Statistics
| Branch: | Revision:

root / hw / spapr.c @ 8d90ad90

History | View | Annotate | Download (13.9 kB)

1
/*
2
 * QEMU PowerPC pSeries Logical Partition (aka sPAPR) hardware System Emulator
3
 *
4
 * Copyright (c) 2004-2007 Fabrice Bellard
5
 * Copyright (c) 2007 Jocelyn Mayer
6
 * Copyright (c) 2010 David Gibson, IBM Corporation.
7
 *
8
 * Permission is hereby granted, free of charge, to any person obtaining a copy
9
 * of this software and associated documentation files (the "Software"), to deal
10
 * in the Software without restriction, including without limitation the rights
11
 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
12
 * copies of the Software, and to permit persons to whom the Software is
13
 * furnished to do so, subject to the following conditions:
14
 *
15
 * The above copyright notice and this permission notice shall be included in
16
 * all copies or substantial portions of the Software.
17
 *
18
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
19
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
20
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
21
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
22
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
23
 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
24
 * THE SOFTWARE.
25
 *
26
 */
27
#include "sysemu.h"
28
#include "hw.h"
29
#include "elf.h"
30
#include "net.h"
31

    
32
#include "hw/boards.h"
33
#include "hw/ppc.h"
34
#include "hw/loader.h"
35

    
36
#include "hw/spapr.h"
37
#include "hw/spapr_vio.h"
38
#include "hw/xics.h"
39

    
40
#include <libfdt.h>
41

    
42
#define KERNEL_LOAD_ADDR        0x00000000
43
#define INITRD_LOAD_ADDR        0x02800000
44
#define FDT_MAX_SIZE            0x10000
45
#define RTAS_MAX_SIZE           0x10000
46

    
47
#define TIMEBASE_FREQ           512000000ULL
48

    
49
#define MAX_CPUS                32
50
#define XICS_IRQS                1024
51

    
52
sPAPREnvironment *spapr;
53

    
54
static void *spapr_create_fdt(int *fdt_size, ram_addr_t ramsize,
55
                              const char *cpu_model, CPUState *envs[],
56
                              sPAPREnvironment *spapr,
57
                              target_phys_addr_t initrd_base,
58
                              target_phys_addr_t initrd_size,
59
                              const char *kernel_cmdline,
60
                              target_phys_addr_t rtas_addr,
61
                              target_phys_addr_t rtas_size,
62
                              long hash_shift)
63
{
64
    void *fdt;
65
    uint64_t mem_reg_property[] = { 0, cpu_to_be64(ramsize) };
66
    uint32_t start_prop = cpu_to_be32(initrd_base);
67
    uint32_t end_prop = cpu_to_be32(initrd_base + initrd_size);
68
    uint32_t pft_size_prop[] = {0, cpu_to_be32(hash_shift)};
69
    char hypertas_prop[] = "hcall-pft\0hcall-term\0hcall-dabr\0hcall-interrupt"
70
        "\0hcall-tce";
71
    uint32_t interrupt_server_ranges_prop[] = {0, cpu_to_be32(smp_cpus)};
72
    int i;
73
    char *modelname;
74
    int ret;
75

    
76
#define _FDT(exp) \
77
    do { \
78
        int ret = (exp);                                           \
79
        if (ret < 0) {                                             \
80
            fprintf(stderr, "qemu: error creating device tree: %s: %s\n", \
81
                    #exp, fdt_strerror(ret));                      \
82
            exit(1);                                               \
83
        }                                                          \
84
    } while (0)
85

    
86
    fdt = qemu_mallocz(FDT_MAX_SIZE);
87
    _FDT((fdt_create(fdt, FDT_MAX_SIZE)));
88

    
89
    _FDT((fdt_finish_reservemap(fdt)));
90

    
91
    /* Root node */
92
    _FDT((fdt_begin_node(fdt, "")));
93
    _FDT((fdt_property_string(fdt, "device_type", "chrp")));
94
    _FDT((fdt_property_string(fdt, "model", "qemu,emulated-pSeries-LPAR")));
95

    
96
    _FDT((fdt_property_cell(fdt, "#address-cells", 0x2)));
97
    _FDT((fdt_property_cell(fdt, "#size-cells", 0x2)));
98

    
99
    /* /chosen */
100
    _FDT((fdt_begin_node(fdt, "chosen")));
101

    
102
    _FDT((fdt_property_string(fdt, "bootargs", kernel_cmdline)));
103
    _FDT((fdt_property(fdt, "linux,initrd-start",
104
                       &start_prop, sizeof(start_prop))));
105
    _FDT((fdt_property(fdt, "linux,initrd-end",
106
                       &end_prop, sizeof(end_prop))));
107

