x}; f32_val; })
146
#define const_float32(x) { x }
147
typedef struct {
148
    uint64_t v;
149
} float64;
150
#define float64_val(x) (((float64)(x)).v)
151
#define make_float64(x) __extension__ ({ float64 f64_val = {x}; f64_val; })
152
#define const_float64(x) { x }
153
#else
154
typedef uint16_t float16;
155
typedef uint32_t float32;
156
typedef uint64_t float64;
157
#define float16_val(x) (x)
158
#define float32_val(x) (x)
159
#define float64_val(x) (x)
160
#define make_float16(x) (x)
161
#define make_float32(x) (x)
162
#define make_float64(x) (x)
163
#define const_float16(x) (x)
164
#define const_float32(x) (x)
165
#define const_float64(x) (x)
166
#endif
167
#ifdef FLOATX80
168
typedef struct {
169
    uint64_t low;
170
    uint16_t high;
171
} floatx80;
172
#endif
173
#ifdef FLOAT128
174
typedef struct {
175
#ifdef HOST_WORDS_BIGENDIAN
176
    uint64_t high, low;
177
#else
178
    uint64_t low, high;
179
#endif
180
} float128;
181
#endif
182

    
183
/*----------------------------------------------------------------------------
184
| Software IEC/IEEE floating-point underflow tininess-detection mode.
185
*----------------------------------------------------------------------------*/
186
enum {
187
    float_tininess_after_rounding  = 0,
188
    float_tininess_before_rounding = 1
189
};
190

    
191
/*----------------------------------------------------------------------------
192
| Software IEC/IEEE floating-point rounding mode.
193
*----------------------------------------------------------------------------*/
194
enum {
195
    float_round_nearest_even = 0,
196
    float_round_down         = 1,
197
    float_round_up           = 2,
198
    float_round_to_zero      = 3
199
};
200

    
201
/*----------------------------------------------------------------------------
202
| Software IEC/IEEE floating-point exception flags.
203
*----------------------------------------------------------------------------*/
204
enum {
205
    float_flag_invalid   =  1,
206
    float_flag_divbyzero =  4,
207
    float_flag_overflow  =  8,
208
    float_flag_underflow = 16,
209
    float_flag_inexact   = 32,
210
    float_flag_input_denormal = 64
211
};
212

    
213
typedef struct float_status {
214
    signed char float_detect_tininess;
215
    signed char float_rounding_mode;
216
    signed char float_exception_flags;
217
#ifdef FLOATX80
218
    signed char floatx80_rounding_precision;
219
#endif
220
    /* should denormalised results go to zero and set the inexact flag? */
221
    flag flush_to_zero;
222
    /* should denormalised inputs go to zero and set the input_denormal flag? */
223
    flag flush_inputs_to_zero;
224
    flag default_nan_mode;
225
} float_status;
226

    
227
void set_float_rounding_mode(int val STATUS_PARAM);
228
void set_float_exception_flags(int val STATUS_PARAM);
229
INLINE void set_flush_to_zero(flag val STATUS_PARAM)
230
{
231
    STATUS(flush_to_zero) = val;
232
}
233
INLINE void set_flush_inputs_to_zero(flag val STATUS_PARAM)
234
{
235
    STATUS(flush_inputs_to_zero) = val;
236
}
237
INLINE void set_default_nan_mode(flag val STATUS_PARAM)
238
{
239
    STATUS(default_nan_mode) = val;
240
}
241
INLINE int get_float_exception_flags(float_status *status)
242
{
243
    return STATUS(float_exception_flags);
244
}
245
#ifdef FLOATX80
246
void set_floatx80_rounding_precision(int val STATUS_PARAM);
247
#endif
248

    
249
/*----------------------------------------------------------------------------
250
| Routine to raise any or all of the software IEC/IEEE floating-point
251
| exception flags.
252
*----------------------------------------------------------------------------*/
253
void float_raise( int8 flags STATUS_PARAM);
254

