Statistics
| Branch: | Revision:

root / hw / omap1.c @ 8da3ff18

History | View | Annotate | Download (131.5 kB)

1
/*
2
 * TI OMAP processors emulation.
3
 *
4
 * Copyright (C) 2006-2008 Andrzej Zaborowski  <balrog@zabor.org>
5
 *
6
 * This program is free software; you can redistribute it and/or
7
 * modify it under the terms of the GNU General Public License as
8
 * published by the Free Software Foundation; either version 2 or
9
 * (at your option) version 3 of the License.
10
 *
11
 * This program is distributed in the hope that it will be useful,
12
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14
 * GNU General Public License for more details.
15
 *
16
 * You should have received a copy of the GNU General Public License
17
 * along with this program; if not, write to the Free Software
18
 * Foundation, Inc., 59 Temple Place, Suite 330, Boston,
19
 * MA 02111-1307 USA
20
 */
21
#include "hw.h"
22
#include "arm-misc.h"
23
#include "omap.h"
24
#include "sysemu.h"
25
#include "qemu-timer.h"
26
#include "qemu-char.h"
27
#include "soc_dma.h"
28
/* We use pc-style serial ports.  */
29
#include "pc.h"
30

    
31
/* Should signal the TCMI/GPMC */
32
uint32_t omap_badwidth_read8(void *opaque, target_phys_addr_t addr)
33
{
34
    uint8_t ret;
35

    
36
    OMAP_8B_REG(addr);
37
    cpu_physical_memory_read(addr, (void *) &ret, 1);
38
    return ret;
39
}
40

    
41
void omap_badwidth_write8(void *opaque, target_phys_addr_t addr,
42
                uint32_t value)
43
{
44
    uint8_t val8 = value;
45

    
46
    OMAP_8B_REG(addr);
47
    cpu_physical_memory_write(addr, (void *) &val8, 1);
48
}
49

    
50
uint32_t omap_badwidth_read16(void *opaque, target_phys_addr_t addr)
51
{
52
    uint16_t ret;
53

    
54
    OMAP_16B_REG(addr);
55
    cpu_physical_memory_read(addr, (void *) &ret, 2);
56
    return ret;
57
}
58

    
59
void omap_badwidth_write16(void *opaque, target_phys_addr_t addr,
60
                uint32_t value)
61
{
62
    uint16_t val16 = value;
63

    
64
    OMAP_16B_REG(addr);
65
    cpu_physical_memory_write(addr, (void *) &val16, 2);
66
}
67

    
68
uint32_t omap_badwidth_read32(void *opaque, target_phys_addr_t addr)
69
{
70
    uint32_t ret;
71

    
72
    OMAP_32B_REG(addr);
73
    cpu_physical_memory_read(addr, (void *) &ret, 4);
74
    return ret;
75
}
76

    
77
void omap_badwidth_write32(void *opaque, target_phys_addr_t addr,
78
                uint32_t value)
79
{
80
    OMAP_32B_REG(addr);
81
    cpu_physical_memory_write(addr, (void *) &value, 4);
82
}
83

    
84
/* Interrupt Handlers */
85
struct omap_intr_handler_bank_s {
86
    uint32_t irqs;
87
    uint32_t inputs;
88
    uint32_t mask;
89
    uint32_t fiq;
90
    uint32_t sens_edge;
91
    uint32_t swi;
92
    unsigned char priority[32];
93
};
94

    
95
struct omap_intr_handler_s {
96
    qemu_irq *pins;
97
    qemu_irq parent_intr[2];
98
    unsigned char nbanks;
99
    int level_only;
100

    
101
    /* state */
102
    uint32_t new_agr[2];
103
    int sir_intr[2];
104
    int autoidle;
105
    uint32_t mask;
106
    struct omap_intr_handler_bank_s bank[];
107
};
108

    
109
static void omap_inth_sir_update(struct omap_intr_handler_s *s, int is_fiq)
110
{
111
    int i, j, sir_intr, p_intr, p, f;
112
    uint32_t level;
113
    sir_intr = 0;
114
    p_intr = 255;
115

    
116
    /* Find the interrupt line with the highest dynamic priority.
117
     * Note: 0 denotes the hightest priority.
118
     * If all interrupts have the same priority, the default order is IRQ_N,
119
     * IRQ_N-1,...,IRQ_0. */
120
    for (j = 0; j < s->nbanks; ++j) {
121
        level = s->bank[j].irqs & ~s->bank[j].mask &
122
                (is_fiq ? s->bank[j].fiq : ~s->bank[j].fiq);
123
        for (f = ffs(level), i = f - 1, level >>= f - 1; f; i += f,
124
                        level >>= f) {
125
            p = s->bank[j].priority[i];
126
            if (p <= p_intr) {
127
                p_intr = p;
128
                sir_intr = 32 * j + i;
129
            }
130
            f = ffs(level >> 1);
131
        }
132
    }
133
    s->sir_intr[is_fiq] = sir_intr;
134
}
135

    
136
static inline void omap_inth_update(struct omap_intr_handler_s *s, int is_fiq)
137
{
138
    int i;
139
    uint32_t has_intr = 0;
140

    
141
    for (i = 0; i < s->nbanks; ++i)
142
        has_intr |= s->bank[i].irqs & ~s->bank[i].mask &
143
                (is_fiq ? s->bank[i].fiq : ~s->bank[i].fiq);
144

    
145
    if (s->new_agr[is_fiq] & has_intr & s->mask) {
146
        s->new_agr[is_fiq] = 0;
147
        omap_inth_sir_update(s, is_fiq);
148
        qemu_set_irq(s->parent_intr[is_fiq], 1);
149
    }
150
}
151

    
152
#define INT_FALLING_EDGE        0
153
#define INT_LOW_LEVEL                1
154

    
155
static void omap_set_intr(void *opaque, int irq, int req)
156
{
157
    struct omap_intr_handler_s *ih = (struct omap_intr_handler_s *) opaque;
158
    uint32_t rise;
159

    
160
    struct omap_intr_handler_bank_s *bank = &ih->bank[irq >> 5];
161
    int n = irq & 31;
162

    
163
    if (req) {
164
        rise = ~bank->irqs & (1 << n);
165
        if (~bank->sens_edge & (1 << n))
166
            rise &= ~bank->inputs;
167

    
168
        bank->inputs |= (1 << n);
169
        if (rise) {
170
            bank->irqs |= rise;
171
            omap_inth_update(ih, 0);
172
            omap_inth_update(ih, 1);
173
        }
174
    } else {
175
        rise = bank->sens_edge & bank->irqs & (1 << n);
176
        bank->irqs &= ~rise;
177
        bank->inputs &= ~(1 << n);
178
    }
179
}
180

    
181
/* Simplified version with no edge detection */
182
static void omap_set_intr_noedge(void *opaque, int irq, int req)
183
{
184
    struct omap_intr_handler_s *ih = (struct omap_intr_handler_s *) opaque;
185
    uint32_t rise;
186

    
187
    struct omap_intr_handler_bank_s *bank = &ih->bank[irq >> 5];
188
    int n = irq & 31;
189

    
190
    if (req) {
191
        rise = ~bank->inputs & (1 << n);
192
        if (rise) {
193
            bank->irqs |= bank->inputs |= rise;
194
            omap_inth_update(ih, 0);
195
            omap_inth_update(ih, 1);
196
        }
197
    } else
198
        bank->irqs = (bank->inputs &= ~(1 << n)) | bank->swi;
199
}
200

    
201
static uint32_t omap_inth_read(void *opaque, target_phys_addr_t addr)
202
{
203
    struct omap_intr_handler_s *s = (struct omap_intr_handler_s *) opaque;
204
    int i, offset = addr;
205
    int bank_no = offset >> 8;
206
    int line_no;
207
    struct omap_intr_handler_bank_s *bank = &s->bank[bank_no];
208
    offset &= 0xff;
209

    
210
    switch (offset) {
211
    case 0x00:        /* ITR */
212
        return bank->irqs;
213

    
214
    case 0x04:        /* MIR */
215
        return bank->mask;
216

    
217
    case 0x10:        /* SIR_IRQ_CODE */
218
    case 0x14:  /* SIR_FIQ_CODE */
219
        if (bank_no != 0)
220
            break;
221
        line_no = s->sir_intr[(offset - 0x10) >> 2];
222
        bank = &s->bank[line_no >> 5];
223
        i = line_no & 31;
224
        if (((bank->sens_edge >> i) & 1) == INT_FALLING_EDGE)
225
            bank->irqs &= ~(1 << i);
226
        return line_no;
227

    
228
    case 0x18:        /* CONTROL_REG */
229
        if (bank_no != 0)
230
            break;
231
        return 0;
232

    
233
    case 0x1c:        /* ILR0 */
234
    case 0x20:        /* ILR1 */
235
    case 0x24:        /* ILR2 */
236
    case 0x28:        /* ILR3 */
237
    case 0x2c:        /* ILR4 */
238
    case 0x30:        /* ILR5 */
239
    case 0x34:        /* ILR6 */
240
    case 0x38:        /* ILR7 */
241
    case 0x3c:        /* ILR8 */
242
    case 0x40:        /* ILR9 */
243
    case 0x44:        /* ILR10 */
244
    case 0x48:        /* ILR11 */
245
    case 0x4c:        /* ILR12 */
246
    case 0x50:        /* ILR13 */
247
    case 0x54:        /* ILR14 */
248
    case 0x58:        /* ILR15 */
249
    case 0x5c:        /* ILR16 */
250
    case 0x60:        /* ILR17 */
251
    case 0x64:        /* ILR18 */
252
    case 0x68:        /* ILR19 */
253
    case 0x6c:        /* ILR20 */
254
    case 0x70:        /* ILR21 */
255
    case 0x74:        /* ILR22 */
256
    case 0x78:        /* ILR23 */
257
    case 0x7c:        /* ILR24 */
258
    case 0x80:        /* ILR25 */
259
    case 0x84:        /* ILR26 */
260
    case 0x88:        /* ILR27 */
261
    case 0x8c:        /* ILR28 */
262
    case 0x90:        /* ILR29 */
263
    case 0x94:        /* ILR30 */
264
    case 0x98:        /* ILR31 */
265
        i = (offset - 0x1c) >> 2;
266
        return (bank->priority[i] << 2) |
267
                (((bank->sens_edge >> i) & 1) << 1) |
268
                ((bank->fiq >> i) & 1);
269

    
270
    case 0x9c:        /* ISR */
271
        return 0x00000000;
272

    
273
    }
274
    OMAP_BAD_REG(addr);
275
    return 0;
276
}
277

    
278
static void omap_inth_write(void *opaque, target_phys_addr_t addr,
279
                uint32_t value)
280
{
281
    struct omap_intr_handler_s *s = (struct omap_intr_handler_s *) opaque;
282
    int i, offset = addr;
283
    int bank_no = offset >> 8;
284
    struct omap_intr_handler_bank_s *bank = &s->bank[bank_no];
285
    offset &= 0xff;
286

    
287
    switch (offset) {
288
    case 0x00:        /* ITR */
289
        /* Important: ignore the clearing if the IRQ is level-triggered and
290
           the input bit is 1 */
291
        bank->irqs &= value | (bank->inputs & bank->sens_edge);
292
        return;
293

    
294
    case 0x04:        /* MIR */
295
        bank->mask = value;
296
        omap_inth_update(s, 0);
297
        omap_inth_update(s, 1);
298
        return;
299

    
300
    case 0x10:        /* SIR_IRQ_CODE */
301
    case 0x14:        /* SIR_FIQ_CODE */
302
        OMAP_RO_REG(addr);
303
        break;
304

    
305
    case 0x18:        /* CONTROL_REG */
306
        if (bank_no != 0)
307
            break;
308
        if (value & 2) {
309
            qemu_set_irq(s->parent_intr[1], 0);
310
            s->new_agr[1] = ~0;
311
            omap_inth_update(s, 1);
312
        }
313
        if (value & 1) {
314
            qemu_set_irq(s->parent_intr[0], 0);
315
            s->new_agr[0] = ~0;
316
            omap_inth_update(s, 0);
317
        }
318
        return;
319

    
320
    case 0x1c:        /* ILR0 */
321
    case 0x20:        /* ILR1 */
322
    case 0x24:        /* ILR2 */
323
    case 0x28:        /* ILR3 */
324
    case 0x2c:        /* ILR4 */
325
    case 0x30:        /* ILR5 */
326
    case 0x34:        /* ILR6 */
327
    case 0x38:        /* ILR7 */
328
    case 0x3c:        /* ILR8 */
329
    case 0x40:        /* ILR9 */
330
    case 0x44:        /* ILR10 */
331
    case 0x48:        /* ILR11 */
332
    case 0x4c:        /* ILR12 */
333
    case 0x50:        /* ILR13 */
334
    case 0x54:        /* ILR14 */
335
    case 0x58:        /* ILR15 */
336
    case 0x5c:        /* ILR16 */
337
    case 0x60:        /* ILR17 */
338
    case 0x64:        /* ILR18 */
339
    case 0x68:        /* ILR19 */
340
    case 0x6c:        /* ILR20 */
341
    case 0x70:        /* ILR21 */
342
    case 0x74:        /* ILR22 */
343
    case 0x78:        /* ILR23 */
344
    case 0x7c:        /* ILR24 */
345
    case 0x80:        /* ILR25 */
346
    case 0x84:        /* ILR26 */
347
    case 0x88:        /* ILR27 */
348
    case 0x8c:        /* ILR28 */
349
    case 0x90:        /* ILR29 */
350
    case 0x94:        /* ILR30 */
351
    case 0x98:        /* ILR31 */
352
        i = (offset - 0x1c) >> 2;
353
        bank->priority[i] = (value >> 2) & 0x1f;
354
        bank->sens_edge &= ~(1 << i);
355
        bank->sens_edge |= ((value >> 1) & 1) << i;
356
        bank->fiq &= ~(1 << i);
357
        bank->fiq |= (value & 1) << i;
358
        return;
359

    
360
    case 0x9c:        /* ISR */
361
        for (i = 0; i < 32; i ++)
362
            if (value & (1 << i)) {
363
                omap_set_intr(s, 32 * bank_no + i, 1);
364
                return;
365
            }
366
        return;
367
    }
368
    OMAP_BAD_REG(addr);
369
}
370

    
371
static CPUReadMemoryFunc *omap_inth_readfn[] = {
372
    omap_badwidth_read32,
373
    omap_badwidth_read32,
374
    omap_inth_read,
375
};
376

    
377
static CPUWriteMemoryFunc *omap_inth_writefn[] = {
378
    omap_inth_write,
379
    omap_inth_write,
380
    omap_inth_write,
381
};
382

    
383
void omap_inth_reset(struct omap_intr_handler_s *s)
384
{
385
    int i;
386

    
387
    for (i = 0; i < s->nbanks; ++i){
388
        s->bank[i].irqs = 0x00000000;
389
        s->bank[i].mask = 0xffffffff;
390
        s->bank[i].sens_edge = 0x00000000;
391
        s->bank[i].fiq = 0x00000000;
392
        s->bank[i].inputs = 0x00000000;
393
        s->bank[i].swi = 0x00000000;
394
        memset(s->bank[i].priority, 0, sizeof(s->bank[i].priority));
395

    
396
        if (s->level_only)
397
            s->bank[i].sens_edge = 0xffffffff;
398
    }
399

    
400
    s->new_agr[0] = ~0;
401
    s->new_agr[1] = ~0;
402
    s->sir_intr[0] = 0;
403
    s->sir_intr[1] = 0;
404
    s->autoidle = 0;
405
    s->mask = ~0;
406

    
407
    qemu_set_irq(s->parent_intr[0], 0);
408
    qemu_set_irq(s->parent_intr[1], 0);
409
}
410

    
411
struct omap_intr_handler_s *omap_inth_init(target_phys_addr_t base,
412
                unsigned long size, unsigned char nbanks, qemu_irq **pins,
413
                qemu_irq parent_irq, qemu_irq parent_fiq, omap_clk clk)
414
{
415
    int iomemtype;
416
    struct omap_intr_handler_s *s = (struct omap_intr_handler_s *)
417
            qemu_mallocz(sizeof(struct omap_intr_handler_s) +
418
                            sizeof(struct omap_intr_handler_bank_s) * nbanks);
419

    
420
    s->parent_intr[0] = parent_irq;
421
    s->parent_intr[1] = parent_fiq;
422
    s->nbanks = nbanks;
423
    s->pins = qemu_allocate_irqs(omap_set_intr, s, nbanks * 32);
424
    if (pins)
425
        *pins = s->pins;
426

    
427
    omap_inth_reset(s);
428

    
429
    iomemtype = cpu_register_io_memory(0, omap_inth_readfn,
430
                    omap_inth_writefn, s);
431
    cpu_register_physical_memory(base, size, iomemtype);
432

    
433
    return s;
434
}
435

    
436
static uint32_t omap2_inth_read(void *opaque, target_phys_addr_t addr)
437
{
438
    struct omap_intr_handler_s *s = (struct omap_intr_handler_s *) opaque;
439
    int offset = addr;
440
    int bank_no, line_no;
441
    struct omap_intr_handler_bank_s *bank = 0;
442

    
443
    if ((offset & 0xf80) == 0x80) {
444
        bank_no = (offset & 0x60) >> 5;
445
        if (bank_no < s->nbanks) {
446
            offset &= ~0x60;
447
            bank = &s->bank[bank_no];
448
        }
449
    }
450

    
451
    switch (offset) {
452
    case 0x00:        /* INTC_REVISION */
453
        return 0x21;
454

    
455
    case 0x10:        /* INTC_SYSCONFIG */
456
        return (s->autoidle >> 2) & 1;
457

    
458
    case 0x14:        /* INTC_SYSSTATUS */
459
        return 1;                                                /* RESETDONE */
460

    
461
    case 0x40:        /* INTC_SIR_IRQ */
462
        return s->sir_intr[0];
463

    
464
    case 0x44:        /* INTC_SIR_FIQ */
465
        return s->sir_intr[1];
466

    
467
    case 0x48:        /* INTC_CONTROL */
468
        return (!s->mask) << 2;                                        /* GLOBALMASK */
469

    
470
    case 0x4c:        /* INTC_PROTECTION */
471
        return 0;
472

    
473
    case 0x50:        /* INTC_IDLE */
474
        return s->autoidle & 3;
475

    
476
    /* Per-bank registers */
477
    case 0x80:        /* INTC_ITR */
478
        return bank->inputs;
479

    
480
    case 0x84:        /* INTC_MIR */
481
        return bank->mask;
482

    
483
    case 0x88:        /* INTC_MIR_CLEAR */
484
    case 0x8c:        /* INTC_MIR_SET */
485
        return 0;
486

    
487
    case 0x90:        /* INTC_ISR_SET */
488
        return bank->swi;
489

    
490
    case 0x94:        /* INTC_ISR_CLEAR */
491
        return 0;
492

    
493
    case 0x98:        /* INTC_PENDING_IRQ */
494
        return bank->irqs & ~bank->mask & ~bank->fiq;
495

    
496
    case 0x9c:        /* INTC_PENDING_FIQ */
497
        return bank->irqs & ~bank->mask & bank->fiq;
498

    
499
    /* Per-line registers */
500
    case 0x100 ... 0x300:        /* INTC_ILR */
501
        bank_no = (offset - 0x100) >> 7;
502
        if (bank_no > s->nbanks)
503
            break;
504
        bank = &s->bank[bank_no];
505
        line_no = (offset & 0x7f) >> 2;
506
        return (bank->priority[line_no] << 2) |
507
                ((bank->fiq >> line_no) & 1);
508
    }
509
    OMAP_BAD_REG(addr);
510
    return 0;
511
}
512

    
513
static void omap2_inth_write(void *opaque, target_phys_addr_t addr,
514
                uint32_t value)
515
{
516
    struct omap_intr_handler_s *s = (struct omap_intr_handler_s *) opaque;
517
    int offset = addr;
518
    int bank_no, line_no;
519
    struct omap_intr_handler_bank_s *bank = 0;
520

    
521
    if ((offset & 0xf80) == 0x80) {
522
        bank_no = (offset & 0x60) >> 5;
523
        if (bank_no < s->nbanks) {
524
            offset &= ~0x60;
525
            bank = &s->bank[bank_no];
526
        }
527
    }
528

    
529
    switch (offset) {
530
    case 0x10:        /* INTC_SYSCONFIG */
531
        s->autoidle &= 4;
532
        s->autoidle |= (value & 1) << 2;
533
        if (value & 2)                                                /* SOFTRESET */
534
            omap_inth_reset(s);
535
        return;
536

    
537
    case 0x48:        /* INTC_CONTROL */
538
        s->mask = (value & 4) ? 0 : ~0;                                /* GLOBALMASK */
539
        if (value & 2) {                                        /* NEWFIQAGR */
540
            qemu_set_irq(s->parent_intr[1], 0);
541
            s->new_agr[1] = ~0;
542
            omap_inth_update(s, 1);
543
        }
544
        if (value & 1) {                                        /* NEWIRQAGR */
545
            qemu_set_irq(s->parent_intr[0], 0);
546
            s->new_agr[0] = ~0;
547
            omap_inth_update(s, 0);
548
        }
549
        return;
550

    
551
    case 0x4c:        /* INTC_PROTECTION */
552
        /* TODO: Make a bitmap (or sizeof(char)map) of access privileges
553
         * for every register, see Chapter 3 and 4 for privileged mode.  */
554
        if (value & 1)
555
            fprintf(stderr, "%s: protection mode enable attempt\n",
556
                            __FUNCTION__);
557
        return;
558

    
559
    case 0x50:        /* INTC_IDLE */
560
        s->autoidle &= ~3;
561
        s->autoidle |= value & 3;
562
        return;
563

    
564
    /* Per-bank registers */
565
    case 0x84:        /* INTC_MIR */
566
        bank->mask = value;
567
        omap_inth_update(s, 0);
568
        omap_inth_update(s, 1);
569
        return;
570

    
571
    case 0x88:        /* INTC_MIR_CLEAR */
572
        bank->mask &= ~value;
573
        omap_inth_update(s, 0);
574
        omap_inth_update(s, 1);
575
        return;
576

    
577
    case 0x8c:        /* INTC_MIR_SET */
578
        bank->mask |= value;
579
        return;
580

    
581
    case 0x90:        /* INTC_ISR_SET */
582
        bank->irqs |= bank->swi |= value;
583
        omap_inth_update(s, 0);
584
        omap_inth_update(s, 1);
585
        return;
586

    
587
    case 0x94:        /* INTC_ISR_CLEAR */
588
        bank->swi &= ~value;
589
        bank->irqs = bank->swi & bank->inputs;
590
        return;
591

    
592
    /* Per-line registers */
593
    case 0x100 ... 0x300:        /* INTC_ILR */
594
        bank_no = (offset - 0x100) >> 7;
595
        if (bank_no > s->nbanks)
596
            break;
597
        bank = &s->bank[bank_no];
598
        line_no = (offset & 0x7f) >> 2;
599
        bank->priority[line_no] = (value >> 2) & 0x3f;
600
        bank->fiq &= ~(1 << line_no);
601
        bank->fiq |= (value & 1) << line_no;
602
        return;
603

    
604
    case 0x00:        /* INTC_REVISION */
605
    case 0x14:        /* INTC_SYSSTATUS */
606
    case 0x40:        /* INTC_SIR_IRQ */
607
    case 0x44:        /* INTC_SIR_FIQ */
608
    case 0x80:        /* INTC_ITR */
609
    case 0x98:        /* INTC_PENDING_IRQ */
610
    case 0x9c:        /* INTC_PENDING_FIQ */
611
        OMAP_RO_REG(addr);
612
        return;
613
    }
614
    OMAP_BAD_REG(addr);
615
}
616

    
617
static CPUReadMemoryFunc *omap2_inth_readfn[] = {
618
    omap_badwidth_read32,
619
    omap_badwidth_read32,
620
    omap2_inth_read,
621
};
622

    
623
static CPUWriteMemoryFunc *omap2_inth_writefn[] = {
624
    omap2_inth_write,
625
    omap2_inth_write,
626
    omap2_inth_write,
627
};
628

    
629
struct omap_intr_handler_s *omap2_inth_init(target_phys_addr_t base,
630
                int size, int nbanks, qemu_irq **pins,
631
                qemu_irq parent_irq, qemu_irq parent_fiq,
632
                omap_clk fclk, omap_clk iclk)
633
{
634
    int iomemtype;
635
    struct omap_intr_handler_s *s = (struct omap_intr_handler_s *)
636
            qemu_mallocz(sizeof(struct omap_intr_handler_s) +
637
                            sizeof(struct omap_intr_handler_bank_s) * nbanks);
638

    
639
    s->parent_intr[0] = parent_irq;
640
    s->parent_intr[1] = parent_fiq;
641
    s->nbanks = nbanks;
642
    s->level_only = 1;
643
    s->pins = qemu_allocate_irqs(omap_set_intr_noedge, s, nbanks * 32);
644
    if (pins)
645
        *pins = s->pins;
646

    
647
    omap_inth_reset(s);
648

    
649
    iomemtype = cpu_register_io_memory(0, omap2_inth_readfn,
650
                    omap2_inth_writefn, s);
651
    cpu_register_physical_memory(base, size, iomemtype);
652

    
653
    return s;
654
}
655

    
656
/* MPU OS timers */
657
struct omap_mpu_timer_s {
658
    qemu_irq irq;
659
    omap_clk clk;
660
    uint32_t val;
661
    int64_t time;
662
    QEMUTimer *timer;
663
    QEMUBH *tick;
664
    int64_t rate;
665
    int it_ena;
666

    
667
    int enable;
668
    int ptv;
669
    int ar;
670
    int st;
671
    uint32_t reset_val;
672
};
673

    
674
static inline uint32_t omap_timer_read(struct omap_mpu_timer_s *timer)
675
{
676
    uint64_t distance = qemu_get_clock(vm_clock) - timer->time;
677