    
108
    _FDT((fdt_end_node(fdt)));
109

    
110
    /* memory node */
111
    _FDT((fdt_begin_node(fdt, "memory@0")));
112

    
113
    _FDT((fdt_property_string(fdt, "device_type", "memory")));
114
    _FDT((fdt_property(fdt, "reg",
115
                       mem_reg_property, sizeof(mem_reg_property))));
116

    
117
    _FDT((fdt_end_node(fdt)));
118

    
119
    /* cpus */
120
    _FDT((fdt_begin_node(fdt, "cpus")));
121

    
122
    _FDT((fdt_property_cell(fdt, "#address-cells", 0x1)));
123
    _FDT((fdt_property_cell(fdt, "#size-cells", 0x0)));
124

    
125
    modelname = qemu_strdup(cpu_model);
126

    
127
    for (i = 0; i < strlen(modelname); i++) {
128
        modelname[i] = toupper(modelname[i]);
129
    }
130

    
131
    for (i = 0; i < smp_cpus; i++) {
132
        CPUState *env = envs[i];
133
        uint32_t gserver_prop[] = {cpu_to_be32(i), 0}; /* HACK! */
134
        char *nodename;
135
        uint32_t segs[] = {cpu_to_be32(28), cpu_to_be32(40),
136
                           0xffffffff, 0xffffffff};
137

    
138
        if (asprintf(&nodename, "%s@%x", modelname, i) < 0) {
139
            fprintf(stderr, "Allocation failure\n");
140
            exit(1);
141
        }
142

    
143
        _FDT((fdt_begin_node(fdt, nodename)));
144

    
145
        free(nodename);
146

    
147
        _FDT((fdt_property_cell(fdt, "reg", i)));
148
        _FDT((fdt_property_string(fdt, "device_type", "cpu")));
149

    
150
        _FDT((fdt_property_cell(fdt, "cpu-version", env->spr[SPR_PVR])));
151
        _FDT((fdt_property_cell(fdt, "dcache-block-size",
152
                                env->dcache_line_size)));
153
        _FDT((fdt_property_cell(fdt, "icache-block-size",
154
                                env->icache_line_size)));
155
        _FDT((fdt_property_cell(fdt, "timebase-frequency", TIMEBASE_FREQ)));
156
        /* Hardcode CPU frequency for now.  It's kind of arbitrary on
157
         * full emu, for kvm we should copy it from the host */
158
        _FDT((fdt_property_cell(fdt, "clock-frequency", 1000000000)));
159
        _FDT((fdt_property_cell(fdt, "ibm,slb-size", env->slb_nr)));
160
        _FDT((fdt_property(fdt, "ibm,pft-size",
161
                           pft_size_prop, sizeof(pft_size_prop))));
162
        _FDT((fdt_property_string(fdt, "status", "okay")));
163
        _FDT((fdt_property(fdt, "64-bit", NULL, 0)));
164
        _FDT((fdt_property_cell(fdt, "ibm,ppc-interrupt-server#s", i)));
165
        _FDT((fdt_property(fdt, "ibm,ppc-interrupt-gserver#s",
166
                           gserver_prop, sizeof(gserver_prop))));
167

    
168
        if (envs[i]->mmu_model & POWERPC_MMU_1TSEG) {
169
            _FDT((fdt_property(fdt, "ibm,processor-segment-sizes",
170
                               segs, sizeof(segs))));
171
        }
172

    
173
        _FDT((fdt_end_node(fdt)));
174
    }
175

    
176
    qemu_free(modelname);
177

    
178
    _FDT((fdt_end_node(fdt)));
179

    
180
    /* RTAS */
181
    _FDT((fdt_begin_node(fdt, "rtas")));
182

    
183
    _FDT((fdt_property(fdt, "ibm,hypertas-functions", hypertas_prop,
184
                       sizeof(hypertas_prop))));
185

    
186
    _FDT((fdt_end_node(fdt)));
187

    
188
    /* interrupt controller */
189
    _FDT((fdt_begin_node(fdt, "interrupt-controller@0")));
190

    
191
    _FDT((fdt_property_string(fdt, "device_type",
192
                              "PowerPC-External-Interrupt-Presentation")));
193
    _FDT((fdt_property_string(fdt, "compatible", "IBM,ppc-xicp")));
194
    _FDT((fdt_property_cell(fdt, "reg", 0)));
195
    _FDT((fdt_property(fdt, "interrupt-controller", NULL, 0)));
196
    _FDT((fdt_property(fdt, "ibm,interrupt-server-ranges",
197
                       interrupt_server_ranges_prop,
198
                       sizeof(interrupt_server_ranges_prop))));
199