    
255
/*----------------------------------------------------------------------------
256
| Software IEC/IEEE integer-to-floating-point conversion routines.
257
*----------------------------------------------------------------------------*/
258
float32 int32_to_float32( int STATUS_PARAM );
259
float64 int32_to_float64( int STATUS_PARAM );
260
float32 uint32_to_float32( unsigned int STATUS_PARAM );
261
float64 uint32_to_float64( unsigned int STATUS_PARAM );
262
#ifdef FLOATX80
263
floatx80 int32_to_floatx80( int STATUS_PARAM );
264
#endif
265
#ifdef FLOAT128
266
float128 int32_to_float128( int STATUS_PARAM );
267
#endif
268
float32 int64_to_float32( int64_t STATUS_PARAM );
269
float32 uint64_to_float32( uint64_t STATUS_PARAM );
270
float64 int64_to_float64( int64_t STATUS_PARAM );
271
float64 uint64_to_float64( uint64_t STATUS_PARAM );
272
#ifdef FLOATX80
273
floatx80 int64_to_floatx80( int64_t STATUS_PARAM );
274
#endif
275
#ifdef FLOAT128
276
float128 int64_to_float128( int64_t STATUS_PARAM );
277
#endif
278

    
279
/*----------------------------------------------------------------------------
280
| Software half-precision conversion routines.
281
*----------------------------------------------------------------------------*/
282
float16 float32_to_float16( float32, flag STATUS_PARAM );
283
float32 float16_to_float32( float16, flag STATUS_PARAM );
284

    
285
/*----------------------------------------------------------------------------
286
| Software half-precision operations.
287
*----------------------------------------------------------------------------*/
288
int float16_is_quiet_nan( float16 );
289
int float16_is_signaling_nan( float16 );
290
float16 float16_maybe_silence_nan( float16 );
291

    
292
/*----------------------------------------------------------------------------
293
| The pattern for a default generated half-precision NaN.
294
*----------------------------------------------------------------------------*/
295
#if defined(TARGET_ARM)
296
#define float16_default_nan make_float16(0x7E00)
297
#elif SNAN_BIT_IS_ONE
298
#define float16_default_nan make_float16(0x7DFF)
299
#else
300
#define float16_default_nan make_float16(0xFE00)
301
#endif
302

    
303
/*----------------------------------------------------------------------------
304
| Software IEC/IEEE single-precision conversion routines.
305
*----------------------------------------------------------------------------*/
306
int float32_to_int16_round_to_zero( float32 STATUS_PARAM );
307
unsigned int float32_to_uint16_round_to_zero( float32 STATUS_PARAM );
308
int float32_to_int32( float32 STATUS_PARAM );
309
int float32_to_int32_round_to_zero( float32 STATUS_PARAM );
310
unsigned int float32_to_uint32( float32 STATUS_PARAM );
311
unsigned int float32_to_uint32_round_to_zero( float32 STATUS_PARAM );
312
int64_t float32_to_int64( float32 STATUS_PARAM );
313
int64_t float32_to_int64_round_to_zero( float32 STATUS_PARAM );
314
float64 float32_to_float64( float32 STATUS_PARAM );
315
#ifdef FLOATX80
316
floatx80 float32_to_floatx80( float32 STATUS_PARAM );
317
#endif
318
#ifdef FLOAT128
319
float128 float32_to_float128( float32 STATUS_PARAM );
320
#endif
321

    
322
/*----------------------------------------------------------------------------
323
| Software IEC/IEEE single-precision operations.
324
*----------------------------------------------------------------------------*/
325
float32 float32_round_to_int( float32 STATUS_PARAM );
326
float32 float32_add( float32, float32 STATUS_PARAM );
327
float32 float32_sub( float32, float32 STATUS_PARAM );
328
float32 float32_mul( float32, float32 STATUS_PARAM );
329
float32 float32_div( float32, float32 STATUS_PARAM );
330
float32 float32_rem( float32, float32 STATUS_PARAM );
331
float32 float32_sqrt( float32 STATUS_PARAM );
332
float32 float32_exp2( float32 STATUS_PARAM );
333
float32 float32_log2( float32 STATUS_PARAM );
334
int float32_eq( float32, float32 STATUS_PARAM );
335
int float32_le( float32, float32 STATUS_PARAM );
336
int float32_lt( float32, float32 STATUS_PARAM );
337
int float32_eq_signaling( float32, float32 STATUS_PARAM );
338
int float32_le_quiet( float32, float32 STATUS_PARAM );
339
int float32_lt_quiet( float32, float32 STATUS_PARAM );
340
int float32_compare( float32, float32 STATUS_PARAM );
341
int float32_compare_quiet( float32, float32 STATUS_PARAM );
342
int float32_is_quiet_nan( float32 );
343
int float32_is_signaling_nan( float32 );
344
float32 float32_maybe_silence_nan( float32 );
345
float32 float32_scalbn( float32, int STATUS_PARAM );
346