    
678
    if (timer->st && timer->enable && timer->rate)
679
        return timer->val - muldiv64(distance >> (timer->ptv + 1),
680
                        timer->rate, ticks_per_sec);
681
    else
682
        return timer->val;
683
}
684

    
685
static inline void omap_timer_sync(struct omap_mpu_timer_s *timer)
686
{
687
    timer->val = omap_timer_read(timer);
688
    timer->time = qemu_get_clock(vm_clock);
689
}
690

    
691
static inline void omap_timer_update(struct omap_mpu_timer_s *timer)
692
{
693
    int64_t expires;
694

    
695
    if (timer->enable && timer->st && timer->rate) {
696
        timer->val = timer->reset_val;        /* Should skip this on clk enable */
697
        expires = muldiv64((uint64_t) timer->val << (timer->ptv + 1),
698
                        ticks_per_sec, timer->rate);
699

    
700
        /* If timer expiry would be sooner than in about 1 ms and
701
         * auto-reload isn't set, then fire immediately.  This is a hack
702
         * to make systems like PalmOS run in acceptable time.  PalmOS
703
         * sets the interval to a very low value and polls the status bit
704
         * in a busy loop when it wants to sleep just a couple of CPU
705
         * ticks.  */
706
        if (expires > (ticks_per_sec >> 10) || timer->ar)
707
            qemu_mod_timer(timer->timer, timer->time + expires);
708
        else
709
            qemu_bh_schedule(timer->tick);
710
    } else
711
        qemu_del_timer(timer->timer);
712
}
713

    
714
static void omap_timer_fire(void *opaque)
715
{
716
    struct omap_mpu_timer_s *timer = opaque;
717

    
718
    if (!timer->ar) {
719
        timer->val = 0;
720
        timer->st = 0;
721
    }
722

    
723
    if (timer->it_ena)
724
        /* Edge-triggered irq */
725
        qemu_irq_pulse(timer->irq);
726
}
727

    
728
static void omap_timer_tick(void *opaque)
729
{
730
    struct omap_mpu_timer_s *timer = (struct omap_mpu_timer_s *) opaque;
731

    
732
    omap_timer_sync(timer);
733
    omap_timer_fire(timer);
734
    omap_timer_update(timer);
735
}
736

    
737
static void omap_timer_clk_update(void *opaque, int line, int on)
738
{
739
    struct omap_mpu_timer_s *timer = (struct omap_mpu_timer_s *) opaque;
740

    
741
    omap_timer_sync(timer);
742
    timer->rate = on ? omap_clk_getrate(timer->clk) : 0;
743
    omap_timer_update(timer);
744
}
745

    
746
static void omap_timer_clk_setup(struct omap_mpu_timer_s *timer)
747
{
748
    omap_clk_adduser(timer->clk,
749
                    qemu_allocate_irqs(omap_timer_clk_update, timer, 1)[0]);
750
    timer->rate = omap_clk_getrate(timer->clk);
751
}
752

    
753
static uint32_t omap_mpu_timer_read(void *opaque, target_phys_addr_t addr)
754
{
755
    struct omap_mpu_timer_s *s = (struct omap_mpu_timer_s *) opaque;
756

    
757
    switch (addr) {
758
    case 0x00:        /* CNTL_TIMER */
759
        return (s->enable << 5) | (s->ptv << 2) | (s->ar << 1) | s->st;
760

    
761
    case 0x04:        /* LOAD_TIM */
762
        break;
763

    
764
    case 0x08:        /* READ_TIM */
765
        return omap_timer_read(s);
766
    }
767

    
768
    OMAP_BAD_REG(addr);
769
    return 0;
770
}
771

    
772
static void omap_mpu_timer_write(void *opaque, target_phys_addr_t addr,
773
                uint32_t value)
774
{
775
    struct omap_mpu_timer_s *s = (struct omap_mpu_timer_s *) opaque;
776

    
777
    switch (addr) {
778
    case 0x00:        /* CNTL_TIMER */
779
        omap_timer_sync(s);
780
        s->enable = (value >> 5) & 1;
781
        s->ptv = (value >> 2) & 7;
782
        s->ar = (value >> 1) & 1;
783
        s->st = value & 1;
784
        omap_timer_update(s);
785
        return;
786

    
787
    case 0x04:        /* LOAD_TIM */
788
        s->reset_val = value;
789
        return;
790

    
791
    case 0x08:        /* READ_TIM */
792
        OMAP_RO_REG(addr);
793
        break;
794

    
795
    default:
796
        OMAP_BAD_REG(addr);
797
    }
798
}
799

    
800
static CPUReadMemoryFunc *omap_mpu_timer_readfn[] = {
801
    omap_badwidth_read32,
802
    omap_badwidth_read32,
803
    omap_mpu_timer_read,
804
};
805

    
806
static CPUWriteMemoryFunc *omap_mpu_timer_writefn[] = {
807
    omap_badwidth_write32,
808
    omap_badwidth_write32,
809
    omap_mpu_timer_write,
810
};
811

    
812
static void omap_mpu_timer_reset(struct omap_mpu_timer_s *s)
813
{
814
    qemu_del_timer(s->timer);
815
    s->enable = 0;
816
    s->reset_val = 31337;
817
    s->val = 0;
818
    s->ptv = 0;
819
    s->ar = 0;
820
    s->st = 0;
821
    s->it_ena = 1;
822
}
823

    
824
struct omap_mpu_timer_s *omap_mpu_timer_init(target_phys_addr_t base,
825
                qemu_irq irq, omap_clk clk)
826
{
827
    int iomemtype;
828
    struct omap_mpu_timer_s *s = (struct omap_mpu_timer_s *)
829
            qemu_mallocz(sizeof(struct omap_mpu_timer_s));
830

    
831
    s->irq = irq;
832
    s->clk = clk;
833
    s->timer = qemu_new_timer(vm_clock, omap_timer_tick, s);
834
    s->tick = qemu_bh_new(omap_timer_fire, s);
835
    omap_mpu_timer_reset(s);
836
    omap_timer_clk_setup(s);
837

    
838
    iomemtype = cpu_register_io_memory(0, omap_mpu_timer_readfn,
839
                    omap_mpu_timer_writefn, s);
840
    cpu_register_physical_memory(base, 0x100, iomemtype);
841

    
842
    return s;
843
}
844

    
845
/* Watchdog timer */
846
struct omap_watchdog_timer_s {
847
    struct omap_mpu_timer_s timer;
848
    uint8_t last_wr;
849
    int mode;
850
    int free;
851
    int reset;
852
};
853

    
854
static uint32_t omap_wd_timer_read(void *opaque, target_phys_addr_t addr)
855
{
856
    struct omap_watchdog_timer_s *s = (struct omap_watchdog_timer_s *) opaque;
857

    
858
    switch (addr) {
859
    case 0x00:        /* CNTL_TIMER */
860
        return (s->timer.ptv << 9) | (s->timer.ar << 8) |
861
                (s->timer.st << 7) | (s->free << 1);
862

    
863
    case 0x04:        /* READ_TIMER */
864
        return omap_timer_read(&s->timer);
865

    
866
    case 0x08:        /* TIMER_MODE */
867
        return s->mode << 15;
868
    }
869

    
870
    OMAP_BAD_REG(addr);
871
    return 0;
872
}
873

    
874
static void omap_wd_timer_write(void *opaque, target_phys_addr_t addr,
875
                uint32_t value)
876
{
877
    struct omap_watchdog_timer_s *s = (struct omap_watchdog_timer_s *) opaque;
878

    
879
    switch (addr) {
880
    case 0x00:        /* CNTL_TIMER */
881
        omap_timer_sync(&s->timer);
882
        s->timer.ptv = (value >> 9) & 7;
883
        s->timer.ar = (value >> 8) & 1;
884
        s->timer.st = (value >> 7) & 1;
885
        s->free = (value >> 1) & 1;
886
        omap_timer_update(&s->timer);
887
        break;
888

    
889
    case 0x04:        /* LOAD_TIMER */
890
        s->timer.reset_val = value & 0xffff;
891
        break;
892

    
893
    case 0x08:        /* TIMER_MODE */
894
        if (!s->mode && ((value >> 15) & 1))
895
            omap_clk_get(s->timer.clk);
896
        s->mode |= (value >> 15) & 1;
897
        if (s->last_wr == 0xf5) {
898
            if ((value & 0xff) == 0xa0) {
899
                if (s->mode) {
900
                    s->mode = 0;
901
                    omap_clk_put(s->timer.clk);
902
                }
903
            } else {
904
                /* XXX: on T|E hardware somehow this has no effect,
905
                 * on Zire 71 it works as specified.  */
906
                s->reset = 1;
907
                qemu_system_reset_request();
908
            }
909
        }
910
        s->last_wr = value & 0xff;
911
        break;
912

    
913
    default:
914
        OMAP_BAD_REG(addr);
915
    }
916
}
917

    
918
static CPUReadMemoryFunc *omap_wd_timer_readfn[] = {
919
    omap_badwidth_read16,
920
    omap_wd_timer_read,
921
    omap_badwidth_read16,
922
};
923

    
924
static CPUWriteMemoryFunc *omap_wd_timer_writefn[] = {
925
    omap_badwidth_write16,
926
    omap_wd_timer_write,
927
    omap_badwidth_write16,
928
};
929

    
930
static void omap_wd_timer_reset(struct omap_watchdog_timer_s *s)
931
{
932
    qemu_del_timer(s->timer.timer);
933
    if (!s->mode)
934
        omap_clk_get(s->timer.clk);
935
    s->mode = 1;
936
    s->free = 1;
937
    s->reset = 0;
938
    s->timer.enable = 1;
939
    s->timer.it_ena = 1;
940
    s->timer.reset_val = 0xffff;
941
    s->timer.val = 0;
942
    s->timer.st = 0;
943
    s->timer.ptv = 0;
944
    s->timer.ar = 0;
945
    omap_timer_update(&s->timer);
946
}
947

    
948
struct omap_watchdog_timer_s *omap_wd_timer_init(target_phys_addr_t base,
949
                qemu_irq irq, omap_clk clk)
950
{
951
    int iomemtype;
952
    struct omap_watchdog_timer_s *s = (struct omap_watchdog_timer_s *)
953
            qemu_mallocz(sizeof(struct omap_watchdog_timer_s));
954

    
955
    s->timer.irq = irq;
956
    s->timer.clk = clk;
957
    s->timer.timer = qemu_new_timer(vm_clock, omap_timer_tick, &s->timer);
958
    omap_wd_timer_reset(s);
959
    omap_timer_clk_setup(&s->timer);
960

    
961
    iomemtype = cpu_register_io_memory(0, omap_wd_timer_readfn,
962
                    omap_wd_timer_writefn, s);
963
    cpu_register_physical_memory(base, 0x100, iomemtype);
964

    
965
    return s;
966
}
967

    
968
/* 32-kHz timer */
969
struct omap_32khz_timer_s {
970
    struct omap_mpu_timer_s timer;
971
};
972

    
973
static uint32_t omap_os_timer_read(void *opaque, target_phys_addr_t addr)
974
{
975
    struct omap_32khz_timer_s *s = (struct omap_32khz_timer_s *) opaque;
976
    int offset = addr & OMAP_MPUI_REG_MASK;
977

    
978
    switch (offset) {
979
    case 0x00:        /* TVR */
980
        return s->timer.reset_val;
981

    
982
    case 0x04:        /* TCR */
983
        return omap_timer_read(&s->timer);
984

    
985
    case 0x08:        /* CR */
986
        return (s->timer.ar << 3) | (s->timer.it_ena << 2) | s->timer.st;
987

    
988
    default:
989
        break;
990
    }
991
    OMAP_BAD_REG(addr);
992
    return 0;
993
}
994

    
995
static void omap_os_timer_write(void *opaque, target_phys_addr_t addr,
996
                uint32_t value)
997
{
998
    struct omap_32khz_timer_s *s = (struct omap_32khz_timer_s *) opaque;
999
    int offset = addr & OMAP_MPUI_REG_MASK;
1000

    
1001
    switch (offset) {
1002
    case 0x00:        /* TVR */
1003
        s->timer.reset_val = value & 0x00ffffff;
1004
        break;
1005

    
1006
    case 0x04:        /* TCR */
1007
        OMAP_RO_REG(addr);
1008
        break;
1009

    
1010
    case 0x08:        /* CR */
1011
        s->timer.ar = (value >> 3) & 1;
1012
        s->timer.it_ena = (value >> 2) & 1;
1013
        if (s->timer.st != (value & 1) || (value & 2)) {
1014
            omap_timer_sync(&s->timer);
1015
            s->timer.enable = value & 1;
1016
            s->timer.st = value & 1;
1017
            omap_timer_update(&s->timer);
1018
        }
1019
        break;
1020

    
1021
    default:
1022
        OMAP_BAD_REG(addr);
1023
    }
1024
}
1025

    
1026
static CPUReadMemoryFunc *omap_os_timer_readfn[] = {
1027
    omap_badwidth_read32,
1028
    omap_badwidth_read32,
1029
    omap_os_timer_read,
1030
};
1031

    
1032
static CPUWriteMemoryFunc *omap_os_timer_writefn[] = {
1033
    omap_badwidth_write32,
1034
    omap_badwidth_write32,
1035
    omap_os_timer_write,
1036
};
1037

    
1038
static void omap_os_timer_reset(struct omap_32khz_timer_s *s)
1039
{
1040
    qemu_del_timer(s->timer.timer);
1041
    s->timer.enable = 0;
1042
    s->timer.it_ena = 0;
1043
    s->timer.reset_val = 0x00ffffff;
1044
    s->timer.val = 0;
1045
    s->timer.st = 0;
1046
    s->timer.ptv = 0;
1047
    s->timer.ar = 1;
1048
}
1049

    
1050
struct omap_32khz_timer_s *omap_os_timer_init(target_phys_addr_t base,
1051
                qemu_irq irq, omap_clk clk)
1052
{
1053
    int iomemtype;
1054
    struct omap_32khz_timer_s *s = (struct omap_32khz_timer_s *)
1055
            qemu_mallocz(sizeof(struct omap_32khz_timer_s));
1056

    
1057
    s->timer.irq = irq;
1058
    s->timer.clk = clk;
1059
    s->timer.timer = qemu_new_timer(vm_clock, omap_timer_tick, &s->timer);
1060
    omap_os_timer_reset(s);
1061
    omap_timer_clk_setup(&s->timer);
1062

    
1063
    iomemtype = cpu_register_io_memory(0, omap_os_timer_readfn,
1064
                    omap_os_timer_writefn, s);
1065
    cpu_register_physical_memory(base, 0x800, iomemtype);
1066

    
1067
    return s;
1068
}
1069

    
1070
/* Ultra Low-Power Device Module */
1071
static uint32_t omap_ulpd_pm_read(void *opaque, target_phys_addr_t addr)
1072
{
1073
    struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
1074
    uint16_t ret;
1075

    
1076
    switch (addr) {
1077
    case 0x14:        /* IT_STATUS */
1078
        ret = s->ulpd_pm_regs[addr >> 2];
1079
        s->ulpd_pm_regs[addr >> 2] = 0;
1080
        qemu_irq_lower(s->irq[1][OMAP_INT_GAUGE_32K]);
1081
        return ret;
1082

    
1083
    case 0x18:        /* Reserved */
1084
    case 0x1c:        /* Reserved */
1085
    case 0x20:        /* Reserved */
1086
    case 0x28:        /* Reserved */
1087
    case 0x2c:        /* Reserved */
1088
        OMAP_BAD_REG(addr);
1089
    case 0x00:        /* COUNTER_32_LSB */
1090
    case 0x04:        /* COUNTER_32_MSB */
1091
    case 0x08:        /* COUNTER_HIGH_FREQ_LSB */
1092
    case 0x0c:        /* COUNTER_HIGH_FREQ_MSB */
1093
    case 0x10:        /* GAUGING_CTRL */
1094
    case 0x24:        /* SETUP_ANALOG_CELL3_ULPD1 */
1095
    case 0x30:        /* CLOCK_CTRL */
1096
    case 0x34:        /* SOFT_REQ */
1097
    case 0x38:        /* COUNTER_32_FIQ */
1098
    case 0x3c:        /* DPLL_CTRL */
1099
    case 0x40:        /* STATUS_REQ */
1100
        /* XXX: check clk::usecount state for every clock */
1101
    case 0x48:        /* LOCL_TIME */
1102
    case 0x4c:        /* APLL_CTRL */
1103
    case 0x50:        /* POWER_CTRL */
1104
        return s->ulpd_pm_regs[addr >> 2];
1105
    }
1106

    
1107
    OMAP_BAD_REG(addr);
1108
    return 0;
1109
}
1110

    
1111
static inline void omap_ulpd_clk_update(struct omap_mpu_state_s *s,
1112
                uint16_t diff, uint16_t value)
1113
{
1114
    if (diff & (1 << 4))                                /* USB_MCLK_EN */
1115
        omap_clk_onoff(omap_findclk(s, "usb_clk0"), (value >> 4) & 1);
1116
    if (diff & (1 << 5))                                /* DIS_USB_PVCI_CLK */
1117
        omap_clk_onoff(omap_findclk(s, "usb_w2fc_ck"), (~value >> 5) & 1);
1118
}
1119

    
1120
static inline void omap_ulpd_req_update(struct omap_mpu_state_s *s,
1121
                uint16_t diff, uint16_t value)
1122
{
1123
    if (diff & (1 << 0))                                /* SOFT_DPLL_REQ */
1124
        omap_clk_canidle(omap_findclk(s, "dpll4"), (~value >> 0) & 1);
1125
    if (diff & (1 << 1))                                /* SOFT_COM_REQ */
1126
        omap_clk_canidle(omap_findclk(s, "com_mclk_out"), (~value >> 1) & 1);
1127
    if (diff & (1 << 2))                                /* SOFT_SDW_REQ */
1128
        omap_clk_canidle(omap_findclk(s, "bt_mclk_out"), (~value >> 2) & 1);
1129
    if (diff & (1 << 3))                                /* SOFT_USB_REQ */
1130
        omap_clk_canidle(omap_findclk(s, "usb_clk0"), (~value >> 3) & 1);
1131
}
1132

    
1133
static void omap_ulpd_pm_write(void *opaque, target_phys_addr_t addr,
1134
                uint32_t value)
1135
{
1136
    struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
1137
    int64_t now, ticks;
1138
    int div, mult;
1139
    static const int bypass_div[4] = { 1, 2, 4, 4 };
1140
    uint16_t diff;
1141

    
1142
    switch (addr) {
1143
    case 0x00:        /* COUNTER_32_LSB */
1144
    case 0x04:        /* COUNTER_32_MSB */
1145
    case 0x08:        /* COUNTER_HIGH_FREQ_LSB */
1146
    case 0x0c:        /* COUNTER_HIGH_FREQ_MSB */
1147
    case 0x14:        /* IT_STATUS */
1148
    case 0x40:        /* STATUS_REQ */
1149
        OMAP_RO_REG(addr);
1150
        break;
1151

    
1152
    case 0x10:        /* GAUGING_CTRL */
1153
        /* Bits 0 and 1 seem to be confused in the OMAP 310 TRM */
1154
        if ((s->ulpd_pm_regs[addr >> 2] ^ value) & 1) {
1155
            now = qemu_get_clock(vm_clock);
1156

    
1157
            if (value & 1)
1158
                s->ulpd_gauge_start = now;
1159
            else {
1160
                now -= s->ulpd_gauge_start;
1161

    
1162
                /* 32-kHz ticks */
1163
                ticks = muldiv64(now, 32768, ticks_per_sec);
1164
                s->ulpd_pm_regs[0x00 >> 2] = (ticks >>  0) & 0xffff;
1165
                s->ulpd_pm_regs[0x04 >> 2] = (ticks >> 16) & 0xffff;
1166
                if (ticks >> 32)        /* OVERFLOW_32K */
1167
                    s->ulpd_pm_regs[0x14 >> 2] |= 1 << 2;
1168

    
1169
                /* High frequency ticks */
1170
                ticks = muldiv64(now, 12000000, ticks_per_sec);
1171
                s->ulpd_pm_regs[0x08 >> 2] = (ticks >>  0) & 0xffff;
1172
                s->ulpd_pm_regs[0x0c >> 2] = (ticks >> 16) & 0xffff;
1173
                if (ticks >> 32)        /* OVERFLOW_HI_FREQ */
1174
                    s->ulpd_pm_regs[0x14 >> 2] |= 1 << 1;
1175

    
1176
                s->ulpd_pm_regs[0x14 >> 2] |= 1 << 0;        /* IT_GAUGING */
1177
                qemu_irq_raise(s->irq[1][OMAP_INT_GAUGE_32K]);
1178
            }
1179
        }
1180
        s->ulpd_pm_regs[addr >> 2] = value;
1181
        break;
1182

    
1183
    case 0x18:        /* Reserved */
1184
    case 0x1c:        /* Reserved */
1185
    case 0x20:        /* Reserved */
1186
    case 0x28:        /* Reserved */
1187
    case 0x2c:        /* Reserved */
1188
        OMAP_BAD_REG(addr);
1189
    case 0x24:        /* SETUP_ANALOG_CELL3_ULPD1 */
1190
    case 0x38:        /* COUNTER_32_FIQ */
1191
    case 0x48:        /* LOCL_TIME */
1192
    case 0x50:        /* POWER_CTRL */
1193
        s->ulpd_pm_regs[addr >> 2] = value;
1194
        break;
1195

    
1196
    case 0x30:        /* CLOCK_CTRL */
1197
        diff = s->ulpd_pm_regs[addr >> 2] ^ value;
1198
        s->ulpd_pm_regs[addr >> 2] = value & 0x3f;
1199
        omap_ulpd_clk_update(s, diff, value);
1200
        break;
1201

    
1202
    case 0x34:        /* SOFT_REQ */
1203
        diff = s->ulpd_pm_regs[addr >> 2] ^ value;
1204
        s->ulpd_pm_regs[addr >> 2] = value & 0x1f;
1205
        omap_ulpd_req_update(s, diff, value);
1206
        break;
1207

    
1208
    case 0x3c:        /* DPLL_CTRL */
1209
        /* XXX: OMAP310 TRM claims bit 3 is PLL_ENABLE, and bit 4 is
1210
         * omitted altogether, probably a typo.  */
1211
        /* This register has identical semantics with DPLL(1:3) control
1212
         * registers, see omap_dpll_write() */
1213
        diff = s->ulpd_pm_regs[addr >> 2] & value;
1214
        s->ulpd_pm_regs[addr >> 2] = value & 0x2fff;
1215
        if (diff & (0x3ff << 2)) {
1216
            if (value & (1 << 4)) {                        /* PLL_ENABLE */
1217
                div = ((value >> 5) & 3) + 1;                /* PLL_DIV */
1218
                mult = MIN((value >> 7) & 0x1f, 1);        /* PLL_MULT */
1219
            } else {
1220
                div = bypass_div[((value >> 2) & 3)];        /* BYPASS_DIV */
1221
                mult = 1;
1222
            }
1223
            omap_clk_setrate(omap_findclk(s, "dpll4"), div, mult);
1224
        }
1225

    
1226
        /* Enter the desired mode.  */
1227
        s->ulpd_pm_regs[addr >> 2] =
1228
                (s->ulpd_pm_regs[addr >> 2] & 0xfffe) |
1229
                ((s->ulpd_pm_regs[addr >> 2] >> 4) & 1);
1230

    
1231
        /* Act as if the lock is restored.  */
1232
        s->ulpd_pm_regs[addr >> 2] |= 2;
1233
        break;
1234

    
1235
    case 0x4c:        /* APLL_CTRL */
1236
        diff = s->ulpd_pm_regs[addr >> 2] & value;
1237
        s->ulpd_pm_regs[addr >> 2] = value & 0xf;
1238
        if (diff & (1 << 0))                                /* APLL_NDPLL_SWITCH */
1239
            omap_clk_reparent(omap_findclk(s, "ck_48m"), omap_findclk(s,
1240
                                    (value & (1 << 0)) ? "apll" : "dpll4"));
1241
        break;
1242

    
1243
    default:
1244
        OMAP_BAD_REG(addr);
1245
    }
1246
}
1247

    
1248
static CPUReadMemoryFunc *omap_ulpd_pm_readfn[] = {
1249
    omap_badwidth_read16,
1250
    omap_ulpd_pm_read,
1251
    omap_badwidth_read16,
1252
};
1253

    
1254
static CPUWriteMemoryFunc *omap_ulpd_pm_writefn[] = {
1255
    omap_badwidth_write16,
1256
    omap_ulpd_pm_write,
1257
    omap_badwidth_write16,
1258
};
1259

