Statistics
| Branch: | Revision:

root / hw / pxa2xx.c @ 8e31bf38

History | View | Annotate | Download (67.9 kB)

1
/*
2
 * Intel XScale PXA255/270 processor support.
3
 *
4
 * Copyright (c) 2006 Openedhand Ltd.
5
 * Written by Andrzej Zaborowski <balrog@zabor.org>
6
 *
7
 * This code is licensed under the GPL.
8
 */
9

    
10
#include "sysbus.h"
11
#include "pxa.h"
12
#include "sysemu.h"
13
#include "pc.h"
14
#include "i2c.h"
15
#include "ssi.h"
16
#include "qemu-char.h"
17
#include "blockdev.h"
18

    
19
static struct {
20
    target_phys_addr_t io_base;
21
    int irqn;
22
} pxa255_serial[] = {
23
    { 0x40100000, PXA2XX_PIC_FFUART },
24
    { 0x40200000, PXA2XX_PIC_BTUART },
25
    { 0x40700000, PXA2XX_PIC_STUART },
26
    { 0x41600000, PXA25X_PIC_HWUART },
27
    { 0, 0 }
28
}, pxa270_serial[] = {
29
    { 0x40100000, PXA2XX_PIC_FFUART },
30
    { 0x40200000, PXA2XX_PIC_BTUART },
31
    { 0x40700000, PXA2XX_PIC_STUART },
32
    { 0, 0 }
33
};
34

    
35
typedef struct PXASSPDef {
36
    target_phys_addr_t io_base;
37
    int irqn;
38
} PXASSPDef;
39

    
40
#if 0
41
static PXASSPDef pxa250_ssp[] = {
42
    { 0x41000000, PXA2XX_PIC_SSP },
43
    { 0, 0 }
44
};
45
#endif
46

    
47
static PXASSPDef pxa255_ssp[] = {
48
    { 0x41000000, PXA2XX_PIC_SSP },
49
    { 0x41400000, PXA25X_PIC_NSSP },
50
    { 0, 0 }
51
};
52

    
53
#if 0
54
static PXASSPDef pxa26x_ssp[] = {
55
    { 0x41000000, PXA2XX_PIC_SSP },
56
    { 0x41400000, PXA25X_PIC_NSSP },
57
    { 0x41500000, PXA26X_PIC_ASSP },
58
    { 0, 0 }
59
};
60
#endif
61

    
62
static PXASSPDef pxa27x_ssp[] = {
63
    { 0x41000000, PXA2XX_PIC_SSP },
64
    { 0x41700000, PXA27X_PIC_SSP2 },
65
    { 0x41900000, PXA2XX_PIC_SSP3 },
66
    { 0, 0 }
67
};
68

    
69
#define PMCR        0x00        /* Power Manager Control register */
70
#define PSSR        0x04        /* Power Manager Sleep Status register */
71
#define PSPR        0x08        /* Power Manager Scratch-Pad register */
72
#define PWER        0x0c        /* Power Manager Wake-Up Enable register */
73
#define PRER        0x10        /* Power Manager Rising-Edge Detect Enable register */
74
#define PFER        0x14        /* Power Manager Falling-Edge Detect Enable register */
75
#define PEDR        0x18        /* Power Manager Edge-Detect Status register */
76
#define PCFR        0x1c        /* Power Manager General Configuration register */
77
#define PGSR0        0x20        /* Power Manager GPIO Sleep-State register 0 */
78
#define PGSR1        0x24        /* Power Manager GPIO Sleep-State register 1 */
79
#define PGSR2        0x28        /* Power Manager GPIO Sleep-State register 2 */
80
#define PGSR3        0x2c        /* Power Manager GPIO Sleep-State register 3 */
81
#define RCSR        0x30        /* Reset Controller Status register */
82
#define PSLR        0x34        /* Power Manager Sleep Configuration register */
83
#define PTSR        0x38        /* Power Manager Standby Configuration register */
84
#define PVCR        0x40        /* Power Manager Voltage Change Control register */
85
#define PUCR        0x4c        /* Power Manager USIM Card Control/Status register */
86
#define PKWR        0x50        /* Power Manager Keyboard Wake-Up Enable register */
87
#define PKSR        0x54        /* Power Manager Keyboard Level-Detect Status */
88
#define PCMD0        0x80        /* Power Manager I2C Command register File 0 */
89
#define PCMD31        0xfc        /* Power Manager I2C Command register File 31 */
90

    
91
static uint32_t pxa2xx_pm_read(void *opaque, target_phys_addr_t addr)
92
{
93
    PXA2xxState *s = (PXA2xxState *) opaque;
94

    
95
    switch (addr) {
96
    case PMCR ... PCMD31:
97
        if (addr & 3)
98
            goto fail;
99

    
100
        return s->pm_regs[addr >> 2];
101
    default:
102
    fail:
103
        printf("%s: Bad register " REG_FMT "\n", __FUNCTION__, addr);
104
        break;
105
    }
106
    return 0;
107
}
108

    
109
static void pxa2xx_pm_write(void *opaque, target_phys_addr_t addr,
110
                uint32_t value)
111
{
112
    PXA2xxState *s = (PXA2xxState *) opaque;
113

    
114
    switch (addr) {
115
    case PMCR:
116
        s->pm_regs[addr >> 2] &= 0x15 & ~(value & 0x2a);
117
        s->pm_regs[addr >> 2] |= value & 0x15;
118
        break;
119

    
120
    case PSSR:        /* Read-clean registers */
121
    case RCSR:
122
    case PKSR:
123
        s->pm_regs[addr >> 2] &= ~value;
124
        break;
125

    
126
    default:        /* Read-write registers */
127
        if (!(addr & 3)) {
128
            s->pm_regs[addr >> 2] = value;
129
            break;
130
        }
131

    
132
        printf("%s: Bad register " REG_FMT "\n", __FUNCTION__, addr);
133
        break;
134
    }
135
}
136

    
137
static CPUReadMemoryFunc * const pxa2xx_pm_readfn[] = {
138
    pxa2xx_pm_read,
139
    pxa2xx_pm_read,
140
    pxa2xx_pm_read,
141
};
142

    
143
static CPUWriteMemoryFunc * const pxa2xx_pm_writefn[] = {
144
    pxa2xx_pm_write,
145
    pxa2xx_pm_write,
146
    pxa2xx_pm_write,
147
};
148

    
149
static const VMStateDescription vmstate_pxa2xx_pm = {
150
    .name = "pxa2xx_pm",
151
    .version_id = 0,
152
    .minimum_version_id = 0,
153
    .minimum_version_id_old = 0,
154
    .fields      = (VMStateField[]) {
155
        VMSTATE_UINT32_ARRAY(pm_regs, PXA2xxState, 0x40),
156
        VMSTATE_END_OF_LIST()
157
    }
158
};
159

    
160
#define CCCR        0x00        /* Core Clock Configuration register */
161
#define CKEN        0x04        /* Clock Enable register */
162
#define OSCC        0x08        /* Oscillator Configuration register */
163
#define CCSR        0x0c        /* Core Clock Status register */
164

    
165
static uint32_t pxa2xx_cm_read(void *opaque, target_phys_addr_t addr)
166
{
167
    PXA2xxState *s = (PXA2xxState *) opaque;
168

    
169
    switch (addr) {
170
    case CCCR:
171
    case CKEN:
172
    case OSCC:
173
        return s->cm_regs[addr >> 2];
174

    
175
    case CCSR:
176
        return s->cm_regs[CCCR >> 2] | (3 << 28);
177

    
178
    default:
179
        printf("%s: Bad register " REG_FMT "\n", __FUNCTION__, addr);
180
        break;
181
    }
182
    return 0;
183
}
184

    
185
static void pxa2xx_cm_write(void *opaque, target_phys_addr_t addr,
186
                uint32_t value)
187
{
188
    PXA2xxState *s = (PXA2xxState *) opaque;
189

    
190
    switch (addr) {
191
    case CCCR:
192
    case CKEN:
193
        s->cm_regs[addr >> 2] = value;
194
        break;
195

    
196
    case OSCC:
197
        s->cm_regs[addr >> 2] &= ~0x6c;
198
        s->cm_regs[addr >> 2] |= value & 0x6e;
199
        if ((value >> 1) & 1)                        /* OON */
200
            s->cm_regs[addr >> 2] |= 1 << 0;        /* Oscillator is now stable */
201
        break;
202

    
203
    default:
204
        printf("%s: Bad register " REG_FMT "\n", __FUNCTION__, addr);
205
        break;
206
    }
207
}
208

    
209
static CPUReadMemoryFunc * const pxa2xx_cm_readfn[] = {
210
    pxa2xx_cm_read,
211
    pxa2xx_cm_read,
212
    pxa2xx_cm_read,
213
};
214

    
215
static CPUWriteMemoryFunc * const pxa2xx_cm_writefn[] = {
216
    pxa2xx_cm_write,
217
    pxa2xx_cm_write,
218
    pxa2xx_cm_write,
219
};
220

    
221
static const VMStateDescription vmstate_pxa2xx_cm = {
222
    .name = "pxa2xx_cm",
223
    .version_id = 0,
224
    .minimum_version_id = 0,
225
    .minimum_version_id_old = 0,
226
    .fields      = (VMStateField[]) {
227
        VMSTATE_UINT32_ARRAY(cm_regs, PXA2xxState, 4),
228
        VMSTATE_UINT32(clkcfg, PXA2xxState),
229
        VMSTATE_UINT32(pmnc, PXA2xxState),
230
        VMSTATE_END_OF_LIST()
231
    }
232
};
233

    
234
static uint32_t pxa2xx_clkpwr_read(void *opaque, int op2, int reg, int crm)
235
{
236
    PXA2xxState *s = (PXA2xxState *) opaque;
237

    
238
    switch (reg) {
239
    case 6:        /* Clock Configuration register */
240
        return s->clkcfg;
241

    
242
    case 7:        /* Power Mode register */
243
        return 0;
244

    
245
    default:
246
        printf("%s: Bad register 0x%x\n", __FUNCTION__, reg);
247
        break;
248
    }
249
    return 0;
250
}
251

    
252
static void pxa2xx_clkpwr_write(void *opaque, int op2, int reg, int crm,
253
                uint32_t value)
254
{
255
    PXA2xxState *s = (PXA2xxState *) opaque;
256
    static const char *pwrmode[8] = {
257
        "Normal", "Idle", "Deep-idle", "Standby",
258
        "Sleep", "reserved (!)", "reserved (!)", "Deep-sleep",
259
    };
260

    
261
    switch (reg) {
262
    case 6:        /* Clock Configuration register */
263
        s->clkcfg = value & 0xf;
264
        if (value & 2)
265
            printf("%s: CPU frequency change attempt\n", __FUNCTION__);
266
        break;
267

    
268
    case 7:        /* Power Mode register */
269
        if (value & 8)
270
            printf("%s: CPU voltage change attempt\n", __FUNCTION__);
271
        switch (value & 7) {
272
        case 0:
273
            /* Do nothing */
274
            break;
275

    
276
        case 1:
277
            /* Idle */
278
            if (!(s->cm_regs[CCCR >> 2] & (1 << 31))) {        /* CPDIS */
279
                cpu_interrupt(s->env, CPU_INTERRUPT_HALT);
280
                break;
281
            }
282
            /* Fall through.  */
283

    
284
        case 2:
285
            /* Deep-Idle */
286
            cpu_interrupt(s->env, CPU_INTERRUPT_HALT);
287
            s->pm_regs[RCSR >> 2] |= 0x8;        /* Set GPR */
288
            goto message;
289

    
290
        case 3:
291
            s->env->uncached_cpsr =
292
                    ARM_CPU_MODE_SVC | CPSR_A | CPSR_F | CPSR_I;
293
            s->env->cp15.c1_sys = 0;
294
            s->env->cp15.c1_coproc = 0;
295
            s->env->cp15.c2_base0 = 0;
296
            s->env->cp15.c3 = 0;
297
            s->pm_regs[PSSR >> 2] |= 0x8;        /* Set STS */
298
            s->pm_regs[RCSR >> 2] |= 0x8;        /* Set GPR */
299

    
300
            /*
301
             * The scratch-pad register is almost universally used
302
             * for storing the return address on suspend.  For the
303
             * lack of a resuming bootloader, perform a jump
304
             * directly to that address.
305
             */
306
            memset(s->env->regs, 0, 4 * 15);
307
            s->env->regs[15] = s->pm_regs[PSPR >> 2];
308

    
309
#if 0
310
            buffer = 0xe59ff000;        /* ldr     pc, [pc, #0] */
311
            cpu_physical_memory_write(0, &buffer, 4);
312
            buffer = s->pm_regs[PSPR >> 2];
313
            cpu_physical_memory_write(8, &buffer, 4);
314
#endif
315