    
200
    _FDT((fdt_end_node(fdt)));
201

    
202
    /* vdevice */
203
    _FDT((fdt_begin_node(fdt, "vdevice")));
204

    
205
    _FDT((fdt_property_string(fdt, "device_type", "vdevice")));
206
    _FDT((fdt_property_string(fdt, "compatible", "IBM,vdevice")));
207
    _FDT((fdt_property_cell(fdt, "#address-cells", 0x1)));
208
    _FDT((fdt_property_cell(fdt, "#size-cells", 0x0)));
209
    _FDT((fdt_property_cell(fdt, "#interrupt-cells", 0x2)));
210
    _FDT((fdt_property(fdt, "interrupt-controller", NULL, 0)));
211

    
212
    _FDT((fdt_end_node(fdt)));
213

    
214
    _FDT((fdt_end_node(fdt))); /* close root node */
215
    _FDT((fdt_finish(fdt)));
216

    
217
    /* re-expand to allow for further tweaks */
218
    _FDT((fdt_open_into(fdt, fdt, FDT_MAX_SIZE)));
219

    
220
    ret = spapr_populate_vdevice(spapr->vio_bus, fdt);
221
    if (ret < 0) {
222
        fprintf(stderr, "couldn't setup vio devices in fdt\n");
223
        exit(1);
224
    }
225

    
226
    /* RTAS */
227
    ret = spapr_rtas_device_tree_setup(fdt, rtas_addr, rtas_size);
228
    if (ret < 0) {
229
        fprintf(stderr, "Couldn't set up RTAS device tree properties\n");
230
    }
231

    
232
    _FDT((fdt_pack(fdt)));
233

    
234
    *fdt_size = fdt_totalsize(fdt);
235

    
236
    return fdt;
237
}
238

    
239
static uint64_t translate_kernel_address(void *opaque, uint64_t addr)
240
{
241
    return (addr & 0x0fffffff) + KERNEL_LOAD_ADDR;
242
}
243

    
244
static void emulate_spapr_hypercall(CPUState *env)
245
{
246
    env->gpr[3] = spapr_hypercall(env, env->gpr[3], &env->gpr[4]);
247
}
248

    
249
/* pSeries LPAR / sPAPR hardware init */
250
static void ppc_spapr_init(ram_addr_t ram_size,
251
                           const char *boot_device,
252
                           const char *kernel_filename,
253
                           const char *kernel_cmdline,
254
                           const char *initrd_filename,
255
                           const char *cpu_model)
256
{
257
    CPUState *envs[MAX_CPUS];
258
    void *fdt, *htab;
259
    int i;
260
    ram_addr_t ram_offset;
261
    target_phys_addr_t fdt_addr, rtas_addr;
262
    uint32_t kernel_base, initrd_base;
263
    long kernel_size, initrd_size, htab_size, rtas_size;
264
    long pteg_shift = 17;
265
    int fdt_size;
266
    char *filename;
267
    int irq = 16;
268

    
269
    spapr = qemu_malloc(sizeof(*spapr));
270
    cpu_ppc_hypercall = emulate_spapr_hypercall;
271

    
272
    /* We place the device tree just below either the top of RAM, or
273
     * 2GB, so that it can be processed with 32-bit code if
274
     * necessary */
275
    fdt_addr = MIN(ram_size, 0x80000000) - FDT_MAX_SIZE;
276
    /* RTAS goes just below that */
277
    rtas_addr = fdt_addr - RTAS_MAX_SIZE;
278

    
279
    /* init CPUs */
280
    if (cpu_model == NULL) {
281
        cpu_model = "POWER7";
282
    }
283
    for (i = 0; i < smp_cpus; i++) {
284
        CPUState *env = cpu_init(cpu_model);
285

    
286
        if (!env) {
287
            fprintf(stderr, "Unable to find PowerPC CPU definition\n");
288
            exit(1);
289
        }
290
        /* Set time-base frequency to 512 MHz */
291
        cpu_ppc_tb_init(env, TIMEBASE_FREQ);
292
        qemu_register_reset((QEMUResetHandler *)&cpu_reset, env);
293

    
294
        env->hreset_vector = 0x60;
295
        env->hreset_excp_prefix = 0;
296
        env->gpr[3] = i;
297

    
298
        envs[i] = env;
299
    }
300

    
301
    /* allocate RAM */
302
    ram_offset = qemu_ram_alloc(NULL, "ppc_spapr.ram", ram_size);
303
    cpu_register_physical_memory(0, ram_size, ram_offset);
304

