Statistics
| Branch: | Revision:

root / hw / pxa2xx_mmci.c @ 8da3ff18

History | View | Annotate | Download (14.3 kB)

1
/*
2
 * Intel XScale PXA255/270 MultiMediaCard/SD/SDIO Controller emulation.
3
 *
4
 * Copyright (c) 2006 Openedhand Ltd.
5
 * Written by Andrzej Zaborowski <balrog@zabor.org>
6
 *
7
 * This code is licensed under the GPLv2.
8
 */
9

    
10
#include "hw.h"
11
#include "pxa.h"
12
#include "sd.h"
13

    
14
struct pxa2xx_mmci_s {
15
    qemu_irq irq;
16
    void *dma;
17

    
18
    SDState *card;
19

    
20
    uint32_t status;
21
    uint32_t clkrt;
22
    uint32_t spi;
23
    uint32_t cmdat;
24
    uint32_t resp_tout;
25
    uint32_t read_tout;
26
    int blklen;
27
    int numblk;
28
    uint32_t intmask;
29
    uint32_t intreq;
30
    int cmd;
31
    uint32_t arg;
32

    
33
    int active;
34
    int bytesleft;
35
    uint8_t tx_fifo[64];
36
    int tx_start;
37
    int tx_len;
38
    uint8_t rx_fifo[32];
39
    int rx_start;
40
    int rx_len;
41
    uint16_t resp_fifo[9];
42
    int resp_len;
43

    
44
    int cmdreq;
45
    int ac_width;
46
};
47

    
48
#define MMC_STRPCL        0x00        /* MMC Clock Start/Stop register */
49
#define MMC_STAT        0x04        /* MMC Status register */
50
#define MMC_CLKRT        0x08        /* MMC Clock Rate register */
51
#define MMC_SPI                0x0c        /* MMC SPI Mode register */
52
#define MMC_CMDAT        0x10        /* MMC Command/Data register */
53
#define MMC_RESTO        0x14        /* MMC Response Time-Out register */
54
#define MMC_RDTO        0x18        /* MMC Read Time-Out register */
55
#define MMC_BLKLEN        0x1c        /* MMC Block Length register */
56
#define MMC_NUMBLK        0x20        /* MMC Number of Blocks register */
57
#define MMC_PRTBUF        0x24        /* MMC Buffer Partly Full register */
58
#define MMC_I_MASK        0x28        /* MMC Interrupt Mask register */
59
#define MMC_I_REG        0x2c        /* MMC Interrupt Request register */
60
#define MMC_CMD                0x30        /* MMC Command register */
61
#define MMC_ARGH        0x34        /* MMC Argument High register */
62
#define MMC_ARGL        0x38        /* MMC Argument Low register */
63
#define MMC_RES                0x3c        /* MMC Response FIFO */
64
#define MMC_RXFIFO        0x40        /* MMC Receive FIFO */
65
#define MMC_TXFIFO        0x44        /* MMC Transmit FIFO */
66
#define MMC_RDWAIT        0x48        /* MMC RD_WAIT register */
67
#define MMC_BLKS_REM        0x4c        /* MMC Blocks Remaining register */
68

    
69
/* Bitfield masks */
70
#define STRPCL_STOP_CLK        (1 << 0)
71
#define STRPCL_STRT_CLK        (1 << 1)
72
#define STAT_TOUT_RES        (1 << 1)
73
#define STAT_CLK_EN        (1 << 8)
74
#define STAT_DATA_DONE        (1 << 11)
75
#define STAT_PRG_DONE        (1 << 12)
76
#define STAT_END_CMDRES        (1 << 13)
77
#define SPI_SPI_MODE        (1 << 0)
78
#define CMDAT_RES_TYPE        (3 << 0)
79
#define CMDAT_DATA_EN        (1 << 2)
80
#define CMDAT_WR_RD        (1 << 3)
81
#define CMDAT_DMA_EN        (1 << 7)
82
#define CMDAT_STOP_TRAN        (1 << 10)
83
#define INT_DATA_DONE        (1 << 0)
84
#define INT_PRG_DONE        (1 << 1)
85
#define INT_END_CMD        (1 << 2)
86
#define INT_STOP_CMD        (1 << 3)
87
#define INT_CLK_OFF        (1 << 4)
88
#define INT_RXFIFO_REQ        (1 << 5)
89
#define INT_TXFIFO_REQ        (1 << 6)
90
#define INT_TINT        (1 << 7)
91
#define INT_DAT_ERR        (1 << 8)
92
#define INT_RES_ERR        (1 << 9)
93
#define INT_RD_STALLED        (1 << 10)
94
#define INT_SDIO_INT        (1 << 11)
95
#define INT_SDIO_SACK        (1 << 12)
96
#define PRTBUF_PRT_BUF        (1 << 0)
97