    
316
            /* Suspend */
317
            cpu_interrupt(cpu_single_env, CPU_INTERRUPT_HALT);
318

    
319
            goto message;
320

    
321
        default:
322
        message:
323
            printf("%s: machine entered %s mode\n", __FUNCTION__,
324
                            pwrmode[value & 7]);
325
        }
326
        break;
327

    
328
    default:
329
        printf("%s: Bad register 0x%x\n", __FUNCTION__, reg);
330
        break;
331
    }
332
}
333

    
334
/* Performace Monitoring Registers */
335
#define CPPMNC                0        /* Performance Monitor Control register */
336
#define CPCCNT                1        /* Clock Counter register */
337
#define CPINTEN                4        /* Interrupt Enable register */
338
#define CPFLAG                5        /* Overflow Flag register */
339
#define CPEVTSEL        8        /* Event Selection register */
340

    
341
#define CPPMN0                0        /* Performance Count register 0 */
342
#define CPPMN1                1        /* Performance Count register 1 */
343
#define CPPMN2                2        /* Performance Count register 2 */
344
#define CPPMN3                3        /* Performance Count register 3 */
345

    
346
static uint32_t pxa2xx_perf_read(void *opaque, int op2, int reg, int crm)
347
{
348
    PXA2xxState *s = (PXA2xxState *) opaque;
349

    
350
    switch (reg) {
351
    case CPPMNC:
352
        return s->pmnc;
353
    case CPCCNT:
354
        if (s->pmnc & 1)
355
            return qemu_get_clock_ns(vm_clock);
356
        else
357
            return 0;
358
    case CPINTEN:
359
    case CPFLAG:
360
    case CPEVTSEL:
361
        return 0;
362

    
363
    default:
364
        printf("%s: Bad register 0x%x\n", __FUNCTION__, reg);
365
        break;
366
    }
367
    return 0;
368
}
369

    
370
static void pxa2xx_perf_write(void *opaque, int op2, int reg, int crm,
371
                uint32_t value)
372
{
373
    PXA2xxState *s = (PXA2xxState *) opaque;
374

    
375
    switch (reg) {
376
    case CPPMNC:
377
        s->pmnc = value;
378
        break;
379

    
380
    case CPCCNT:
381
    case CPINTEN:
382
    case CPFLAG:
383
    case CPEVTSEL:
384
        break;
385

    
386
    default:
387
        printf("%s: Bad register 0x%x\n", __FUNCTION__, reg);
388
        break;
389
    }
390
}
391

    
392
static uint32_t pxa2xx_cp14_read(void *opaque, int op2, int reg, int crm)
393
{
394
    switch (crm) {
395
    case 0:
396
        return pxa2xx_clkpwr_read(opaque, op2, reg, crm);
397
    case 1:
398
        return pxa2xx_perf_read(opaque, op2, reg, crm);
399
    case 2:
400
        switch (reg) {
401
        case CPPMN0:
402
        case CPPMN1:
403
        case CPPMN2:
404
        case CPPMN3:
405
            return 0;
406
        }
407
        /* Fall through */
408
    default:
409
        printf("%s: Bad register 0x%x\n", __FUNCTION__, reg);
410
        break;
411
    }
412
    return 0;
413
}
414

    
415
static void pxa2xx_cp14_write(void *opaque, int op2, int reg, int crm,
416
                uint32_t value)
417
{
418
    switch (crm) {
419
    case 0:
420
        pxa2xx_clkpwr_write(opaque, op2, reg, crm, value);
421
        break;
422
    case 1:
423
        pxa2xx_perf_write(opaque, op2, reg, crm, value);
424
        break;
425
    case 2:
426
        switch (reg) {
427
        case CPPMN0:
428
        case CPPMN1:
429
        case CPPMN2:
430
        case CPPMN3:
431
            return;
432
        }
433
        /* Fall through */
434
    default:
435
        printf("%s: Bad register 0x%x\n", __FUNCTION__, reg);
436
        break;
437
    }
438
}
439

    
440
#define MDCNFG                0x00        /* SDRAM Configuration register */
441
#define MDREFR                0x04        /* SDRAM Refresh Control register */
442
#define MSC0                0x08        /* Static Memory Control register 0 */
443
#define MSC1                0x0c        /* Static Memory Control register 1 */
444
#define MSC2                0x10        /* Static Memory Control register 2 */
445
#define MECR                0x14        /* Expansion Memory Bus Config register */
446
#define SXCNFG                0x1c        /* Synchronous Static Memory Config register */
447
#define MCMEM0                0x28        /* PC Card Memory Socket 0 Timing register */
448
#define MCMEM1                0x2c        /* PC Card Memory Socket 1 Timing register */
449
#define MCATT0                0x30        /* PC Card Attribute Socket 0 register */
450
#define MCATT1                0x34        /* PC Card Attribute Socket 1 register */
451
#define MCIO0                0x38        /* PC Card I/O Socket 0 Timing register */
452
#define MCIO1                0x3c        /* PC Card I/O Socket 1 Timing register */
453
#define MDMRS                0x40        /* SDRAM Mode Register Set Config register */
454
#define BOOT_DEF        0x44        /* Boot-time Default Configuration register */
455
#define ARB_CNTL        0x48        /* Arbiter Control register */
456
#define BSCNTR0                0x4c        /* Memory Buffer Strength Control register 0 */
457
#define BSCNTR1                0x50        /* Memory Buffer Strength Control register 1 */
458
#define LCDBSCNTR        0x54        /* LCD Buffer Strength Control register */
459
#define MDMRSLP                0x58        /* Low Power SDRAM Mode Set Config register */
460
#define BSCNTR2                0x5c        /* Memory Buffer Strength Control register 2 */
461
#define BSCNTR3                0x60        /* Memory Buffer Strength Control register 3 */
462
#define SA1110                0x64        /* SA-1110 Memory Compatibility register */
463

    
464
static uint32_t pxa2xx_mm_read(void *opaque, target_phys_addr_t addr)
465
{
466
    PXA2xxState *s = (PXA2xxState *) opaque;
467

    
468
    switch (addr) {
469
    case MDCNFG ... SA1110:
470
        if ((addr & 3) == 0)
471
            return s->mm_regs[addr >> 2];
472

    
473
    default:
474
        printf("%s: Bad register " REG_FMT "\n", __FUNCTION__, addr);
475
        break;
476
    }
477
    return 0;
478
}
479

    
480
static void pxa2xx_mm_write(void *opaque, target_phys_addr_t addr,
481
                uint32_t value)
482
{
483
    PXA2xxState *s = (PXA2xxState *) opaque;
484

    
485
    switch (addr) {
486
    case MDCNFG ... SA1110:
487
        if ((addr & 3) == 0) {
488
            s->mm_regs[addr >> 2] = value;
489
            break;
490
        }
491

    
492
    default:
493
        printf("%s: Bad register " REG_FMT "\n", __FUNCTION__, addr);
494
        break;
495
    }
496
}
497

    
498
static CPUReadMemoryFunc * const pxa2xx_mm_readfn[] = {
499
    pxa2xx_mm_read,
500
    pxa2xx_mm_read,
501
    pxa2xx_mm_read,
502
};
503

    
504
static CPUWriteMemoryFunc * const pxa2xx_mm_writefn[] = {
505
    pxa2xx_mm_write,
506
    pxa2xx_mm_write,
507
    pxa2xx_mm_write,
508
};
509

    
510
static const VMStateDescription vmstate_pxa2xx_mm = {
511
    .name = "pxa2xx_mm",
512
    .version_id = 0,
513
    .minimum_version_id = 0,
514
    .minimum_version_id_old = 0,
515
    .fields      = (VMStateField[]) {
516
        VMSTATE_UINT32_ARRAY(mm_regs, PXA2xxState, 0x1a),
517
        VMSTATE_END_OF_LIST()
518
    }
519
};
520

    
521
/* Synchronous Serial Ports */
522
typedef struct {
523
    SysBusDevice busdev;
524
    qemu_irq irq;
525
    int enable;
526
    SSIBus *bus;
527

    
528
    uint32_t sscr[2];
529
    uint32_t sspsp;
530
    uint32_t ssto;
531
    uint32_t ssitr;
532
    uint32_t sssr;
533
    uint8_t sstsa;
534
    uint8_t ssrsa;
535
    uint8_t ssacd;
536

    
537
    uint32_t rx_fifo[16];
538
    int rx_level;
539
    int rx_start;
540
} PXA2xxSSPState;
541

    
542
#define SSCR0        0x00        /* SSP Control register 0 */
543
#define SSCR1        0x04        /* SSP Control register 1 */
544
#define SSSR        0x08        /* SSP Status register */
545
#define SSITR        0x0c        /* SSP Interrupt Test register */
546
#define SSDR        0x10        /* SSP Data register */
547
#define SSTO        0x28        /* SSP Time-Out register */
548
#define SSPSP        0x2c        /* SSP Programmable Serial Protocol register */
549
#define SSTSA        0x30        /* SSP TX Time Slot Active register */
550
#define SSRSA        0x34        /* SSP RX Time Slot Active register */
551
#define SSTSS        0x38        /* SSP Time Slot Status register */
552
#define SSACD        0x3c        /* SSP Audio Clock Divider register */
553

    
554
/* Bitfields for above registers */
555
#define SSCR0_SPI(x)        (((x) & 0x30) == 0x00)
556
#define SSCR0_SSP(x)        (((x) & 0x30) == 0x10)
557
#define SSCR0_UWIRE(x)        (((x) & 0x30) == 0x20)
558
#define SSCR0_PSP(x)        (((x) & 0x30) == 0x30)
559
#define SSCR0_SSE        (1 << 7)
560
#define SSCR0_RIM        (1 << 22)
561
#define SSCR0_TIM        (1 << 23)
562
#define SSCR0_MOD        (1 << 31)
563
#define SSCR0_DSS(x)        (((((x) >> 16) & 0x10) | ((x) & 0xf)) + 1)
564
#define SSCR1_RIE        (1 << 0)
565
#define SSCR1_TIE        (1 << 1)
566
#define SSCR1_LBM        (1 << 2)
567
#define SSCR1_MWDS        (1 << 5)
568
#define SSCR1_TFT(x)        ((((x) >> 6) & 0xf) + 1)
569
#define SSCR1_RFT(x)        ((((x) >> 10) & 0xf) + 1)
570
#define SSCR1_EFWR        (1 << 14)
571
#define SSCR1_PINTE        (1 << 18)
572
#define SSCR1_TINTE        (1 << 19)
573
#define SSCR1_RSRE        (1 << 20)
574
#define SSCR1_TSRE        (1 << 21)
575
#define SSCR1_EBCEI        (1 << 29)
576
#define SSITR_INT        (7 << 5)
577
#define SSSR_TNF        (1 << 2)
578
#define SSSR_RNE        (1 << 3)
579
#define SSSR_TFS        (1 << 5)
580
#define SSSR_RFS        (1 << 6)
581
#define SSSR_ROR        (1 << 7)
582
#define SSSR_PINT        (1 << 18)
583
#define SSSR_TINT        (1 << 19)
584
#define SSSR_EOC        (1 << 20)
585
#define SSSR_TUR        (1 << 21)
586
#define SSSR_BCE        (1 << 23)
587
#define SSSR_RW                0x00bc0080
588

    
589
static void pxa2xx_ssp_int_update(PXA2xxSSPState *s)
590
{
591
    int level = 0;
592

    
593
    level |= s->ssitr & SSITR_INT;
594
    level |= (s->sssr & SSSR_BCE)  &&  (s->sscr[1] & SSCR1_EBCEI);
595
    level |= (s->sssr & SSSR_TUR)  && !(s->sscr[0] & SSCR0_TIM);
596
    level |= (s->sssr & SSSR_EOC)  &&  (s->sssr & (SSSR_TINT | SSSR_PINT));
597
    level |= (s->sssr & SSSR_TINT) &&  (s->sscr[1] & SSCR1_TINTE);
598
    level |= (s->sssr & SSSR_PINT) &&  (s->sscr[1] & SSCR1_PINTE);
599
    level |= (s->sssr & SSSR_ROR)  && !(s->sscr[0] & SSCR0_RIM);
600
    level |= (s->sssr & SSSR_RFS)  &&  (s->sscr[1] & SSCR1_RIE);
601
    level |= (s->sssr & SSSR_TFS)  &&  (s->sscr[1] & SSCR1_TIE);
602
    qemu_set_irq(s->irq, !!level);
603
}
604