    
1260
static void omap_ulpd_pm_reset(struct omap_mpu_state_s *mpu)
1261
{
1262
    mpu->ulpd_pm_regs[0x00 >> 2] = 0x0001;
1263
    mpu->ulpd_pm_regs[0x04 >> 2] = 0x0000;
1264
    mpu->ulpd_pm_regs[0x08 >> 2] = 0x0001;
1265
    mpu->ulpd_pm_regs[0x0c >> 2] = 0x0000;
1266
    mpu->ulpd_pm_regs[0x10 >> 2] = 0x0000;
1267
    mpu->ulpd_pm_regs[0x18 >> 2] = 0x01;
1268
    mpu->ulpd_pm_regs[0x1c >> 2] = 0x01;
1269
    mpu->ulpd_pm_regs[0x20 >> 2] = 0x01;
1270
    mpu->ulpd_pm_regs[0x24 >> 2] = 0x03ff;
1271
    mpu->ulpd_pm_regs[0x28 >> 2] = 0x01;
1272
    mpu->ulpd_pm_regs[0x2c >> 2] = 0x01;
1273
    omap_ulpd_clk_update(mpu, mpu->ulpd_pm_regs[0x30 >> 2], 0x0000);
1274
    mpu->ulpd_pm_regs[0x30 >> 2] = 0x0000;
1275
    omap_ulpd_req_update(mpu, mpu->ulpd_pm_regs[0x34 >> 2], 0x0000);
1276
    mpu->ulpd_pm_regs[0x34 >> 2] = 0x0000;
1277
    mpu->ulpd_pm_regs[0x38 >> 2] = 0x0001;
1278
    mpu->ulpd_pm_regs[0x3c >> 2] = 0x2211;
1279
    mpu->ulpd_pm_regs[0x40 >> 2] = 0x0000; /* FIXME: dump a real STATUS_REQ */
1280
    mpu->ulpd_pm_regs[0x48 >> 2] = 0x960;
1281
    mpu->ulpd_pm_regs[0x4c >> 2] = 0x08;
1282
    mpu->ulpd_pm_regs[0x50 >> 2] = 0x08;
1283
    omap_clk_setrate(omap_findclk(mpu, "dpll4"), 1, 4);
1284
    omap_clk_reparent(omap_findclk(mpu, "ck_48m"), omap_findclk(mpu, "dpll4"));
1285
}
1286

    
1287
static void omap_ulpd_pm_init(target_phys_addr_t base,
1288
                struct omap_mpu_state_s *mpu)
1289
{
1290
    int iomemtype = cpu_register_io_memory(0, omap_ulpd_pm_readfn,
1291
                    omap_ulpd_pm_writefn, mpu);
1292

    
1293
    cpu_register_physical_memory(base, 0x800, iomemtype);
1294
    omap_ulpd_pm_reset(mpu);
1295
}
1296

    
1297
/* OMAP Pin Configuration */
1298
static uint32_t omap_pin_cfg_read(void *opaque, target_phys_addr_t addr)
1299
{
1300
    struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
1301

    
1302
    switch (addr) {
1303
    case 0x00:        /* FUNC_MUX_CTRL_0 */
1304
    case 0x04:        /* FUNC_MUX_CTRL_1 */
1305
    case 0x08:        /* FUNC_MUX_CTRL_2 */
1306
        return s->func_mux_ctrl[addr >> 2];
1307

    
1308
    case 0x0c:        /* COMP_MODE_CTRL_0 */
1309
        return s->comp_mode_ctrl[0];
1310

    
1311
    case 0x10:        /* FUNC_MUX_CTRL_3 */
1312
    case 0x14:        /* FUNC_MUX_CTRL_4 */
1313
    case 0x18:        /* FUNC_MUX_CTRL_5 */
1314
    case 0x1c:        /* FUNC_MUX_CTRL_6 */
1315
    case 0x20:        /* FUNC_MUX_CTRL_7 */
1316
    case 0x24:        /* FUNC_MUX_CTRL_8 */
1317
    case 0x28:        /* FUNC_MUX_CTRL_9 */
1318
    case 0x2c:        /* FUNC_MUX_CTRL_A */
1319
    case 0x30:        /* FUNC_MUX_CTRL_B */
1320
    case 0x34:        /* FUNC_MUX_CTRL_C */
1321
    case 0x38:        /* FUNC_MUX_CTRL_D */
1322
        return s->func_mux_ctrl[(addr >> 2) - 1];
1323

    
1324
    case 0x40:        /* PULL_DWN_CTRL_0 */
1325
    case 0x44:        /* PULL_DWN_CTRL_1 */
1326
    case 0x48:        /* PULL_DWN_CTRL_2 */
1327
    case 0x4c:        /* PULL_DWN_CTRL_3 */
1328
        return s->pull_dwn_ctrl[(addr & 0xf) >> 2];
1329

    
1330
    case 0x50:        /* GATE_INH_CTRL_0 */
1331
        return s->gate_inh_ctrl[0];
1332

    
1333
    case 0x60:        /* VOLTAGE_CTRL_0 */
1334
        return s->voltage_ctrl[0];
1335

    
1336
    case 0x70:        /* TEST_DBG_CTRL_0 */
1337
        return s->test_dbg_ctrl[0];
1338

    
1339
    case 0x80:        /* MOD_CONF_CTRL_0 */
1340
        return s->mod_conf_ctrl[0];
1341
    }
1342

    
1343
    OMAP_BAD_REG(addr);
1344
    return 0;
1345
}
1346

    
1347
static inline void omap_pin_funcmux0_update(struct omap_mpu_state_s *s,
1348
                uint32_t diff, uint32_t value)
1349
{
1350
    if (s->compat1509) {
1351
        if (diff & (1 << 9))                        /* BLUETOOTH */
1352
            omap_clk_onoff(omap_findclk(s, "bt_mclk_out"),
1353
                            (~value >> 9) & 1);
1354
        if (diff & (1 << 7))                        /* USB.CLKO */
1355
            omap_clk_onoff(omap_findclk(s, "usb.clko"),
1356
                            (value >> 7) & 1);
1357
    }
1358
}
1359

    
1360
static inline void omap_pin_funcmux1_update(struct omap_mpu_state_s *s,
1361
                uint32_t diff, uint32_t value)
1362
{
1363
    if (s->compat1509) {
1364
        if (diff & (1 << 31))                        /* MCBSP3_CLK_HIZ_DI */
1365
            omap_clk_onoff(omap_findclk(s, "mcbsp3.clkx"),
1366
                            (value >> 31) & 1);
1367
        if (diff & (1 << 1))                        /* CLK32K */
1368
            omap_clk_onoff(omap_findclk(s, "clk32k_out"),
1369
                            (~value >> 1) & 1);
1370
    }
1371
}
1372

    
1373
static inline void omap_pin_modconf1_update(struct omap_mpu_state_s *s,
1374
                uint32_t diff, uint32_t value)
1375
{
1376
    if (diff & (1 << 31))                        /* CONF_MOD_UART3_CLK_MODE_R */
1377
         omap_clk_reparent(omap_findclk(s, "uart3_ck"),
1378
                         omap_findclk(s, ((value >> 31) & 1) ?
1379
                                 "ck_48m" : "armper_ck"));
1380
    if (diff & (1 << 30))                        /* CONF_MOD_UART2_CLK_MODE_R */
1381
         omap_clk_reparent(omap_findclk(s, "uart2_ck"),
1382
                         omap_findclk(s, ((value >> 30) & 1) ?
1383
                                 "ck_48m" : "armper_ck"));
1384
    if (diff & (1 << 29))                        /* CONF_MOD_UART1_CLK_MODE_R */
1385
         omap_clk_reparent(omap_findclk(s, "uart1_ck"),
1386
                         omap_findclk(s, ((value >> 29) & 1) ?
1387
                                 "ck_48m" : "armper_ck"));
1388
    if (diff & (1 << 23))                        /* CONF_MOD_MMC_SD_CLK_REQ_R */
1389
         omap_clk_reparent(omap_findclk(s, "mmc_ck"),
1390
                         omap_findclk(s, ((value >> 23) & 1) ?
1391
                                 "ck_48m" : "armper_ck"));
1392
    if (diff & (1 << 12))                        /* CONF_MOD_COM_MCLK_12_48_S */
1393
         omap_clk_reparent(omap_findclk(s, "com_mclk_out"),
1394
                         omap_findclk(s, ((value >> 12) & 1) ?
1395
                                 "ck_48m" : "armper_ck"));
1396
    if (diff & (1 << 9))                        /* CONF_MOD_USB_HOST_HHC_UHO */
1397
         omap_clk_onoff(omap_findclk(s, "usb_hhc_ck"), (value >> 9) & 1);
1398
}
1399

    
1400
static void omap_pin_cfg_write(void *opaque, target_phys_addr_t addr,
1401
                uint32_t value)
1402
{
1403
    struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
1404
    uint32_t diff;
1405

    
1406
    switch (addr) {
1407
    case 0x00:        /* FUNC_MUX_CTRL_0 */
1408
        diff = s->func_mux_ctrl[addr >> 2] ^ value;
1409
        s->func_mux_ctrl[addr >> 2] = value;
1410
        omap_pin_funcmux0_update(s, diff, value);
1411
        return;
1412

    
1413
    case 0x04:        /* FUNC_MUX_CTRL_1 */
1414
        diff = s->func_mux_ctrl[addr >> 2] ^ value;
1415
        s->func_mux_ctrl[addr >> 2] = value;
1416
        omap_pin_funcmux1_update(s, diff, value);
1417
        return;
1418

    
1419
    case 0x08:        /* FUNC_MUX_CTRL_2 */
1420
        s->func_mux_ctrl[addr >> 2] = value;
1421
        return;
1422

    
1423
    case 0x0c:        /* COMP_MODE_CTRL_0 */
1424
        s->comp_mode_ctrl[0] = value;
1425
        s->compat1509 = (value != 0x0000eaef);
1426
        omap_pin_funcmux0_update(s, ~0, s->func_mux_ctrl[0]);
1427
        omap_pin_funcmux1_update(s, ~0, s->func_mux_ctrl[1]);
1428
        return;
1429

    
1430
    case 0x10:        /* FUNC_MUX_CTRL_3 */
1431
    case 0x14:        /* FUNC_MUX_CTRL_4 */
1432
    case 0x18:        /* FUNC_MUX_CTRL_5 */
1433
    case 0x1c:        /* FUNC_MUX_CTRL_6 */
1434
    case 0x20:        /* FUNC_MUX_CTRL_7 */
1435
    case 0x24:        /* FUNC_MUX_CTRL_8 */
1436
    case 0x28:        /* FUNC_MUX_CTRL_9 */
1437
    case 0x2c:        /* FUNC_MUX_CTRL_A */
1438
    case 0x30:        /* FUNC_MUX_CTRL_B */
1439
    case 0x34:        /* FUNC_MUX_CTRL_C */
1440
    case 0x38:        /* FUNC_MUX_CTRL_D */
1441
        s->func_mux_ctrl[(addr >> 2) - 1] = value;
1442
        return;
1443

    
1444
    case 0x40:        /* PULL_DWN_CTRL_0 */
1445
    case 0x44:        /* PULL_DWN_CTRL_1 */
1446
    case 0x48:        /* PULL_DWN_CTRL_2 */
1447
    case 0x4c:        /* PULL_DWN_CTRL_3 */
1448
        s->pull_dwn_ctrl[(addr & 0xf) >> 2] = value;
1449
        return;
1450

    
1451
    case 0x50:        /* GATE_INH_CTRL_0 */
1452
        s->gate_inh_ctrl[0] = value;
1453
        return;
1454

    
1455
    case 0x60:        /* VOLTAGE_CTRL_0 */
1456
        s->voltage_ctrl[0] = value;
1457
        return;
1458

    
1459
    case 0x70:        /* TEST_DBG_CTRL_0 */
1460
        s->test_dbg_ctrl[0] = value;
1461
        return;
1462

    
1463
    case 0x80:        /* MOD_CONF_CTRL_0 */
1464
        diff = s->mod_conf_ctrl[0] ^ value;
1465
        s->mod_conf_ctrl[0] = value;
1466
        omap_pin_modconf1_update(s, diff, value);
1467
        return;
1468

    
1469
    default:
1470
        OMAP_BAD_REG(addr);
1471
    }
1472
}
1473

    
1474
static CPUReadMemoryFunc *omap_pin_cfg_readfn[] = {
1475
    omap_badwidth_read32,
1476
    omap_badwidth_read32,
1477
    omap_pin_cfg_read,
1478
};
1479

    
1480
static CPUWriteMemoryFunc *omap_pin_cfg_writefn[] = {
1481
    omap_badwidth_write32,
1482
    omap_badwidth_write32,
1483
    omap_pin_cfg_write,
1484
};
1485

    
1486
static void omap_pin_cfg_reset(struct omap_mpu_state_s *mpu)
1487
{
1488
    /* Start in Compatibility Mode.  */
1489
    mpu->compat1509 = 1;
1490
    omap_pin_funcmux0_update(mpu, mpu->func_mux_ctrl[0], 0);
1491
    omap_pin_funcmux1_update(mpu, mpu->func_mux_ctrl[1], 0);
1492
    omap_pin_modconf1_update(mpu, mpu->mod_conf_ctrl[0], 0);
1493
    memset(mpu->func_mux_ctrl, 0, sizeof(mpu->func_mux_ctrl));
1494
    memset(mpu->comp_mode_ctrl, 0, sizeof(mpu->comp_mode_ctrl));
1495
    memset(mpu->pull_dwn_ctrl, 0, sizeof(mpu->pull_dwn_ctrl));
1496
    memset(mpu->gate_inh_ctrl, 0, sizeof(mpu->gate_inh_ctrl));
1497
    memset(mpu->voltage_ctrl, 0, sizeof(mpu->voltage_ctrl));
1498
    memset(mpu->test_dbg_ctrl, 0, sizeof(mpu->test_dbg_ctrl));
1499
    memset(mpu->mod_conf_ctrl, 0, sizeof(mpu->mod_conf_ctrl));
1500
}
1501

    
1502
static void omap_pin_cfg_init(target_phys_addr_t base,
1503
                struct omap_mpu_state_s *mpu)
1504
{
1505
    int iomemtype = cpu_register_io_memory(0, omap_pin_cfg_readfn,
1506
                    omap_pin_cfg_writefn, mpu);
1507

    
1508
    cpu_register_physical_memory(base, 0x800, iomemtype);
1509
    omap_pin_cfg_reset(mpu);
1510
}
1511

    
1512
/* Device Identification, Die Identification */
1513
static uint32_t omap_id_read(void *opaque, target_phys_addr_t addr)
1514
{
1515
    struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
1516

    
1517
    switch (addr) {
1518
    case 0xfffe1800:        /* DIE_ID_LSB */
1519
        return 0xc9581f0e;
1520
    case 0xfffe1804:        /* DIE_ID_MSB */
1521
        return 0xa8858bfa;
1522

    
1523
    case 0xfffe2000:        /* PRODUCT_ID_LSB */
1524
        return 0x00aaaafc;
1525
    case 0xfffe2004:        /* PRODUCT_ID_MSB */
1526
        return 0xcafeb574;
1527

    
1528
    case 0xfffed400:        /* JTAG_ID_LSB */
1529
        switch (s->mpu_model) {
1530
        case omap310:
1531
            return 0x03310315;
1532
        case omap1510:
1533
            return 0x03310115;
1534
        default:
1535
            cpu_abort(cpu_single_env, "%s: bad mpu model\n", __FUNCTION__);
1536
        }
1537
        break;
1538

    
1539
    case 0xfffed404:        /* JTAG_ID_MSB */
1540
        switch (s->mpu_model) {
1541
        case omap310:
1542
            return 0xfb57402f;
1543
        case omap1510:
1544
            return 0xfb47002f;
1545
        default:
1546
            cpu_abort(cpu_single_env, "%s: bad mpu model\n", __FUNCTION__);
1547
        }
1548
        break;
1549
    }
1550

    
1551
    OMAP_BAD_REG(addr);
1552
    return 0;
1553
}
1554

    
1555
static void omap_id_write(void *opaque, target_phys_addr_t addr,
1556
                uint32_t value)
1557
{
1558
    OMAP_BAD_REG(addr);
1559
}
1560

    
1561
static CPUReadMemoryFunc *omap_id_readfn[] = {
1562
    omap_badwidth_read32,
1563
    omap_badwidth_read32,
1564
    omap_id_read,
1565
};
1566

    
1567
static CPUWriteMemoryFunc *omap_id_writefn[] = {
1568
    omap_badwidth_write32,
1569
    omap_badwidth_write32,
1570
    omap_id_write,
1571
};
1572

    
1573
static void omap_id_init(struct omap_mpu_state_s *mpu)
1574
{
1575
    int iomemtype = cpu_register_io_memory(0, omap_id_readfn,
1576
                    omap_id_writefn, mpu);
1577
    cpu_register_physical_memory_offset(0xfffe1800, 0x800, iomemtype, 0xfffe1800);
1578
    cpu_register_physical_memory_offset(0xfffed400, 0x100, iomemtype, 0xfffed400);
1579
    if (!cpu_is_omap15xx(mpu))
1580
        cpu_register_physical_memory_offset(0xfffe2000, 0x800, iomemtype, 0xfffe2000);
1581
}
1582

    
1583
/* MPUI Control (Dummy) */
1584
static uint32_t omap_mpui_read(void *opaque, target_phys_addr_t addr)
1585
{
1586
    struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
1587

    
1588
    switch (addr) {
1589
    case 0x00:        /* CTRL */
1590
        return s->mpui_ctrl;
1591
    case 0x04:        /* DEBUG_ADDR */
1592
        return 0x01ffffff;
1593
    case 0x08:        /* DEBUG_DATA */
1594
        return 0xffffffff;
1595
    case 0x0c:        /* DEBUG_FLAG */
1596
        return 0x00000800;
1597
    case 0x10:        /* STATUS */
1598
        return 0x00000000;
1599

    
1600
    /* Not in OMAP310 */
1601
    case 0x14:        /* DSP_STATUS */
1602
    case 0x18:        /* DSP_BOOT_CONFIG */
1603
        return 0x00000000;
1604
    case 0x1c:        /* DSP_MPUI_CONFIG */
1605
        return 0x0000ffff;
1606
    }
1607

    
1608
    OMAP_BAD_REG(addr);
1609
    return 0;
1610
}
1611

    
1612
static void omap_mpui_write(void *opaque, target_phys_addr_t addr,
1613
                uint32_t value)
1614
{
1615
    struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
1616

    
1617
    switch (addr) {
1618
    case 0x00:        /* CTRL */
1619
        s->mpui_ctrl = value & 0x007fffff;
1620
        break;
1621

    
1622
    case 0x04:        /* DEBUG_ADDR */
1623
    case 0x08:        /* DEBUG_DATA */
1624
    case 0x0c:        /* DEBUG_FLAG */
1625
    case 0x10:        /* STATUS */
1626
    /* Not in OMAP310 */
1627
    case 0x14:        /* DSP_STATUS */
1628
        OMAP_RO_REG(addr);
1629
    case 0x18:        /* DSP_BOOT_CONFIG */
1630
    case 0x1c:        /* DSP_MPUI_CONFIG */
1631
        break;
1632

    
1633
    default:
1634
        OMAP_BAD_REG(addr);
1635
    }
1636
}
1637

    
1638
static CPUReadMemoryFunc *omap_mpui_readfn[] = {
1639
    omap_badwidth_read32,
1640
    omap_badwidth_read32,
1641
    omap_mpui_read,
1642
};
1643

    
1644
static CPUWriteMemoryFunc *omap_mpui_writefn[] = {
1645
    omap_badwidth_write32,
1646
    omap_badwidth_write32,
1647
    omap_mpui_write,
1648
};
1649

    
1650
static void omap_mpui_reset(struct omap_mpu_state_s *s)
1651
{
1652
    s->mpui_ctrl = 0x0003ff1b;
1653
}
1654

    
1655
static void omap_mpui_init(target_phys_addr_t base,
1656
                struct omap_mpu_state_s *mpu)
1657
{
1658
    int iomemtype = cpu_register_io_memory(0, omap_mpui_readfn,
1659
                    omap_mpui_writefn, mpu);
1660

    
1661
    cpu_register_physical_memory(base, 0x100, iomemtype);
1662

    
1663
    omap_mpui_reset(mpu);
1664
}
1665

    
1666
/* TIPB Bridges */
1667
struct omap_tipb_bridge_s {
1668
    qemu_irq abort;
1669

    
1670
    int width_intr;
1671
    uint16_t control;
1672
    uint16_t alloc;
1673
    uint16_t buffer;
1674
    uint16_t enh_control;
1675
};
1676

    
1677
static uint32_t omap_tipb_bridge_read(void *opaque, target_phys_addr_t addr)
1678
{
1679
    struct omap_tipb_bridge_s *s = (struct omap_tipb_bridge_s *) opaque;
1680

    
1681
    switch (addr) {
1682
    case 0x00:        /* TIPB_CNTL */
1683
        return s->control;
1684
    case 0x04:        /* TIPB_BUS_ALLOC */
1685
        return s->alloc;
1686
    case 0x08:        /* MPU_TIPB_CNTL */
1687
        return s->buffer;
1688
    case 0x0c:        /* ENHANCED_TIPB_CNTL */
1689
        return s->enh_control;
1690
    case 0x10:        /* ADDRESS_DBG */
1691
    case 0x14:        /* DATA_DEBUG_LOW */
1692
    case 0x18:        /* DATA_DEBUG_HIGH */
1693
        return 0xffff;
1694
    case 0x1c:        /* DEBUG_CNTR_SIG */
1695
        return 0x00f8;
1696
    }
1697

    
1698
    OMAP_BAD_REG(addr);
1699
    return 0;
1700
}
1701

    
1702
static void omap_tipb_bridge_write(void *opaque, target_phys_addr_t addr,
1703
                uint32_t value)
1704
{
1705
    struct omap_tipb_bridge_s *s = (struct omap_tipb_bridge_s *) opaque;
1706

    
1707
    switch (addr) {
1708
    case 0x00:        /* TIPB_CNTL */
1709
        s->control = value & 0xffff;
1710
        break;
1711

    
1712
    case 0x04:        /* TIPB_BUS_ALLOC */
1713
        s->alloc = value & 0x003f;
1714
        break;
1715

    
1716
    case 0x08:        /* MPU_TIPB_CNTL */
1717
        s->buffer = value & 0x0003;
1718
        break;
1719

    
1720
    case 0x0c:        /* ENHANCED_TIPB_CNTL */
1721
        s->width_intr = !(value & 2);
1722
        s->enh_control = value & 0x000f;
1723
        break;
1724

    
1725
    case 0x10:        /* ADDRESS_DBG */
1726
    case 0x14:        /* DATA_DEBUG_LOW */
1727
    case 0x18:        /* DATA_DEBUG_HIGH */
1728
    case 0x1c:        /* DEBUG_CNTR_SIG */
1729
        OMAP_RO_REG(addr);
1730
        break;
1731

    
1732
    default:
1733
        OMAP_BAD_REG(addr);
1734
    }
1735
}
1736

    
1737
static CPUReadMemoryFunc *omap_tipb_bridge_readfn[] = {
1738
    omap_badwidth_read16,
1739
    omap_tipb_bridge_read,
1740
    omap_tipb_bridge_read,
1741
};
1742

    
1743
static CPUWriteMemoryFunc *omap_tipb_bridge_writefn[] = {
1744
    omap_badwidth_write16,
1745
    omap_tipb_bridge_write,
1746
    omap_tipb_bridge_write,
1747
};
1748

    
1749
static void omap_tipb_bridge_reset(struct omap_tipb_bridge_s *s)
1750
{
1751
    s->control = 0xffff;
1752
    s->alloc = 0x0009;
1753
    s->buffer = 0x0000;
1754
    s->enh_control = 0x000f;
1755
}
1756

    
1757
struct omap_tipb_bridge_s *omap_tipb_bridge_init(target_phys_addr_t base,
1758
                qemu_irq abort_irq, omap_clk clk)
1759
{
1760
    int iomemtype;
1761
    struct omap_tipb_bridge_s *s = (struct omap_tipb_bridge_s *)
1762
            qemu_mallocz(sizeof(struct omap_tipb_bridge_s));
1763

    
1764
    s->abort = abort_irq;
1765
    omap_tipb_bridge_reset(s);
1766

    
1767
    iomemtype = cpu_register_io_memory(0, omap_tipb_bridge_readfn,
1768
                    omap_tipb_bridge_writefn, s);
1769
    cpu_register_physical_memory(base, 0x100, iomemtype);
1770

    
1771
    return s;
1772
}
1773

    
1774
/* Dummy Traffic Controller's Memory Interface */
1775
static uint32_t omap_tcmi_read(void *opaque, target_phys_addr_t addr)
1776
{
1777
    struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
1778
    uint32_t ret;
1779

    
1780
    switch (addr) {
1781
    case 0x00:        /* IMIF_PRIO */
1782
    case 0x04:        /* EMIFS_PRIO */
1783
    case 0x08:        /* EMIFF_PRIO */
1784
    case 0x0c:        /* EMIFS_CONFIG */
1785
    case 0x10:        /* EMIFS_CS0_CONFIG */
1786
    case 0x14:        /* EMIFS_CS1_CONFIG */
1787
    case 0x18:        /* EMIFS_CS2_CONFIG */
1788
    case 0x1c:        /* EMIFS_CS3_CONFIG */
1789
    case 0x24:        /* EMIFF_MRS */
1790
    case 0x28:        /* TIMEOUT1 */
1791
    case 0x2c:        /* TIMEOUT2 */
1792
    case 0x30:        /* TIMEOUT3 */
1793
    case 0x3c:        /* EMIFF_SDRAM_CONFIG_2 */
1794
    case 0x40:        /* EMIFS_CFG_DYN_WAIT */
1795
        return s->tcmi_regs[addr >> 2];
1796

    
1797
    case 0x20:        /* EMIFF_SDRAM_CONFIG */
1798
        ret = s->tcmi_regs[addr >> 2];
1799
        s->tcmi_regs[addr >> 2] &= ~1; /* XXX: Clear SLRF on SDRAM access */
1800
        /* XXX: We can try using the VGA_DIRTY flag for this */
1801
        return ret;
1802
    }
1803

    
1804
    OMAP_BAD_REG(addr);
1805
    return 0;
1806
}
1807

    
1808
static void omap_tcmi_write(void *opaque, target_phys_addr_t addr,
1809
                uint32_t value)
1810
{
1811
    struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
1812