    
98
/* Route internal interrupt lines to the global IC and DMA */
99
static void pxa2xx_mmci_int_update(struct pxa2xx_mmci_s *s)
100
{
101
    uint32_t mask = s->intmask;
102
    if (s->cmdat & CMDAT_DMA_EN) {
103
        mask |= INT_RXFIFO_REQ | INT_TXFIFO_REQ;
104

    
105
        pxa2xx_dma_request((struct pxa2xx_dma_state_s *) s->dma,
106
                        PXA2XX_RX_RQ_MMCI, !!(s->intreq & INT_RXFIFO_REQ));
107
        pxa2xx_dma_request((struct pxa2xx_dma_state_s *) s->dma,
108
                        PXA2XX_TX_RQ_MMCI, !!(s->intreq & INT_TXFIFO_REQ));
109
    }
110

    
111
    qemu_set_irq(s->irq, !!(s->intreq & ~mask));
112
}
113

    
114
static void pxa2xx_mmci_fifo_update(struct pxa2xx_mmci_s *s)
115
{
116
    if (!s->active)
117
        return;
118

    
119
    if (s->cmdat & CMDAT_WR_RD) {
120
        while (s->bytesleft && s->tx_len) {
121
            sd_write_data(s->card, s->tx_fifo[s->tx_start ++]);
122
            s->tx_start &= 0x1f;
123
            s->tx_len --;
124
            s->bytesleft --;
125
        }
126
        if (s->bytesleft)
127
            s->intreq |= INT_TXFIFO_REQ;
128
    } else
129
        while (s->bytesleft && s->rx_len < 32) {
130
            s->rx_fifo[(s->rx_start + (s->rx_len ++)) & 0x1f] =
131
                sd_read_data(s->card);
132
            s->bytesleft --;
133
            s->intreq |= INT_RXFIFO_REQ;
134
        }
135

    
136
    if (!s->bytesleft) {
137
        s->active = 0;
138
        s->intreq |= INT_DATA_DONE;
139
        s->status |= STAT_DATA_DONE;
140

    
141
        if (s->cmdat & CMDAT_WR_RD) {
142
            s->intreq |= INT_PRG_DONE;
143
            s->status |= STAT_PRG_DONE;
144
        }
145
    }
146

    
147
    pxa2xx_mmci_int_update(s);
148
}
149

    
150
static void pxa2xx_mmci_wakequeues(struct pxa2xx_mmci_s *s)
151
{
152
    int rsplen, i;
153
    struct sd_request_s request;
154
    uint8_t response[16];
155

    
156
    s->active = 1;
157
    s->rx_len = 0;
158
    s->tx_len = 0;
159
    s->cmdreq = 0;
160

    
161
    request.cmd = s->cmd;
162
    request.arg = s->arg;
163
    request.crc = 0;        /* FIXME */
164

    
165
    rsplen = sd_do_command(s->card, &request, response);
166
    s->intreq |= INT_END_CMD;
167

    
168
    memset(s->resp_fifo, 0, sizeof(s->resp_fifo));
169
    switch (s->cmdat & CMDAT_RES_TYPE) {
170
#define PXAMMCI_RESP(wd, value0, value1)        \
171
        s->resp_fifo[(wd) + 0] |= (value0);        \
172
        s->resp_fifo[(wd) + 1] |= (value1) << 8;
173
    case 0:        /* No response */
174
        goto complete;
175

    
176
    case 1:        /* R1, R4, R5 or R6 */
177
        if (rsplen < 4)
178
            goto timeout;
179
        goto complete;
180

    
181
    case 2:        /* R2 */
182
        if (rsplen < 16)
183
            goto timeout;
184
        goto complete;
185

    
186
    case 3:        /* R3 */
187
        if (rsplen < 4)
188
            goto timeout;
189
        goto complete;
190

    
191
    complete:
192
        for (i = 0; rsplen > 0; i ++, rsplen -= 2) {
193
            PXAMMCI_RESP(i, response[i * 2], response[i * 2 + 1]);
194
        }
195
        s->status |= STAT_END_CMDRES;
196

    
197
        if (!(s->cmdat & CMDAT_DATA_EN))
198
            s->active = 0;
199
        else
200
            s->bytesleft = s->numblk * s->blklen;
201

    
202
        s->resp_len = 0;
203
        break;
204

    
205
    timeout:
206
        s->active = 0;
207
        s->status |= STAT_TOUT_RES;
208
        break;
209
    }
210