    
605
static void pxa2xx_ssp_fifo_update(PXA2xxSSPState *s)
606
{
607
    s->sssr &= ~(0xf << 12);        /* Clear RFL */
608
    s->sssr &= ~(0xf << 8);        /* Clear TFL */
609
    s->sssr &= ~SSSR_TFS;
610
    s->sssr &= ~SSSR_TNF;
611
    if (s->enable) {
612
        s->sssr |= ((s->rx_level - 1) & 0xf) << 12;
613
        if (s->rx_level >= SSCR1_RFT(s->sscr[1]))
614
            s->sssr |= SSSR_RFS;
615
        else
616
            s->sssr &= ~SSSR_RFS;
617
        if (s->rx_level)
618
            s->sssr |= SSSR_RNE;
619
        else
620
            s->sssr &= ~SSSR_RNE;
621
        /* TX FIFO is never filled, so it is always in underrun
622
           condition if SSP is enabled */
623
        s->sssr |= SSSR_TFS;
624
        s->sssr |= SSSR_TNF;
625
    }
626

    
627
    pxa2xx_ssp_int_update(s);
628
}
629

    
630
static uint32_t pxa2xx_ssp_read(void *opaque, target_phys_addr_t addr)
631
{
632
    PXA2xxSSPState *s = (PXA2xxSSPState *) opaque;
633
    uint32_t retval;
634

    
635
    switch (addr) {
636
    case SSCR0:
637
        return s->sscr[0];
638
    case SSCR1:
639
        return s->sscr[1];
640
    case SSPSP:
641
        return s->sspsp;
642
    case SSTO:
643
        return s->ssto;
644
    case SSITR:
645
        return s->ssitr;
646
    case SSSR:
647
        return s->sssr | s->ssitr;
648
    case SSDR:
649
        if (!s->enable)
650
            return 0xffffffff;
651
        if (s->rx_level < 1) {
652
            printf("%s: SSP Rx Underrun\n", __FUNCTION__);
653
            return 0xffffffff;
654
        }
655
        s->rx_level --;
656
        retval = s->rx_fifo[s->rx_start ++];
657
        s->rx_start &= 0xf;
658
        pxa2xx_ssp_fifo_update(s);
659
        return retval;
660
    case SSTSA:
661
        return s->sstsa;
662
    case SSRSA:
663
        return s->ssrsa;
664
    case SSTSS:
665
        return 0;
666
    case SSACD:
667
        return s->ssacd;
668
    default:
669
        printf("%s: Bad register " REG_FMT "\n", __FUNCTION__, addr);
670
        break;
671
    }
672
    return 0;
673
}
674

    
675
static void pxa2xx_ssp_write(void *opaque, target_phys_addr_t addr,
676
                uint32_t value)
677
{
678
    PXA2xxSSPState *s = (PXA2xxSSPState *) opaque;
679

    
680
    switch (addr) {
681
    case SSCR0:
682
        s->sscr[0] = value & 0xc7ffffff;
683
        s->enable = value & SSCR0_SSE;
684
        if (value & SSCR0_MOD)
685
            printf("%s: Attempt to use network mode\n", __FUNCTION__);
686
        if (s->enable && SSCR0_DSS(value) < 4)
687
            printf("%s: Wrong data size: %i bits\n", __FUNCTION__,
688
                            SSCR0_DSS(value));
689
        if (!(value & SSCR0_SSE)) {
690
            s->sssr = 0;
691
            s->ssitr = 0;
692
            s->rx_level = 0;
693
        }
694
        pxa2xx_ssp_fifo_update(s);
695
        break;
696

    
697
    case SSCR1:
698
        s->sscr[1] = value;
699
        if (value & (SSCR1_LBM | SSCR1_EFWR))
700
            printf("%s: Attempt to use SSP test mode\n", __FUNCTION__);
701
        pxa2xx_ssp_fifo_update(s);
702
        break;
703

    
704
    case SSPSP:
705
        s->sspsp = value;
706
        break;
707

    
708
    case SSTO:
709
        s->ssto = value;
710
        break;
711

    
712
    case SSITR:
713
        s->ssitr = value & SSITR_INT;
714
        pxa2xx_ssp_int_update(s);
715
        break;
716

    
717
    case SSSR:
718
        s->sssr &= ~(value & SSSR_RW);
719
        pxa2xx_ssp_int_update(s);
720
        break;
721

    
722
    case SSDR:
723
        if (SSCR0_UWIRE(s->sscr[0])) {
724
            if (s->sscr[1] & SSCR1_MWDS)
725
                value &= 0xffff;
726
            else
727
                value &= 0xff;
728
        } else
729
            /* Note how 32bits overflow does no harm here */
730
            value &= (1 << SSCR0_DSS(s->sscr[0])) - 1;
731

    
732
        /* Data goes from here to the Tx FIFO and is shifted out from
733
         * there directly to the slave, no need to buffer it.
734
         */
735
        if (s->enable) {
736
            uint32_t readval;
737
            readval = ssi_transfer(s->bus, value);
738
            if (s->rx_level < 0x10) {
739
                s->rx_fifo[(s->rx_start + s->rx_level ++) & 0xf] = readval;
740
            } else {
741
                s->sssr |= SSSR_ROR;
742
            }
743
        }
744
        pxa2xx_ssp_fifo_update(s);
745
        break;
746

    
747
    case SSTSA:
748
        s->sstsa = value;
749
        break;
750

    
751
    case SSRSA:
752
        s->ssrsa = value;
753
        break;
754

    
755
    case SSACD:
756
        s->ssacd = value;
757
        break;
758

    
759
    default:
760
        printf("%s: Bad register " REG_FMT "\n", __FUNCTION__, addr);
761
        break;
762
    }
763
}
764

    
765
static CPUReadMemoryFunc * const pxa2xx_ssp_readfn[] = {
766
    pxa2xx_ssp_read,
767
    pxa2xx_ssp_read,
768
    pxa2xx_ssp_read,
769
};
770

    
771
static CPUWriteMemoryFunc * const pxa2xx_ssp_writefn[] = {
772
    pxa2xx_ssp_write,
773
    pxa2xx_ssp_write,
774
    pxa2xx_ssp_write,
775
};
776

    
777
static void pxa2xx_ssp_save(QEMUFile *f, void *opaque)
778
{
779
    PXA2xxSSPState *s = (PXA2xxSSPState *) opaque;
780
    int i;
781

    
782
    qemu_put_be32(f, s->enable);
783

    
784
    qemu_put_be32s(f, &s->sscr[0]);
785
    qemu_put_be32s(f, &s->sscr[1]);
786
    qemu_put_be32s(f, &s->sspsp);
787
    qemu_put_be32s(f, &s->ssto);
788
    qemu_put_be32s(f, &s->ssitr);
789
    qemu_put_be32s(f, &s->sssr);
790
    qemu_put_8s(f, &s->sstsa);
791
    qemu_put_8s(f, &s->ssrsa);
792
    qemu_put_8s(f, &s->ssacd);
793

    
794
    qemu_put_byte(f, s->rx_level);
795
    for (i = 0; i < s->rx_level; i ++)
796
        qemu_put_byte(f, s->rx_fifo[(s->rx_start + i) & 0xf]);
797
}
798

    
799
static int pxa2xx_ssp_load(QEMUFile *f, void *opaque, int version_id)
800
{
801
    PXA2xxSSPState *s = (PXA2xxSSPState *) opaque;
802
    int i;
803

    
804
    s->enable = qemu_get_be32(f);
805

    
806
    qemu_get_be32s(f, &s->sscr[0]);
807
    qemu_get_be32s(f, &s->sscr[1]);
808
    qemu_get_be32s(f, &s->sspsp);
809
    qemu_get_be32s(f, &s->ssto);
810
    qemu_get_be32s(f, &s->ssitr);
811
    qemu_get_be32s(f, &s->sssr);
812
    qemu_get_8s(f, &s->sstsa);
813
    qemu_get_8s(f, &s->ssrsa);
814
    qemu_get_8s(f, &s->ssacd);
815

    
816
    s->rx_level = qemu_get_byte(f);
817
    s->rx_start = 0;
818
    for (i = 0; i < s->rx_level; i ++)
819
        s->rx_fifo[i] = qemu_get_byte(f);
820

    
821
    return 0;
822
}
823

    
824
static int pxa2xx_ssp_init(SysBusDevice *dev)
825
{
826
    int iomemtype;
827
    PXA2xxSSPState *s = FROM_SYSBUS(PXA2xxSSPState, dev);
828

    
829
    sysbus_init_irq(dev, &s->irq);
830

    
831
    iomemtype = cpu_register_io_memory(pxa2xx_ssp_readfn,
832
                                       pxa2xx_ssp_writefn, s,
833
                                       DEVICE_NATIVE_ENDIAN);
834
    sysbus_init_mmio(dev, 0x1000, iomemtype);
835
    register_savevm(&dev->qdev, "pxa2xx_ssp", -1, 0,
836
                    pxa2xx_ssp_save, pxa2xx_ssp_load, s);
837

    
838
    s->bus = ssi_create_bus(&dev->qdev, "ssi");
839
    return 0;
840
}
841

    
842
/* Real-Time Clock */
843
#define RCNR                0x00        /* RTC Counter register */
844
#define RTAR                0x04        /* RTC Alarm register */
845
#define RTSR                0x08        /* RTC Status register */
846
#define RTTR                0x0c        /* RTC Timer Trim register */
847
#define RDCR                0x10        /* RTC Day Counter register */
848
#define RYCR                0x14        /* RTC Year Counter register */
849
#define RDAR1                0x18        /* RTC Wristwatch Day Alarm register 1 */
850
#define RYAR1                0x1c        /* RTC Wristwatch Year Alarm register 1 */
851
#define RDAR2                0x20        /* RTC Wristwatch Day Alarm register 2 */
852
#define RYAR2                0x24        /* RTC Wristwatch Year Alarm register 2 */
853
#define SWCR                0x28        /* RTC Stopwatch Counter register */
854
#define SWAR1                0x2c        /* RTC Stopwatch Alarm register 1 */
855
#define SWAR2                0x30        /* RTC Stopwatch Alarm register 2 */
856
#define RTCPICR                0x34        /* RTC Periodic Interrupt Counter register */
857
#define PIAR                0x38        /* RTC Periodic Interrupt Alarm register */
858

    
859
typedef struct {
860
    SysBusDevice busdev;
861
    uint32_t rttr;
862
    uint32_t rtsr;
863
    uint32_t rtar;
864
    uint32_t rdar1;
865
    uint32_t rdar2;
866
    uint32_t ryar1;
867
    uint32_t ryar2;
868
    uint32_t swar1;
869
    uint32_t swar2;
870
    uint32_t piar;
871
    uint32_t last_rcnr;
872
    uint32_t last_rdcr;
873
    uint32_t last_rycr;
874
    uint32_t last_swcr;
875
    uint32_t last_rtcpicr;
876
    int64_t last_hz;
877
    int64_t last_sw;
878
    int64_t last_pi;
879
    QEMUTimer *rtc_hz;
880
    QEMUTimer *rtc_rdal1;
881
    QEMUTimer *rtc_rdal2;
882
    QEMUTimer *rtc_swal1;
883
    QEMUTimer *rtc_swal2;
884
    QEMUTimer *rtc_pi;
885
    qemu_irq rtc_irq;
886
} PXA2xxRTCState;
887

    
888
static inline void pxa2xx_rtc_int_update(PXA2xxRTCState *s)
889
{
890
    qemu_set_irq(s->rtc_irq, !!(s->rtsr & 0x2553));
891
}
892

    
893
static void pxa2xx_rtc_hzupdate(PXA2xxRTCState *s)
894
{
895
    int64_t rt = qemu_get_clock_ms(rt_clock);
896
    s->last_rcnr += ((rt - s->last_hz) << 15) /
897
            (1000 * ((s->rttr & 0xffff) + 1));
898
    s->last_rdcr += ((rt - s->last_hz) << 15) /
899
            (1000 * ((s->rttr & 0xffff) + 1));
900
    s->last_hz = rt;
901
}
902

    
903
static void pxa2xx_rtc_swupdate(PXA2xxRTCState *s)
904
{
905
    int64_t rt = qemu_get_clock_ms(rt_clock);
906
    if (s->rtsr & (1 << 12))
907
        s->last_swcr += (rt - s->last_sw) / 10;
908
    s->last_sw = rt;
909
}
910

    
911
static void pxa2xx_rtc_piupdate(PXA2xxRTCState *s)
912
{
913
    int64_t rt = qemu_get_clock_ms(rt_clock);
914
    if (s->rtsr & (1 << 15))
915
        s->last_swcr += rt - s->last_pi;
916
    s->last_pi = rt;
917
}
918

    
919
static inline void pxa2xx_rtc_alarm_update(PXA2xxRTCState *s,
920
                uint32_t rtsr)
921
{
922
    if ((rtsr & (1 << 2)) && !(rtsr & (1 << 0)))
923
        qemu_mod_timer(s->rtc_hz, s->last_hz +
924
                (((s->rtar - s->last_rcnr) * 1000 *
925
                  ((s->rttr & 0xffff) + 1)) >> 15));
926
    else
927
        qemu_del_timer(s->rtc_hz);
928