    
1813
    switch (addr) {
1814
    case 0x00:        /* IMIF_PRIO */
1815
    case 0x04:        /* EMIFS_PRIO */
1816
    case 0x08:        /* EMIFF_PRIO */
1817
    case 0x10:        /* EMIFS_CS0_CONFIG */
1818
    case 0x14:        /* EMIFS_CS1_CONFIG */
1819
    case 0x18:        /* EMIFS_CS2_CONFIG */
1820
    case 0x1c:        /* EMIFS_CS3_CONFIG */
1821
    case 0x20:        /* EMIFF_SDRAM_CONFIG */
1822
    case 0x24:        /* EMIFF_MRS */
1823
    case 0x28:        /* TIMEOUT1 */
1824
    case 0x2c:        /* TIMEOUT2 */
1825
    case 0x30:        /* TIMEOUT3 */
1826
    case 0x3c:        /* EMIFF_SDRAM_CONFIG_2 */
1827
    case 0x40:        /* EMIFS_CFG_DYN_WAIT */
1828
        s->tcmi_regs[addr >> 2] = value;
1829
        break;
1830
    case 0x0c:        /* EMIFS_CONFIG */
1831
        s->tcmi_regs[addr >> 2] = (value & 0xf) | (1 << 4);
1832
        break;
1833

    
1834
    default:
1835
        OMAP_BAD_REG(addr);
1836
    }
1837
}
1838

    
1839
static CPUReadMemoryFunc *omap_tcmi_readfn[] = {
1840
    omap_badwidth_read32,
1841
    omap_badwidth_read32,
1842
    omap_tcmi_read,
1843
};
1844

    
1845
static CPUWriteMemoryFunc *omap_tcmi_writefn[] = {
1846
    omap_badwidth_write32,
1847
    omap_badwidth_write32,
1848
    omap_tcmi_write,
1849
};
1850

    
1851
static void omap_tcmi_reset(struct omap_mpu_state_s *mpu)
1852
{
1853
    mpu->tcmi_regs[0x00 >> 2] = 0x00000000;
1854
    mpu->tcmi_regs[0x04 >> 2] = 0x00000000;
1855
    mpu->tcmi_regs[0x08 >> 2] = 0x00000000;
1856
    mpu->tcmi_regs[0x0c >> 2] = 0x00000010;
1857
    mpu->tcmi_regs[0x10 >> 2] = 0x0010fffb;
1858
    mpu->tcmi_regs[0x14 >> 2] = 0x0010fffb;
1859
    mpu->tcmi_regs[0x18 >> 2] = 0x0010fffb;
1860
    mpu->tcmi_regs[0x1c >> 2] = 0x0010fffb;
1861
    mpu->tcmi_regs[0x20 >> 2] = 0x00618800;
1862
    mpu->tcmi_regs[0x24 >> 2] = 0x00000037;
1863
    mpu->tcmi_regs[0x28 >> 2] = 0x00000000;
1864
    mpu->tcmi_regs[0x2c >> 2] = 0x00000000;
1865
    mpu->tcmi_regs[0x30 >> 2] = 0x00000000;
1866
    mpu->tcmi_regs[0x3c >> 2] = 0x00000003;
1867
    mpu->tcmi_regs[0x40 >> 2] = 0x00000000;
1868
}
1869

    
1870
static void omap_tcmi_init(target_phys_addr_t base,
1871
                struct omap_mpu_state_s *mpu)
1872
{
1873
    int iomemtype = cpu_register_io_memory(0, omap_tcmi_readfn,
1874
                    omap_tcmi_writefn, mpu);
1875

    
1876
    cpu_register_physical_memory(base, 0x100, iomemtype);
1877
    omap_tcmi_reset(mpu);
1878
}
1879

    
1880
/* Digital phase-locked loops control */
1881
static uint32_t omap_dpll_read(void *opaque, target_phys_addr_t addr)
1882
{
1883
    struct dpll_ctl_s *s = (struct dpll_ctl_s *) opaque;
1884

    
1885
    if (addr == 0x00)        /* CTL_REG */
1886
        return s->mode;
1887

    
1888
    OMAP_BAD_REG(addr);
1889
    return 0;
1890
}
1891

    
1892
static void omap_dpll_write(void *opaque, target_phys_addr_t addr,
1893
                uint32_t value)
1894
{
1895
    struct dpll_ctl_s *s = (struct dpll_ctl_s *) opaque;
1896
    uint16_t diff;
1897
    static const int bypass_div[4] = { 1, 2, 4, 4 };
1898
    int div, mult;
1899

    
1900
    if (addr == 0x00) {        /* CTL_REG */
1901
        /* See omap_ulpd_pm_write() too */
1902
        diff = s->mode & value;
1903
        s->mode = value & 0x2fff;
1904
        if (diff & (0x3ff << 2)) {
1905
            if (value & (1 << 4)) {                        /* PLL_ENABLE */
1906
                div = ((value >> 5) & 3) + 1;                /* PLL_DIV */
1907
                mult = MIN((value >> 7) & 0x1f, 1);        /* PLL_MULT */
1908
            } else {
1909
                div = bypass_div[((value >> 2) & 3)];        /* BYPASS_DIV */
1910
                mult = 1;
1911
            }
1912
            omap_clk_setrate(s->dpll, div, mult);
1913
        }
1914

    
1915
        /* Enter the desired mode.  */
1916
        s->mode = (s->mode & 0xfffe) | ((s->mode >> 4) & 1);
1917

    
1918
        /* Act as if the lock is restored.  */
1919
        s->mode |= 2;
1920
    } else {
1921
        OMAP_BAD_REG(addr);
1922
    }
1923
}
1924

    
1925
static CPUReadMemoryFunc *omap_dpll_readfn[] = {
1926
    omap_badwidth_read16,
1927
    omap_dpll_read,
1928
    omap_badwidth_read16,
1929
};
1930

    
1931
static CPUWriteMemoryFunc *omap_dpll_writefn[] = {
1932
    omap_badwidth_write16,
1933
    omap_dpll_write,
1934
    omap_badwidth_write16,
1935
};
1936

    
1937
static void omap_dpll_reset(struct dpll_ctl_s *s)
1938
{
1939
    s->mode = 0x2002;
1940
    omap_clk_setrate(s->dpll, 1, 1);
1941
}
1942

    
1943
static void omap_dpll_init(struct dpll_ctl_s *s, target_phys_addr_t base,
1944
                omap_clk clk)
1945
{
1946
    int iomemtype = cpu_register_io_memory(0, omap_dpll_readfn,
1947
                    omap_dpll_writefn, s);
1948

    
1949
    s->dpll = clk;
1950
    omap_dpll_reset(s);
1951

    
1952
    cpu_register_physical_memory(base, 0x100, iomemtype);
1953
}
1954

    
1955
/* UARTs */
1956
struct omap_uart_s {
1957
    target_phys_addr_t base;
1958
    SerialState *serial; /* TODO */
1959
    struct omap_target_agent_s *ta;
1960
    omap_clk fclk;
1961
    qemu_irq irq;
1962

    
1963
    uint8_t eblr;
1964
    uint8_t syscontrol;
1965
    uint8_t wkup;
1966
    uint8_t cfps;
1967
    uint8_t mdr[2];
1968
    uint8_t scr;
1969
};
1970

    
1971
void omap_uart_reset(struct omap_uart_s *s)
1972
{
1973
    s->eblr = 0x00;
1974
    s->syscontrol = 0;
1975
    s->wkup = 0x3f;
1976
    s->cfps = 0x69;
1977
}
1978

    
1979
struct omap_uart_s *omap_uart_init(target_phys_addr_t base,
1980
                qemu_irq irq, omap_clk fclk, omap_clk iclk,
1981
                qemu_irq txdma, qemu_irq rxdma, CharDriverState *chr)
1982
{
1983
    struct omap_uart_s *s = (struct omap_uart_s *)
1984
            qemu_mallocz(sizeof(struct omap_uart_s));
1985

    
1986
    s->base = base;
1987
    s->fclk = fclk;
1988
    s->irq = irq;
1989
    s->serial = serial_mm_init(base, 2, irq, omap_clk_getrate(fclk)/16,
1990
                               chr ?: qemu_chr_open("null", "null"), 1);
1991

    
1992
    return s;
1993
}
1994

    
1995
static uint32_t omap_uart_read(void *opaque, target_phys_addr_t addr)
1996
{
1997
    struct omap_uart_s *s = (struct omap_uart_s *) opaque;
1998

    
1999
    addr &= 0xff;
2000
    switch (addr) {
2001
    case 0x20:        /* MDR1 */
2002
        return s->mdr[0];
2003
    case 0x24:        /* MDR2 */
2004
        return s->mdr[1];
2005
    case 0x40:        /* SCR */
2006
        return s->scr;
2007
    case 0x44:        /* SSR */
2008
        return 0x0;
2009
    case 0x48:        /* EBLR */
2010
        return s->eblr;
2011
    case 0x50:        /* MVR */
2012
        return 0x30;
2013
    case 0x54:        /* SYSC */
2014
        return s->syscontrol;
2015
    case 0x58:        /* SYSS */
2016
        return 1;
2017
    case 0x5c:        /* WER */
2018
        return s->wkup;
2019
    case 0x60:        /* CFPS */
2020
        return s->cfps;
2021
    }
2022

    
2023
    OMAP_BAD_REG(addr);
2024
    return 0;
2025
}
2026

    
2027
static void omap_uart_write(void *opaque, target_phys_addr_t addr,
2028
                uint32_t value)
2029
{
2030
    struct omap_uart_s *s = (struct omap_uart_s *) opaque;
2031

    
2032
    addr &= 0xff;
2033
    switch (addr) {
2034
    case 0x20:        /* MDR1 */
2035
        s->mdr[0] = value & 0x7f;
2036
        break;
2037
    case 0x24:        /* MDR2 */
2038
        s->mdr[1] = value & 0xff;
2039
        break;
2040
    case 0x40:        /* SCR */
2041
        s->scr = value & 0xff;
2042
        break;
2043
    case 0x48:        /* EBLR */
2044
        s->eblr = value & 0xff;
2045
        break;
2046
    case 0x44:        /* SSR */
2047
    case 0x50:        /* MVR */
2048
    case 0x58:        /* SYSS */
2049
        OMAP_RO_REG(addr);
2050
        break;
2051
    case 0x54:        /* SYSC */
2052
        s->syscontrol = value & 0x1d;
2053
        if (value & 2)
2054
            omap_uart_reset(s);
2055
        break;
2056
    case 0x5c:        /* WER */
2057
        s->wkup = value & 0x7f;
2058
        break;
2059
    case 0x60:        /* CFPS */
2060
        s->cfps = value & 0xff;
2061
        break;
2062
    default:
2063
        OMAP_BAD_REG(addr);
2064
    }
2065
}
2066

    
2067
static CPUReadMemoryFunc *omap_uart_readfn[] = {
2068
    omap_uart_read,
2069
    omap_uart_read,
2070
    omap_badwidth_read8,
2071
};
2072

    
2073
static CPUWriteMemoryFunc *omap_uart_writefn[] = {
2074
    omap_uart_write,
2075
    omap_uart_write,
2076
    omap_badwidth_write8,
2077
};
2078

    
2079
struct omap_uart_s *omap2_uart_init(struct omap_target_agent_s *ta,
2080
                qemu_irq irq, omap_clk fclk, omap_clk iclk,
2081
                qemu_irq txdma, qemu_irq rxdma, CharDriverState *chr)
2082
{
2083
    target_phys_addr_t base = omap_l4_attach(ta, 0, 0);
2084
    struct omap_uart_s *s = omap_uart_init(base, irq,
2085
                    fclk, iclk, txdma, rxdma, chr);
2086
    int iomemtype = cpu_register_io_memory(0, omap_uart_readfn,
2087
                    omap_uart_writefn, s);
2088

    
2089
    s->ta = ta;
2090

    
2091
    cpu_register_physical_memory(base + 0x20, 0x100, iomemtype);
2092

    
2093
    return s;
2094
}
2095

    
2096
void omap_uart_attach(struct omap_uart_s *s, CharDriverState *chr)
2097
{
2098
    /* TODO: Should reuse or destroy current s->serial */
2099
    s->serial = serial_mm_init(s->base, 2, s->irq,
2100
                    omap_clk_getrate(s->fclk) / 16,
2101
                    chr ?: qemu_chr_open("null", "null"), 1);
2102
}
2103

    
2104
/* MPU Clock/Reset/Power Mode Control */
2105
static uint32_t omap_clkm_read(void *opaque, target_phys_addr_t addr)
2106
{
2107
    struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
2108

    
2109
    switch (addr) {
2110
    case 0x00:        /* ARM_CKCTL */
2111
        return s->clkm.arm_ckctl;
2112

    
2113
    case 0x04:        /* ARM_IDLECT1 */
2114
        return s->clkm.arm_idlect1;
2115

    
2116
    case 0x08:        /* ARM_IDLECT2 */
2117
        return s->clkm.arm_idlect2;
2118

    
2119
    case 0x0c:        /* ARM_EWUPCT */
2120
        return s->clkm.arm_ewupct;
2121

    
2122
    case 0x10:        /* ARM_RSTCT1 */
2123
        return s->clkm.arm_rstct1;
2124

    
2125
    case 0x14:        /* ARM_RSTCT2 */
2126
        return s->clkm.arm_rstct2;
2127

    
2128
    case 0x18:        /* ARM_SYSST */
2129
        return (s->clkm.clocking_scheme << 11) | s->clkm.cold_start;
2130

    
2131
    case 0x1c:        /* ARM_CKOUT1 */
2132
        return s->clkm.arm_ckout1;
2133

    
2134
    case 0x20:        /* ARM_CKOUT2 */
2135
        break;
2136
    }
2137

    
2138
    OMAP_BAD_REG(addr);
2139
    return 0;
2140
}
2141

    
2142
static inline void omap_clkm_ckctl_update(struct omap_mpu_state_s *s,
2143
                uint16_t diff, uint16_t value)
2144
{
2145
    omap_clk clk;
2146

    
2147
    if (diff & (1 << 14)) {                                /* ARM_INTHCK_SEL */
2148
        if (value & (1 << 14))
2149
            /* Reserved */;
2150
        else {
2151
            clk = omap_findclk(s, "arminth_ck");
2152
            omap_clk_reparent(clk, omap_findclk(s, "tc_ck"));
2153
        }
2154
    }
2155
    if (diff & (1 << 12)) {                                /* ARM_TIMXO */
2156
        clk = omap_findclk(s, "armtim_ck");
2157
        if (value & (1 << 12))
2158
            omap_clk_reparent(clk, omap_findclk(s, "clkin"));
2159
        else
2160
            omap_clk_reparent(clk, omap_findclk(s, "ck_gen1"));
2161
    }
2162
    /* XXX: en_dspck */
2163
    if (diff & (3 << 10)) {                                /* DSPMMUDIV */
2164
        clk = omap_findclk(s, "dspmmu_ck");
2165
        omap_clk_setrate(clk, 1 << ((value >> 10) & 3), 1);
2166
    }
2167
    if (diff & (3 << 8)) {                                /* TCDIV */
2168
        clk = omap_findclk(s, "tc_ck");
2169
        omap_clk_setrate(clk, 1 << ((value >> 8) & 3), 1);
2170
    }
2171
    if (diff & (3 << 6)) {                                /* DSPDIV */
2172
        clk = omap_findclk(s, "dsp_ck");
2173
        omap_clk_setrate(clk, 1 << ((value >> 6) & 3), 1);
2174
    }
2175
    if (diff & (3 << 4)) {                                /* ARMDIV */
2176
        clk = omap_findclk(s, "arm_ck");
2177
        omap_clk_setrate(clk, 1 << ((value >> 4) & 3), 1);
2178
    }
2179
    if (diff & (3 << 2)) {                                /* LCDDIV */
2180
        clk = omap_findclk(s, "lcd_ck");
2181
        omap_clk_setrate(clk, 1 << ((value >> 2) & 3), 1);
2182
    }
2183
    if (diff & (3 << 0)) {                                /* PERDIV */
2184
        clk = omap_findclk(s, "armper_ck");
2185
        omap_clk_setrate(clk, 1 << ((value >> 0) & 3), 1);
2186
    }
2187
}
2188

    
2189
static inline void omap_clkm_idlect1_update(struct omap_mpu_state_s *s,
2190
                uint16_t diff, uint16_t value)
2191
{
2192
    omap_clk clk;
2193

    
2194
    if (value & (1 << 11))                                /* SETARM_IDLE */
2195
        cpu_interrupt(s->env, CPU_INTERRUPT_HALT);
2196
    if (!(value & (1 << 10)))                                /* WKUP_MODE */
2197
        qemu_system_shutdown_request();        /* XXX: disable wakeup from IRQ */
2198

    
2199
#define SET_CANIDLE(clock, bit)                                \
2200
    if (diff & (1 << bit)) {                                \
2201
        clk = omap_findclk(s, clock);                        \
2202
        omap_clk_canidle(clk, (value >> bit) & 1);        \
2203
    }
2204
    SET_CANIDLE("mpuwd_ck", 0)                                /* IDLWDT_ARM */
2205
    SET_CANIDLE("armxor_ck", 1)                                /* IDLXORP_ARM */
2206
    SET_CANIDLE("mpuper_ck", 2)                                /* IDLPER_ARM */
2207
    SET_CANIDLE("lcd_ck", 3)                                /* IDLLCD_ARM */
2208
    SET_CANIDLE("lb_ck", 4)                                /* IDLLB_ARM */
2209
    SET_CANIDLE("hsab_ck", 5)                                /* IDLHSAB_ARM */
2210
    SET_CANIDLE("tipb_ck", 6)                                /* IDLIF_ARM */
2211
    SET_CANIDLE("dma_ck", 6)                                /* IDLIF_ARM */
2212
    SET_CANIDLE("tc_ck", 6)                                /* IDLIF_ARM */
2213
    SET_CANIDLE("dpll1", 7)                                /* IDLDPLL_ARM */
2214
    SET_CANIDLE("dpll2", 7)                                /* IDLDPLL_ARM */
2215
    SET_CANIDLE("dpll3", 7)                                /* IDLDPLL_ARM */
2216
    SET_CANIDLE("mpui_ck", 8)                                /* IDLAPI_ARM */
2217
    SET_CANIDLE("armtim_ck", 9)                                /* IDLTIM_ARM */
2218
}
2219

    
2220
static inline void omap_clkm_idlect2_update(struct omap_mpu_state_s *s,
2221
                uint16_t diff, uint16_t value)
2222
{
2223
    omap_clk clk;
2224

    
2225
#define SET_ONOFF(clock, bit)                                \
2226
    if (diff & (1 << bit)) {                                \
2227
        clk = omap_findclk(s, clock);                        \
2228
        omap_clk_onoff(clk, (value >> bit) & 1);        \
2229
    }
2230
    SET_ONOFF("mpuwd_ck", 0)                                /* EN_WDTCK */
2231
    SET_ONOFF("armxor_ck", 1)                                /* EN_XORPCK */
2232
    SET_ONOFF("mpuper_ck", 2)                                /* EN_PERCK */
2233
    SET_ONOFF("lcd_ck", 3)                                /* EN_LCDCK */
2234
    SET_ONOFF("lb_ck", 4)                                /* EN_LBCK */
2235
    SET_ONOFF("hsab_ck", 5)                                /* EN_HSABCK */
2236
    SET_ONOFF("mpui_ck", 6)                                /* EN_APICK */
2237
    SET_ONOFF("armtim_ck", 7)                                /* EN_TIMCK */
2238
    SET_CANIDLE("dma_ck", 8)                                /* DMACK_REQ */
2239
    SET_ONOFF("arm_gpio_ck", 9)                                /* EN_GPIOCK */
2240
    SET_ONOFF("lbfree_ck", 10)                                /* EN_LBFREECK */
2241
}
2242

    
2243
static inline void omap_clkm_ckout1_update(struct omap_mpu_state_s *s,
2244
                uint16_t diff, uint16_t value)
2245
{
2246
    omap_clk clk;
2247

    
2248
    if (diff & (3 << 4)) {                                /* TCLKOUT */
2249
        clk = omap_findclk(s, "tclk_out");
2250
        switch ((value >> 4) & 3) {
2251
        case 1:
2252
            omap_clk_reparent(clk, omap_findclk(s, "ck_gen3"));
2253
            omap_clk_onoff(clk, 1);
2254
            break;
2255
        case 2:
2256
            omap_clk_reparent(clk, omap_findclk(s, "tc_ck"));
2257
            omap_clk_onoff(clk, 1);
2258
            break;
2259
        default:
2260
            omap_clk_onoff(clk, 0);
2261
        }
2262
    }
2263
    if (diff & (3 << 2)) {                                /* DCLKOUT */
2264
        clk = omap_findclk(s, "dclk_out");
2265
        switch ((value >> 2) & 3) {
2266
        case 0:
2267
            omap_clk_reparent(clk, omap_findclk(s, "dspmmu_ck"));
2268
            break;
2269
        case 1:
2270
            omap_clk_reparent(clk, omap_findclk(s, "ck_gen2"));
2271
            break;
2272
        case 2:
2273
            omap_clk_reparent(clk, omap_findclk(s, "dsp_ck"));
2274
            break;
2275
        case 3:
2276
            omap_clk_reparent(clk, omap_findclk(s, "ck_ref14"));
2277
            break;
2278
        }
2279
    }
2280
    if (diff & (3 << 0)) {                                /* ACLKOUT */
2281
        clk = omap_findclk(s, "aclk_out");
2282
        switch ((value >> 0) & 3) {
2283
        case 1:
2284
            omap_clk_reparent(clk, omap_findclk(s, "ck_gen1"));
2285
            omap_clk_onoff(clk, 1);
2286
            break;
2287
        case 2:
2288
            omap_clk_reparent(clk, omap_findclk(s, "arm_ck"));
2289
            omap_clk_onoff(clk, 1);
2290
            break;
2291
        case 3:
2292
            omap_clk_reparent(clk, omap_findclk(s, "ck_ref14"));
2293
            omap_clk_onoff(clk, 1);
2294
            break;
2295
        default:
2296
            omap_clk_onoff(clk, 0);
2297
        }
2298
    }
2299
}
2300

    
2301
static void omap_clkm_write(void *opaque, target_phys_addr_t addr,
2302
                uint32_t value)
2303
{
2304
    struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
2305
    uint16_t diff;
2306
    omap_clk clk;
2307
    static const char *clkschemename[8] = {
2308
        "fully synchronous", "fully asynchronous", "synchronous scalable",
2309
        "mix mode 1", "mix mode 2", "bypass mode", "mix mode 3", "mix mode 4",
2310
    };
2311

    
2312
    switch (addr) {
2313
    case 0x00:        /* ARM_CKCTL */
2314
        diff = s->clkm.arm_ckctl ^ value;
2315
        s->clkm.arm_ckctl = value & 0x7fff;
2316
        omap_clkm_ckctl_update(s, diff, value);
2317
        return;
2318

    
2319
    case 0x04:        /* ARM_IDLECT1 */
2320
        diff = s->clkm.arm_idlect1 ^ value;
2321
        s->clkm.arm_idlect1 = value & 0x0fff;
2322
        omap_clkm_idlect1_update(s, diff, value);
2323
        return;
2324

    
2325
    case 0x08:        /* ARM_IDLECT2 */
2326
        diff = s->clkm.arm_idlect2 ^ value;
2327
        s->clkm.arm_idlect2 = value & 0x07ff;
2328
        omap_clkm_idlect2_update(s, diff, value);
2329
        return;
2330

    
2331
    case 0x0c:        /* ARM_EWUPCT */
2332
        diff = s->clkm.arm_ewupct ^ value;
2333
        s->clkm.arm_ewupct = value & 0x003f;
2334
        return;
2335

    
2336
    case 0x10:        /* ARM_RSTCT1 */
2337
        diff = s->clkm.arm_rstct1 ^ value;
2338
        s->clkm.arm_rstct1 = value & 0x0007;
2339
        if (value & 9) {
2340
            qemu_system_reset_request();
2341
            s->clkm.cold_start = 0xa;
2342
        }
2343
        if (diff & ~value & 4) {                                /* DSP_RST */
2344
            omap_mpui_reset(s);
2345
            omap_tipb_bridge_reset(s->private_tipb);
2346
            omap_tipb_bridge_reset(s->public_tipb);
2347
        }
2348
        if (diff & 2) {                                                /* DSP_EN */
2349
            clk = omap_findclk(s, "dsp_ck");
2350
            omap_clk_canidle(clk, (~value >> 1) & 1);
2351
        }
2352
        return;
2353

    
2354
    case 0x14:        /* ARM_RSTCT2 */
2355
        s->clkm.arm_rstct2 = value & 0x0001;
2356
        return;
2357

    
2358
    case 0x18:        /* ARM_SYSST */
2359
        if ((s->clkm.clocking_scheme ^ (value >> 11)) & 7) {
2360
            s->clkm.clocking_scheme = (value >> 11) & 7;
2361
            printf("%s: clocking scheme set to %s\n", __FUNCTION__,
2362
                            clkschemename[s->clkm.clocking_scheme]);
2363
        }
2364
        s->clkm.cold_start &= value & 0x3f;
2365
        return;
2366

    
2367
    case 0x1c:        /* ARM_CKOUT1 */
2368
        diff = s->clkm.arm_ckout1 ^ value;
2369
        s->clkm.arm_ckout1 = value & 0x003f;
2370
        omap_clkm_ckout1_update(s, diff, value);
2371
        return;
2372

    
2373
    case 0x20:        /* ARM_CKOUT2 */
2374
    default:
2375
        OMAP_BAD_REG(addr);
2376
    }
2377
}
2378

    
2379
static CPUReadMemoryFunc *omap_clkm_readfn[] = {
2380
    omap_badwidth_read16,
2381
    omap_clkm_read,
2382
    omap_badwidth_read16,
2383
};
2384

    
2385
static CPUWriteMemoryFunc *omap_clkm_writefn[] = {
2386
    omap_badwidth_write16,
2387
    omap_clkm_write,
2388
    omap_badwidth_write16,
2389
};
2390

    
2391
static uint32_t omap_clkdsp_read(void *opaque, target_phys_addr_t addr)
2392
{
2393
    struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
2394