    
211
    pxa2xx_mmci_fifo_update(s);
212
}
213

    
214
static uint32_t pxa2xx_mmci_read(void *opaque, target_phys_addr_t offset)
215
{
216
    struct pxa2xx_mmci_s *s = (struct pxa2xx_mmci_s *) opaque;
217
    uint32_t ret;
218

    
219
    switch (offset) {
220
    case MMC_STRPCL:
221
        return 0;
222
    case MMC_STAT:
223
        return s->status;
224
    case MMC_CLKRT:
225
        return s->clkrt;
226
    case MMC_SPI:
227
        return s->spi;
228
    case MMC_CMDAT:
229
        return s->cmdat;
230
    case MMC_RESTO:
231
        return s->resp_tout;
232
    case MMC_RDTO:
233
        return s->read_tout;
234
    case MMC_BLKLEN:
235
        return s->blklen;
236
    case MMC_NUMBLK:
237
        return s->numblk;
238
    case MMC_PRTBUF:
239
        return 0;
240
    case MMC_I_MASK:
241
        return s->intmask;
242
    case MMC_I_REG:
243
        return s->intreq;
244
    case MMC_CMD:
245
        return s->cmd | 0x40;
246
    case MMC_ARGH:
247
        return s->arg >> 16;
248
    case MMC_ARGL:
249
        return s->arg & 0xffff;
250
    case MMC_RES:
251
        if (s->resp_len < 9)
252
            return s->resp_fifo[s->resp_len ++];
253
        return 0;
254
    case MMC_RXFIFO:
255
        ret = 0;
256
        while (s->ac_width -- && s->rx_len) {
257
            ret |= s->rx_fifo[s->rx_start ++] << (s->ac_width << 3);
258
            s->rx_start &= 0x1f;
259
            s->rx_len --;
260
        }
261
        s->intreq &= ~INT_RXFIFO_REQ;
262
        pxa2xx_mmci_fifo_update(s);
263
        return ret;
264
    case MMC_RDWAIT:
265
        return 0;
266
    case MMC_BLKS_REM:
267
        return s->numblk;
268
    default:
269
        cpu_abort(cpu_single_env, "%s: Bad offset " REG_FMT "\n",
270
                        __FUNCTION__, offset);
271
    }
272

    
273
    return 0;
274
}
275

    
276
static void pxa2xx_mmci_write(void *opaque,
277
                target_phys_addr_t offset, uint32_t value)
278
{
279
    struct pxa2xx_mmci_s *s = (struct pxa2xx_mmci_s *) opaque;
280

    
281
    switch (offset) {
282
    case MMC_STRPCL:
283
        if (value & STRPCL_STRT_CLK) {
284
            s->status |= STAT_CLK_EN;
285
            s->intreq &= ~INT_CLK_OFF;
286

    
287
            if (s->cmdreq && !(s->cmdat & CMDAT_STOP_TRAN)) {
288
                s->status &= STAT_CLK_EN;
289
                pxa2xx_mmci_wakequeues(s);
290
            }
291
        }
292

    
293
        if (value & STRPCL_STOP_CLK) {
294
            s->status &= ~STAT_CLK_EN;
295
            s->intreq |= INT_CLK_OFF;
296
            s->active = 0;
297
        }
298

    
299
        pxa2xx_mmci_int_update(s);
300
        break;
301

    
302
    case MMC_CLKRT:
303
        s->clkrt = value & 7;
304
        break;
305

    
306
    case MMC_SPI:
307
        s->spi = value & 0xf;
308
        if (value & SPI_SPI_MODE)
309
            printf("%s: attempted to use card in SPI mode\n", __FUNCTION__);
310
        break;
311

    
312
    case MMC_CMDAT:
313
        s->cmdat = value & 0x3dff;
314
        s->active = 0;
315
        s->cmdreq = 1;
316
        if (!(value & CMDAT_STOP_TRAN)) {
317
            s->status &= STAT_CLK_EN;
318

    
319
            if (s->status & STAT_CLK_EN)
320
                pxa2xx_mmci_wakequeues(s);
321
        }
322

    
323
        pxa2xx_mmci_int_update(s);
324
        break;
325

    
326
    case MMC_RESTO:
327
        s->resp_tout = value & 0x7f;
328
        break;
329

    
330
    case MMC_RDTO:
331
        s->read_tout = value & 0xffff;
332
        break;
333

    
334
    case MMC_BLKLEN:
335
        s->blklen = value & 0xfff;
336
        break;
337

    
338
    case MMC_NUMBLK:
339
        s->numblk = value & 0xffff;
340
        break;
341