    
929
    if ((rtsr & (1 << 5)) && !(rtsr & (1 << 4)))
930
        qemu_mod_timer(s->rtc_rdal1, s->last_hz +
931
                (((s->rdar1 - s->last_rdcr) * 1000 *
932
                  ((s->rttr & 0xffff) + 1)) >> 15)); /* TODO: fixup */
933
    else
934
        qemu_del_timer(s->rtc_rdal1);
935

    
936
    if ((rtsr & (1 << 7)) && !(rtsr & (1 << 6)))
937
        qemu_mod_timer(s->rtc_rdal2, s->last_hz +
938
                (((s->rdar2 - s->last_rdcr) * 1000 *
939
                  ((s->rttr & 0xffff) + 1)) >> 15)); /* TODO: fixup */
940
    else
941
        qemu_del_timer(s->rtc_rdal2);
942

    
943
    if ((rtsr & 0x1200) == 0x1200 && !(rtsr & (1 << 8)))
944
        qemu_mod_timer(s->rtc_swal1, s->last_sw +
945
                        (s->swar1 - s->last_swcr) * 10); /* TODO: fixup */
946
    else
947
        qemu_del_timer(s->rtc_swal1);
948

    
949
    if ((rtsr & 0x1800) == 0x1800 && !(rtsr & (1 << 10)))
950
        qemu_mod_timer(s->rtc_swal2, s->last_sw +
951
                        (s->swar2 - s->last_swcr) * 10); /* TODO: fixup */
952
    else
953
        qemu_del_timer(s->rtc_swal2);
954

    
955
    if ((rtsr & 0xc000) == 0xc000 && !(rtsr & (1 << 13)))
956
        qemu_mod_timer(s->rtc_pi, s->last_pi +
957
                        (s->piar & 0xffff) - s->last_rtcpicr);
958
    else
959
        qemu_del_timer(s->rtc_pi);
960
}
961

    
962
static inline void pxa2xx_rtc_hz_tick(void *opaque)
963
{
964
    PXA2xxRTCState *s = (PXA2xxRTCState *) opaque;
965
    s->rtsr |= (1 << 0);
966
    pxa2xx_rtc_alarm_update(s, s->rtsr);
967
    pxa2xx_rtc_int_update(s);
968
}
969

    
970
static inline void pxa2xx_rtc_rdal1_tick(void *opaque)
971
{
972
    PXA2xxRTCState *s = (PXA2xxRTCState *) opaque;
973
    s->rtsr |= (1 << 4);
974
    pxa2xx_rtc_alarm_update(s, s->rtsr);
975
    pxa2xx_rtc_int_update(s);
976
}
977

    
978
static inline void pxa2xx_rtc_rdal2_tick(void *opaque)
979
{
980
    PXA2xxRTCState *s = (PXA2xxRTCState *) opaque;
981
    s->rtsr |= (1 << 6);
982
    pxa2xx_rtc_alarm_update(s, s->rtsr);
983
    pxa2xx_rtc_int_update(s);
984
}
985

    
986
static inline void pxa2xx_rtc_swal1_tick(void *opaque)
987
{
988
    PXA2xxRTCState *s = (PXA2xxRTCState *) opaque;
989
    s->rtsr |= (1 << 8);
990
    pxa2xx_rtc_alarm_update(s, s->rtsr);
991
    pxa2xx_rtc_int_update(s);
992
}
993

    
994
static inline void pxa2xx_rtc_swal2_tick(void *opaque)
995
{
996
    PXA2xxRTCState *s = (PXA2xxRTCState *) opaque;
997
    s->rtsr |= (1 << 10);
998
    pxa2xx_rtc_alarm_update(s, s->rtsr);
999
    pxa2xx_rtc_int_update(s);
1000
}
1001

    
1002
static inline void pxa2xx_rtc_pi_tick(void *opaque)
1003
{
1004
    PXA2xxRTCState *s = (PXA2xxRTCState *) opaque;
1005
    s->rtsr |= (1 << 13);
1006
    pxa2xx_rtc_piupdate(s);
1007
    s->last_rtcpicr = 0;
1008
    pxa2xx_rtc_alarm_update(s, s->rtsr);
1009
    pxa2xx_rtc_int_update(s);
1010
}
1011

    
1012
static uint32_t pxa2xx_rtc_read(void *opaque, target_phys_addr_t addr)
1013
{
1014
    PXA2xxRTCState *s = (PXA2xxRTCState *) opaque;
1015

    
1016
    switch (addr) {
1017
    case RTTR:
1018
        return s->rttr;
1019
    case RTSR:
1020
        return s->rtsr;
1021
    case RTAR:
1022
        return s->rtar;
1023
    case RDAR1:
1024
        return s->rdar1;
1025
    case RDAR2:
1026
        return s->rdar2;
1027
    case RYAR1:
1028
        return s->ryar1;
1029
    case RYAR2:
1030
        return s->ryar2;
1031
    case SWAR1:
1032
        return s->swar1;
1033
    case SWAR2:
1034
        return s->swar2;
1035
    case PIAR:
1036
        return s->piar;
1037
    case RCNR:
1038
        return s->last_rcnr + ((qemu_get_clock_ms(rt_clock) - s->last_hz) << 15) /
1039
                (1000 * ((s->rttr & 0xffff) + 1));
1040
    case RDCR:
1041
        return s->last_rdcr + ((qemu_get_clock_ms(rt_clock) - s->last_hz) << 15) /
1042
                (1000 * ((s->rttr & 0xffff) + 1));
1043
    case RYCR:
1044
        return s->last_rycr;
1045
    case SWCR:
1046
        if (s->rtsr & (1 << 12))
1047
            return s->last_swcr + (qemu_get_clock_ms(rt_clock) - s->last_sw) / 10;
1048
        else
1049
            return s->last_swcr;
1050
    default:
1051
        printf("%s: Bad register " REG_FMT "\n", __FUNCTION__, addr);
1052
        break;
1053
    }
1054
    return 0;
1055
}
1056

    
1057
static void pxa2xx_rtc_write(void *opaque, target_phys_addr_t addr,
1058
                uint32_t value)
1059
{
1060
    PXA2xxRTCState *s = (PXA2xxRTCState *) opaque;
1061

    
1062
    switch (addr) {
1063
    case RTTR:
1064
        if (!(s->rttr & (1 << 31))) {
1065
            pxa2xx_rtc_hzupdate(s);
1066
            s->rttr = value;
1067
            pxa2xx_rtc_alarm_update(s, s->rtsr);
1068
        }
1069
        break;
1070

    
1071
    case RTSR:
1072
        if ((s->rtsr ^ value) & (1 << 15))
1073
            pxa2xx_rtc_piupdate(s);
1074

    
1075
        if ((s->rtsr ^ value) & (1 << 12))
1076
            pxa2xx_rtc_swupdate(s);
1077

    
1078
        if (((s->rtsr ^ value) & 0x4aac) | (value & ~0xdaac))
1079
            pxa2xx_rtc_alarm_update(s, value);
1080

    
1081
        s->rtsr = (value & 0xdaac) | (s->rtsr & ~(value & ~0xdaac));
1082
        pxa2xx_rtc_int_update(s);
1083
        break;
1084

    
1085
    case RTAR:
1086
        s->rtar = value;
1087
        pxa2xx_rtc_alarm_update(s, s->rtsr);
1088
        break;
1089

    
1090
    case RDAR1:
1091
        s->rdar1 = value;
1092
        pxa2xx_rtc_alarm_update(s, s->rtsr);
1093
        break;
1094

    
1095
    case RDAR2:
1096
        s->rdar2 = value;
1097
        pxa2xx_rtc_alarm_update(s, s->rtsr);
1098
        break;
1099

    
1100
    case RYAR1:
1101
        s->ryar1 = value;
1102
        pxa2xx_rtc_alarm_update(s, s->rtsr);
1103
        break;
1104

    
1105
    case RYAR2:
1106
        s->ryar2 = value;
1107
        pxa2xx_rtc_alarm_update(s, s->rtsr);
1108
        break;
1109

    
1110
    case SWAR1:
1111
        pxa2xx_rtc_swupdate(s);
1112
        s->swar1 = value;
1113
        s->last_swcr = 0;
1114
        pxa2xx_rtc_alarm_update(s, s->rtsr);
1115
        break;
1116

    
1117
    case SWAR2:
1118
        s->swar2 = value;
1119
        pxa2xx_rtc_alarm_update(s, s->rtsr);
1120
        break;
1121

    
1122
    case PIAR:
1123
        s->piar = value;
1124
        pxa2xx_rtc_alarm_update(s, s->rtsr);
1125
        break;
1126

    
1127
    case RCNR:
1128
        pxa2xx_rtc_hzupdate(s);
1129
        s->last_rcnr = value;
1130
        pxa2xx_rtc_alarm_update(s, s->rtsr);
1131
        break;
1132

    
1133
    case RDCR:
1134
        pxa2xx_rtc_hzupdate(s);
1135
        s->last_rdcr = value;
1136
        pxa2xx_rtc_alarm_update(s, s->rtsr);
1137
        break;
1138

    
1139
    case RYCR:
1140
        s->last_rycr = value;
1141
        break;
1142

    
1143
    case SWCR:
1144
        pxa2xx_rtc_swupdate(s);
1145
        s->last_swcr = value;
1146
        pxa2xx_rtc_alarm_update(s, s->rtsr);
1147
        break;
1148

    
1149
    case RTCPICR:
1150
        pxa2xx_rtc_piupdate(s);
1151
        s->last_rtcpicr = value & 0xffff;
1152
        pxa2xx_rtc_alarm_update(s, s->rtsr);
1153
        break;
1154

    
1155
    default:
1156
        printf("%s: Bad register " REG_FMT "\n", __FUNCTION__, addr);
1157
    }
1158
}
1159

    
1160
static CPUReadMemoryFunc * const pxa2xx_rtc_readfn[] = {
1161
    pxa2xx_rtc_read,
1162
    pxa2xx_rtc_read,
1163
    pxa2xx_rtc_read,
1164
};
1165

    
1166
static CPUWriteMemoryFunc * const pxa2xx_rtc_writefn[] = {
1167
    pxa2xx_rtc_write,
1168
    pxa2xx_rtc_write,
1169
    pxa2xx_rtc_write,
1170
};
1171

    
1172
static int pxa2xx_rtc_init(SysBusDevice *dev)
1173
{
1174
    PXA2xxRTCState *s = FROM_SYSBUS(PXA2xxRTCState, dev);
1175
    struct tm tm;
1176
    int wom;
1177
    int iomemtype;
1178

    
1179
    s->rttr = 0x7fff;
1180
    s->rtsr = 0;
1181

    
1182
    qemu_get_timedate(&tm, 0);
1183
    wom = ((tm.tm_mday - 1) / 7) + 1;
1184

    
1185
    s->last_rcnr = (uint32_t) mktimegm(&tm);
1186
    s->last_rdcr = (wom << 20) | ((tm.tm_wday + 1) << 17) |
1187
            (tm.tm_hour << 12) | (tm.tm_min << 6) | tm.tm_sec;
1188
    s->last_rycr = ((tm.tm_year + 1900) << 9) |
1189
            ((tm.tm_mon + 1) << 5) | tm.tm_mday;
1190
    s->last_swcr = (tm.tm_hour << 19) |
1191
            (tm.tm_min << 13) | (tm.tm_sec << 7);
1192
    s->last_rtcpicr = 0;
1193
    s->last_hz = s->last_sw = s->last_pi = qemu_get_clock_ms(rt_clock);
1194

    
1195
    s->rtc_hz    = qemu_new_timer_ms(rt_clock, pxa2xx_rtc_hz_tick,    s);
1196
    s->rtc_rdal1 = qemu_new_timer_ms(rt_clock, pxa2xx_rtc_rdal1_tick, s);
1197
    s->rtc_rdal2 = qemu_new_timer_ms(rt_clock, pxa2xx_rtc_rdal2_tick, s);
1198
    s->rtc_swal1 = qemu_new_timer_ms(rt_clock, pxa2xx_rtc_swal1_tick, s);
1199
    s->rtc_swal2 = qemu_new_timer_ms(rt_clock, pxa2xx_rtc_swal2_tick, s);
1200
    s->rtc_pi    = qemu_new_timer_ms(rt_clock, pxa2xx_rtc_pi_tick,    s);
1201

    
1202
    sysbus_init_irq(dev, &s->rtc_irq);
1203

    
1204
    iomemtype = cpu_register_io_memory(pxa2xx_rtc_readfn,
1205
                    pxa2xx_rtc_writefn, s, DEVICE_NATIVE_ENDIAN);
1206
    sysbus_init_mmio(dev, 0x10000, iomemtype);
1207

    
1208
    return 0;
1209
}
1210

    
1211
static void pxa2xx_rtc_pre_save(void *opaque)
1212
{
1213
    PXA2xxRTCState *s = (PXA2xxRTCState *) opaque;
1214