    
2395
    switch (addr) {
2396
    case 0x04:        /* DSP_IDLECT1 */
2397
        return s->clkm.dsp_idlect1;
2398

    
2399
    case 0x08:        /* DSP_IDLECT2 */
2400
        return s->clkm.dsp_idlect2;
2401

    
2402
    case 0x14:        /* DSP_RSTCT2 */
2403
        return s->clkm.dsp_rstct2;
2404

    
2405
    case 0x18:        /* DSP_SYSST */
2406
        return (s->clkm.clocking_scheme << 11) | s->clkm.cold_start |
2407
                (s->env->halted << 6);        /* Quite useless... */
2408
    }
2409

    
2410
    OMAP_BAD_REG(addr);
2411
    return 0;
2412
}
2413

    
2414
static inline void omap_clkdsp_idlect1_update(struct omap_mpu_state_s *s,
2415
                uint16_t diff, uint16_t value)
2416
{
2417
    omap_clk clk;
2418

    
2419
    SET_CANIDLE("dspxor_ck", 1);                        /* IDLXORP_DSP */
2420
}
2421

    
2422
static inline void omap_clkdsp_idlect2_update(struct omap_mpu_state_s *s,
2423
                uint16_t diff, uint16_t value)
2424
{
2425
    omap_clk clk;
2426

    
2427
    SET_ONOFF("dspxor_ck", 1);                                /* EN_XORPCK */
2428
}
2429

    
2430
static void omap_clkdsp_write(void *opaque, target_phys_addr_t addr,
2431
                uint32_t value)
2432
{
2433
    struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
2434
    uint16_t diff;
2435

    
2436
    switch (addr) {
2437
    case 0x04:        /* DSP_IDLECT1 */
2438
        diff = s->clkm.dsp_idlect1 ^ value;
2439
        s->clkm.dsp_idlect1 = value & 0x01f7;
2440
        omap_clkdsp_idlect1_update(s, diff, value);
2441
        break;
2442

    
2443
    case 0x08:        /* DSP_IDLECT2 */
2444
        s->clkm.dsp_idlect2 = value & 0x0037;
2445
        diff = s->clkm.dsp_idlect1 ^ value;
2446
        omap_clkdsp_idlect2_update(s, diff, value);
2447
        break;
2448

    
2449
    case 0x14:        /* DSP_RSTCT2 */
2450
        s->clkm.dsp_rstct2 = value & 0x0001;
2451
        break;
2452

    
2453
    case 0x18:        /* DSP_SYSST */
2454
        s->clkm.cold_start &= value & 0x3f;
2455
        break;
2456

    
2457
    default:
2458
        OMAP_BAD_REG(addr);
2459
    }
2460
}
2461

    
2462
static CPUReadMemoryFunc *omap_clkdsp_readfn[] = {
2463
    omap_badwidth_read16,
2464
    omap_clkdsp_read,
2465
    omap_badwidth_read16,
2466
};
2467

    
2468
static CPUWriteMemoryFunc *omap_clkdsp_writefn[] = {
2469
    omap_badwidth_write16,
2470
    omap_clkdsp_write,
2471
    omap_badwidth_write16,
2472
};
2473

    
2474
static void omap_clkm_reset(struct omap_mpu_state_s *s)
2475
{
2476
    if (s->wdt && s->wdt->reset)
2477
        s->clkm.cold_start = 0x6;
2478
    s->clkm.clocking_scheme = 0;
2479
    omap_clkm_ckctl_update(s, ~0, 0x3000);
2480
    s->clkm.arm_ckctl = 0x3000;
2481
    omap_clkm_idlect1_update(s, s->clkm.arm_idlect1 ^ 0x0400, 0x0400);
2482
    s->clkm.arm_idlect1 = 0x0400;
2483
    omap_clkm_idlect2_update(s, s->clkm.arm_idlect2 ^ 0x0100, 0x0100);
2484
    s->clkm.arm_idlect2 = 0x0100;
2485
    s->clkm.arm_ewupct = 0x003f;
2486
    s->clkm.arm_rstct1 = 0x0000;
2487
    s->clkm.arm_rstct2 = 0x0000;
2488
    s->clkm.arm_ckout1 = 0x0015;
2489
    s->clkm.dpll1_mode = 0x2002;
2490
    omap_clkdsp_idlect1_update(s, s->clkm.dsp_idlect1 ^ 0x0040, 0x0040);
2491
    s->clkm.dsp_idlect1 = 0x0040;
2492
    omap_clkdsp_idlect2_update(s, ~0, 0x0000);
2493
    s->clkm.dsp_idlect2 = 0x0000;
2494
    s->clkm.dsp_rstct2 = 0x0000;
2495
}
2496

    
2497
static void omap_clkm_init(target_phys_addr_t mpu_base,
2498
                target_phys_addr_t dsp_base, struct omap_mpu_state_s *s)
2499
{
2500
    int iomemtype[2] = {
2501
        cpu_register_io_memory(0, omap_clkm_readfn, omap_clkm_writefn, s),
2502
        cpu_register_io_memory(0, omap_clkdsp_readfn, omap_clkdsp_writefn, s),
2503
    };
2504

    
2505
    s->clkm.arm_idlect1 = 0x03ff;
2506
    s->clkm.arm_idlect2 = 0x0100;
2507
    s->clkm.dsp_idlect1 = 0x0002;
2508
    omap_clkm_reset(s);
2509
    s->clkm.cold_start = 0x3a;
2510

    
2511
    cpu_register_physical_memory(mpu_base, 0x100, iomemtype[0]);
2512
    cpu_register_physical_memory(dsp_base, 0x1000, iomemtype[1]);
2513
}
2514

    
2515
/* MPU I/O */
2516
struct omap_mpuio_s {
2517
    qemu_irq irq;
2518
    qemu_irq kbd_irq;
2519
    qemu_irq *in;
2520
    qemu_irq handler[16];
2521
    qemu_irq wakeup;
2522

    
2523
    uint16_t inputs;
2524
    uint16_t outputs;
2525
    uint16_t dir;
2526
    uint16_t edge;
2527
    uint16_t mask;
2528
    uint16_t ints;
2529

    
2530
    uint16_t debounce;
2531
    uint16_t latch;
2532
    uint8_t event;
2533

    
2534
    uint8_t buttons[5];
2535
    uint8_t row_latch;
2536
    uint8_t cols;
2537
    int kbd_mask;
2538
    int clk;
2539
};
2540

    
2541
static void omap_mpuio_set(void *opaque, int line, int level)
2542
{
2543
    struct omap_mpuio_s *s = (struct omap_mpuio_s *) opaque;
2544
    uint16_t prev = s->inputs;
2545

    
2546
    if (level)
2547
        s->inputs |= 1 << line;
2548
    else
2549
        s->inputs &= ~(1 << line);
2550

    
2551
    if (((1 << line) & s->dir & ~s->mask) && s->clk) {
2552
        if ((s->edge & s->inputs & ~prev) | (~s->edge & ~s->inputs & prev)) {
2553
            s->ints |= 1 << line;
2554
            qemu_irq_raise(s->irq);
2555
            /* TODO: wakeup */
2556
        }
2557
        if ((s->event & (1 << 0)) &&                /* SET_GPIO_EVENT_MODE */
2558
                (s->event >> 1) == line)        /* PIN_SELECT */
2559
            s->latch = s->inputs;
2560
    }
2561
}
2562

    
2563
static void omap_mpuio_kbd_update(struct omap_mpuio_s *s)
2564
{
2565
    int i;
2566
    uint8_t *row, rows = 0, cols = ~s->cols;
2567

    
2568
    for (row = s->buttons + 4, i = 1 << 4; i; row --, i >>= 1)
2569
        if (*row & cols)
2570
            rows |= i;
2571

    
2572
    qemu_set_irq(s->kbd_irq, rows && !s->kbd_mask && s->clk);
2573
    s->row_latch = ~rows;
2574
}
2575

    
2576
static uint32_t omap_mpuio_read(void *opaque, target_phys_addr_t addr)
2577
{
2578
    struct omap_mpuio_s *s = (struct omap_mpuio_s *) opaque;
2579
    int offset = addr & OMAP_MPUI_REG_MASK;
2580
    uint16_t ret;
2581

    
2582
    switch (offset) {
2583
    case 0x00:        /* INPUT_LATCH */
2584
        return s->inputs;
2585

    
2586
    case 0x04:        /* OUTPUT_REG */
2587
        return s->outputs;
2588

    
2589
    case 0x08:        /* IO_CNTL */
2590
        return s->dir;
2591

    
2592
    case 0x10:        /* KBR_LATCH */
2593
        return s->row_latch;
2594

    
2595
    case 0x14:        /* KBC_REG */
2596
        return s->cols;
2597

    
2598
    case 0x18:        /* GPIO_EVENT_MODE_REG */
2599
        return s->event;
2600

    
2601
    case 0x1c:        /* GPIO_INT_EDGE_REG */
2602
        return s->edge;
2603

    
2604
    case 0x20:        /* KBD_INT */
2605
        return (~s->row_latch & 0x1f) && !s->kbd_mask;
2606

    
2607
    case 0x24:        /* GPIO_INT */
2608
        ret = s->ints;
2609
        s->ints &= s->mask;
2610
        if (ret)
2611
            qemu_irq_lower(s->irq);
2612
        return ret;
2613

    
2614
    case 0x28:        /* KBD_MASKIT */
2615
        return s->kbd_mask;
2616

    
2617
    case 0x2c:        /* GPIO_MASKIT */
2618
        return s->mask;
2619

    
2620
    case 0x30:        /* GPIO_DEBOUNCING_REG */
2621
        return s->debounce;
2622

    
2623
    case 0x34:        /* GPIO_LATCH_REG */
2624
        return s->latch;
2625
    }
2626

    
2627
    OMAP_BAD_REG(addr);
2628
    return 0;
2629
}
2630

    
2631
static void omap_mpuio_write(void *opaque, target_phys_addr_t addr,
2632
                uint32_t value)
2633
{
2634
    struct omap_mpuio_s *s = (struct omap_mpuio_s *) opaque;
2635
    int offset = addr & OMAP_MPUI_REG_MASK;
2636
    uint16_t diff;
2637
    int ln;
2638

    
2639
    switch (offset) {
2640
    case 0x04:        /* OUTPUT_REG */
2641
        diff = (s->outputs ^ value) & ~s->dir;
2642
        s->outputs = value;
2643
        while ((ln = ffs(diff))) {
2644
            ln --;
2645
            if (s->handler[ln])
2646
                qemu_set_irq(s->handler[ln], (value >> ln) & 1);
2647
            diff &= ~(1 << ln);
2648
        }
2649
        break;
2650

    
2651
    case 0x08:        /* IO_CNTL */
2652
        diff = s->outputs & (s->dir ^ value);
2653
        s->dir = value;
2654

    
2655
        value = s->outputs & ~s->dir;
2656
        while ((ln = ffs(diff))) {
2657
            ln --;
2658
            if (s->handler[ln])
2659
                qemu_set_irq(s->handler[ln], (value >> ln) & 1);
2660
            diff &= ~(1 << ln);
2661
        }
2662
        break;
2663

    
2664
    case 0x14:        /* KBC_REG */
2665
        s->cols = value;
2666
        omap_mpuio_kbd_update(s);
2667
        break;
2668

    
2669
    case 0x18:        /* GPIO_EVENT_MODE_REG */
2670
        s->event = value & 0x1f;
2671
        break;
2672

    
2673
    case 0x1c:        /* GPIO_INT_EDGE_REG */
2674
        s->edge = value;
2675
        break;
2676

    
2677
    case 0x28:        /* KBD_MASKIT */
2678
        s->kbd_mask = value & 1;
2679
        omap_mpuio_kbd_update(s);
2680
        break;
2681

    
2682
    case 0x2c:        /* GPIO_MASKIT */
2683
        s->mask = value;
2684
        break;
2685

    
2686
    case 0x30:        /* GPIO_DEBOUNCING_REG */
2687
        s->debounce = value & 0x1ff;
2688
        break;
2689

    
2690
    case 0x00:        /* INPUT_LATCH */
2691
    case 0x10:        /* KBR_LATCH */
2692
    case 0x20:        /* KBD_INT */
2693
    case 0x24:        /* GPIO_INT */
2694
    case 0x34:        /* GPIO_LATCH_REG */
2695
        OMAP_RO_REG(addr);
2696
        return;
2697

    
2698
    default:
2699
        OMAP_BAD_REG(addr);
2700
        return;
2701
    }
2702
}
2703

    
2704
static CPUReadMemoryFunc *omap_mpuio_readfn[] = {
2705
    omap_badwidth_read16,
2706
    omap_mpuio_read,
2707
    omap_badwidth_read16,
2708
};
2709

    
2710
static CPUWriteMemoryFunc *omap_mpuio_writefn[] = {
2711
    omap_badwidth_write16,
2712
    omap_mpuio_write,
2713
    omap_badwidth_write16,
2714
};
2715

    
2716
static void omap_mpuio_reset(struct omap_mpuio_s *s)
2717
{
2718
    s->inputs = 0;
2719
    s->outputs = 0;
2720
    s->dir = ~0;
2721
    s->event = 0;
2722
    s->edge = 0;
2723
    s->kbd_mask = 0;
2724
    s->mask = 0;
2725
    s->debounce = 0;
2726
    s->latch = 0;
2727
    s->ints = 0;
2728
    s->row_latch = 0x1f;
2729
    s->clk = 1;
2730
}
2731

    
2732
static void omap_mpuio_onoff(void *opaque, int line, int on)
2733
{
2734
    struct omap_mpuio_s *s = (struct omap_mpuio_s *) opaque;
2735

    
2736
    s->clk = on;
2737
    if (on)
2738
        omap_mpuio_kbd_update(s);
2739
}
2740

    
2741
struct omap_mpuio_s *omap_mpuio_init(target_phys_addr_t base,
2742
                qemu_irq kbd_int, qemu_irq gpio_int, qemu_irq wakeup,
2743
                omap_clk clk)
2744
{
2745
    int iomemtype;
2746
    struct omap_mpuio_s *s = (struct omap_mpuio_s *)
2747
            qemu_mallocz(sizeof(struct omap_mpuio_s));
2748

    
2749
    s->irq = gpio_int;
2750
    s->kbd_irq = kbd_int;
2751
    s->wakeup = wakeup;
2752
    s->in = qemu_allocate_irqs(omap_mpuio_set, s, 16);
2753
    omap_mpuio_reset(s);
2754

    
2755
    iomemtype = cpu_register_io_memory(0, omap_mpuio_readfn,
2756
                    omap_mpuio_writefn, s);
2757
    cpu_register_physical_memory(base, 0x800, iomemtype);
2758

    
2759
    omap_clk_adduser(clk, qemu_allocate_irqs(omap_mpuio_onoff, s, 1)[0]);
2760

    
2761
    return s;
2762
}
2763

    
2764
qemu_irq *omap_mpuio_in_get(struct omap_mpuio_s *s)
2765
{
2766
    return s->in;
2767
}
2768

    
2769
void omap_mpuio_out_set(struct omap_mpuio_s *s, int line, qemu_irq handler)
2770
{
2771
    if (line >= 16 || line < 0)
2772
        cpu_abort(cpu_single_env, "%s: No GPIO line %i\n", __FUNCTION__, line);
2773
    s->handler[line] = handler;
2774
}
2775

    
2776
void omap_mpuio_key(struct omap_mpuio_s *s, int row, int col, int down)
2777
{
2778
    if (row >= 5 || row < 0)
2779
        cpu_abort(cpu_single_env, "%s: No key %i-%i\n",
2780
                        __FUNCTION__, col, row);
2781

    
2782
    if (down)
2783
        s->buttons[row] |= 1 << col;
2784
    else
2785
        s->buttons[row] &= ~(1 << col);
2786

    
2787
    omap_mpuio_kbd_update(s);
2788
}
2789

    
2790
/* General-Purpose I/O */
2791
struct omap_gpio_s {
2792
    qemu_irq irq;
2793
    qemu_irq *in;
2794
    qemu_irq handler[16];
2795

    
2796
    uint16_t inputs;
2797
    uint16_t outputs;
2798
    uint16_t dir;
2799
    uint16_t edge;
2800
    uint16_t mask;
2801
    uint16_t ints;
2802
    uint16_t pins;
2803
};
2804

    
2805
static void omap_gpio_set(void *opaque, int line, int level)
2806
{
2807
    struct omap_gpio_s *s = (struct omap_gpio_s *) opaque;
2808
    uint16_t prev = s->inputs;
2809

    
2810
    if (level)
2811
        s->inputs |= 1 << line;
2812
    else
2813
        s->inputs &= ~(1 << line);
2814

    
2815
    if (((s->edge & s->inputs & ~prev) | (~s->edge & ~s->inputs & prev)) &
2816
                    (1 << line) & s->dir & ~s->mask) {
2817
        s->ints |= 1 << line;
2818
        qemu_irq_raise(s->irq);
2819
    }
2820
}
2821

    
2822
static uint32_t omap_gpio_read(void *opaque, target_phys_addr_t addr)
2823
{
2824
    struct omap_gpio_s *s = (struct omap_gpio_s *) opaque;
2825
    int offset = addr & OMAP_MPUI_REG_MASK;
2826

    
2827
    switch (offset) {
2828
    case 0x00:        /* DATA_INPUT */
2829
        return s->inputs & s->pins;
2830

    
2831
    case 0x04:        /* DATA_OUTPUT */
2832
        return s->outputs;
2833

    
2834
    case 0x08:        /* DIRECTION_CONTROL */
2835
        return s->dir;
2836

    
2837
    case 0x0c:        /* INTERRUPT_CONTROL */
2838
        return s->edge;
2839

    
2840
    case 0x10:        /* INTERRUPT_MASK */
2841
        return s->mask;
2842

    
2843
    case 0x14:        /* INTERRUPT_STATUS */
2844
        return s->ints;
2845

    
2846
    case 0x18:        /* PIN_CONTROL (not in OMAP310) */
2847
        OMAP_BAD_REG(addr);
2848
        return s->pins;
2849
    }
2850

    
2851
    OMAP_BAD_REG(addr);
2852
    return 0;
2853
}
2854

    
2855
static void omap_gpio_write(void *opaque, target_phys_addr_t addr,
2856
                uint32_t value)
2857
{
2858
    struct omap_gpio_s *s = (struct omap_gpio_s *) opaque;
2859
    int offset = addr & OMAP_MPUI_REG_MASK;
2860
    uint16_t diff;
2861
    int ln;
2862

    
2863
    switch (offset) {
2864
    case 0x00:        /* DATA_INPUT */
2865
        OMAP_RO_REG(addr);
2866
        return;
2867

    
2868
    case 0x04:        /* DATA_OUTPUT */
2869
        diff = (s->outputs ^ value) & ~s->dir;
2870
        s->outputs = value;
2871
        while ((ln = ffs(diff))) {
2872
            ln --;
2873
            if (s->handler[ln])
2874
                qemu_set_irq(s->handler[ln], (value >> ln) & 1);
2875
            diff &= ~(1 << ln);
2876
        }
2877
        break;
2878

    
2879
    case 0x08:        /* DIRECTION_CONTROL */
2880
        diff = s->outputs & (s->dir ^ value);
2881
        s->dir = value;
2882

    
2883
        value = s->outputs & ~s->dir;
2884
        while ((ln = ffs(diff))) {
2885
            ln --;
2886
            if (s->handler[ln])
2887
                qemu_set_irq(s->handler[ln], (value >> ln) & 1);
2888
            diff &= ~(1 << ln);
2889
        }
2890
        break;
2891

    
2892
    case 0x0c:        /* INTERRUPT_CONTROL */
2893
        s->edge = value;
2894
        break;
2895

    
2896
    case 0x10:        /* INTERRUPT_MASK */
2897
        s->mask = value;
2898
        break;
2899

    
2900
    case 0x14:        /* INTERRUPT_STATUS */
2901
        s->ints &= ~value;
2902
        if (!s->ints)
2903
            qemu_irq_lower(s->irq);
2904
        break;
2905

    
2906
    case 0x18:        /* PIN_CONTROL (not in OMAP310 TRM) */
2907
        OMAP_BAD_REG(addr);
2908
        s->pins = value;
2909
        break;
2910

    
2911
    default:
2912
        OMAP_BAD_REG(addr);
2913
        return;
2914
    }
2915
}
2916

    
2917
/* *Some* sources say the memory region is 32-bit.  */
2918
static CPUReadMemoryFunc *omap_gpio_readfn[] = {
2919
    omap_badwidth_read16,
2920
    omap_gpio_read,
2921
    omap_badwidth_read16,
2922
};
2923

    
2924
static CPUWriteMemoryFunc *omap_gpio_writefn[] = {
2925
    omap_badwidth_write16,
2926
    omap_gpio_write,
2927
    omap_badwidth_write16,
2928
};
2929

    
2930
static void omap_gpio_reset(struct omap_gpio_s *s)
2931
{
2932
    s->inputs = 0;
2933
    s->outputs = ~0;
2934
    s->dir = ~0;
2935
    s->edge = ~0;
2936
    s->mask = ~0;
2937
    s->ints = 0;
2938
    s->pins = ~0;
2939
}
2940

    
2941
struct omap_gpio_s *omap_gpio_init(target_phys_addr_t base,
2942
                qemu_irq irq, omap_clk clk)
2943
{
2944
    int iomemtype;
2945
    struct omap_gpio_s *s = (struct omap_gpio_s *)
2946
            qemu_mallocz(sizeof(struct omap_gpio_s));
2947

    
2948
    s->irq = irq;
2949
    s->in = qemu_allocate_irqs(omap_gpio_set, s, 16);
2950
    omap_gpio_reset(s);
2951

    
2952
    iomemtype = cpu_register_io_memory(0, omap_gpio_readfn,
2953
                    omap_gpio_writefn, s);
2954
    cpu_register_physical_memory(base, 0x1000, iomemtype);
2955

    
2956
    return s;
2957
}
2958

    
2959
qemu_irq *omap_gpio_in_get(struct omap_gpio_s *s)
2960
{
2961
    return s->in;
2962
}
2963

    
2964
void omap_gpio_out_set(struct omap_gpio_s *s, int line, qemu_irq handler)
2965
{
2966
    if (line >= 16 || line < 0)
2967
        cpu_abort(cpu_single_env, "%s: No GPIO line %i\n", __FUNCTION__, line);
2968
    s->handler[line] = handler;
2969
}
2970

    
2971
/* MicroWire Interface */
2972
struct omap_uwire_s {
2973
    qemu_irq txirq;
2974
    qemu_irq rxirq;
2975
    qemu_irq txdrq;
2976

    
2977
    uint16_t txbuf;
2978
    uint16_t rxbuf;
2979
    uint16_t control;
2980
    uint16_t setup[5];
2981

    
2982
    struct uwire_slave_s *chip[4];
2983
};
2984

    
2985
static void omap_uwire_transfer_start(struct omap_uwire_s *s)
2986
{
2987
    int chipselect = (s->control >> 10) & 3;                /* INDEX */
2988
    struct uwire_slave_s *slave = s->chip[chipselect];
2989

    
2990
    if ((s->control >> 5) & 0x1f) {                        /* NB_BITS_WR */
2991
        if (s->control & (1 << 12))                        /* CS_CMD */
2992
            if (slave && slave->send)
2993
                slave->send(slave->opaque,
2994
                                s->txbuf >> (16 - ((s->control >> 5) & 0x1f)));
2995
        s->control &= ~(1 << 14);                        /* CSRB */
2996
        /* TODO: depending on s->setup[4] bits [1:0] assert an IRQ or
2997
         * a DRQ.  When is the level IRQ supposed to be reset?  */
2998
    }
2999

    
3000
    if ((s->control >> 0) & 0x1f) {                        /* NB_BITS_RD */
3001
        if (s->control & (1 << 12))                        /* CS_CMD */
3002
            if (slave && slave->receive)
3003
                s->rxbuf = slave->receive(slave->opaque);
3004
        s->control |= 1 << 15;                                /* RDRB */
3005
        /* TODO: depending on s->setup[4] bits [1:0] assert an IRQ or
3006
         * a DRQ.  When is the level IRQ supposed to be reset?  */
3007
    }
3008
}
3009

    
3010
static uint32_t omap_uwire_read(void *opaque, target_phys_addr_t addr)
3011
{
3012
    struct omap_uwire_s *s = (struct omap_uwire_s *) opaque;
3013
    int offset = addr & OMAP_MPUI_REG_MASK;
3014

    
3015
    switch (offset) {
3016
    case 0x00:        /* RDR */
3017
        s->control &= ~(1 << 15);                        /* RDRB */
3018
        return s->rxbuf;
3019

    
3020
    case 0x04:        /* CSR */
3021
        return s->control;
3022

    
3023
    case 0x08:        /* SR1 */
3024
        return s->setup[0];
3025
    case 0x0c:        /* SR2 */
3026
        return s->setup[1];
3027
    case 0x10:        /* SR3 */
3028
        return s->setup[2];
3029
    case 0x14:        /* SR4 */
3030
        return s->setup[3];
3031
    case 0x18:        /* SR5 */
3032
        return s->setup[4];
3033
    }
3034

    
3035
    OMAP_BAD_REG(addr);
3036
    return 0;
3037
}
3038

    
3039
static void omap_uwire_write(void *opaque, target_phys_addr_t addr,
3040
                uint32_t value)
3041
{
3042
    struct omap_uwire_s *s = (struct omap_uwire_s *) opaque;
3043
    int offset = addr & OMAP_MPUI_REG_MASK;
3044