    
347
INLINE float32 float32_abs(float32 a)
348
{
349
    /* Note that abs does *not* handle NaN specially, nor does
350
     * it flush denormal inputs to zero.
351
     */
352
    return make_float32(float32_val(a) & 0x7fffffff);
353
}
354

    
355
INLINE float32 float32_chs(float32 a)
356
{
357
    /* Note that chs does *not* handle NaN specially, nor does
358
     * it flush denormal inputs to zero.
359
     */
360
    return make_float32(float32_val(a) ^ 0x80000000);
361
}
362

    
363
INLINE int float32_is_infinity(float32 a)
364
{
365
    return (float32_val(a) & 0x7fffffff) == 0x7f800000;
366
}
367

    
368
INLINE int float32_is_neg(float32 a)
369
{
370
    return float32_val(a) >> 31;
371
}
372

    
373
INLINE int float32_is_zero(float32 a)
374
{
375
    return (float32_val(a) & 0x7fffffff) == 0;
376
}
377

    
378
INLINE int float32_is_any_nan(float32 a)
379
{
380
    return ((float32_val(a) & ~(1 << 31)) > 0x7f800000UL);
381
}
382

    
383
INLINE int float32_is_zero_or_denormal(float32 a)
384
{
385
    return (float32_val(a) & 0x7f800000) == 0;
386
}
387

    
388
INLINE float32 float32_set_sign(float32 a, int sign)
389
{
390
    return make_float32((float32_val(a) & 0x7fffffff) | (sign << 31));
391
}
392

    
393
#define float32_zero make_float32(0)
394
#define float32_one make_float32(0x3f800000)
395
#define float32_ln2 make_float32(0x3f317218)
396
#define float32_half make_float32(0x3f000000)
397
#define float32_infinity make_float32(0x7f800000)
398

    
399

    
400
/*----------------------------------------------------------------------------
401
| The pattern for a default generated single-precision NaN.
402
*----------------------------------------------------------------------------*/
403
#if defined(TARGET_SPARC)
404
#define float32_default_nan make_float32(0x7FFFFFFF)
405
#elif defined(TARGET_PPC) || defined(TARGET_ARM) || defined(TARGET_ALPHA)
406
#define float32_default_nan make_float32(0x7FC00000)
407
#elif SNAN_BIT_IS_ONE
408
#define float32_default_nan make_float32(0x7FBFFFFF)
409
#else
410
#define float32_default_nan make_float32(0xFFC00000)
411
#endif
412

    
413
/*----------------------------------------------------------------------------
414
| Software IEC/IEEE double-precision conversion routines.
415
*----------------------------------------------------------------------------*/
416
int float64_to_int16_round_to_zero( float64 STATUS_PARAM );
417
unsigned int float64_to_uint16_round_to_zero( float64 STATUS_PARAM );
418
int float64_to_int32( float64 STATUS_PARAM );
419
int float64_to_int32_round_to_zero( float64 STATUS_PARAM );
420
unsigned int float64_to_uint32( float64 STATUS_PARAM );
421
unsigned int float64_to_uint32_round_to_zero( float64 STATUS_PARAM );
422
int64_t float64_to_int64( float64 STATUS_PARAM );
423
int64_t float64_to_int64_round_to_zero( float64 STATUS_PARAM );
424
uint64_t float64_to_uint64 (float64 a STATUS_PARAM);
425
uint64_t float64_to_uint64_round_to_zero (float64 a STATUS_PARAM);
426
float32 float64_to_float32( float64 STATUS_PARAM );
427
#ifdef FLOATX80
428
floatx80 float64_to_floatx80( float64 STATUS_PARAM );
429
#endif
430
#ifdef FLOAT128
431
float128 float64_to_float128( float64 STATUS_PARAM );
432
#endif
433