    
1215
    pxa2xx_rtc_hzupdate(s);
1216
    pxa2xx_rtc_piupdate(s);
1217
    pxa2xx_rtc_swupdate(s);
1218
}
1219

    
1220
static int pxa2xx_rtc_post_load(void *opaque, int version_id)
1221
{
1222
    PXA2xxRTCState *s = (PXA2xxRTCState *) opaque;
1223

    
1224
    pxa2xx_rtc_alarm_update(s, s->rtsr);
1225

    
1226
    return 0;
1227
}
1228

    
1229
static const VMStateDescription vmstate_pxa2xx_rtc_regs = {
1230
    .name = "pxa2xx_rtc",
1231
    .version_id = 0,
1232
    .minimum_version_id = 0,
1233
    .minimum_version_id_old = 0,
1234
    .pre_save = pxa2xx_rtc_pre_save,
1235
    .post_load = pxa2xx_rtc_post_load,
1236
    .fields = (VMStateField[]) {
1237
        VMSTATE_UINT32(rttr, PXA2xxRTCState),
1238
        VMSTATE_UINT32(rtsr, PXA2xxRTCState),
1239
        VMSTATE_UINT32(rtar, PXA2xxRTCState),
1240
        VMSTATE_UINT32(rdar1, PXA2xxRTCState),
1241
        VMSTATE_UINT32(rdar2, PXA2xxRTCState),
1242
        VMSTATE_UINT32(ryar1, PXA2xxRTCState),
1243
        VMSTATE_UINT32(ryar2, PXA2xxRTCState),
1244
        VMSTATE_UINT32(swar1, PXA2xxRTCState),
1245
        VMSTATE_UINT32(swar2, PXA2xxRTCState),
1246
        VMSTATE_UINT32(piar, PXA2xxRTCState),
1247
        VMSTATE_UINT32(last_rcnr, PXA2xxRTCState),
1248
        VMSTATE_UINT32(last_rdcr, PXA2xxRTCState),
1249
        VMSTATE_UINT32(last_rycr, PXA2xxRTCState),
1250
        VMSTATE_UINT32(last_swcr, PXA2xxRTCState),
1251
        VMSTATE_UINT32(last_rtcpicr, PXA2xxRTCState),
1252
        VMSTATE_INT64(last_hz, PXA2xxRTCState),
1253
        VMSTATE_INT64(last_sw, PXA2xxRTCState),
1254
        VMSTATE_INT64(last_pi, PXA2xxRTCState),
1255
        VMSTATE_END_OF_LIST(),
1256
    },
1257
};
1258

    
1259
static SysBusDeviceInfo pxa2xx_rtc_sysbus_info = {
1260
    .init       = pxa2xx_rtc_init,
1261
    .qdev.name  = "pxa2xx_rtc",
1262
    .qdev.desc  = "PXA2xx RTC Controller",
1263
    .qdev.size  = sizeof(PXA2xxRTCState),
1264
    .qdev.vmsd  = &vmstate_pxa2xx_rtc_regs,
1265
};
1266

    
1267
/* I2C Interface */
1268
typedef struct {
1269
    i2c_slave i2c;
1270
    PXA2xxI2CState *host;
1271
} PXA2xxI2CSlaveState;
1272

    
1273
struct PXA2xxI2CState {
1274
    SysBusDevice busdev;
1275
    PXA2xxI2CSlaveState *slave;
1276
    i2c_bus *bus;
1277
    qemu_irq irq;
1278
    uint32_t offset;
1279
    uint32_t region_size;
1280

    
1281
    uint16_t control;
1282
    uint16_t status;
1283
    uint8_t ibmr;
1284
    uint8_t data;
1285
};
1286

    
1287
#define IBMR        0x80        /* I2C Bus Monitor register */
1288
#define IDBR        0x88        /* I2C Data Buffer register */
1289
#define ICR        0x90        /* I2C Control register */
1290
#define ISR        0x98        /* I2C Status register */
1291
#define ISAR        0xa0        /* I2C Slave Address register */
1292

    
1293
static void pxa2xx_i2c_update(PXA2xxI2CState *s)
1294
{
1295
    uint16_t level = 0;
1296
    level |= s->status & s->control & (1 << 10);                /* BED */
1297
    level |= (s->status & (1 << 7)) && (s->control & (1 << 9));        /* IRF */
1298
    level |= (s->status & (1 << 6)) && (s->control & (1 << 8));        /* ITE */
1299
    level |= s->status & (1 << 9);                                /* SAD */
1300
    qemu_set_irq(s->irq, !!level);
1301
}
1302

    
1303
/* These are only stubs now.  */
1304
static void pxa2xx_i2c_event(i2c_slave *i2c, enum i2c_event event)
1305
{
1306
    PXA2xxI2CSlaveState *slave = FROM_I2C_SLAVE(PXA2xxI2CSlaveState, i2c);
1307
    PXA2xxI2CState *s = slave->host;
1308

    
1309
    switch (event) {
1310
    case I2C_START_SEND:
1311
        s->status |= (1 << 9);                                /* set SAD */
1312
        s->status &= ~(1 << 0);                                /* clear RWM */
1313
        break;
1314
    case I2C_START_RECV:
1315
        s->status |= (1 << 9);                                /* set SAD */
1316
        s->status |= 1 << 0;                                /* set RWM */
1317
        break;
1318
    case I2C_FINISH:
1319
        s->status |= (1 << 4);                                /* set SSD */
1320
        break;
1321
    case I2C_NACK:
1322
        s->status |= 1 << 1;                                /* set ACKNAK */
1323
        break;
1324
    }
1325
    pxa2xx_i2c_update(s);
1326
}
1327

    
1328
static int pxa2xx_i2c_rx(i2c_slave *i2c)
1329
{
1330
    PXA2xxI2CSlaveState *slave = FROM_I2C_SLAVE(PXA2xxI2CSlaveState, i2c);
1331
    PXA2xxI2CState *s = slave->host;
1332
    if ((s->control & (1 << 14)) || !(s->control & (1 << 6)))
1333
        return 0;
1334

    
1335
    if (s->status & (1 << 0)) {                        /* RWM */
1336
        s->status |= 1 << 6;                        /* set ITE */
1337
    }
1338
    pxa2xx_i2c_update(s);
1339

    
1340
    return s->data;
1341
}
1342

    
1343
static int pxa2xx_i2c_tx(i2c_slave *i2c, uint8_t data)
1344
{
1345
    PXA2xxI2CSlaveState *slave = FROM_I2C_SLAVE(PXA2xxI2CSlaveState, i2c);
1346
    PXA2xxI2CState *s = slave->host;
1347
    if ((s->control & (1 << 14)) || !(s->control & (1 << 6)))
1348
        return 1;
1349

    
1350
    if (!(s->status & (1 << 0))) {                /* RWM */
1351
        s->status |= 1 << 7;                        /* set IRF */
1352
        s->data = data;
1353
    }
1354
    pxa2xx_i2c_update(s);
1355

    
1356
    return 1;
1357
}
1358

    
1359
static uint32_t pxa2xx_i2c_read(void *opaque, target_phys_addr_t addr)
1360
{
1361
    PXA2xxI2CState *s = (PXA2xxI2CState *) opaque;
1362

    
1363
    addr -= s->offset;
1364
    switch (addr) {
1365
    case ICR:
1366
        return s->control;
1367
    case ISR:
1368
        return s->status | (i2c_bus_busy(s->bus) << 2);
1369
    case ISAR:
1370
        return s->slave->i2c.address;
1371
    case IDBR:
1372
        return s->data;
1373
    case IBMR:
1374
        if (s->status & (1 << 2))
1375
            s->ibmr ^= 3;        /* Fake SCL and SDA pin changes */
1376
        else
1377
            s->ibmr = 0;
1378
        return s->ibmr;
1379
    default:
1380
        printf("%s: Bad register " REG_FMT "\n", __FUNCTION__, addr);
1381
        break;
1382
    }
1383
    return 0;
1384
}
1385

    
1386
static void pxa2xx_i2c_write(void *opaque, target_phys_addr_t addr,
1387
                uint32_t value)
1388
{
1389
    PXA2xxI2CState *s = (PXA2xxI2CState *) opaque;
1390
    int ack;
1391

    
1392
    addr -= s->offset;
1393
    switch (addr) {
1394
    case ICR:
1395
        s->control = value & 0xfff7;
1396
        if ((value & (1 << 3)) && (value & (1 << 6))) {        /* TB and IUE */
1397
            /* TODO: slave mode */
1398
            if (value & (1 << 0)) {                        /* START condition */
1399
                if (s->data & 1)
1400
                    s->status |= 1 << 0;                /* set RWM */
1401
                else
1402
                    s->status &= ~(1 << 0);                /* clear RWM */
1403
                ack = !i2c_start_transfer(s->bus, s->data >> 1, s->data & 1);
1404
            } else {
1405
                if (s->status & (1 << 0)) {                /* RWM */
1406
                    s->data = i2c_recv(s->bus);
1407
                    if (value & (1 << 2))                /* ACKNAK */
1408
                        i2c_nack(s->bus);
1409
                    ack = 1;
1410
                } else
1411
                    ack = !i2c_send(s->bus, s->data);
1412
            }
1413

    
1414
            if (value & (1 << 1))                        /* STOP condition */
1415
                i2c_end_transfer(s->bus);
1416

    
1417
            if (ack) {
1418
                if (value & (1 << 0))                        /* START condition */
1419
                    s->status |= 1 << 6;                /* set ITE */
1420
                else
1421
                    if (s->status & (1 << 0))                /* RWM */
1422
                        s->status |= 1 << 7;                /* set IRF */
1423
                    else
1424
                        s->status |= 1 << 6;                /* set ITE */
1425
                s->status &= ~(1 << 1);                        /* clear ACKNAK */
1426
            } else {
1427
                s->status |= 1 << 6;                        /* set ITE */
1428
                s->status |= 1 << 10;                        /* set BED */
1429
                s->status |= 1 << 1;                        /* set ACKNAK */
1430
            }
1431
        }
1432
        if (!(value & (1 << 3)) && (value & (1 << 6)))        /* !TB and IUE */
1433
            if (value & (1 << 4))                        /* MA */
1434
                i2c_end_transfer(s->bus);
1435
        pxa2xx_i2c_update(s);
1436
        break;
1437

    
1438
    case ISR:
1439
        s->status &= ~(value & 0x07f0);
1440
        pxa2xx_i2c_update(s);
1441
        break;
1442

    
1443
    case ISAR:
1444
        i2c_set_slave_address(&s->slave->i2c, value & 0x7f);
1445
        break;
1446

    
1447
    case IDBR:
1448
        s->data = value & 0xff;
1449
        break;
1450

    
1451
    default:
1452
        printf("%s: Bad register " REG_FMT "\n", __FUNCTION__, addr);
1453
    }
1454
}
1455

    
1456
static CPUReadMemoryFunc * const pxa2xx_i2c_readfn[] = {
1457
    pxa2xx_i2c_read,
1458
    pxa2xx_i2c_read,
1459
    pxa2xx_i2c_read,
1460
};
1461

    
1462
static CPUWriteMemoryFunc * const pxa2xx_i2c_writefn[] = {
1463
    pxa2xx_i2c_write,
1464
    pxa2xx_i2c_write,
1465
    pxa2xx_i2c_write,
1466
};
1467

    
1468
static const VMStateDescription vmstate_pxa2xx_i2c_slave = {
1469
    .name = "pxa2xx_i2c_slave",
1470
    .version_id = 1,
1471
    .minimum_version_id = 1,
1472
    .minimum_version_id_old = 1,
1473
    .fields      = (VMStateField []) {
1474
        VMSTATE_I2C_SLAVE(i2c, PXA2xxI2CSlaveState),
1475
        VMSTATE_END_OF_LIST()
1476
    }
1477
};
1478

    
1479
static const VMStateDescription vmstate_pxa2xx_i2c = {
1480
    .name = "pxa2xx_i2c",
1481
    .version_id = 1,
1482
    .minimum_version_id = 1,
1483
    .minimum_version_id_old = 1,
1484
    .fields      = (VMStateField []) {
1485
        VMSTATE_UINT16(control, PXA2xxI2CState),
1486
        VMSTATE_UINT16(status, PXA2xxI2CState),
1487
        VMSTATE_UINT8(ibmr, PXA2xxI2CState),
1488
        VMSTATE_UINT8(data, PXA2xxI2CState),
1489
        VMSTATE_STRUCT_POINTER(slave, PXA2xxI2CState,
1490
                               vmstate_pxa2xx_i2c_slave, PXA2xxI2CSlaveState *),
1491
        VMSTATE_END_OF_LIST()
1492
    }
1493
};
1494

    
1495
static int pxa2xx_i2c_slave_init(i2c_slave *i2c)
1496
{
1497
    /* Nothing to do.  */
1498
    return 0;
1499
}
1500