    
3045
    switch (offset) {
3046
    case 0x00:        /* TDR */
3047
        s->txbuf = value;                                /* TD */
3048
        if ((s->setup[4] & (1 << 2)) &&                        /* AUTO_TX_EN */
3049
                        ((s->setup[4] & (1 << 3)) ||        /* CS_TOGGLE_TX_EN */
3050
                         (s->control & (1 << 12)))) {        /* CS_CMD */
3051
            s->control |= 1 << 14;                        /* CSRB */
3052
            omap_uwire_transfer_start(s);
3053
        }
3054
        break;
3055

    
3056
    case 0x04:        /* CSR */
3057
        s->control = value & 0x1fff;
3058
        if (value & (1 << 13))                                /* START */
3059
            omap_uwire_transfer_start(s);
3060
        break;
3061

    
3062
    case 0x08:        /* SR1 */
3063
        s->setup[0] = value & 0x003f;
3064
        break;
3065

    
3066
    case 0x0c:        /* SR2 */
3067
        s->setup[1] = value & 0x0fc0;
3068
        break;
3069

    
3070
    case 0x10:        /* SR3 */
3071
        s->setup[2] = value & 0x0003;
3072
        break;
3073

    
3074
    case 0x14:        /* SR4 */
3075
        s->setup[3] = value & 0x0001;
3076
        break;
3077

    
3078
    case 0x18:        /* SR5 */
3079
        s->setup[4] = value & 0x000f;
3080
        break;
3081

    
3082
    default:
3083
        OMAP_BAD_REG(addr);
3084
        return;
3085
    }
3086
}
3087

    
3088
static CPUReadMemoryFunc *omap_uwire_readfn[] = {
3089
    omap_badwidth_read16,
3090
    omap_uwire_read,
3091
    omap_badwidth_read16,
3092
};
3093

    
3094
static CPUWriteMemoryFunc *omap_uwire_writefn[] = {
3095
    omap_badwidth_write16,
3096
    omap_uwire_write,
3097
    omap_badwidth_write16,
3098
};
3099

    
3100
static void omap_uwire_reset(struct omap_uwire_s *s)
3101
{
3102
    s->control = 0;
3103
    s->setup[0] = 0;
3104
    s->setup[1] = 0;
3105
    s->setup[2] = 0;
3106
    s->setup[3] = 0;
3107
    s->setup[4] = 0;
3108
}
3109

    
3110
struct omap_uwire_s *omap_uwire_init(target_phys_addr_t base,
3111
                qemu_irq *irq, qemu_irq dma, omap_clk clk)
3112
{
3113
    int iomemtype;
3114
    struct omap_uwire_s *s = (struct omap_uwire_s *)
3115
            qemu_mallocz(sizeof(struct omap_uwire_s));
3116

    
3117
    s->txirq = irq[0];
3118
    s->rxirq = irq[1];
3119
    s->txdrq = dma;
3120
    omap_uwire_reset(s);
3121

    
3122
    iomemtype = cpu_register_io_memory(0, omap_uwire_readfn,
3123
                    omap_uwire_writefn, s);
3124
    cpu_register_physical_memory(base, 0x800, iomemtype);
3125

    
3126
    return s;
3127
}
3128

    
3129
void omap_uwire_attach(struct omap_uwire_s *s,
3130
                struct uwire_slave_s *slave, int chipselect)
3131
{
3132
    if (chipselect < 0 || chipselect > 3) {
3133
        fprintf(stderr, "%s: Bad chipselect %i\n", __FUNCTION__, chipselect);
3134
        exit(-1);
3135
    }
3136

    
3137
    s->chip[chipselect] = slave;
3138
}
3139

    
3140
/* Pseudonoise Pulse-Width Light Modulator */
3141
static void omap_pwl_update(struct omap_mpu_state_s *s)
3142
{
3143
    int output = (s->pwl.clk && s->pwl.enable) ? s->pwl.level : 0;
3144

    
3145
    if (output != s->pwl.output) {
3146
        s->pwl.output = output;
3147
        printf("%s: Backlight now at %i/256\n", __FUNCTION__, output);
3148
    }
3149
}
3150

    
3151
static uint32_t omap_pwl_read(void *opaque, target_phys_addr_t addr)
3152
{
3153
    struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
3154
    int offset = addr & OMAP_MPUI_REG_MASK;
3155

    
3156
    switch (offset) {
3157
    case 0x00:        /* PWL_LEVEL */
3158
        return s->pwl.level;
3159
    case 0x04:        /* PWL_CTRL */
3160
        return s->pwl.enable;
3161
    }
3162
    OMAP_BAD_REG(addr);
3163
    return 0;
3164
}
3165

    
3166
static void omap_pwl_write(void *opaque, target_phys_addr_t addr,
3167
                uint32_t value)
3168
{
3169
    struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
3170
    int offset = addr & OMAP_MPUI_REG_MASK;
3171

    
3172
    switch (offset) {
3173
    case 0x00:        /* PWL_LEVEL */
3174
        s->pwl.level = value;
3175
        omap_pwl_update(s);
3176
        break;
3177
    case 0x04:        /* PWL_CTRL */
3178
        s->pwl.enable = value & 1;
3179
        omap_pwl_update(s);
3180
        break;
3181
    default:
3182
        OMAP_BAD_REG(addr);
3183
        return;
3184
    }
3185
}
3186

    
3187
static CPUReadMemoryFunc *omap_pwl_readfn[] = {
3188
    omap_pwl_read,
3189
    omap_badwidth_read8,
3190
    omap_badwidth_read8,
3191
};
3192

    
3193
static CPUWriteMemoryFunc *omap_pwl_writefn[] = {
3194
    omap_pwl_write,
3195
    omap_badwidth_write8,
3196
    omap_badwidth_write8,
3197
};
3198

    
3199
static void omap_pwl_reset(struct omap_mpu_state_s *s)
3200
{
3201
    s->pwl.output = 0;
3202
    s->pwl.level = 0;
3203
    s->pwl.enable = 0;
3204
    s->pwl.clk = 1;
3205
    omap_pwl_update(s);
3206
}
3207

    
3208
static void omap_pwl_clk_update(void *opaque, int line, int on)
3209
{
3210
    struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
3211

    
3212
    s->pwl.clk = on;
3213
    omap_pwl_update(s);
3214
}
3215

    
3216
static void omap_pwl_init(target_phys_addr_t base, struct omap_mpu_state_s *s,
3217
                omap_clk clk)
3218
{
3219
    int iomemtype;
3220

    
3221
    omap_pwl_reset(s);
3222

    
3223
    iomemtype = cpu_register_io_memory(0, omap_pwl_readfn,
3224
                    omap_pwl_writefn, s);
3225
    cpu_register_physical_memory(base, 0x800, iomemtype);
3226

    
3227
    omap_clk_adduser(clk, qemu_allocate_irqs(omap_pwl_clk_update, s, 1)[0]);
3228
}
3229

    
3230
/* Pulse-Width Tone module */
3231
static uint32_t omap_pwt_read(void *opaque, target_phys_addr_t addr)
3232
{
3233
    struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
3234
    int offset = addr & OMAP_MPUI_REG_MASK;
3235

    
3236
    switch (offset) {
3237
    case 0x00:        /* FRC */
3238
        return s->pwt.frc;
3239
    case 0x04:        /* VCR */
3240
        return s->pwt.vrc;
3241
    case 0x08:        /* GCR */
3242
        return s->pwt.gcr;
3243
    }
3244
    OMAP_BAD_REG(addr);
3245
    return 0;
3246
}
3247

    
3248
static void omap_pwt_write(void *opaque, target_phys_addr_t addr,
3249
                uint32_t value)
3250
{
3251
    struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
3252
    int offset = addr & OMAP_MPUI_REG_MASK;
3253

    
3254
    switch (offset) {
3255
    case 0x00:        /* FRC */
3256
        s->pwt.frc = value & 0x3f;
3257
        break;
3258
    case 0x04:        /* VRC */
3259
        if ((value ^ s->pwt.vrc) & 1) {
3260
            if (value & 1)
3261
                printf("%s: %iHz buzz on\n", __FUNCTION__, (int)
3262
                                /* 1.5 MHz from a 12-MHz or 13-MHz PWT_CLK */
3263
                                ((omap_clk_getrate(s->pwt.clk) >> 3) /
3264
                                 /* Pre-multiplexer divider */
3265
                                 ((s->pwt.gcr & 2) ? 1 : 154) /
3266
                                 /* Octave multiplexer */
3267
                                 (2 << (value & 3)) *
3268
                                 /* 101/107 divider */
3269
                                 ((value & (1 << 2)) ? 101 : 107) *
3270
                                 /*  49/55 divider */
3271
                                 ((value & (1 << 3)) ?  49 : 55) *
3272
                                 /*  50/63 divider */
3273
                                 ((value & (1 << 4)) ?  50 : 63) *
3274
                                 /*  80/127 divider */
3275
                                 ((value & (1 << 5)) ?  80 : 127) /
3276
                                 (107 * 55 * 63 * 127)));
3277
            else
3278
                printf("%s: silence!\n", __FUNCTION__);
3279
        }
3280
        s->pwt.vrc = value & 0x7f;
3281
        break;
3282
    case 0x08:        /* GCR */
3283
        s->pwt.gcr = value & 3;
3284
        break;
3285
    default:
3286
        OMAP_BAD_REG(addr);
3287
        return;
3288
    }
3289
}
3290

    
3291
static CPUReadMemoryFunc *omap_pwt_readfn[] = {
3292
    omap_pwt_read,
3293
    omap_badwidth_read8,
3294
    omap_badwidth_read8,
3295
};
3296

    
3297
static CPUWriteMemoryFunc *omap_pwt_writefn[] = {
3298
    omap_pwt_write,
3299
    omap_badwidth_write8,
3300
    omap_badwidth_write8,
3301
};
3302

    
3303
static void omap_pwt_reset(struct omap_mpu_state_s *s)
3304
{
3305
    s->pwt.frc = 0;
3306
    s->pwt.vrc = 0;
3307
    s->pwt.gcr = 0;
3308
}
3309

    
3310
static void omap_pwt_init(target_phys_addr_t base, struct omap_mpu_state_s *s,
3311
                omap_clk clk)
3312
{
3313
    int iomemtype;
3314

    
3315
    s->pwt.clk = clk;
3316
    omap_pwt_reset(s);
3317

    
3318
    iomemtype = cpu_register_io_memory(0, omap_pwt_readfn,
3319
                    omap_pwt_writefn, s);
3320
    cpu_register_physical_memory(base, 0x800, iomemtype);
3321
}
3322

    
3323
/* Real-time Clock module */
3324
struct omap_rtc_s {
3325
    qemu_irq irq;
3326
    qemu_irq alarm;
3327
    QEMUTimer *clk;
3328

    
3329
    uint8_t interrupts;
3330
    uint8_t status;
3331
    int16_t comp_reg;
3332
    int running;
3333
    int pm_am;
3334
    int auto_comp;
3335
    int round;
3336
    struct tm alarm_tm;
3337
    time_t alarm_ti;
3338

    
3339
    struct tm current_tm;
3340
    time_t ti;
3341
    uint64_t tick;
3342
};
3343

    
3344
static void omap_rtc_interrupts_update(struct omap_rtc_s *s)
3345
{
3346
    /* s->alarm is level-triggered */
3347
    qemu_set_irq(s->alarm, (s->status >> 6) & 1);
3348
}
3349

    
3350
static void omap_rtc_alarm_update(struct omap_rtc_s *s)
3351
{
3352
    s->alarm_ti = mktime(&s->alarm_tm);
3353
    if (s->alarm_ti == -1)
3354
        printf("%s: conversion failed\n", __FUNCTION__);
3355
}
3356

    
3357
static inline uint8_t omap_rtc_bcd(int num)
3358
{
3359
    return ((num / 10) << 4) | (num % 10);
3360
}
3361

    
3362
static inline int omap_rtc_bin(uint8_t num)
3363
{
3364
    return (num & 15) + 10 * (num >> 4);
3365
}
3366

    
3367
static uint32_t omap_rtc_read(void *opaque, target_phys_addr_t addr)
3368
{
3369
    struct omap_rtc_s *s = (struct omap_rtc_s *) opaque;
3370
    int offset = addr & OMAP_MPUI_REG_MASK;
3371
    uint8_t i;
3372

    
3373
    switch (offset) {
3374
    case 0x00:        /* SECONDS_REG */
3375
        return omap_rtc_bcd(s->current_tm.tm_sec);
3376

    
3377
    case 0x04:        /* MINUTES_REG */
3378
        return omap_rtc_bcd(s->current_tm.tm_min);
3379

    
3380
    case 0x08:        /* HOURS_REG */
3381
        if (s->pm_am)
3382
            return ((s->current_tm.tm_hour > 11) << 7) |
3383
                    omap_rtc_bcd(((s->current_tm.tm_hour - 1) % 12) + 1);
3384
        else
3385
            return omap_rtc_bcd(s->current_tm.tm_hour);
3386

    
3387
    case 0x0c:        /* DAYS_REG */
3388
        return omap_rtc_bcd(s->current_tm.tm_mday);
3389

    
3390
    case 0x10:        /* MONTHS_REG */
3391
        return omap_rtc_bcd(s->current_tm.tm_mon + 1);
3392

    
3393
    case 0x14:        /* YEARS_REG */
3394
        return omap_rtc_bcd(s->current_tm.tm_year % 100);
3395

    
3396
    case 0x18:        /* WEEK_REG */
3397
        return s->current_tm.tm_wday;
3398

    
3399
    case 0x20:        /* ALARM_SECONDS_REG */
3400
        return omap_rtc_bcd(s->alarm_tm.tm_sec);
3401

    
3402
    case 0x24:        /* ALARM_MINUTES_REG */
3403
        return omap_rtc_bcd(s->alarm_tm.tm_min);
3404

    
3405
    case 0x28:        /* ALARM_HOURS_REG */
3406
        if (s->pm_am)
3407
            return ((s->alarm_tm.tm_hour > 11) << 7) |
3408
                    omap_rtc_bcd(((s->alarm_tm.tm_hour - 1) % 12) + 1);
3409
        else
3410
            return omap_rtc_bcd(s->alarm_tm.tm_hour);
3411

    
3412
    case 0x2c:        /* ALARM_DAYS_REG */
3413
        return omap_rtc_bcd(s->alarm_tm.tm_mday);
3414

    
3415
    case 0x30:        /* ALARM_MONTHS_REG */
3416
        return omap_rtc_bcd(s->alarm_tm.tm_mon + 1);
3417

    
3418
    case 0x34:        /* ALARM_YEARS_REG */
3419
        return omap_rtc_bcd(s->alarm_tm.tm_year % 100);
3420

    
3421
    case 0x40:        /* RTC_CTRL_REG */
3422
        return (s->pm_am << 3) | (s->auto_comp << 2) |
3423
                (s->round << 1) | s->running;
3424

    
3425
    case 0x44:        /* RTC_STATUS_REG */
3426
        i = s->status;
3427
        s->status &= ~0x3d;
3428
        return i;
3429

    
3430
    case 0x48:        /* RTC_INTERRUPTS_REG */
3431
        return s->interrupts;
3432

    
3433
    case 0x4c:        /* RTC_COMP_LSB_REG */
3434
        return ((uint16_t) s->comp_reg) & 0xff;
3435

    
3436
    case 0x50:        /* RTC_COMP_MSB_REG */
3437
        return ((uint16_t) s->comp_reg) >> 8;
3438
    }
3439

    
3440
    OMAP_BAD_REG(addr);
3441
    return 0;
3442
}
3443

    
3444
static void omap_rtc_write(void *opaque, target_phys_addr_t addr,
3445
                uint32_t value)
3446
{
3447
    struct omap_rtc_s *s = (struct omap_rtc_s *) opaque;
3448
    int offset = addr & OMAP_MPUI_REG_MASK;
3449
    struct tm new_tm;
3450
    time_t ti[2];
3451

    
3452
    switch (offset) {
3453
    case 0x00:        /* SECONDS_REG */
3454
#ifdef ALMDEBUG
3455
        printf("RTC SEC_REG <-- %02x\n", value);
3456
#endif
3457
        s->ti -= s->current_tm.tm_sec;
3458
        s->ti += omap_rtc_bin(value);
3459
        return;
3460

    
3461
    case 0x04:        /* MINUTES_REG */
3462
#ifdef ALMDEBUG
3463
        printf("RTC MIN_REG <-- %02x\n", value);
3464
#endif
3465
        s->ti -= s->current_tm.tm_min * 60;
3466
        s->ti += omap_rtc_bin(value) * 60;
3467
        return;
3468

    
3469
    case 0x08:        /* HOURS_REG */
3470
#ifdef ALMDEBUG
3471
        printf("RTC HRS_REG <-- %02x\n", value);
3472
#endif
3473
        s->ti -= s->current_tm.tm_hour * 3600;
3474
        if (s->pm_am) {
3475
            s->ti += (omap_rtc_bin(value & 0x3f) & 12) * 3600;
3476
            s->ti += ((value >> 7) & 1) * 43200;
3477
        } else
3478
            s->ti += omap_rtc_bin(value & 0x3f) * 3600;
3479
        return;
3480

    
3481
    case 0x0c:        /* DAYS_REG */
3482
#ifdef ALMDEBUG
3483
        printf("RTC DAY_REG <-- %02x\n", value);
3484
#endif
3485
        s->ti -= s->current_tm.tm_mday * 86400;
3486
        s->ti += omap_rtc_bin(value) * 86400;
3487
        return;
3488

    
3489
    case 0x10:        /* MONTHS_REG */
3490
#ifdef ALMDEBUG
3491
        printf("RTC MTH_REG <-- %02x\n", value);
3492
#endif
3493
        memcpy(&new_tm, &s->current_tm, sizeof(new_tm));
3494
        new_tm.tm_mon = omap_rtc_bin(value);
3495
        ti[0] = mktime(&s->current_tm);
3496
        ti[1] = mktime(&new_tm);
3497

    
3498
        if (ti[0] != -1 && ti[1] != -1) {
3499
            s->ti -= ti[0];
3500
            s->ti += ti[1];
3501
        } else {
3502
            /* A less accurate version */
3503
            s->ti -= s->current_tm.tm_mon * 2592000;
3504
            s->ti += omap_rtc_bin(value) * 2592000;
3505
        }
3506
        return;
3507

    
3508
    case 0x14:        /* YEARS_REG */
3509
#ifdef ALMDEBUG
3510
        printf("RTC YRS_REG <-- %02x\n", value);
3511
#endif
3512
        memcpy(&new_tm, &s->current_tm, sizeof(new_tm));
3513
        new_tm.tm_year += omap_rtc_bin(value) - (new_tm.tm_year % 100);
3514
        ti[0] = mktime(&s->current_tm);
3515
        ti[1] = mktime(&new_tm);
3516

    
3517
        if (ti[0] != -1 && ti[1] != -1) {
3518
            s->ti -= ti[0];
3519
            s->ti += ti[1];
3520
        } else {
3521
            /* A less accurate version */
3522
            s->ti -= (s->current_tm.tm_year % 100) * 31536000;
3523
            s->ti += omap_rtc_bin(value) * 31536000;
3524
        }
3525
        return;
3526

    
3527
    case 0x18:        /* WEEK_REG */
3528
        return;        /* Ignored */
3529

    
3530
    case 0x20:        /* ALARM_SECONDS_REG */
3531
#ifdef ALMDEBUG
3532
        printf("ALM SEC_REG <-- %02x\n", value);
3533
#endif
3534
        s->alarm_tm.tm_sec = omap_rtc_bin(value);
3535
        omap_rtc_alarm_update(s);
3536
        return;
3537

    
3538
    case 0x24:        /* ALARM_MINUTES_REG */
3539
#ifdef ALMDEBUG
3540
        printf("ALM MIN_REG <-- %02x\n", value);
3541
#endif
3542
        s->alarm_tm.tm_min = omap_rtc_bin(value);
3543
        omap_rtc_alarm_update(s);
3544
        return;
3545

    
3546
    case 0x28:        /* ALARM_HOURS_REG */
3547
#ifdef ALMDEBUG
3548
        printf("ALM HRS_REG <-- %02x\n", value);
3549
#endif
3550
        if (s->pm_am)
3551
            s->alarm_tm.tm_hour =
3552
                    ((omap_rtc_bin(value & 0x3f)) % 12) +
3553
                    ((value >> 7) & 1) * 12;
3554
        else
3555
            s->alarm_tm.tm_hour = omap_rtc_bin(value);
3556
        omap_rtc_alarm_update(s);
3557
        return;
3558

    
3559
    case 0x2c:        /* ALARM_DAYS_REG */
3560
#ifdef ALMDEBUG
3561
        printf("ALM DAY_REG <-- %02x\n", value);
3562
#endif
3563
        s->alarm_tm.tm_mday = omap_rtc_bin(value);
3564
        omap_rtc_alarm_update(s);
3565
        return;
3566

    
3567
    case 0x30:        /* ALARM_MONTHS_REG */
3568
#ifdef ALMDEBUG
3569
        printf("ALM MON_REG <-- %02x\n", value);
3570
#endif
3571
        s->alarm_tm.tm_mon = omap_rtc_bin(value);
3572
        omap_rtc_alarm_update(s);
3573
        return;
3574

    
3575
    case 0x34:        /* ALARM_YEARS_REG */
3576
#ifdef ALMDEBUG
3577
        printf("ALM YRS_REG <-- %02x\n", value);
3578
#endif
3579
        s->alarm_tm.tm_year = omap_rtc_bin(value);
3580
        omap_rtc_alarm_update(s);
3581
        return;
3582

    
3583
    case 0x40:        /* RTC_CTRL_REG */
3584
#ifdef ALMDEBUG
3585
        printf("RTC CONTROL <-- %02x\n", value);
3586
#endif
3587
        s->pm_am = (value >> 3) & 1;
3588
        s->auto_comp = (value >> 2) & 1;
3589
        s->round = (value >> 1) & 1;
3590
        s->running = value & 1;
3591
        s->status &= 0xfd;
3592
        s->status |= s->running << 1;
3593
        return;
3594

    
3595
    case 0x44:        /* RTC_STATUS_REG */
3596
#ifdef ALMDEBUG
3597
        printf("RTC STATUSL <-- %02x\n", value);
3598
#endif
3599
        s->status &= ~((value & 0xc0) ^ 0x80);
3600
        omap_rtc_interrupts_update(s);
3601
        return;
3602

    
3603
    case 0x48:        /* RTC_INTERRUPTS_REG */
3604
#ifdef ALMDEBUG
3605
        printf("RTC INTRS <-- %02x\n", value);
3606
#endif
3607
        s->interrupts = value;
3608
        return;
3609

    
3610
    case 0x4c:        /* RTC_COMP_LSB_REG */
3611
#ifdef ALMDEBUG
3612
        printf("RTC COMPLSB <-- %02x\n", value);
3613
#endif
3614
        s->comp_reg &= 0xff00;
3615
        s->comp_reg |= 0x00ff & value;
3616
        return;
3617

    
3618
    case 0x50:        /* RTC_COMP_MSB_REG */
3619
#ifdef ALMDEBUG
3620
        printf("RTC COMPMSB <-- %02x\n", value);
3621
#endif
3622
        s->comp_reg &= 0x00ff;
3623
        s->comp_reg |= 0xff00 & (value << 8);
3624
        return;
3625

    
3626
    default:
3627
        OMAP_BAD_REG(addr);
3628
        return;
3629
    }
3630
}
3631

    
3632
static CPUReadMemoryFunc *omap_rtc_readfn[] = {
3633
    omap_rtc_read,
3634
    omap_badwidth_read8,
3635
    omap_badwidth_read8,
3636
};
3637

    
3638
static CPUWriteMemoryFunc *omap_rtc_writefn[] = {
3639
    omap_rtc_write,
3640
    omap_badwidth_write8,
3641
    omap_badwidth_write8,
3642
};
3643

    
3644
static void omap_rtc_tick(void *opaque)
3645
{
3646
    struct omap_rtc_s *s = opaque;
3647

    
3648
    if (s->round) {
3649
        /* Round to nearest full minute.  */
3650
        if (s->current_tm.tm_sec < 30)
3651
            s->ti -= s->current_tm.tm_sec;
3652
        else
3653
            s->ti += 60 - s->current_tm.tm_sec;
3654

    
3655
        s->round = 0;
3656
    }
3657

    
3658
    memcpy(&s->current_tm, localtime(&s->ti), sizeof(s->current_tm));
3659

    
3660
    if ((s->interrupts & 0x08) && s->ti == s->alarm_ti) {
3661
        s->status |= 0x40;
3662
        omap_rtc_interrupts_update(s);
3663
    }
3664

    
3665
    if (s->interrupts & 0x04)
3666
        switch (s->interrupts & 3) {
3667
        case 0:
3668
            s->status |= 0x04;
3669
            qemu_irq_pulse(s->irq);
3670
            break;
3671
        case 1:
3672
            if (s->current_tm.tm_sec)
3673
                break;
3674
            s->status |= 0x08;
3675
            qemu_irq_pulse(s->irq);
3676
            break;
3677
        case 2:
3678
            if (s->current_tm.tm_sec || s->current_tm.tm_min)
3679
                break;
3680
            s->status |= 0x10;
3681
            qemu_irq_pulse(s->irq);
3682
            break;
3683
        case 3:
3684
            if (s->current_tm.tm_sec ||
3685
                            s->current_tm.tm_min || s->current_tm.tm_hour)
3686
                break;
3687
            s->status |= 0x20;
3688
            qemu_irq_pulse(s->irq);
3689
            break;
3690
        }
3691

    
3692
    /* Move on */
3693
    if (s->running)
3694
        s->ti ++;
3695
    s->tick += 1000;
3696

    
3697
    /*
3698
     * Every full hour add a rough approximation of the compensation
3699
     * register to the 32kHz Timer (which drives the RTC) value. 
3700
     */
3701
    if (s->auto_comp && !s->current_tm.tm_sec && !s->current_tm.tm_min)
3702
        s->tick += s->comp_reg * 1000 / 32768;
3703