    
434
/*----------------------------------------------------------------------------
435
| Software IEC/IEEE double-precision operations.
436
*----------------------------------------------------------------------------*/
437
float64 float64_round_to_int( float64 STATUS_PARAM );
438
float64 float64_trunc_to_int( float64 STATUS_PARAM );
439
float64 float64_add( float64, float64 STATUS_PARAM );
440
float64 float64_sub( float64, float64 STATUS_PARAM );
441
float64 float64_mul( float64, float64 STATUS_PARAM );
442
float64 float64_div( float64, float64 STATUS_PARAM );
443
float64 float64_rem( float64, float64 STATUS_PARAM );
444
float64 float64_sqrt( float64 STATUS_PARAM );
445
float64 float64_log2( float64 STATUS_PARAM );
446
int float64_eq( float64, float64 STATUS_PARAM );
447
int float64_le( float64, float64 STATUS_PARAM );
448
int float64_lt( float64, float64 STATUS_PARAM );
449
int float64_eq_signaling( float64, float64 STATUS_PARAM );
450
int float64_le_quiet( float64, float64 STATUS_PARAM );
451
int float64_lt_quiet( float64, float64 STATUS_PARAM );
452
int float64_compare( float64, float64 STATUS_PARAM );
453
int float64_compare_quiet( float64, float64 STATUS_PARAM );
454
int float64_is_quiet_nan( float64 a );
455
int float64_is_signaling_nan( float64 );
456
float64 float64_maybe_silence_nan( float64 );
457
float64 float64_scalbn( float64, int STATUS_PARAM );
458

    
459
INLINE float64 float64_abs(float64 a)
460
{
461
    /* Note that abs does *not* handle NaN specially, nor does
462
     * it flush denormal inputs to zero.
463
     */
464
    return make_float64(float64_val(a) & 0x7fffffffffffffffLL);
465
}
466

    
467
INLINE float64 float64_chs(float64 a)
468
{
469
    /* Note that chs does *not* handle NaN specially, nor does
470
     * it flush denormal inputs to zero.
471
     */
472
    return make_float64(float64_val(a) ^ 0x8000000000000000LL);
473
}
474

    
475
INLINE int float64_is_infinity(float64 a)
476
{
477
    return (float64_val(a) & 0x7fffffffffffffffLL ) == 0x7ff0000000000000LL;
478
}
479

    
480
INLINE int float64_is_neg(float64 a)
481
{
482
    return float64_val(a) >> 63;
483
}
484

    
485
INLINE int float64_is_zero(float64 a)
486
{
487
    return (float64_val(a) & 0x7fffffffffffffffLL) == 0;
488
}
489

    
490
INLINE int float64_is_any_nan(float64 a)
491
{
492
    return ((float64_val(a) & ~(1ULL << 63)) > 0x7ff0000000000000ULL);
493
}
494

    
495
INLINE float64 float64_set_sign(float64 a, int sign)
496
{
497
    return make_float64((float64_val(a) & 0x7fffffffffffffffULL)
498
                        | ((int64_t)sign << 63));
499
}
500

    
501
#define float64_zero make_float64(0)
502
#define float64_one make_float64(0x3ff0000000000000LL)
503
#define float64_ln2 make_float64(0x3fe62e42fefa39efLL)
504
#define float64_half make_float64(0x3fe0000000000000LL)
505
#define float64_infinity make_float64(0x7ff0000000000000LL)
506

    
507
/*----------------------------------------------------------------------------
508
| The pattern for a default generated double-precision NaN.
509
*----------------------------------------------------------------------------*/
510
#if defined(TARGET_SPARC)
511
#define float64_default_nan make_float64(LIT64( 0x7FFFFFFFFFFFFFFF ))
512
#elif defined(TARGET_PPC) || defined(TARGET_ARM) || defined(TARGET_ALPHA)
513
#define float64_default_nan make_float64(LIT64( 0x7FF8000000000000 ))
514
#elif SNAN_BIT_IS_ONE
515
#define float64_default_nan make_float64(LIT64( 0x7FF7FFFFFFFFFFFF ))
516
#else
517
#define float64_default_nan make_float64(LIT64( 0xFFF8000000000000 ))
518
#endif
519