    
1501
static I2CSlaveInfo pxa2xx_i2c_slave_info = {
1502
    .qdev.name = "pxa2xx-i2c-slave",
1503
    .qdev.size = sizeof(PXA2xxI2CSlaveState),
1504
    .init = pxa2xx_i2c_slave_init,
1505
    .event = pxa2xx_i2c_event,
1506
    .recv = pxa2xx_i2c_rx,
1507
    .send = pxa2xx_i2c_tx
1508
};
1509

    
1510
PXA2xxI2CState *pxa2xx_i2c_init(target_phys_addr_t base,
1511
                qemu_irq irq, uint32_t region_size)
1512
{
1513
    DeviceState *dev;
1514
    SysBusDevice *i2c_dev;
1515
    PXA2xxI2CState *s;
1516

    
1517
    i2c_dev = sysbus_from_qdev(qdev_create(NULL, "pxa2xx_i2c"));
1518
    qdev_prop_set_uint32(&i2c_dev->qdev, "size", region_size + 1);
1519
    qdev_prop_set_uint32(&i2c_dev->qdev, "offset",
1520
            base - (base & (~region_size) & TARGET_PAGE_MASK));
1521

    
1522
    qdev_init_nofail(&i2c_dev->qdev);
1523

    
1524
    sysbus_mmio_map(i2c_dev, 0, base & ~region_size);
1525
    sysbus_connect_irq(i2c_dev, 0, irq);
1526

    
1527
    s = FROM_SYSBUS(PXA2xxI2CState, i2c_dev);
1528
    /* FIXME: Should the slave device really be on a separate bus?  */
1529
    dev = i2c_create_slave(i2c_init_bus(NULL, "dummy"), "pxa2xx-i2c-slave", 0);
1530
    s->slave = FROM_I2C_SLAVE(PXA2xxI2CSlaveState, I2C_SLAVE_FROM_QDEV(dev));
1531
    s->slave->host = s;
1532

    
1533
    return s;
1534
}
1535

    
1536
static int pxa2xx_i2c_initfn(SysBusDevice *dev)
1537
{
1538
    PXA2xxI2CState *s = FROM_SYSBUS(PXA2xxI2CState, dev);
1539
    int iomemtype;
1540

    
1541
    s->bus = i2c_init_bus(&dev->qdev, "i2c");
1542

    
1543
    iomemtype = cpu_register_io_memory(pxa2xx_i2c_readfn,
1544
                    pxa2xx_i2c_writefn, s, DEVICE_NATIVE_ENDIAN);
1545
    sysbus_init_mmio(dev, s->region_size, iomemtype);
1546
    sysbus_init_irq(dev, &s->irq);
1547

    
1548
    return 0;
1549
}
1550

    
1551
i2c_bus *pxa2xx_i2c_bus(PXA2xxI2CState *s)
1552
{
1553
    return s->bus;
1554
}
1555

    
1556
static SysBusDeviceInfo pxa2xx_i2c_info = {
1557
    .init       = pxa2xx_i2c_initfn,
1558
    .qdev.name  = "pxa2xx_i2c",
1559
    .qdev.desc  = "PXA2xx I2C Bus Controller",
1560
    .qdev.size  = sizeof(PXA2xxI2CState),
1561
    .qdev.vmsd  = &vmstate_pxa2xx_i2c,
1562
    .qdev.props = (Property[]) {
1563
        DEFINE_PROP_UINT32("size", PXA2xxI2CState, region_size, 0x10000),
1564
        DEFINE_PROP_UINT32("offset", PXA2xxI2CState, offset, 0),
1565
        DEFINE_PROP_END_OF_LIST(),
1566
    },
1567
};
1568

    
1569
/* PXA Inter-IC Sound Controller */
1570
static void pxa2xx_i2s_reset(PXA2xxI2SState *i2s)
1571
{
1572
    i2s->rx_len = 0;
1573
    i2s->tx_len = 0;
1574
    i2s->fifo_len = 0;
1575
    i2s->clk = 0x1a;
1576
    i2s->control[0] = 0x00;
1577
    i2s->control[1] = 0x00;
1578
    i2s->status = 0x00;
1579
    i2s->mask = 0x00;
1580
}
1581

    
1582
#define SACR_TFTH(val)        ((val >> 8) & 0xf)
1583
#define SACR_RFTH(val)        ((val >> 12) & 0xf)
1584
#define SACR_DREC(val)        (val & (1 << 3))
1585
#define SACR_DPRL(val)        (val & (1 << 4))
1586

    
1587
static inline void pxa2xx_i2s_update(PXA2xxI2SState *i2s)
1588
{
1589
    int rfs, tfs;
1590
    rfs = SACR_RFTH(i2s->control[0]) < i2s->rx_len &&
1591
            !SACR_DREC(i2s->control[1]);
1592
    tfs = (i2s->tx_len || i2s->fifo_len < SACR_TFTH(i2s->control[0])) &&
1593
            i2s->enable && !SACR_DPRL(i2s->control[1]);
1594

    
1595
    qemu_set_irq(i2s->rx_dma, rfs);
1596
    qemu_set_irq(i2s->tx_dma, tfs);
1597

    
1598
    i2s->status &= 0xe0;
1599
    if (i2s->fifo_len < 16 || !i2s->enable)
1600
        i2s->status |= 1 << 0;                        /* TNF */
1601
    if (i2s->rx_len)
1602
        i2s->status |= 1 << 1;                        /* RNE */
1603
    if (i2s->enable)
1604
        i2s->status |= 1 << 2;                        /* BSY */
1605
    if (tfs)
1606
        i2s->status |= 1 << 3;                        /* TFS */
1607
    if (rfs)
1608
        i2s->status |= 1 << 4;                        /* RFS */
1609
    if (!(i2s->tx_len && i2s->enable))
1610
        i2s->status |= i2s->fifo_len << 8;        /* TFL */
1611
    i2s->status |= MAX(i2s->rx_len, 0xf) << 12;        /* RFL */
1612

    
1613
    qemu_set_irq(i2s->irq, i2s->status & i2s->mask);
1614
}
1615

    
1616
#define SACR0        0x00        /* Serial Audio Global Control register */
1617
#define SACR1        0x04        /* Serial Audio I2S/MSB-Justified Control register */
1618
#define SASR0        0x0c        /* Serial Audio Interface and FIFO Status register */
1619
#define SAIMR        0x14        /* Serial Audio Interrupt Mask register */
1620
#define SAICR        0x18        /* Serial Audio Interrupt Clear register */
1621
#define SADIV        0x60        /* Serial Audio Clock Divider register */
1622
#define SADR        0x80        /* Serial Audio Data register */
1623

    
1624
static uint32_t pxa2xx_i2s_read(void *opaque, target_phys_addr_t addr)
1625
{
1626
    PXA2xxI2SState *s = (PXA2xxI2SState *) opaque;
1627

    
1628
    switch (addr) {
1629
    case SACR0:
1630
        return s->control[0];
1631
    case SACR1:
1632
        return s->control[1];
1633
    case SASR0:
1634
        return s->status;
1635
    case SAIMR:
1636
        return s->mask;
1637
    case SAICR:
1638
        return 0;
1639
    case SADIV:
1640
        return s->clk;
1641
    case SADR:
1642
        if (s->rx_len > 0) {
1643
            s->rx_len --;
1644
            pxa2xx_i2s_update(s);
1645
            return s->codec_in(s->opaque);
1646
        }
1647
        return 0;
1648
    default:
1649
        printf("%s: Bad register " REG_FMT "\n", __FUNCTION__, addr);
1650
        break;
1651
    }
1652
    return 0;
1653
}
1654

    
1655
static void pxa2xx_i2s_write(void *opaque, target_phys_addr_t addr,
1656
                uint32_t value)
1657
{
1658
    PXA2xxI2SState *s = (PXA2xxI2SState *) opaque;
1659
    uint32_t *sample;
1660

    
1661
    switch (addr) {
1662
    case SACR0:
1663
        if (value & (1 << 3))                                /* RST */
1664
            pxa2xx_i2s_reset(s);
1665
        s->control[0] = value & 0xff3d;
1666
        if (!s->enable && (value & 1) && s->tx_len) {        /* ENB */
1667
            for (sample = s->fifo; s->fifo_len > 0; s->fifo_len --, sample ++)
1668
                s->codec_out(s->opaque, *sample);
1669
            s->status &= ~(1 << 7);                        /* I2SOFF */
1670
        }
1671
        if (value & (1 << 4))                                /* EFWR */
1672
            printf("%s: Attempt to use special function\n", __FUNCTION__);
1673
        s->enable = (value & 9) == 1;                        /* ENB && !RST*/
1674
        pxa2xx_i2s_update(s);
1675
        break;
1676
    case SACR1:
1677
        s->control[1] = value & 0x0039;
1678
        if (value & (1 << 5))                                /* ENLBF */
1679
            printf("%s: Attempt to use loopback function\n", __FUNCTION__);
1680
        if (value & (1 << 4))                                /* DPRL */
1681
            s->fifo_len = 0;
1682
        pxa2xx_i2s_update(s);
1683
        break;
1684
    case SAIMR:
1685
        s->mask = value & 0x0078;
1686
        pxa2xx_i2s_update(s);
1687
        break;
1688
    case SAICR:
1689
        s->status &= ~(value & (3 << 5));
1690
        pxa2xx_i2s_update(s);
1691
        break;
1692
    case SADIV:
1693
        s->clk = value & 0x007f;
1694
        break;
1695
    case SADR:
1696
        if (s->tx_len && s->enable) {
1697
            s->tx_len --;
1698
            pxa2xx_i2s_update(s);
1699
            s->codec_out(s->opaque, value);
1700
        } else if (s->fifo_len < 16) {
1701
            s->fifo[s->fifo_len ++] = value;
1702
            pxa2xx_i2s_update(s);
1703
        }
1704
        break;
1705
    default:
1706
        printf("%s: Bad register " REG_FMT "\n", __FUNCTION__, addr);
1707
    }
1708
}
1709

    
1710
static CPUReadMemoryFunc * const pxa2xx_i2s_readfn[] = {
1711
    pxa2xx_i2s_read,
1712
    pxa2xx_i2s_read,
1713
    pxa2xx_i2s_read,
1714
};
1715

    
1716
static CPUWriteMemoryFunc * const pxa2xx_i2s_writefn[] = {
1717
    pxa2xx_i2s_write,
1718
    pxa2xx_i2s_write,
1719
    pxa2xx_i2s_write,
1720
};
1721

    
1722
static const VMStateDescription vmstate_pxa2xx_i2s = {
1723
    .name = "pxa2xx_i2s",
1724
    .version_id = 0,
1725
    .minimum_version_id = 0,
1726
    .minimum_version_id_old = 0,
1727
    .fields      = (VMStateField[]) {
1728
        VMSTATE_UINT32_ARRAY(control, PXA2xxI2SState, 2),
1729
        VMSTATE_UINT32(status, PXA2xxI2SState),
1730
        VMSTATE_UINT32(mask, PXA2xxI2SState),
1731
        VMSTATE_UINT32(clk, PXA2xxI2SState),
1732
        VMSTATE_INT32(enable, PXA2xxI2SState),
1733
        VMSTATE_INT32(rx_len, PXA2xxI2SState),
1734
        VMSTATE_INT32(tx_len, PXA2xxI2SState),
1735
        VMSTATE_INT32(fifo_len, PXA2xxI2SState),
1736
        VMSTATE_END_OF_LIST()
1737
    }
1738
};
1739

    
1740
static void pxa2xx_i2s_data_req(void *opaque, int tx, int rx)
1741
{
1742
    PXA2xxI2SState *s = (PXA2xxI2SState *) opaque;
1743
    uint32_t *sample;
1744

    
1745
    /* Signal FIFO errors */
1746
    if (s->enable && s->tx_len)
1747
        s->status |= 1 << 5;                /* TUR */
1748
    if (s->enable && s->rx_len)
1749
        s->status |= 1 << 6;                /* ROR */
1750

    
1751
    /* Should be tx - MIN(tx, s->fifo_len) but we don't really need to
1752
     * handle the cases where it makes a difference.  */
1753
    s->tx_len = tx - s->fifo_len;
1754
    s->rx_len = rx;
1755
    /* Note that is s->codec_out wasn't set, we wouldn't get called.  */
1756
    if (s->enable)
1757
        for (sample = s->fifo; s->fifo_len; s->fifo_len --, sample ++)
1758
            s->codec_out(s->opaque, *sample);
1759
    pxa2xx_i2s_update(s);
1760
}
1761

    
1762
static PXA2xxI2SState *pxa2xx_i2s_init(target_phys_addr_t base,
1763
                qemu_irq irq, qemu_irq rx_dma, qemu_irq tx_dma)
1764
{
1765
    int iomemtype;
1766
    PXA2xxI2SState *s = (PXA2xxI2SState *)
1767
            qemu_mallocz(sizeof(PXA2xxI2SState));
1768