    
342
    case MMC_PRTBUF:
343
        if (value & PRTBUF_PRT_BUF) {
344
            s->tx_start ^= 32;
345
            s->tx_len = 0;
346
        }
347
        pxa2xx_mmci_fifo_update(s);
348
        break;
349

    
350
    case MMC_I_MASK:
351
        s->intmask = value & 0x1fff;
352
        pxa2xx_mmci_int_update(s);
353
        break;
354

    
355
    case MMC_CMD:
356
        s->cmd = value & 0x3f;
357
        break;
358

    
359
    case MMC_ARGH:
360
        s->arg &= 0x0000ffff;
361
        s->arg |= value << 16;
362
        break;
363

    
364
    case MMC_ARGL:
365
        s->arg &= 0xffff0000;
366
        s->arg |= value & 0x0000ffff;
367
        break;
368

    
369
    case MMC_TXFIFO:
370
        while (s->ac_width -- && s->tx_len < 0x20)
371
            s->tx_fifo[(s->tx_start + (s->tx_len ++)) & 0x1f] =
372
                    (value >> (s->ac_width << 3)) & 0xff;
373
        s->intreq &= ~INT_TXFIFO_REQ;
374
        pxa2xx_mmci_fifo_update(s);
375
        break;
376

    
377
    case MMC_RDWAIT:
378
    case MMC_BLKS_REM:
379
        break;
380

    
381
    default:
382
        cpu_abort(cpu_single_env, "%s: Bad offset " REG_FMT "\n",
383
                        __FUNCTION__, offset);
384
    }
385
}
386

    
387
static uint32_t pxa2xx_mmci_readb(void *opaque, target_phys_addr_t offset)
388
{
389
    struct pxa2xx_mmci_s *s = (struct pxa2xx_mmci_s *) opaque;
390
    s->ac_width = 1;
391
    return pxa2xx_mmci_read(opaque, offset);
392
}
393

    
394
static uint32_t pxa2xx_mmci_readh(void *opaque, target_phys_addr_t offset)
395
{
396
    struct pxa2xx_mmci_s *s = (struct pxa2xx_mmci_s *) opaque;
397
    s->ac_width = 2;
398
    return pxa2xx_mmci_read(opaque, offset);
399
}
400

    
401
static uint32_t pxa2xx_mmci_readw(void *opaque, target_phys_addr_t offset)
402
{
403
    struct pxa2xx_mmci_s *s = (struct pxa2xx_mmci_s *) opaque;
404
    s->ac_width = 4;
405
    return pxa2xx_mmci_read(opaque, offset);
406
}
407

    
408
static CPUReadMemoryFunc *pxa2xx_mmci_readfn[] = {
409
    pxa2xx_mmci_readb,
410
    pxa2xx_mmci_readh,
411
    pxa2xx_mmci_readw
412
};
413

    
414
static void pxa2xx_mmci_writeb(void *opaque,
415
                target_phys_addr_t offset, uint32_t value)
416
{
417
    struct pxa2xx_mmci_s *s = (struct pxa2xx_mmci_s *) opaque;
418
    s->ac_width = 1;
419
    pxa2xx_mmci_write(opaque, offset, value);
420
}
421

    
422
static void pxa2xx_mmci_writeh(void *opaque,
423
                target_phys_addr_t offset, uint32_t value)
424
{
425
    struct pxa2xx_mmci_s *s = (struct pxa2xx_mmci_s *) opaque;
426
    s->ac_width = 2;
427
    pxa2xx_mmci_write(opaque, offset, value);
428
}
429

    
430
static void pxa2xx_mmci_writew(void *opaque,
431
                target_phys_addr_t offset, uint32_t value)
432
{
433
    struct pxa2xx_mmci_s *s = (struct pxa2xx_mmci_s *) opaque;
434
    s->ac_width = 4;
435
    pxa2xx_mmci_write(opaque, offset, value);
436
}
437

    
438
static CPUWriteMemoryFunc *pxa2xx_mmci_writefn[] = {
439
    pxa2xx_mmci_writeb,
440
    pxa2xx_mmci_writeh,
441
    pxa2xx_mmci_writew
442
};
443

    
444
static void pxa2xx_mmci_save(QEMUFile *f, void *opaque)
445
{
446
    struct pxa2xx_mmci_s *s = (struct pxa2xx_mmci_s *) opaque;
447
    int i;
448