    
520
#ifdef FLOATX80
521

    
522
/*----------------------------------------------------------------------------
523
| Software IEC/IEEE extended double-precision conversion routines.
524
*----------------------------------------------------------------------------*/
525
int floatx80_to_int32( floatx80 STATUS_PARAM );
526
int floatx80_to_int32_round_to_zero( floatx80 STATUS_PARAM );
527
int64_t floatx80_to_int64( floatx80 STATUS_PARAM );
528
int64_t floatx80_to_int64_round_to_zero( floatx80 STATUS_PARAM );
529
float32 floatx80_to_float32( floatx80 STATUS_PARAM );
530
float64 floatx80_to_float64( floatx80 STATUS_PARAM );
531
#ifdef FLOAT128
532
float128 floatx80_to_float128( floatx80 STATUS_PARAM );
533
#endif
534

    
535
/*----------------------------------------------------------------------------
536
| Software IEC/IEEE extended double-precision operations.
537
*----------------------------------------------------------------------------*/
538
floatx80 floatx80_round_to_int( floatx80 STATUS_PARAM );
539
floatx80 floatx80_add( floatx80, floatx80 STATUS_PARAM );
540
floatx80 floatx80_sub( floatx80, floatx80 STATUS_PARAM );
541
floatx80 floatx80_mul( floatx80, floatx80 STATUS_PARAM );
542
floatx80 floatx80_div( floatx80, floatx80 STATUS_PARAM );
543
floatx80 floatx80_rem( floatx80, floatx80 STATUS_PARAM );
544
floatx80 floatx80_sqrt( floatx80 STATUS_PARAM );
545
int floatx80_eq( floatx80, floatx80 STATUS_PARAM );
546
int floatx80_le( floatx80, floatx80 STATUS_PARAM );
547
int floatx80_lt( floatx80, floatx80 STATUS_PARAM );
548
int floatx80_eq_signaling( floatx80, floatx80 STATUS_PARAM );
549
int floatx80_le_quiet( floatx80, floatx80 STATUS_PARAM );
550
int floatx80_lt_quiet( floatx80, floatx80 STATUS_PARAM );
551
int floatx80_is_quiet_nan( floatx80 );
552
int floatx80_is_signaling_nan( floatx80 );
553
floatx80 floatx80_maybe_silence_nan( floatx80 );
554
floatx80 floatx80_scalbn( floatx80, int STATUS_PARAM );
555

    
556
INLINE floatx80 floatx80_abs(floatx80 a)
557
{
558
    a.high &= 0x7fff;
559
    return a;
560
}
561

    
562
INLINE floatx80 floatx80_chs(floatx80 a)
563
{
564
    a.high ^= 0x8000;
565
    return a;
566
}
567

    
568
INLINE int floatx80_is_infinity(floatx80 a)
569
{
570
    return (a.high & 0x7fff) == 0x7fff && a.low == 0;
571
}
572

    
573
INLINE int floatx80_is_neg(floatx80 a)
574
{
575
    return a.high >> 15;
576
}
577

    
578
INLINE int floatx80_is_zero(floatx80 a)
579
{
580
    return (a.high & 0x7fff) == 0 && a.low == 0;
581
}
582

    
583
INLINE int floatx80_is_any_nan(floatx80 a)
584
{
585
    return ((a.high & 0x7fff) == 0x7fff) && (a.low<<1);
586
}
587

    
588
/*----------------------------------------------------------------------------
589
| The pattern for a default generated extended double-precision NaN.  The
590
| `high' and `low' values hold the most- and least-significant bits,
591
| respectively.
592
*----------------------------------------------------------------------------*/
593
#if SNAN_BIT_IS_ONE
594
#define floatx80_default_nan_high 0x7FFF
595
#define floatx80_default_nan_low  LIT64( 0xBFFFFFFFFFFFFFFF )
596
#else
597
#define floatx80_default_nan_high 0xFFFF
598
#define floatx80_default_nan_low  LIT64( 0xC000000000000000 )
599
#endif
600