    
3704
    qemu_mod_timer(s->clk, s->tick);
3705
}
3706

    
3707
static void omap_rtc_reset(struct omap_rtc_s *s)
3708
{
3709
    struct tm tm;
3710

    
3711
    s->interrupts = 0;
3712
    s->comp_reg = 0;
3713
    s->running = 0;
3714
    s->pm_am = 0;
3715
    s->auto_comp = 0;
3716
    s->round = 0;
3717
    s->tick = qemu_get_clock(rt_clock);
3718
    memset(&s->alarm_tm, 0, sizeof(s->alarm_tm));
3719
    s->alarm_tm.tm_mday = 0x01;
3720
    s->status = 1 << 7;
3721
    qemu_get_timedate(&tm, 0);
3722
    s->ti = mktime(&tm);
3723

    
3724
    omap_rtc_alarm_update(s);
3725
    omap_rtc_tick(s);
3726
}
3727

    
3728
struct omap_rtc_s *omap_rtc_init(target_phys_addr_t base,
3729
                qemu_irq *irq, omap_clk clk)
3730
{
3731
    int iomemtype;
3732
    struct omap_rtc_s *s = (struct omap_rtc_s *)
3733
            qemu_mallocz(sizeof(struct omap_rtc_s));
3734

    
3735
    s->irq = irq[0];
3736
    s->alarm = irq[1];
3737
    s->clk = qemu_new_timer(rt_clock, omap_rtc_tick, s);
3738

    
3739
    omap_rtc_reset(s);
3740

    
3741
    iomemtype = cpu_register_io_memory(0, omap_rtc_readfn,
3742
                    omap_rtc_writefn, s);
3743
    cpu_register_physical_memory(base, 0x800, iomemtype);
3744

    
3745
    return s;
3746
}
3747

    
3748
/* Multi-channel Buffered Serial Port interfaces */
3749
struct omap_mcbsp_s {
3750
    qemu_irq txirq;
3751
    qemu_irq rxirq;
3752
    qemu_irq txdrq;
3753
    qemu_irq rxdrq;
3754

    
3755
    uint16_t spcr[2];
3756
    uint16_t rcr[2];
3757
    uint16_t xcr[2];
3758
    uint16_t srgr[2];
3759
    uint16_t mcr[2];
3760
    uint16_t pcr;
3761
    uint16_t rcer[8];
3762
    uint16_t xcer[8];
3763
    int tx_rate;
3764
    int rx_rate;
3765
    int tx_req;
3766
    int rx_req;
3767

    
3768
    struct i2s_codec_s *codec;
3769
    QEMUTimer *source_timer;
3770
    QEMUTimer *sink_timer;
3771
};
3772

    
3773
static void omap_mcbsp_intr_update(struct omap_mcbsp_s *s)
3774
{
3775
    int irq;
3776

    
3777
    switch ((s->spcr[0] >> 4) & 3) {                        /* RINTM */
3778
    case 0:
3779
        irq = (s->spcr[0] >> 1) & 1;                        /* RRDY */
3780
        break;
3781
    case 3:
3782
        irq = (s->spcr[0] >> 3) & 1;                        /* RSYNCERR */
3783
        break;
3784
    default:
3785
        irq = 0;
3786
        break;
3787
    }
3788

    
3789
    if (irq)
3790
        qemu_irq_pulse(s->rxirq);
3791

    
3792
    switch ((s->spcr[1] >> 4) & 3) {                        /* XINTM */
3793
    case 0:
3794
        irq = (s->spcr[1] >> 1) & 1;                        /* XRDY */
3795
        break;
3796
    case 3:
3797
        irq = (s->spcr[1] >> 3) & 1;                        /* XSYNCERR */
3798
        break;
3799
    default:
3800
        irq = 0;
3801
        break;
3802
    }
3803

    
3804
    if (irq)
3805
        qemu_irq_pulse(s->txirq);
3806
}
3807

    
3808
static void omap_mcbsp_rx_newdata(struct omap_mcbsp_s *s)
3809
{
3810
    if ((s->spcr[0] >> 1) & 1)                                /* RRDY */
3811
        s->spcr[0] |= 1 << 2;                                /* RFULL */
3812
    s->spcr[0] |= 1 << 1;                                /* RRDY */
3813
    qemu_irq_raise(s->rxdrq);
3814
    omap_mcbsp_intr_update(s);
3815
}
3816

    
3817
static void omap_mcbsp_source_tick(void *opaque)
3818
{
3819
    struct omap_mcbsp_s *s = (struct omap_mcbsp_s *) opaque;
3820
    static const int bps[8] = { 0, 1, 1, 2, 2, 2, -255, -255 };
3821

    
3822
    if (!s->rx_rate)
3823
        return;
3824
    if (s->rx_req)
3825
        printf("%s: Rx FIFO overrun\n", __FUNCTION__);
3826

    
3827
    s->rx_req = s->rx_rate << bps[(s->rcr[0] >> 5) & 7];
3828

    
3829
    omap_mcbsp_rx_newdata(s);
3830
    qemu_mod_timer(s->source_timer, qemu_get_clock(vm_clock) + ticks_per_sec);
3831
}
3832

    
3833
static void omap_mcbsp_rx_start(struct omap_mcbsp_s *s)
3834
{
3835
    if (!s->codec || !s->codec->rts)
3836
        omap_mcbsp_source_tick(s);
3837
    else if (s->codec->in.len) {
3838
        s->rx_req = s->codec->in.len;
3839
        omap_mcbsp_rx_newdata(s);
3840
    }
3841
}
3842

    
3843
static void omap_mcbsp_rx_stop(struct omap_mcbsp_s *s)
3844
{
3845
    qemu_del_timer(s->source_timer);
3846
}
3847

    
3848
static void omap_mcbsp_rx_done(struct omap_mcbsp_s *s)
3849
{
3850
    s->spcr[0] &= ~(1 << 1);                                /* RRDY */
3851
    qemu_irq_lower(s->rxdrq);
3852
    omap_mcbsp_intr_update(s);
3853
}
3854

    
3855
static void omap_mcbsp_tx_newdata(struct omap_mcbsp_s *s)
3856
{
3857
    s->spcr[1] |= 1 << 1;                                /* XRDY */
3858
    qemu_irq_raise(s->txdrq);
3859
    omap_mcbsp_intr_update(s);
3860
}
3861

    
3862
static void omap_mcbsp_sink_tick(void *opaque)
3863
{
3864
    struct omap_mcbsp_s *s = (struct omap_mcbsp_s *) opaque;
3865
    static const int bps[8] = { 0, 1, 1, 2, 2, 2, -255, -255 };
3866

    
3867
    if (!s->tx_rate)
3868
        return;
3869
    if (s->tx_req)
3870
        printf("%s: Tx FIFO underrun\n", __FUNCTION__);
3871

    
3872
    s->tx_req = s->tx_rate << bps[(s->xcr[0] >> 5) & 7];
3873

    
3874
    omap_mcbsp_tx_newdata(s);
3875
    qemu_mod_timer(s->sink_timer, qemu_get_clock(vm_clock) + ticks_per_sec);
3876
}
3877

    
3878
static void omap_mcbsp_tx_start(struct omap_mcbsp_s *s)
3879
{
3880
    if (!s->codec || !s->codec->cts)
3881
        omap_mcbsp_sink_tick(s);
3882
    else if (s->codec->out.size) {
3883
        s->tx_req = s->codec->out.size;
3884
        omap_mcbsp_tx_newdata(s);
3885
    }
3886
}
3887

    
3888
static void omap_mcbsp_tx_done(struct omap_mcbsp_s *s)
3889
{
3890
    s->spcr[1] &= ~(1 << 1);                                /* XRDY */
3891
    qemu_irq_lower(s->txdrq);
3892
    omap_mcbsp_intr_update(s);
3893
    if (s->codec && s->codec->cts)
3894
        s->codec->tx_swallow(s->codec->opaque);
3895
}
3896

    
3897
static void omap_mcbsp_tx_stop(struct omap_mcbsp_s *s)
3898
{
3899
    s->tx_req = 0;
3900
    omap_mcbsp_tx_done(s);
3901
    qemu_del_timer(s->sink_timer);
3902
}
3903

    
3904
static void omap_mcbsp_req_update(struct omap_mcbsp_s *s)
3905
{
3906
    int prev_rx_rate, prev_tx_rate;
3907
    int rx_rate = 0, tx_rate = 0;
3908
    int cpu_rate = 1500000;        /* XXX */
3909

    
3910
    /* TODO: check CLKSTP bit */
3911
    if (s->spcr[1] & (1 << 6)) {                        /* GRST */
3912
        if (s->spcr[0] & (1 << 0)) {                        /* RRST */
3913
            if ((s->srgr[1] & (1 << 13)) &&                /* CLKSM */
3914
                            (s->pcr & (1 << 8))) {        /* CLKRM */
3915
                if (~s->pcr & (1 << 7))                        /* SCLKME */
3916
                    rx_rate = cpu_rate /
3917
                            ((s->srgr[0] & 0xff) + 1);        /* CLKGDV */
3918
            } else
3919
                if (s->codec)
3920
                    rx_rate = s->codec->rx_rate;
3921
        }
3922

    
3923
        if (s->spcr[1] & (1 << 0)) {                        /* XRST */
3924
            if ((s->srgr[1] & (1 << 13)) &&                /* CLKSM */
3925
                            (s->pcr & (1 << 9))) {        /* CLKXM */
3926
                if (~s->pcr & (1 << 7))                        /* SCLKME */
3927
                    tx_rate = cpu_rate /
3928
                            ((s->srgr[0] & 0xff) + 1);        /* CLKGDV */
3929
            } else
3930
                if (s->codec)
3931
                    tx_rate = s->codec->tx_rate;
3932
        }
3933
    }
3934
    prev_tx_rate = s->tx_rate;
3935
    prev_rx_rate = s->rx_rate;
3936
    s->tx_rate = tx_rate;
3937
    s->rx_rate = rx_rate;
3938

    
3939
    if (s->codec)
3940
        s->codec->set_rate(s->codec->opaque, rx_rate, tx_rate);
3941

    
3942
    if (!prev_tx_rate && tx_rate)
3943
        omap_mcbsp_tx_start(s);
3944
    else if (s->tx_rate && !tx_rate)
3945
        omap_mcbsp_tx_stop(s);
3946

    
3947
    if (!prev_rx_rate && rx_rate)
3948
        omap_mcbsp_rx_start(s);
3949
    else if (prev_tx_rate && !tx_rate)
3950
        omap_mcbsp_rx_stop(s);
3951
}
3952

    
3953
static uint32_t omap_mcbsp_read(void *opaque, target_phys_addr_t addr)
3954
{
3955
    struct omap_mcbsp_s *s = (struct omap_mcbsp_s *) opaque;
3956
    int offset = addr & OMAP_MPUI_REG_MASK;
3957
    uint16_t ret;
3958

    
3959
    switch (offset) {
3960
    case 0x00:        /* DRR2 */
3961
        if (((s->rcr[0] >> 5) & 7) < 3)                        /* RWDLEN1 */
3962
            return 0x0000;
3963
        /* Fall through.  */
3964
    case 0x02:        /* DRR1 */
3965
        if (s->rx_req < 2) {
3966
            printf("%s: Rx FIFO underrun\n", __FUNCTION__);
3967
            omap_mcbsp_rx_done(s);
3968
        } else {
3969
            s->tx_req -= 2;
3970
            if (s->codec && s->codec->in.len >= 2) {
3971
                ret = s->codec->in.fifo[s->codec->in.start ++] << 8;
3972
                ret |= s->codec->in.fifo[s->codec->in.start ++];
3973
                s->codec->in.len -= 2;
3974
            } else
3975
                ret = 0x0000;
3976
            if (!s->tx_req)
3977
                omap_mcbsp_rx_done(s);
3978
            return ret;
3979
        }
3980
        return 0x0000;
3981

    
3982
    case 0x04:        /* DXR2 */
3983
    case 0x06:        /* DXR1 */
3984
        return 0x0000;
3985

    
3986
    case 0x08:        /* SPCR2 */
3987
        return s->spcr[1];
3988
    case 0x0a:        /* SPCR1 */
3989
        return s->spcr[0];
3990
    case 0x0c:        /* RCR2 */
3991
        return s->rcr[1];
3992
    case 0x0e:        /* RCR1 */
3993
        return s->rcr[0];
3994
    case 0x10:        /* XCR2 */
3995
        return s->xcr[1];
3996
    case 0x12:        /* XCR1 */
3997
        return s->xcr[0];
3998
    case 0x14:        /* SRGR2 */
3999
        return s->srgr[1];
4000
    case 0x16:        /* SRGR1 */
4001
        return s->srgr[0];
4002
    case 0x18:        /* MCR2 */
4003
        return s->mcr[1];
4004
    case 0x1a:        /* MCR1 */
4005
        return s->mcr[0];
4006
    case 0x1c:        /* RCERA */
4007
        return s->rcer[0];
4008
    case 0x1e:        /* RCERB */
4009
        return s->rcer[1];
4010
    case 0x20:        /* XCERA */
4011
        return s->xcer[0];
4012
    case 0x22:        /* XCERB */
4013
        return s->xcer[1];
4014
    case 0x24:        /* PCR0 */
4015
        return s->pcr;
4016
    case 0x26:        /* RCERC */
4017
        return s->rcer[2];
4018
    case 0x28:        /* RCERD */
4019
        return s->rcer[3];
4020
    case 0x2a:        /* XCERC */
4021
        return s->xcer[2];
4022
    case 0x2c:        /* XCERD */
4023
        return s->xcer[3];
4024
    case 0x2e:        /* RCERE */
4025
        return s->rcer[4];
4026
    case 0x30:        /* RCERF */
4027
        return s->rcer[5];
4028
    case 0x32:        /* XCERE */
4029
        return s->xcer[4];
4030
    case 0x34:        /* XCERF */
4031
        return s->xcer[5];
4032
    case 0x36:        /* RCERG */
4033
        return s->rcer[6];
4034
    case 0x38:        /* RCERH */
4035
        return s->rcer[7];
4036
    case 0x3a:        /* XCERG */
4037
        return s->xcer[6];
4038
    case 0x3c:        /* XCERH */
4039
        return s->xcer[7];
4040
    }
4041

    
4042
    OMAP_BAD_REG(addr);
4043
    return 0;
4044
}
4045

    
4046
static void omap_mcbsp_writeh(void *opaque, target_phys_addr_t addr,
4047
                uint32_t value)
4048
{
4049
    struct omap_mcbsp_s *s = (struct omap_mcbsp_s *) opaque;
4050
    int offset = addr & OMAP_MPUI_REG_MASK;
4051

    
4052
    switch (offset) {
4053
    case 0x00:        /* DRR2 */
4054
    case 0x02:        /* DRR1 */
4055
        OMAP_RO_REG(addr);
4056
        return;
4057

    
4058
    case 0x04:        /* DXR2 */
4059
        if (((s->xcr[0] >> 5) & 7) < 3)                        /* XWDLEN1 */
4060
            return;
4061
        /* Fall through.  */
4062
    case 0x06:        /* DXR1 */
4063
        if (s->tx_req > 1) {
4064
            s->tx_req -= 2;
4065
            if (s->codec && s->codec->cts) {
4066
                s->codec->out.fifo[s->codec->out.len ++] = (value >> 8) & 0xff;
4067
                s->codec->out.fifo[s->codec->out.len ++] = (value >> 0) & 0xff;
4068
            }
4069
            if (s->tx_req < 2)
4070
                omap_mcbsp_tx_done(s);
4071
        } else
4072
            printf("%s: Tx FIFO overrun\n", __FUNCTION__);
4073
        return;
4074

    
4075
    case 0x08:        /* SPCR2 */
4076
        s->spcr[1] &= 0x0002;
4077
        s->spcr[1] |= 0x03f9 & value;
4078
        s->spcr[1] |= 0x0004 & (value << 2);                /* XEMPTY := XRST */
4079
        if (~value & 1)                                        /* XRST */
4080
            s->spcr[1] &= ~6;
4081
        omap_mcbsp_req_update(s);
4082
        return;
4083
    case 0x0a:        /* SPCR1 */
4084
        s->spcr[0] &= 0x0006;
4085
        s->spcr[0] |= 0xf8f9 & value;
4086
        if (value & (1 << 15))                                /* DLB */
4087
            printf("%s: Digital Loopback mode enable attempt\n", __FUNCTION__);
4088
        if (~value & 1) {                                /* RRST */
4089
            s->spcr[0] &= ~6;
4090
            s->rx_req = 0;
4091
            omap_mcbsp_rx_done(s);
4092
        }
4093
        omap_mcbsp_req_update(s);
4094
        return;
4095

    
4096
    case 0x0c:        /* RCR2 */
4097
        s->rcr[1] = value & 0xffff;
4098
        return;
4099
    case 0x0e:        /* RCR1 */
4100
        s->rcr[0] = value & 0x7fe0;
4101
        return;
4102
    case 0x10:        /* XCR2 */
4103
        s->xcr[1] = value & 0xffff;
4104
        return;
4105
    case 0x12:        /* XCR1 */
4106
        s->xcr[0] = value & 0x7fe0;
4107
        return;
4108
    case 0x14:        /* SRGR2 */
4109
        s->srgr[1] = value & 0xffff;
4110
        omap_mcbsp_req_update(s);
4111
        return;
4112
    case 0x16:        /* SRGR1 */
4113
        s->srgr[0] = value & 0xffff;
4114
        omap_mcbsp_req_update(s);
4115
        return;
4116
    case 0x18:        /* MCR2 */
4117
        s->mcr[1] = value & 0x03e3;
4118
        if (value & 3)                                        /* XMCM */
4119
            printf("%s: Tx channel selection mode enable attempt\n",
4120
                            __FUNCTION__);
4121
        return;
4122
    case 0x1a:        /* MCR1 */
4123
        s->mcr[0] = value & 0x03e1;
4124
        if (value & 1)                                        /* RMCM */
4125
            printf("%s: Rx channel selection mode enable attempt\n",
4126
                            __FUNCTION__);
4127
        return;
4128
    case 0x1c:        /* RCERA */
4129
        s->rcer[0] = value & 0xffff;
4130
        return;
4131
    case 0x1e:        /* RCERB */
4132
        s->rcer[1] = value & 0xffff;
4133
        return;
4134
    case 0x20:        /* XCERA */
4135
        s->xcer[0] = value & 0xffff;
4136
        return;
4137
    case 0x22:        /* XCERB */
4138
        s->xcer[1] = value & 0xffff;
4139
        return;
4140
    case 0x24:        /* PCR0 */
4141
        s->pcr = value & 0x7faf;
4142
        return;
4143
    case 0x26:        /* RCERC */
4144
        s->rcer[2] = value & 0xffff;
4145
        return;
4146
    case 0x28:        /* RCERD */
4147
        s->rcer[3] = value & 0xffff;
4148
        return;
4149
    case 0x2a:        /* XCERC */
4150
        s->xcer[2] = value & 0xffff;
4151
        return;
4152
    case 0x2c:        /* XCERD */
4153
        s->xcer[3] = value & 0xffff;
4154
        return;
4155
    case 0x2e:        /* RCERE */
4156
        s->rcer[4] = value & 0xffff;
4157
        return;
4158
    case 0x30:        /* RCERF */
4159
        s->rcer[5] = value & 0xffff;
4160
        return;
4161
    case 0x32:        /* XCERE */
4162
        s->xcer[4] = value & 0xffff;
4163
        return;
4164
    case 0x34:        /* XCERF */
4165
        s->xcer[5] = value & 0xffff;
4166
        return;
4167
    case 0x36:        /* RCERG */
4168
        s->rcer[6] = value & 0xffff;
4169
        return;
4170
    case 0x38:        /* RCERH */
4171
        s->rcer[7] = value & 0xffff;
4172
        return;
4173
    case 0x3a:        /* XCERG */
4174
        s->xcer[6] = value & 0xffff;
4175
        return;
4176
    case 0x3c:        /* XCERH */
4177
        s->xcer[7] = value & 0xffff;
4178
        return;
4179
    }
4180

    
4181
    OMAP_BAD_REG(addr);
4182
}
4183

    
4184
static void omap_mcbsp_writew(void *opaque, target_phys_addr_t addr,
4185
                uint32_t value)
4186
{
4187
    struct omap_mcbsp_s *s = (struct omap_mcbsp_s *) opaque;
4188
    int offset = addr & OMAP_MPUI_REG_MASK;
4189

    
4190
    if (offset == 0x04) {                                /* DXR */
4191
        if (((s->xcr[0] >> 5) & 7) < 3)                        /* XWDLEN1 */
4192
            return;
4193
        if (s->tx_req > 3) {
4194
            s->tx_req -= 4;
4195
            if (s->codec && s->codec->cts) {
4196
                s->codec->out.fifo[s->codec->out.len ++] =
4197
                        (value >> 24) & 0xff;
4198
                s->codec->out.fifo[s->codec->out.len ++] =
4199
                        (value >> 16) & 0xff;
4200
                s->codec->out.fifo[s->codec->out.len ++] =
4201
                        (value >> 8) & 0xff;
4202
                s->codec->out.fifo[s->codec->out.len ++] =
4203
                        (value >> 0) & 0xff;
4204
            }
4205
            if (s->tx_req < 4)
4206
                omap_mcbsp_tx_done(s);
4207
        } else
4208
            printf("%s: Tx FIFO overrun\n", __FUNCTION__);
4209
        return;
4210
    }
4211

    
4212
    omap_badwidth_write16(opaque, addr, value);
4213
}
4214

    
4215
static CPUReadMemoryFunc *omap_mcbsp_readfn[] = {
4216
    omap_badwidth_read16,
4217
    omap_mcbsp_read,
4218
    omap_badwidth_read16,
4219
};
4220

    
4221
static CPUWriteMemoryFunc *omap_mcbsp_writefn[] = {
4222
    omap_badwidth_write16,
4223
    omap_mcbsp_writeh,
4224
    omap_mcbsp_writew,
4225
};
4226

    
4227
static void omap_mcbsp_reset(struct omap_mcbsp_s *s)
4228
{
4229
    memset(&s->spcr, 0, sizeof(s->spcr));
4230
    memset(&s->rcr, 0, sizeof(s->rcr));
4231
    memset(&s->xcr, 0, sizeof(s->xcr));
4232
    s->srgr[0] = 0x0001;
4233
    s->srgr[1] = 0x2000;
4234
    memset(&s->mcr, 0, sizeof(s->mcr));
4235
    memset(&s->pcr, 0, sizeof(s->pcr));
4236
    memset(&s->rcer, 0, sizeof(s->rcer));
4237
    memset(&s->xcer, 0, sizeof(s->xcer));
4238
    s->tx_req = 0;
4239
    s->rx_req = 0;
4240
    s->tx_rate = 0;
4241
    s->rx_rate = 0;
4242
    qemu_del_timer(s->source_timer);
4243
    qemu_del_timer(s->sink_timer);
4244
}
4245

    
4246
struct omap_mcbsp_s *omap_mcbsp_init(target_phys_addr_t base,
4247
                qemu_irq *irq, qemu_irq *dma, omap_clk clk)
4248
{
4249
    int iomemtype;
4250
    struct omap_mcbsp_s *s = (struct omap_mcbsp_s *)
4251
            qemu_mallocz(sizeof(struct omap_mcbsp_s));
4252

    
4253
    s->txirq = irq[0];
4254
    s->rxirq = irq[1];
4255
    s->txdrq = dma[0];
4256
    s->rxdrq = dma[1];
4257
    s->sink_timer = qemu_new_timer(vm_clock, omap_mcbsp_sink_tick, s);
4258
    s->source_timer = qemu_new_timer(vm_clock, omap_mcbsp_source_tick, s);
4259
    omap_mcbsp_reset(s);
4260

    
4261
    iomemtype = cpu_register_io_memory(0, omap_mcbsp_readfn,
4262
                    omap_mcbsp_writefn, s);
4263
    cpu_register_physical_memory(base, 0x800, iomemtype);
4264

    
4265
    return s;
4266
}
4267

    
4268
static void omap_mcbsp_i2s_swallow(void *opaque, int line, int level)
4269
{
4270
    struct omap_mcbsp_s *s = (struct omap_mcbsp_s *) opaque;
4271

    
4272
    if (s->rx_rate) {
4273
        s->rx_req = s->codec->in.len;
4274
        omap_mcbsp_rx_newdata(s);
4275
    }
4276
}
4277

    
4278
static void omap_mcbsp_i2s_start(void *opaque, int line, int level)
4279
{
4280
    struct omap_mcbsp_s *s = (struct omap_mcbsp_s *) opaque;
4281

    
4282
    if (s->tx_rate) {
4283
        s->tx_req = s->codec->out.size;
4284
        omap_mcbsp_tx_newdata(s);
4285
    }
4286
}
4287

    
4288
void omap_mcbsp_i2s_attach(struct omap_mcbsp_s *s, struct i2s_codec_s *slave)
4289
{
4290
    s->codec = slave;
4291
    slave->rx_swallow = qemu_allocate_irqs(omap_mcbsp_i2s_swallow, s, 1)[0];
4292
    slave->tx_start = qemu_allocate_irqs(omap_mcbsp_i2s_start, s, 1)[0];
4293
}
4294

    
4295
/* LED Pulse Generators */
4296
struct omap_lpg_s {
4297
    QEMUTimer *tm;
4298

    
4299
    uint8_t control;
4300
    uint8_t power;
4301
    int64_t on;
4302
    int64_t period;
4303
    int clk;
4304
    int cycle;
4305
};
4306

    
4307
static void omap_lpg_tick(void *opaque)
4308
{
4309
    struct omap_lpg_s *s = opaque;
4310