    
449
    qemu_put_be32s(f, &s->status);
450
    qemu_put_be32s(f, &s->clkrt);
451
    qemu_put_be32s(f, &s->spi);
452
    qemu_put_be32s(f, &s->cmdat);
453
    qemu_put_be32s(f, &s->resp_tout);
454
    qemu_put_be32s(f, &s->read_tout);
455
    qemu_put_be32(f, s->blklen);
456
    qemu_put_be32(f, s->numblk);
457
    qemu_put_be32s(f, &s->intmask);
458
    qemu_put_be32s(f, &s->intreq);
459
    qemu_put_be32(f, s->cmd);
460
    qemu_put_be32s(f, &s->arg);
461
    qemu_put_be32(f, s->cmdreq);
462
    qemu_put_be32(f, s->active);
463
    qemu_put_be32(f, s->bytesleft);
464

    
465
    qemu_put_byte(f, s->tx_len);
466
    for (i = 0; i < s->tx_len; i ++)
467
        qemu_put_byte(f, s->tx_fifo[(s->tx_start + i) & 63]);
468

    
469
    qemu_put_byte(f, s->rx_len);
470
    for (i = 0; i < s->rx_len; i ++)
471
        qemu_put_byte(f, s->rx_fifo[(s->rx_start + i) & 31]);
472

    
473
    qemu_put_byte(f, s->resp_len);
474
    for (i = s->resp_len; i < 9; i ++)
475
        qemu_put_be16s(f, &s->resp_fifo[i]);
476
}
477

    
478
static int pxa2xx_mmci_load(QEMUFile *f, void *opaque, int version_id)
479
{
480
    struct pxa2xx_mmci_s *s = (struct pxa2xx_mmci_s *) opaque;
481
    int i;
482

    
483
    qemu_get_be32s(f, &s->status);
484
    qemu_get_be32s(f, &s->clkrt);
485
    qemu_get_be32s(f, &s->spi);
486
    qemu_get_be32s(f, &s->cmdat);
487
    qemu_get_be32s(f, &s->resp_tout);
488
    qemu_get_be32s(f, &s->read_tout);
489
    s->blklen = qemu_get_be32(f);
490
    s->numblk = qemu_get_be32(f);
491
    qemu_get_be32s(f, &s->intmask);
492
    qemu_get_be32s(f, &s->intreq);
493
    s->cmd = qemu_get_be32(f);
494
    qemu_get_be32s(f, &s->arg);
495
    s->cmdreq = qemu_get_be32(f);
496
    s->active = qemu_get_be32(f);
497
    s->bytesleft = qemu_get_be32(f);
498

    
499
    s->tx_len = qemu_get_byte(f);
500
    s->tx_start = 0;
501
    if (s->tx_len >= sizeof(s->tx_fifo) || s->tx_len < 0)
502
        return -EINVAL;
503
    for (i = 0; i < s->tx_len; i ++)
504
        s->tx_fifo[i] = qemu_get_byte(f);
505

    
506
    s->rx_len = qemu_get_byte(f);
507
    s->rx_start = 0;
508
    if (s->rx_len >= sizeof(s->rx_fifo) || s->rx_len < 0)
509
        return -EINVAL;
510
    for (i = 0; i < s->rx_len; i ++)
511
        s->rx_fifo[i] = qemu_get_byte(f);
512

    
513
    s->resp_len = qemu_get_byte(f);
514
    if (s->resp_len > 9 || s->resp_len < 0)
515
        return -EINVAL;
516
    for (i = s->resp_len; i < 9; i ++)
517
         qemu_get_be16s(f, &s->resp_fifo[i]);
518

    
519
    return 0;
520
}
521

    
522
struct pxa2xx_mmci_s *pxa2xx_mmci_init(target_phys_addr_t base,
523
                BlockDriverState *bd, qemu_irq irq, void *dma)
524
{
525
    int iomemtype;
526
    struct pxa2xx_mmci_s *s;
527

    
528
    s = (struct pxa2xx_mmci_s *) qemu_mallocz(sizeof(struct pxa2xx_mmci_s));
529
    s->irq = irq;
530
    s->dma = dma;
531

    
532
    iomemtype = cpu_register_io_memory(0, pxa2xx_mmci_readfn,
533
                    pxa2xx_mmci_writefn, s);
534
    cpu_register_physical_memory(base, 0x00100000, iomemtype);
535

    
536
    /* Instantiate the actual storage */
537
    s->card = sd_init(bd, 0);
538

    
539
    register_savevm("pxa2xx_mmci", 0, 0,
540
                    pxa2xx_mmci_save, pxa2xx_mmci_load, s);
541

    
542
    return s;
543
}
544

    
545
void pxa2xx_mmci_handlers(struct pxa2xx_mmci_s *s, qemu_irq readonly,
546
                qemu_irq coverswitch)
547
{
548
    sd_set_cb(s->card, readonly, coverswitch);
549
}