    
601
#endif
602

    
603
#ifdef FLOAT128
604

    
605
/*----------------------------------------------------------------------------
606
| Software IEC/IEEE quadruple-precision conversion routines.
607
*----------------------------------------------------------------------------*/
608
int float128_to_int32( float128 STATUS_PARAM );
609
int float128_to_int32_round_to_zero( float128 STATUS_PARAM );
610
int64_t float128_to_int64( float128 STATUS_PARAM );
611
int64_t float128_to_int64_round_to_zero( float128 STATUS_PARAM );
612
float32 float128_to_float32( float128 STATUS_PARAM );
613
float64 float128_to_float64( float128 STATUS_PARAM );
614
#ifdef FLOATX80
615
floatx80 float128_to_floatx80( float128 STATUS_PARAM );
616
#endif
617

    
618
/*----------------------------------------------------------------------------
619
| Software IEC/IEEE quadruple-precision operations.
620
*----------------------------------------------------------------------------*/
621
float128 float128_round_to_int( float128 STATUS_PARAM );
622
float128 float128_add( float128, float128 STATUS_PARAM );
623
float128 float128_sub( float128, float128 STATUS_PARAM );
624
float128 float128_mul( float128, float128 STATUS_PARAM );
625
float128 float128_div( float128, float128 STATUS_PARAM );
626
float128 float128_rem( float128, float128 STATUS_PARAM );
627
float128 float128_sqrt( float128 STATUS_PARAM );
628
int float128_eq( float128, float128 STATUS_PARAM );
629
int float128_le( float128, float128 STATUS_PARAM );
630
int float128_lt( float128, float128 STATUS_PARAM );
631
int float128_eq_signaling( float128, float128 STATUS_PARAM );
632
int float128_le_quiet( float128, float128 STATUS_PARAM );
633
int float128_lt_quiet( float128, float128 STATUS_PARAM );
634
int float128_compare( float128, float128 STATUS_PARAM );
635
int float128_compare_quiet( float128, float128 STATUS_PARAM );
636
int float128_is_quiet_nan( float128 );
637
int float128_is_signaling_nan( float128 );
638
float128 float128_maybe_silence_nan( float128 );
639
float128 float128_scalbn( float128, int STATUS_PARAM );
640

    
641
INLINE float128 float128_abs(float128 a)
642
{
643
    a.high &= 0x7fffffffffffffffLL;
644
    return a;
645
}
646

    
647
INLINE float128 float128_chs(float128 a)
648
{
649
    a.high ^= 0x8000000000000000LL;
650
    return a;
651
}
652

    
653
INLINE int float128_is_infinity(float128 a)
654
{
655
    return (a.high & 0x7fffffffffffffffLL) == 0x7fff000000000000LL && a.low == 0;
656
}
657

    
658
INLINE int float128_is_neg(float128 a)
659
{
660
    return a.high >> 63;
661
}
662

    
663
INLINE int float128_is_zero(float128 a)
664
{
665
    return (a.high & 0x7fffffffffffffffLL) == 0 && a.low == 0;
666
}
667

    
668
INLINE int float128_is_any_nan(float128 a)
669
{
670
    return ((a.high >> 48) & 0x7fff) == 0x7fff &&
671
        ((a.low != 0) || ((a.high & 0xffffffffffffLL) != 0));
672
}
673

    
674
/*----------------------------------------------------------------------------
675
| The pattern for a default generated quadruple-precision NaN.  The `high' and
676
| `low' values hold the most- and least-significant bits, respectively.
677
*----------------------------------------------------------------------------*/
678
#if SNAN_BIT_IS_ONE
679
#define float128_default_nan_high LIT64( 0x7FFF7FFFFFFFFFFF )
680
#define float128_default_nan_low  LIT64( 0xFFFFFFFFFFFFFFFF )
681
#else
682
#define float128_default_nan_high LIT64( 0xFFFF800000000000 )
683
#define float128_default_nan_low  LIT64( 0x0000000000000000 )
684
#endif
685

    
686
#endif
687

    
688
#else /* CONFIG_SOFTFLOAT */
689

    
690
#include "softfloat-native.h"
691

    
692
#endif /* !CONFIG_SOFTFLOAT */
693

    
694
#endif /* !SOFTFLOAT_H */