    
4311
    if (s->cycle)
4312
        qemu_mod_timer(s->tm, qemu_get_clock(rt_clock) + s->period - s->on);
4313
    else
4314
        qemu_mod_timer(s->tm, qemu_get_clock(rt_clock) + s->on);
4315

    
4316
    s->cycle = !s->cycle;
4317
    printf("%s: LED is %s\n", __FUNCTION__, s->cycle ? "on" : "off");
4318
}
4319

    
4320
static void omap_lpg_update(struct omap_lpg_s *s)
4321
{
4322
    int64_t on, period = 1, ticks = 1000;
4323
    static const int per[8] = { 1, 2, 4, 8, 12, 16, 20, 24 };
4324

    
4325
    if (~s->control & (1 << 6))                                        /* LPGRES */
4326
        on = 0;
4327
    else if (s->control & (1 << 7))                                /* PERM_ON */
4328
        on = period;
4329
    else {
4330
        period = muldiv64(ticks, per[s->control & 7],                /* PERCTRL */
4331
                        256 / 32);
4332
        on = (s->clk && s->power) ? muldiv64(ticks,
4333
                        per[(s->control >> 3) & 7], 256) : 0;        /* ONCTRL */
4334
    }
4335

    
4336
    qemu_del_timer(s->tm);
4337
    if (on == period && s->on < s->period)
4338
        printf("%s: LED is on\n", __FUNCTION__);
4339
    else if (on == 0 && s->on)
4340
        printf("%s: LED is off\n", __FUNCTION__);
4341
    else if (on && (on != s->on || period != s->period)) {
4342
        s->cycle = 0;
4343
        s->on = on;
4344
        s->period = period;
4345
        omap_lpg_tick(s);
4346
        return;
4347
    }
4348

    
4349
    s->on = on;
4350
    s->period = period;
4351
}
4352

    
4353
static void omap_lpg_reset(struct omap_lpg_s *s)
4354
{
4355
    s->control = 0x00;
4356
    s->power = 0x00;
4357
    s->clk = 1;
4358
    omap_lpg_update(s);
4359
}
4360

    
4361
static uint32_t omap_lpg_read(void *opaque, target_phys_addr_t addr)
4362
{
4363
    struct omap_lpg_s *s = (struct omap_lpg_s *) opaque;
4364
    int offset = addr & OMAP_MPUI_REG_MASK;
4365

    
4366
    switch (offset) {
4367
    case 0x00:        /* LCR */
4368
        return s->control;
4369

    
4370
    case 0x04:        /* PMR */
4371
        return s->power;
4372
    }
4373

    
4374
    OMAP_BAD_REG(addr);
4375
    return 0;
4376
}
4377

    
4378
static void omap_lpg_write(void *opaque, target_phys_addr_t addr,
4379
                uint32_t value)
4380
{
4381
    struct omap_lpg_s *s = (struct omap_lpg_s *) opaque;
4382
    int offset = addr & OMAP_MPUI_REG_MASK;
4383

    
4384
    switch (offset) {
4385
    case 0x00:        /* LCR */
4386
        if (~value & (1 << 6))                                        /* LPGRES */
4387
            omap_lpg_reset(s);
4388
        s->control = value & 0xff;
4389
        omap_lpg_update(s);
4390
        return;
4391

    
4392
    case 0x04:        /* PMR */
4393
        s->power = value & 0x01;
4394
        omap_lpg_update(s);
4395
        return;
4396

    
4397
    default:
4398
        OMAP_BAD_REG(addr);
4399
        return;
4400
    }
4401
}
4402

    
4403
static CPUReadMemoryFunc *omap_lpg_readfn[] = {
4404
    omap_lpg_read,
4405
    omap_badwidth_read8,
4406
    omap_badwidth_read8,
4407
};
4408

    
4409
static CPUWriteMemoryFunc *omap_lpg_writefn[] = {
4410
    omap_lpg_write,
4411
    omap_badwidth_write8,
4412
    omap_badwidth_write8,
4413
};
4414

    
4415
static void omap_lpg_clk_update(void *opaque, int line, int on)
4416
{
4417
    struct omap_lpg_s *s = (struct omap_lpg_s *) opaque;
4418

    
4419
    s->clk = on;
4420
    omap_lpg_update(s);
4421
}
4422

    
4423
struct omap_lpg_s *omap_lpg_init(target_phys_addr_t base, omap_clk clk)
4424
{
4425
    int iomemtype;
4426
    struct omap_lpg_s *s = (struct omap_lpg_s *)
4427
            qemu_mallocz(sizeof(struct omap_lpg_s));
4428

    
4429
    s->tm = qemu_new_timer(rt_clock, omap_lpg_tick, s);
4430

    
4431
    omap_lpg_reset(s);
4432

    
4433
    iomemtype = cpu_register_io_memory(0, omap_lpg_readfn,
4434
                    omap_lpg_writefn, s);
4435
    cpu_register_physical_memory(base, 0x800, iomemtype);
4436

    
4437
    omap_clk_adduser(clk, qemu_allocate_irqs(omap_lpg_clk_update, s, 1)[0]);
4438

    
4439
    return s;
4440
}
4441

    
4442
/* MPUI Peripheral Bridge configuration */
4443
static uint32_t omap_mpui_io_read(void *opaque, target_phys_addr_t addr)
4444
{
4445
    if (addr == OMAP_MPUI_BASE)        /* CMR */
4446
        return 0xfe4d;
4447

    
4448
    OMAP_BAD_REG(addr);
4449
    return 0;
4450
}
4451

    
4452
static CPUReadMemoryFunc *omap_mpui_io_readfn[] = {
4453
    omap_badwidth_read16,
4454
    omap_mpui_io_read,
4455
    omap_badwidth_read16,
4456
};
4457

    
4458
static CPUWriteMemoryFunc *omap_mpui_io_writefn[] = {
4459
    omap_badwidth_write16,
4460
    omap_badwidth_write16,
4461
    omap_badwidth_write16,
4462
};
4463

    
4464
static void omap_setup_mpui_io(struct omap_mpu_state_s *mpu)
4465
{
4466
    int iomemtype = cpu_register_io_memory(0, omap_mpui_io_readfn,
4467
                    omap_mpui_io_writefn, mpu);
4468
    cpu_register_physical_memory(OMAP_MPUI_BASE, 0x7fff, iomemtype);
4469
}
4470

    
4471
/* General chip reset */
4472
static void omap1_mpu_reset(void *opaque)
4473
{
4474
    struct omap_mpu_state_s *mpu = (struct omap_mpu_state_s *) opaque;
4475

    
4476
    omap_inth_reset(mpu->ih[0]);
4477
    omap_inth_reset(mpu->ih[1]);
4478
    omap_dma_reset(mpu->dma);
4479
    omap_mpu_timer_reset(mpu->timer[0]);
4480
    omap_mpu_timer_reset(mpu->timer[1]);
4481
    omap_mpu_timer_reset(mpu->timer[2]);
4482
    omap_wd_timer_reset(mpu->wdt);
4483
    omap_os_timer_reset(mpu->os_timer);
4484
    omap_lcdc_reset(mpu->lcd);
4485
    omap_ulpd_pm_reset(mpu);
4486
    omap_pin_cfg_reset(mpu);
4487
    omap_mpui_reset(mpu);
4488
    omap_tipb_bridge_reset(mpu->private_tipb);
4489
    omap_tipb_bridge_reset(mpu->public_tipb);
4490
    omap_dpll_reset(&mpu->dpll[0]);
4491
    omap_dpll_reset(&mpu->dpll[1]);
4492
    omap_dpll_reset(&mpu->dpll[2]);
4493
    omap_uart_reset(mpu->uart[0]);
4494
    omap_uart_reset(mpu->uart[1]);
4495
    omap_uart_reset(mpu->uart[2]);
4496
    omap_mmc_reset(mpu->mmc);
4497
    omap_mpuio_reset(mpu->mpuio);
4498
    omap_gpio_reset(mpu->gpio);
4499
    omap_uwire_reset(mpu->microwire);
4500
    omap_pwl_reset(mpu);
4501
    omap_pwt_reset(mpu);
4502
    omap_i2c_reset(mpu->i2c[0]);
4503
    omap_rtc_reset(mpu->rtc);
4504
    omap_mcbsp_reset(mpu->mcbsp1);
4505
    omap_mcbsp_reset(mpu->mcbsp2);
4506
    omap_mcbsp_reset(mpu->mcbsp3);
4507
    omap_lpg_reset(mpu->led[0]);
4508
    omap_lpg_reset(mpu->led[1]);
4509
    omap_clkm_reset(mpu);
4510
    cpu_reset(mpu->env);
4511
}
4512

    
4513
static const struct omap_map_s {
4514
    target_phys_addr_t phys_dsp;
4515
    target_phys_addr_t phys_mpu;
4516
    uint32_t size;
4517
    const char *name;
4518
} omap15xx_dsp_mm[] = {
4519
    /* Strobe 0 */
4520
    { 0xe1010000, 0xfffb0000, 0x800, "UART1 BT" },                /* CS0 */
4521
    { 0xe1010800, 0xfffb0800, 0x800, "UART2 COM" },                /* CS1 */
4522
    { 0xe1011800, 0xfffb1800, 0x800, "McBSP1 audio" },                /* CS3 */
4523
    { 0xe1012000, 0xfffb2000, 0x800, "MCSI2 communication" },        /* CS4 */
4524
    { 0xe1012800, 0xfffb2800, 0x800, "MCSI1 BT u-Law" },        /* CS5 */
4525
    { 0xe1013000, 0xfffb3000, 0x800, "uWire" },                        /* CS6 */
4526
    { 0xe1013800, 0xfffb3800, 0x800, "I^2C" },                        /* CS7 */
4527
    { 0xe1014000, 0xfffb4000, 0x800, "USB W2FC" },                /* CS8 */
4528
    { 0xe1014800, 0xfffb4800, 0x800, "RTC" },                        /* CS9 */
4529
    { 0xe1015000, 0xfffb5000, 0x800, "MPUIO" },                        /* CS10 */
4530
    { 0xe1015800, 0xfffb5800, 0x800, "PWL" },                        /* CS11 */
4531
    { 0xe1016000, 0xfffb6000, 0x800, "PWT" },                        /* CS12 */
4532
    { 0xe1017000, 0xfffb7000, 0x800, "McBSP3" },                /* CS14 */
4533
    { 0xe1017800, 0xfffb7800, 0x800, "MMC" },                        /* CS15 */
4534
    { 0xe1019000, 0xfffb9000, 0x800, "32-kHz timer" },                /* CS18 */
4535
    { 0xe1019800, 0xfffb9800, 0x800, "UART3" },                        /* CS19 */
4536
    { 0xe101c800, 0xfffbc800, 0x800, "TIPB switches" },                /* CS25 */
4537
    /* Strobe 1 */
4538
    { 0xe101e000, 0xfffce000, 0x800, "GPIOs" },                        /* CS28 */
4539

    
4540
    { 0 }
4541
};
4542

    
4543
static void omap_setup_dsp_mapping(const struct omap_map_s *map)
4544
{
4545
    int io;
4546

    
4547
    for (; map->phys_dsp; map ++) {
4548
        io = cpu_get_physical_page_desc(map->phys_mpu);
4549

    
4550
        cpu_register_physical_memory(map->phys_dsp, map->size, io);
4551
    }
4552
}
4553

    
4554
void omap_mpu_wakeup(void *opaque, int irq, int req)
4555
{
4556
    struct omap_mpu_state_s *mpu = (struct omap_mpu_state_s *) opaque;
4557

    
4558
    if (mpu->env->halted)
4559
        cpu_interrupt(mpu->env, CPU_INTERRUPT_EXITTB);
4560
}
4561

    
4562
static const struct dma_irq_map omap1_dma_irq_map[] = {
4563
    { 0, OMAP_INT_DMA_CH0_6 },
4564
    { 0, OMAP_INT_DMA_CH1_7 },
4565
    { 0, OMAP_INT_DMA_CH2_8 },
4566
    { 0, OMAP_INT_DMA_CH3 },
4567
    { 0, OMAP_INT_DMA_CH4 },
4568
    { 0, OMAP_INT_DMA_CH5 },
4569
    { 1, OMAP_INT_1610_DMA_CH6 },
4570
    { 1, OMAP_INT_1610_DMA_CH7 },
4571
    { 1, OMAP_INT_1610_DMA_CH8 },
4572
    { 1, OMAP_INT_1610_DMA_CH9 },
4573
    { 1, OMAP_INT_1610_DMA_CH10 },
4574
    { 1, OMAP_INT_1610_DMA_CH11 },
4575
    { 1, OMAP_INT_1610_DMA_CH12 },
4576
    { 1, OMAP_INT_1610_DMA_CH13 },
4577
    { 1, OMAP_INT_1610_DMA_CH14 },
4578
    { 1, OMAP_INT_1610_DMA_CH15 }
4579
};
4580

    
4581
/* DMA ports for OMAP1 */
4582
static int omap_validate_emiff_addr(struct omap_mpu_state_s *s,
4583
                target_phys_addr_t addr)
4584
{
4585
    return addr >= OMAP_EMIFF_BASE && addr < OMAP_EMIFF_BASE + s->sdram_size;
4586
}
4587

    
4588
static int omap_validate_emifs_addr(struct omap_mpu_state_s *s,
4589
                target_phys_addr_t addr)
4590
{
4591
    return addr >= OMAP_EMIFS_BASE && addr < OMAP_EMIFF_BASE;
4592
}
4593

    
4594
static int omap_validate_imif_addr(struct omap_mpu_state_s *s,
4595
                target_phys_addr_t addr)
4596
{
4597
    return addr >= OMAP_IMIF_BASE && addr < OMAP_IMIF_BASE + s->sram_size;
4598
}
4599

    
4600
static int omap_validate_tipb_addr(struct omap_mpu_state_s *s,
4601
                target_phys_addr_t addr)
4602
{
4603
    return addr >= 0xfffb0000 && addr < 0xffff0000;
4604
}
4605

    
4606
static int omap_validate_local_addr(struct omap_mpu_state_s *s,
4607
                target_phys_addr_t addr)
4608
{
4609
    return addr >= OMAP_LOCALBUS_BASE && addr < OMAP_LOCALBUS_BASE + 0x1000000;
4610
}
4611

    
4612
static int omap_validate_tipb_mpui_addr(struct omap_mpu_state_s *s,
4613
                target_phys_addr_t addr)
4614
{
4615
    return addr >= 0xe1010000 && addr < 0xe1020004;
4616
}
4617

    
4618
struct omap_mpu_state_s *omap310_mpu_init(unsigned long sdram_size,
4619
                DisplayState *ds, const char *core)
4620
{
4621
    int i;
4622
    struct omap_mpu_state_s *s = (struct omap_mpu_state_s *)
4623
            qemu_mallocz(sizeof(struct omap_mpu_state_s));
4624
    ram_addr_t imif_base, emiff_base;
4625
    qemu_irq *cpu_irq;
4626
    qemu_irq dma_irqs[6];
4627
    int sdindex;
4628

    
4629
    if (!core)
4630
        core = "ti925t";
4631

    
4632
    /* Core */
4633
    s->mpu_model = omap310;
4634
    s->env = cpu_init(core);
4635
    if (!s->env) {
4636
        fprintf(stderr, "Unable to find CPU definition\n");
4637
        exit(1);
4638
    }
4639
    s->sdram_size = sdram_size;
4640
    s->sram_size = OMAP15XX_SRAM_SIZE;
4641

    
4642
    s->wakeup = qemu_allocate_irqs(omap_mpu_wakeup, s, 1)[0];
4643

    
4644
    /* Clocks */
4645
    omap_clk_init(s);
4646

    
4647
    /* Memory-mapped stuff */
4648
    cpu_register_physical_memory(OMAP_EMIFF_BASE, s->sdram_size,
4649
                    (emiff_base = qemu_ram_alloc(s->sdram_size)) | IO_MEM_RAM);
4650
    cpu_register_physical_memory(OMAP_IMIF_BASE, s->sram_size,
4651
                    (imif_base = qemu_ram_alloc(s->sram_size)) | IO_MEM_RAM);
4652

    
4653
    omap_clkm_init(0xfffece00, 0xe1008000, s);
4654

    
4655
    cpu_irq = arm_pic_init_cpu(s->env);
4656
    s->ih[0] = omap_inth_init(0xfffecb00, 0x100, 1, &s->irq[0],
4657
                    cpu_irq[ARM_PIC_CPU_IRQ], cpu_irq[ARM_PIC_CPU_FIQ],
4658
                    omap_findclk(s, "arminth_ck"));
4659
    s->ih[1] = omap_inth_init(0xfffe0000, 0x800, 1, &s->irq[1],
4660
                    s->ih[0]->pins[OMAP_INT_15XX_IH2_IRQ], NULL,
4661
                    omap_findclk(s, "arminth_ck"));
4662

    
4663
    for (i = 0; i < 6; i ++)
4664
        dma_irqs[i] =
4665
                s->irq[omap1_dma_irq_map[i].ih][omap1_dma_irq_map[i].intr];
4666
    s->dma = omap_dma_init(0xfffed800, dma_irqs, s->irq[0][OMAP_INT_DMA_LCD],
4667
                           s, omap_findclk(s, "dma_ck"), omap_dma_3_1);
4668

    
4669
    s->port[emiff    ].addr_valid = omap_validate_emiff_addr;
4670
    s->port[emifs    ].addr_valid = omap_validate_emifs_addr;
4671
    s->port[imif     ].addr_valid = omap_validate_imif_addr;
4672
    s->port[tipb     ].addr_valid = omap_validate_tipb_addr;
4673
    s->port[local    ].addr_valid = omap_validate_local_addr;
4674
    s->port[tipb_mpui].addr_valid = omap_validate_tipb_mpui_addr;
4675

    
4676
    /* Register SDRAM and SRAM DMA ports for fast transfers.  */
4677
    soc_dma_port_add_mem_ram(s->dma,
4678
                    emiff_base, OMAP_EMIFF_BASE, s->sdram_size);
4679
    soc_dma_port_add_mem_ram(s->dma,
4680
                    imif_base, OMAP_IMIF_BASE, s->sram_size);
4681

    
4682
    s->timer[0] = omap_mpu_timer_init(0xfffec500,
4683
                    s->irq[0][OMAP_INT_TIMER1],
4684
                    omap_findclk(s, "mputim_ck"));
4685
    s->timer[1] = omap_mpu_timer_init(0xfffec600,
4686
                    s->irq[0][OMAP_INT_TIMER2],
4687
                    omap_findclk(s, "mputim_ck"));
4688
    s->timer[2] = omap_mpu_timer_init(0xfffec700,
4689
                    s->irq[0][OMAP_INT_TIMER3],
4690
                    omap_findclk(s, "mputim_ck"));
4691

    
4692
    s->wdt = omap_wd_timer_init(0xfffec800,
4693
                    s->irq[0][OMAP_INT_WD_TIMER],
4694
                    omap_findclk(s, "armwdt_ck"));
4695

    
4696
    s->os_timer = omap_os_timer_init(0xfffb9000,
4697
                    s->irq[1][OMAP_INT_OS_TIMER],
4698
                    omap_findclk(s, "clk32-kHz"));
4699

    
4700
    s->lcd = omap_lcdc_init(0xfffec000, s->irq[0][OMAP_INT_LCD_CTRL],
4701
                    omap_dma_get_lcdch(s->dma), ds, imif_base, emiff_base,
4702
                    omap_findclk(s, "lcd_ck"));
4703

    
4704
    omap_ulpd_pm_init(0xfffe0800, s);
4705
    omap_pin_cfg_init(0xfffe1000, s);
4706
    omap_id_init(s);
4707

    
4708
    omap_mpui_init(0xfffec900, s);
4709

    
4710
    s->private_tipb = omap_tipb_bridge_init(0xfffeca00,
4711
                    s->irq[0][OMAP_INT_BRIDGE_PRIV],
4712
                    omap_findclk(s, "tipb_ck"));
4713
    s->public_tipb = omap_tipb_bridge_init(0xfffed300,
4714
                    s->irq[0][OMAP_INT_BRIDGE_PUB],
4715
                    omap_findclk(s, "tipb_ck"));
4716

    
4717
    omap_tcmi_init(0xfffecc00, s);
4718

    
4719
    s->uart[0] = omap_uart_init(0xfffb0000, s->irq[1][OMAP_INT_UART1],
4720
                    omap_findclk(s, "uart1_ck"),
4721
                    omap_findclk(s, "uart1_ck"),
4722
                    s->drq[OMAP_DMA_UART1_TX], s->drq[OMAP_DMA_UART1_RX],
4723
                    serial_hds[0]);
4724
    s->uart[1] = omap_uart_init(0xfffb0800, s->irq[1][OMAP_INT_UART2],
4725
                    omap_findclk(s, "uart2_ck"),
4726
                    omap_findclk(s, "uart2_ck"),
4727
                    s->drq[OMAP_DMA_UART2_TX], s->drq[OMAP_DMA_UART2_RX],
4728
                    serial_hds[0] ? serial_hds[1] : 0);
4729
    s->uart[2] = omap_uart_init(0xe1019800, s->irq[0][OMAP_INT_UART3],
4730
                    omap_findclk(s, "uart3_ck"),
4731
                    omap_findclk(s, "uart3_ck"),
4732
                    s->drq[OMAP_DMA_UART3_TX], s->drq[OMAP_DMA_UART3_RX],
4733
                    serial_hds[0] && serial_hds[1] ? serial_hds[2] : 0);
4734

    
4735
    omap_dpll_init(&s->dpll[0], 0xfffecf00, omap_findclk(s, "dpll1"));
4736
    omap_dpll_init(&s->dpll[1], 0xfffed000, omap_findclk(s, "dpll2"));
4737
    omap_dpll_init(&s->dpll[2], 0xfffed100, omap_findclk(s, "dpll3"));
4738

    
4739
    sdindex = drive_get_index(IF_SD, 0, 0);
4740
    if (sdindex == -1) {
4741
        fprintf(stderr, "qemu: missing SecureDigital device\n");
4742
        exit(1);
4743
    }
4744
    s->mmc = omap_mmc_init(0xfffb7800, drives_table[sdindex].bdrv,
4745
                    s->irq[1][OMAP_INT_OQN], &s->drq[OMAP_DMA_MMC_TX],
4746
                    omap_findclk(s, "mmc_ck"));
4747

    
4748
    s->mpuio = omap_mpuio_init(0xfffb5000,
4749
                    s->irq[1][OMAP_INT_KEYBOARD], s->irq[1][OMAP_INT_MPUIO],
4750
                    s->wakeup, omap_findclk(s, "clk32-kHz"));
4751

    
4752
    s->gpio = omap_gpio_init(0xfffce000, s->irq[0][OMAP_INT_GPIO_BANK1],
4753
                    omap_findclk(s, "arm_gpio_ck"));
4754

    
4755
    s->microwire = omap_uwire_init(0xfffb3000, &s->irq[1][OMAP_INT_uWireTX],
4756
                    s->drq[OMAP_DMA_UWIRE_TX], omap_findclk(s, "mpuper_ck"));
4757

    
4758
    omap_pwl_init(0xfffb5800, s, omap_findclk(s, "armxor_ck"));
4759
    omap_pwt_init(0xfffb6000, s, omap_findclk(s, "armxor_ck"));
4760

    
4761
    s->i2c[0] = omap_i2c_init(0xfffb3800, s->irq[1][OMAP_INT_I2C],
4762
                    &s->drq[OMAP_DMA_I2C_RX], omap_findclk(s, "mpuper_ck"));
4763

    
4764
    s->rtc = omap_rtc_init(0xfffb4800, &s->irq[1][OMAP_INT_RTC_TIMER],
4765
                    omap_findclk(s, "clk32-kHz"));
4766

    
4767
    s->mcbsp1 = omap_mcbsp_init(0xfffb1800, &s->irq[1][OMAP_INT_McBSP1TX],
4768
                    &s->drq[OMAP_DMA_MCBSP1_TX], omap_findclk(s, "dspxor_ck"));
4769
    s->mcbsp2 = omap_mcbsp_init(0xfffb1000, &s->irq[0][OMAP_INT_310_McBSP2_TX],
4770
                    &s->drq[OMAP_DMA_MCBSP2_TX], omap_findclk(s, "mpuper_ck"));
4771
    s->mcbsp3 = omap_mcbsp_init(0xfffb7000, &s->irq[1][OMAP_INT_McBSP3TX],
4772
                    &s->drq[OMAP_DMA_MCBSP3_TX], omap_findclk(s, "dspxor_ck"));
4773

    
4774
    s->led[0] = omap_lpg_init(0xfffbd000, omap_findclk(s, "clk32-kHz"));
4775
    s->led[1] = omap_lpg_init(0xfffbd800, omap_findclk(s, "clk32-kHz"));
4776

    
4777
    /* Register mappings not currenlty implemented:
4778
     * MCSI2 Comm        fffb2000 - fffb27ff (not mapped on OMAP310)
4779
     * MCSI1 Bluetooth        fffb2800 - fffb2fff (not mapped on OMAP310)
4780
     * USB W2FC                fffb4000 - fffb47ff
4781
     * Camera Interface        fffb6800 - fffb6fff
4782
     * USB Host                fffba000 - fffba7ff
4783
     * FAC                fffba800 - fffbafff
4784
     * HDQ/1-Wire        fffbc000 - fffbc7ff
4785
     * TIPB switches        fffbc800 - fffbcfff
4786
     * Mailbox                fffcf000 - fffcf7ff
4787
     * Local bus IF        fffec100 - fffec1ff
4788
     * Local bus MMU        fffec200 - fffec2ff
4789
     * DSP MMU                fffed200 - fffed2ff
4790
     */
4791

    
4792
    omap_setup_dsp_mapping(omap15xx_dsp_mm);
4793
    omap_setup_mpui_io(s);
4794

    
4795
    qemu_register_reset(omap1_mpu_reset, s);
4796

    
4797
    return s;
4798
}