    
1769
    s->irq = irq;
1770
    s->rx_dma = rx_dma;
1771
    s->tx_dma = tx_dma;
1772
    s->data_req = pxa2xx_i2s_data_req;
1773

    
1774
    pxa2xx_i2s_reset(s);
1775

    
1776
    iomemtype = cpu_register_io_memory(pxa2xx_i2s_readfn,
1777
                    pxa2xx_i2s_writefn, s, DEVICE_NATIVE_ENDIAN);
1778
    cpu_register_physical_memory(base, 0x100000, iomemtype);
1779

    
1780
    vmstate_register(NULL, base, &vmstate_pxa2xx_i2s, s);
1781

    
1782
    return s;
1783
}
1784

    
1785
/* PXA Fast Infra-red Communications Port */
1786
struct PXA2xxFIrState {
1787
    qemu_irq irq;
1788
    qemu_irq rx_dma;
1789
    qemu_irq tx_dma;
1790
    int enable;
1791
    CharDriverState *chr;
1792

    
1793
    uint8_t control[3];
1794
    uint8_t status[2];
1795

    
1796
    int rx_len;
1797
    int rx_start;
1798
    uint8_t rx_fifo[64];
1799
};
1800

    
1801
static void pxa2xx_fir_reset(PXA2xxFIrState *s)
1802
{
1803
    s->control[0] = 0x00;
1804
    s->control[1] = 0x00;
1805
    s->control[2] = 0x00;
1806
    s->status[0] = 0x00;
1807
    s->status[1] = 0x00;
1808
    s->enable = 0;
1809
}
1810

    
1811
static inline void pxa2xx_fir_update(PXA2xxFIrState *s)
1812
{
1813
    static const int tresh[4] = { 8, 16, 32, 0 };
1814
    int intr = 0;
1815
    if ((s->control[0] & (1 << 4)) &&                        /* RXE */
1816
                    s->rx_len >= tresh[s->control[2] & 3])        /* TRIG */
1817
        s->status[0] |= 1 << 4;                                /* RFS */
1818
    else
1819
        s->status[0] &= ~(1 << 4);                        /* RFS */
1820
    if (s->control[0] & (1 << 3))                        /* TXE */
1821
        s->status[0] |= 1 << 3;                                /* TFS */
1822
    else
1823
        s->status[0] &= ~(1 << 3);                        /* TFS */
1824
    if (s->rx_len)
1825
        s->status[1] |= 1 << 2;                                /* RNE */
1826
    else
1827
        s->status[1] &= ~(1 << 2);                        /* RNE */
1828
    if (s->control[0] & (1 << 4))                        /* RXE */
1829
        s->status[1] |= 1 << 0;                                /* RSY */
1830
    else
1831
        s->status[1] &= ~(1 << 0);                        /* RSY */
1832

    
1833
    intr |= (s->control[0] & (1 << 5)) &&                /* RIE */
1834
            (s->status[0] & (1 << 4));                        /* RFS */
1835
    intr |= (s->control[0] & (1 << 6)) &&                /* TIE */
1836
            (s->status[0] & (1 << 3));                        /* TFS */
1837
    intr |= (s->control[2] & (1 << 4)) &&                /* TRAIL */
1838
            (s->status[0] & (1 << 6));                        /* EOC */
1839
    intr |= (s->control[0] & (1 << 2)) &&                /* TUS */
1840
            (s->status[0] & (1 << 1));                        /* TUR */
1841
    intr |= s->status[0] & 0x25;                        /* FRE, RAB, EIF */
1842

    
1843
    qemu_set_irq(s->rx_dma, (s->status[0] >> 4) & 1);
1844
    qemu_set_irq(s->tx_dma, (s->status[0] >> 3) & 1);
1845

    
1846
    qemu_set_irq(s->irq, intr && s->enable);
1847
}
1848

    
1849
#define ICCR0        0x00        /* FICP Control register 0 */
1850
#define ICCR1        0x04        /* FICP Control register 1 */
1851
#define ICCR2        0x08        /* FICP Control register 2 */
1852
#define ICDR        0x0c        /* FICP Data register */
1853
#define ICSR0        0x14        /* FICP Status register 0 */
1854
#define ICSR1        0x18        /* FICP Status register 1 */
1855
#define ICFOR        0x1c        /* FICP FIFO Occupancy Status register */
1856

    
1857
static uint32_t pxa2xx_fir_read(void *opaque, target_phys_addr_t addr)
1858
{
1859
    PXA2xxFIrState *s = (PXA2xxFIrState *) opaque;
1860
    uint8_t ret;
1861

    
1862
    switch (addr) {
1863
    case ICCR0:
1864
        return s->control[0];
1865
    case ICCR1:
1866
        return s->control[1];
1867
    case ICCR2:
1868
        return s->control[2];
1869
    case ICDR:
1870
        s->status[0] &= ~0x01;
1871
        s->status[1] &= ~0x72;
1872
        if (s->rx_len) {
1873
            s->rx_len --;
1874
            ret = s->rx_fifo[s->rx_start ++];
1875
            s->rx_start &= 63;
1876
            pxa2xx_fir_update(s);
1877
            return ret;
1878
        }
1879
        printf("%s: Rx FIFO underrun.\n", __FUNCTION__);
1880
        break;
1881
    case ICSR0:
1882
        return s->status[0];
1883
    case ICSR1:
1884
        return s->status[1] | (1 << 3);                        /* TNF */
1885
    case ICFOR:
1886
        return s->rx_len;
1887
    default:
1888
        printf("%s: Bad register " REG_FMT "\n", __FUNCTION__, addr);
1889
        break;
1890
    }
1891
    return 0;
1892
}
1893

    
1894
static void pxa2xx_fir_write(void *opaque, target_phys_addr_t addr,
1895
                uint32_t value)
1896
{
1897
    PXA2xxFIrState *s = (PXA2xxFIrState *) opaque;
1898
    uint8_t ch;
1899

    
1900
    switch (addr) {
1901
    case ICCR0:
1902
        s->control[0] = value;
1903
        if (!(value & (1 << 4)))                        /* RXE */
1904
            s->rx_len = s->rx_start = 0;
1905
        if (!(value & (1 << 3))) {                      /* TXE */
1906
            /* Nop */
1907
        }
1908
        s->enable = value & 1;                                /* ITR */
1909
        if (!s->enable)
1910
            s->status[0] = 0;
1911
        pxa2xx_fir_update(s);
1912
        break;
1913
    case ICCR1:
1914
        s->control[1] = value;
1915
        break;
1916
    case ICCR2:
1917
        s->control[2] = value & 0x3f;
1918
        pxa2xx_fir_update(s);
1919
        break;
1920
    case ICDR:
1921
        if (s->control[2] & (1 << 2))                        /* TXP */
1922
            ch = value;
1923
        else
1924
            ch = ~value;
1925
        if (s->chr && s->enable && (s->control[0] & (1 << 3)))        /* TXE */
1926
            qemu_chr_write(s->chr, &ch, 1);
1927
        break;
1928
    case ICSR0:
1929
        s->status[0] &= ~(value & 0x66);
1930
        pxa2xx_fir_update(s);
1931
        break;
1932
    case ICFOR:
1933
        break;
1934
    default:
1935
        printf("%s: Bad register " REG_FMT "\n", __FUNCTION__, addr);
1936
    }
1937
}
1938

    
1939
static CPUReadMemoryFunc * const pxa2xx_fir_readfn[] = {
1940
    pxa2xx_fir_read,
1941
    pxa2xx_fir_read,
1942
    pxa2xx_fir_read,
1943
};
1944

    
1945
static CPUWriteMemoryFunc * const pxa2xx_fir_writefn[] = {
1946
    pxa2xx_fir_write,
1947
    pxa2xx_fir_write,
1948
    pxa2xx_fir_write,
1949
};
1950

    
1951
static int pxa2xx_fir_is_empty(void *opaque)
1952
{
1953
    PXA2xxFIrState *s = (PXA2xxFIrState *) opaque;
1954
    return (s->rx_len < 64);
1955
}
1956

    
1957
static void pxa2xx_fir_rx(void *opaque, const uint8_t *buf, int size)
1958
{
1959
    PXA2xxFIrState *s = (PXA2xxFIrState *) opaque;
1960
    if (!(s->control[0] & (1 << 4)))                        /* RXE */
1961
        return;
1962

    
1963
    while (size --) {
1964
        s->status[1] |= 1 << 4;                                /* EOF */
1965
        if (s->rx_len >= 64) {
1966
            s->status[1] |= 1 << 6;                        /* ROR */
1967
            break;
1968
        }
1969

    
1970
        if (s->control[2] & (1 << 3))                        /* RXP */
1971
            s->rx_fifo[(s->rx_start + s->rx_len ++) & 63] = *(buf ++);
1972
        else
1973
            s->rx_fifo[(s->rx_start + s->rx_len ++) & 63] = ~*(buf ++);
1974
    }
1975

    
1976
    pxa2xx_fir_update(s);
1977
}
1978

    
1979
static void pxa2xx_fir_event(void *opaque, int event)
1980
{
1981
}
1982

    
1983
static void pxa2xx_fir_save(QEMUFile *f, void *opaque)
1984
{
1985
    PXA2xxFIrState *s = (PXA2xxFIrState *) opaque;
1986
    int i;
1987

    
1988
    qemu_put_be32(f, s->enable);
1989

    
1990
    qemu_put_8s(f, &s->control[0]);
1991
    qemu_put_8s(f, &s->control[1]);
1992
    qemu_put_8s(f, &s->control[2]);
1993
    qemu_put_8s(f, &s->status[0]);
1994
    qemu_put_8s(f, &s->status[1]);
1995

    
1996
    qemu_put_byte(f, s->rx_len);
1997
    for (i = 0; i < s->rx_len; i ++)
1998
        qemu_put_byte(f, s->rx_fifo[(s->rx_start + i) & 63]);
1999
}
2000

    
2001
static int pxa2xx_fir_load(QEMUFile *f, void *opaque, int version_id)
2002
{
2003
    PXA2xxFIrState *s = (PXA2xxFIrState *) opaque;
2004
    int i;
2005

    
2006
    s->enable = qemu_get_be32(f);
2007

    
2008
    qemu_get_8s(f, &s->control[0]);
2009
    qemu_get_8s(f, &s->control[1]);
2010
    qemu_get_8s(f, &s->control[2]);
2011
    qemu_get_8s(f, &s->status[0]);
2012
    qemu_get_8s(f, &s->status[1]);
2013

    
2014
    s->rx_len = qemu_get_byte(f);
2015
    s->rx_start = 0;
2016
    for (i = 0; i < s->rx_len; i ++)
2017
        s->rx_fifo[i] = qemu_get_byte(f);
2018

    
2019
    return 0;
2020
}
2021

    
2022
static PXA2xxFIrState *pxa2xx_fir_init(target_phys_addr_t base,
2023
                qemu_irq irq, qemu_irq rx_dma, qemu_irq tx_dma,
2024
                CharDriverState *chr)
2025
{
2026
    int iomemtype;
2027
    PXA2xxFIrState *s = (PXA2xxFIrState *)
2028
            qemu_mallocz(sizeof(PXA2xxFIrState));
2029

    
2030
    s->irq = irq;
2031
    s->rx_dma = rx_dma;
2032
    s->tx_dma = tx_dma;
2033
    s->chr = chr;
2034

    
2035
    pxa2xx_fir_reset(s);
2036

    
2037
    iomemtype = cpu_register_io_memory(pxa2xx_fir_readfn,
2038
                    pxa2xx_fir_writefn, s, DEVICE_NATIVE_ENDIAN);
2039
    cpu_register_physical_memory(base, 0x1000, iomemtype);
2040

    
2041
    if (chr)
2042
        qemu_chr_add_handlers(chr, pxa2xx_fir_is_empty,
2043
                        pxa2xx_fir_rx, pxa2xx_fir_event, s);
2044

    
2045
    register_savevm(NULL, "pxa2xx_fir", 0, 0, pxa2xx_fir_save,
2046
                    pxa2xx_fir_load, s);
2047

    
2048
    return s;
2049
}
2050

    
2051
static void pxa2xx_reset(void *opaque, int line, int level)
2052
{
2053
    PXA2xxState *s = (PXA2xxState *) opaque;
2054

    
2055
    if (level && (s->pm_regs[PCFR >> 2] & 0x10)) {        /* GPR_EN */
2056
        cpu_reset(s->env);
2057
        /* TODO: reset peripherals */
2058
    }
2059
}
2060

    
2061
/* Initialise a PXA270 integrated chip (ARM based core).  */
2062
PXA2xxState *pxa270_init(unsigned int sdram_size, const char *revision)
2063
{
2064
    PXA2xxState *s;
2065
    int iomemtype, i;
2066
    DriveInfo *dinfo;
2067
    s = (PXA2xxState *) qemu_mallocz(sizeof(PXA2xxState));
2068