    
305
    /* allocate hash page table.  For now we always make this 16mb,
306
     * later we should probably make it scale to the size of guest
307
     * RAM */
308
    htab_size = 1ULL << (pteg_shift + 7);
309
    htab = qemu_mallocz(htab_size);
310

    
311
    for (i = 0; i < smp_cpus; i++) {
312
        envs[i]->external_htab = htab;
313
        envs[i]->htab_base = -1;
314
        envs[i]->htab_mask = htab_size - 1;
315
    }
316

    
317
    filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, "spapr-rtas.bin");
318
    rtas_size = load_image_targphys(filename, rtas_addr, ram_size - rtas_addr);
319
    if (rtas_size < 0) {
320
        hw_error("qemu: could not load LPAR rtas '%s'\n", filename);
321
        exit(1);
322
    }
323
    qemu_free(filename);
324

    
325
    /* Set up Interrupt Controller */
326
    spapr->icp = xics_system_init(smp_cpus, envs, XICS_IRQS);
327

    
328
    /* Set up VIO bus */
329
    spapr->vio_bus = spapr_vio_bus_init();
330

    
331
    for (i = 0; i < MAX_SERIAL_PORTS; i++, irq++) {
332
        if (serial_hds[i]) {
333
            spapr_vty_create(spapr->vio_bus, i, serial_hds[i],
334
                             xics_find_qirq(spapr->icp, irq), irq);
335
        }
336
    }
337

    
338
    for (i = 0; i < nb_nics; i++, irq++) {
339
        NICInfo *nd = &nd_table[i];
340

    
341
        if (!nd->model) {
342
            nd->model = qemu_strdup("ibmveth");
343
        }
344

    
345
        if (strcmp(nd->model, "ibmveth") == 0) {
346
            spapr_vlan_create(spapr->vio_bus, 0x1000 + i, nd,
347
                              xics_find_qirq(spapr->icp, irq), irq);
348
        } else {
349
            fprintf(stderr, "pSeries (sPAPR) platform does not support "
350
                    "NIC model '%s' (only ibmveth is supported)\n",
351
                    nd->model);
352
            exit(1);
353
        }
354
    }
355

    
356
    if (kernel_filename) {
357
        uint64_t lowaddr = 0;
358

    
359
        kernel_base = KERNEL_LOAD_ADDR;
360

    
361
        kernel_size = load_elf(kernel_filename, translate_kernel_address, NULL,
362
                               NULL, &lowaddr, NULL, 1, ELF_MACHINE, 0);
363
        if (kernel_size < 0) {
364
            kernel_size = load_image_targphys(kernel_filename, kernel_base,
365
                                              ram_size - kernel_base);
366
        }
367
        if (kernel_size < 0) {
368
            fprintf(stderr, "qemu: could not load kernel '%s'\n",
369
                    kernel_filename);
370
            exit(1);
371
        }
372

    
373
        /* load initrd */
374
        if (initrd_filename) {
375
            initrd_base = INITRD_LOAD_ADDR;
376
            initrd_size = load_image_targphys(initrd_filename, initrd_base,
377
                                              ram_size - initrd_base);
378
            if (initrd_size < 0) {
379
                fprintf(stderr, "qemu: could not load initial ram disk '%s'\n",
380
                        initrd_filename);
381
                exit(1);
382
            }
383
        } else {
384
            initrd_base = 0;
385
            initrd_size = 0;
386
        }
387
    } else {
388
        fprintf(stderr, "pSeries machine needs -kernel for now");
389
        exit(1);
390
    }
391

    
392
    /* Prepare the device tree */
393
    fdt = spapr_create_fdt(&fdt_size, ram_size, cpu_model, envs, spapr,
394
                           initrd_base, initrd_size, kernel_cmdline,
395
                           rtas_addr, rtas_size, pteg_shift + 7);
396
    assert(fdt != NULL);
397

    
398
    cpu_physical_memory_write(fdt_addr, fdt, fdt_size);
399

    
400
    qemu_free(fdt);
401

    
402
    envs[0]->gpr[3] = fdt_addr;
403
    envs[0]->gpr[5] = 0;
404
    envs[0]->hreset_vector = kernel_base;
405
}
406

    
407
static QEMUMachine spapr_machine = {
408
    .name = "pseries",
409
    .desc = "pSeries Logical Partition (PAPR compliant)",
410
    .init = ppc_spapr_init,
411
    .max_cpus = MAX_CPUS,
412
    .no_vga = 1,
413
    .no_parallel = 1,
414
};
415

    
416
static void spapr_machine_init(void)
417
{
418
    qemu_register_machine(&spapr_machine);
419
}
420

    
421
machine_init(spapr_machine_init);