Statistics
| Branch: | Revision:

root / hw / ptimer.c @ 8e31bf38

History | View | Annotate | Download (5.5 kB)

1
/*
2
 * General purpose implementation of a simple periodic countdown timer.
3
 *
4
 * Copyright (c) 2007 CodeSourcery.
5
 *
6
 * This code is licensed under the GNU LGPL.
7
 */
8
#include "hw.h"
9
#include "qemu-timer.h"
10
#include "host-utils.h"
11

    
12
struct ptimer_state
13
{
14
    uint8_t enabled; /* 0 = disabled, 1 = periodic, 2 = oneshot.  */
15
    uint64_t limit;
16
    uint64_t delta;
17
    uint32_t period_frac;
18
    int64_t period;
19
    int64_t last_event;
20
    int64_t next_event;
21
    QEMUBH *bh;
22
    QEMUTimer *timer;
23
};
24

    
25
/* Use a bottom-half routine to avoid reentrancy issues.  */
26
static void ptimer_trigger(ptimer_state *s)
27
{
28
    if (s->bh) {
29
        qemu_bh_schedule(s->bh);
30
    }
31
}
32

    
33
static void ptimer_reload(ptimer_state *s)
34
{
35
    if (s->delta == 0) {
36
        ptimer_trigger(s);
37
        s->delta = s->limit;
38
    }
39
    if (s->delta == 0 || s->period == 0) {
40
        fprintf(stderr, "Timer with period zero, disabling\n");
41
        s->enabled = 0;
42
        return;
43
    }
44

    
45
    s->last_event = s->next_event;
46
    s->next_event = s->last_event + s->delta * s->period;
47
    if (s->period_frac) {
48
        s->next_event += ((int64_t)s->period_frac * s->delta) >> 32;
49
    }
50
    qemu_mod_timer(s->timer, s->next_event);
51
}
52

    
53
static void ptimer_tick(void *opaque)
54
{
55
    ptimer_state *s = (ptimer_state *)opaque;
56
    ptimer_trigger(s);
57
    s->delta = 0;
58
    if (s->enabled == 2) {
59
        s->enabled = 0;
60
    } else {
61
        ptimer_reload(s);
62
    }
63
}
64

    
65
uint64_t ptimer_get_count(ptimer_state *s)
66
{
67
    int64_t now;
68
    uint64_t counter;
69

    
70
    if (s->enabled) {
71
        now = qemu_get_clock_ns(vm_clock);
72
        /* Figure out the current counter value.  */
73
        if (now - s->next_event > 0
74
            || s->period == 0) {
75
            /* Prevent timer underflowing if it should already have
76
               triggered.  */
77
            counter = 0;
78
        } else {
79
            uint64_t rem;
80
            uint64_t div;
81
            int clz1, clz2;
82
            int shift;
83

    
84
            /* We need to divide time by period, where time is stored in
85
               rem (64-bit integer) and period is stored in period/period_frac
86
               (64.32 fixed point).
87
              
88
               Doing full precision division is hard, so scale values and
89
               do a 64-bit division.  The result should be rounded down,
90
               so that the rounding error never causes the timer to go
91
               backwards.
92
            */
93

    
94
            rem = s->next_event - now;
95
            div = s->period;
96

    
97
            clz1 = clz64(rem);
98
            clz2 = clz64(div);
99
            shift = clz1 < clz2 ? clz1 : clz2;
100

    
101
            rem <<= shift;
102
            div <<= shift;
103
            if (shift >= 32) {
104
                div |= ((uint64_t)s->period_frac << (shift - 32));
105
            } else {
106
                if (shift != 0)
107
                    div |= (s->period_frac >> (32 - shift));
108
                /* Look at remaining bits of period_frac and round div up if 
109
                   necessary.  */
110
                if ((uint32_t)(s->period_frac << shift))
111
                    div += 1;
112
            }
113
            counter = rem / div;
114
        }
115
    } else {
116
        counter = s->delta;
117
    }
118
    return counter;
119
}
120

    
121
void ptimer_set_count(ptimer_state *s, uint64_t count)
122
{
123
    s->delta = count;
124
    if (s->enabled) {
125
        s->next_event = qemu_get_clock_ns(vm_clock);
126
        ptimer_reload(s);
127
    }
128
}
129

    
130
void ptimer_run(ptimer_state *s, int oneshot)
131
{
132
    if (s->enabled) {
133
        return;
134
    }
135
    if (s->period == 0) {
136
        fprintf(stderr, "Timer with period zero, disabling\n");
137
        return;
138
    }
139
    s->enabled = oneshot ? 2 : 1;
140
    s->next_event = qemu_get_clock_ns(vm_clock);
141
    ptimer_reload(s);
142
}
143

    
144
/* Pause a timer.  Note that this may cause it to "lose" time, even if it
145
   is immediately restarted.  */
146
void ptimer_stop(ptimer_state *s)
147
{
148
    if (!s->enabled)
149
        return;
150

    
151
    s->delta = ptimer_get_count(s);
152
    qemu_del_timer(s->timer);
153
    s->enabled = 0;
154
}
155

    
156
/* Set counter increment interval in nanoseconds.  */
157
void ptimer_set_period(ptimer_state *s, int64_t period)
158
{
159
    s->period = period;
160
    s->period_frac = 0;
161
    if (s->enabled) {
162
        s->next_event = qemu_get_clock_ns(vm_clock);
163
        ptimer_reload(s);
164
    }
165
}
166

    
167
/* Set counter frequency in Hz.  */
168
void ptimer_set_freq(ptimer_state *s, uint32_t freq)
169
{
170
    s->period = 1000000000ll / freq;
171
    s->period_frac = (1000000000ll << 32) / freq;
172
    if (s->enabled) {
173
        s->next_event = qemu_get_clock_ns(vm_clock);
174
        ptimer_reload(s);
175
    }
176
}
177

    
178
/* Set the initial countdown value.  If reload is nonzero then also set
179
   count = limit.  */
180
void ptimer_set_limit(ptimer_state *s, uint64_t limit, int reload)
181
{
182
    s->limit = limit;
183
    if (reload)
184
        s->delta = limit;
185
    if (s->enabled && reload) {
186
        s->next_event = qemu_get_clock_ns(vm_clock);
187
        ptimer_reload(s);
188
    }
189
}
190

    
191
const VMStateDescription vmstate_ptimer = {
192
    .name = "ptimer",
193
    .version_id = 1,
194
    .minimum_version_id = 1,
195
    .minimum_version_id_old = 1,
196
    .fields      = (VMStateField[]) {
197
        VMSTATE_UINT8(enabled, ptimer_state),
198
        VMSTATE_UINT64(limit, ptimer_state),
199
        VMSTATE_UINT64(delta, ptimer_state),
200
        VMSTATE_UINT32(period_frac, ptimer_state),
201
        VMSTATE_INT64(period, ptimer_state),
202
        VMSTATE_INT64(last_event, ptimer_state),
203
        VMSTATE_INT64(next_event, ptimer_state),
204
        VMSTATE_TIMER(timer, ptimer_state),
205
        VMSTATE_END_OF_LIST()
206
    }
207
};
208

    
209
ptimer_state *ptimer_init(QEMUBH *bh)
210
{
211
    ptimer_state *s;
212

    
213
    s = (ptimer_state *)qemu_mallocz(sizeof(ptimer_state));
214
    s->bh = bh;
215
    s->timer = qemu_new_timer_ns(vm_clock, ptimer_tick, s);
216
    return s;
217
}