    
2069
    if (revision && strncmp(revision, "pxa27", 5)) {
2070
        fprintf(stderr, "Machine requires a PXA27x processor.\n");
2071
        exit(1);
2072
    }
2073
    if (!revision)
2074
        revision = "pxa270";
2075
    
2076
    s->env = cpu_init(revision);
2077
    if (!s->env) {
2078
        fprintf(stderr, "Unable to find CPU definition\n");
2079
        exit(1);
2080
    }
2081
    s->reset = qemu_allocate_irqs(pxa2xx_reset, s, 1)[0];
2082

    
2083
    /* SDRAM & Internal Memory Storage */
2084
    cpu_register_physical_memory(PXA2XX_SDRAM_BASE,
2085
                    sdram_size, qemu_ram_alloc(NULL, "pxa270.sdram",
2086
                                               sdram_size) | IO_MEM_RAM);
2087
    cpu_register_physical_memory(PXA2XX_INTERNAL_BASE,
2088
                    0x40000, qemu_ram_alloc(NULL, "pxa270.internal",
2089
                                            0x40000) | IO_MEM_RAM);
2090

    
2091
    s->pic = pxa2xx_pic_init(0x40d00000, s->env);
2092

    
2093
    s->dma = pxa27x_dma_init(0x40000000,
2094
                    qdev_get_gpio_in(s->pic, PXA2XX_PIC_DMA));
2095

    
2096
    sysbus_create_varargs("pxa27x-timer", 0x40a00000,
2097
                    qdev_get_gpio_in(s->pic, PXA2XX_PIC_OST_0 + 0),
2098
                    qdev_get_gpio_in(s->pic, PXA2XX_PIC_OST_0 + 1),
2099
                    qdev_get_gpio_in(s->pic, PXA2XX_PIC_OST_0 + 2),
2100
                    qdev_get_gpio_in(s->pic, PXA2XX_PIC_OST_0 + 3),
2101
                    qdev_get_gpio_in(s->pic, PXA27X_PIC_OST_4_11),
2102
                    NULL);
2103

    
2104
    s->gpio = pxa2xx_gpio_init(0x40e00000, s->env, s->pic, 121);
2105

    
2106
    dinfo = drive_get(IF_SD, 0, 0);
2107
    if (!dinfo) {
2108
        fprintf(stderr, "qemu: missing SecureDigital device\n");
2109
        exit(1);
2110
    }
2111
    s->mmc = pxa2xx_mmci_init(0x41100000, dinfo->bdrv,
2112
                    qdev_get_gpio_in(s->pic, PXA2XX_PIC_MMC),
2113
                    qdev_get_gpio_in(s->dma, PXA2XX_RX_RQ_MMCI),
2114
                    qdev_get_gpio_in(s->dma, PXA2XX_TX_RQ_MMCI));
2115

    
2116
    for (i = 0; pxa270_serial[i].io_base; i ++)
2117
        if (serial_hds[i])
2118
#ifdef TARGET_WORDS_BIGENDIAN
2119
            serial_mm_init(pxa270_serial[i].io_base, 2,
2120
                            qdev_get_gpio_in(s->pic, pxa270_serial[i].irqn),
2121
                            14857000 / 16, serial_hds[i], 1, 1);
2122
#else
2123
            serial_mm_init(pxa270_serial[i].io_base, 2,
2124
                            qdev_get_gpio_in(s->pic, pxa270_serial[i].irqn),
2125
                            14857000 / 16, serial_hds[i], 1, 0);
2126
#endif
2127
        else
2128
            break;
2129
    if (serial_hds[i])
2130
        s->fir = pxa2xx_fir_init(0x40800000,
2131
                        qdev_get_gpio_in(s->pic, PXA2XX_PIC_ICP),
2132
                        qdev_get_gpio_in(s->dma, PXA2XX_RX_RQ_ICP),
2133
                        qdev_get_gpio_in(s->dma, PXA2XX_TX_RQ_ICP),
2134
                        serial_hds[i]);
2135

    
2136
    s->lcd = pxa2xx_lcdc_init(0x44000000,
2137
                    qdev_get_gpio_in(s->pic, PXA2XX_PIC_LCD));
2138

    
2139
    s->cm_base = 0x41300000;
2140
    s->cm_regs[CCCR >> 2] = 0x02000210;        /* 416.0 MHz */
2141
    s->clkcfg = 0x00000009;                /* Turbo mode active */
2142
    iomemtype = cpu_register_io_memory(pxa2xx_cm_readfn,
2143
                    pxa2xx_cm_writefn, s, DEVICE_NATIVE_ENDIAN);
2144
    cpu_register_physical_memory(s->cm_base, 0x1000, iomemtype);
2145
    vmstate_register(NULL, 0, &vmstate_pxa2xx_cm, s);
2146

    
2147
    cpu_arm_set_cp_io(s->env, 14, pxa2xx_cp14_read, pxa2xx_cp14_write, s);
2148

    
2149
    s->mm_base = 0x48000000;
2150
    s->mm_regs[MDMRS >> 2] = 0x00020002;
2151
    s->mm_regs[MDREFR >> 2] = 0x03ca4000;
2152
    s->mm_regs[MECR >> 2] = 0x00000001;        /* Two PC Card sockets */
2153
    iomemtype = cpu_register_io_memory(pxa2xx_mm_readfn,
2154
                    pxa2xx_mm_writefn, s, DEVICE_NATIVE_ENDIAN);
2155
    cpu_register_physical_memory(s->mm_base, 0x1000, iomemtype);
2156
    vmstate_register(NULL, 0, &vmstate_pxa2xx_mm, s);
2157

    
2158
    s->pm_base = 0x40f00000;
2159
    iomemtype = cpu_register_io_memory(pxa2xx_pm_readfn,
2160
                    pxa2xx_pm_writefn, s, DEVICE_NATIVE_ENDIAN);
2161
    cpu_register_physical_memory(s->pm_base, 0x100, iomemtype);
2162
    vmstate_register(NULL, 0, &vmstate_pxa2xx_pm, s);
2163

    
2164
    for (i = 0; pxa27x_ssp[i].io_base; i ++);
2165
    s->ssp = (SSIBus **)qemu_mallocz(sizeof(SSIBus *) * i);
2166
    for (i = 0; pxa27x_ssp[i].io_base; i ++) {
2167
        DeviceState *dev;
2168
        dev = sysbus_create_simple("pxa2xx-ssp", pxa27x_ssp[i].io_base,
2169
                        qdev_get_gpio_in(s->pic, pxa27x_ssp[i].irqn));
2170
        s->ssp[i] = (SSIBus *)qdev_get_child_bus(dev, "ssi");
2171
    }
2172

    
2173
    if (usb_enabled) {
2174
        sysbus_create_simple("sysbus-ohci", 0x4c000000,
2175
                        qdev_get_gpio_in(s->pic, PXA2XX_PIC_USBH1));
2176
    }
2177

    
2178
    s->pcmcia[0] = pxa2xx_pcmcia_init(0x20000000);
2179
    s->pcmcia[1] = pxa2xx_pcmcia_init(0x30000000);
2180

    
2181
    sysbus_create_simple("pxa2xx_rtc", 0x40900000,
2182
                    qdev_get_gpio_in(s->pic, PXA2XX_PIC_RTCALARM));
2183

    
2184
    s->i2c[0] = pxa2xx_i2c_init(0x40301600,
2185
                    qdev_get_gpio_in(s->pic, PXA2XX_PIC_I2C), 0xffff);
2186
    s->i2c[1] = pxa2xx_i2c_init(0x40f00100,
2187
                    qdev_get_gpio_in(s->pic, PXA2XX_PIC_PWRI2C), 0xff);
2188

    
2189
    s->i2s = pxa2xx_i2s_init(0x40400000,
2190
                    qdev_get_gpio_in(s->pic, PXA2XX_PIC_I2S),
2191
                    qdev_get_gpio_in(s->dma, PXA2XX_RX_RQ_I2S),
2192
                    qdev_get_gpio_in(s->dma, PXA2XX_TX_RQ_I2S));
2193

    
2194
    s->kp = pxa27x_keypad_init(0x41500000,
2195
                    qdev_get_gpio_in(s->pic, PXA2XX_PIC_KEYPAD));
2196

    
2197
    /* GPIO1 resets the processor */
2198
    /* The handler can be overridden by board-specific code */
2199
    qdev_connect_gpio_out(s->gpio, 1, s->reset);
2200
    return s;
2201
}
2202

    
2203
/* Initialise a PXA255 integrated chip (ARM based core).  */
2204
PXA2xxState *pxa255_init(unsigned int sdram_size)
2205
{
2206
    PXA2xxState *s;
2207
    int iomemtype, i;
2208
    DriveInfo *dinfo;
2209

    
2210
    s = (PXA2xxState *) qemu_mallocz(sizeof(PXA2xxState));
2211

    
2212
    s->env = cpu_init("pxa255");
2213
    if (!s->env) {
2214
        fprintf(stderr, "Unable to find CPU definition\n");
2215
        exit(1);
2216
    }
2217
    s->reset = qemu_allocate_irqs(pxa2xx_reset, s, 1)[0];
2218

    
2219
    /* SDRAM & Internal Memory Storage */
2220
    cpu_register_physical_memory(PXA2XX_SDRAM_BASE, sdram_size,
2221
                    qemu_ram_alloc(NULL, "pxa255.sdram",
2222
                                   sdram_size) | IO_MEM_RAM);
2223
    cpu_register_physical_memory(PXA2XX_INTERNAL_BASE, PXA2XX_INTERNAL_SIZE,
2224
                    qemu_ram_alloc(NULL, "pxa255.internal",
2225
                                   PXA2XX_INTERNAL_SIZE) | IO_MEM_RAM);
2226

    
2227
    s->pic = pxa2xx_pic_init(0x40d00000, s->env);
2228

    
2229
    s->dma = pxa255_dma_init(0x40000000,
2230
                    qdev_get_gpio_in(s->pic, PXA2XX_PIC_DMA));
2231

    
2232
    sysbus_create_varargs("pxa25x-timer", 0x40a00000,
2233
                    qdev_get_gpio_in(s->pic, PXA2XX_PIC_OST_0 + 0),
2234
                    qdev_get_gpio_in(s->pic, PXA2XX_PIC_OST_0 + 1),
2235
                    qdev_get_gpio_in(s->pic, PXA2XX_PIC_OST_0 + 2),
2236
                    qdev_get_gpio_in(s->pic, PXA2XX_PIC_OST_0 + 3),
2237
                    NULL);
2238

    
2239
    s->gpio = pxa2xx_gpio_init(0x40e00000, s->env, s->pic, 85);
2240

    
2241
    dinfo = drive_get(IF_SD, 0, 0);
2242
    if (!dinfo) {
2243
        fprintf(stderr, "qemu: missing SecureDigital device\n");
2244
        exit(1);
2245
    }
2246
    s->mmc = pxa2xx_mmci_init(0x41100000, dinfo->bdrv,
2247
                    qdev_get_gpio_in(s->pic, PXA2XX_PIC_MMC),
2248
                    qdev_get_gpio_in(s->dma, PXA2XX_RX_RQ_MMCI),
2249
                    qdev_get_gpio_in(s->dma, PXA2XX_TX_RQ_MMCI));
2250

    
2251
    for (i = 0; pxa255_serial[i].io_base; i ++)
2252
        if (serial_hds[i]) {
2253
#ifdef TARGET_WORDS_BIGENDIAN
2254
            serial_mm_init(pxa255_serial[i].io_base, 2,
2255
                            qdev_get_gpio_in(s->pic, pxa255_serial[i].irqn),
2256
                            14745600 / 16, serial_hds[i], 1, 1);
2257
#else
2258
            serial_mm_init(pxa255_serial[i].io_base, 2,
2259
                            qdev_get_gpio_in(s->pic, pxa255_serial[i].irqn),
2260
                            14745600 / 16, serial_hds[i], 1, 0);
2261
#endif
2262
        } else {
2263
            break;
2264
        }
2265
    if (serial_hds[i])
2266
        s->fir = pxa2xx_fir_init(0x40800000,
2267
                        qdev_get_gpio_in(s->pic, PXA2XX_PIC_ICP),
2268
                        qdev_get_gpio_in(s->dma, PXA2XX_RX_RQ_ICP),
2269
                        qdev_get_gpio_in(s->dma, PXA2XX_TX_RQ_ICP),
2270
                        serial_hds[i]);
2271

    
2272
    s->lcd = pxa2xx_lcdc_init(0x44000000,
2273
                    qdev_get_gpio_in(s->pic, PXA2XX_PIC_LCD));
2274

    
2275
    s->cm_base = 0x41300000;
2276
    s->cm_regs[CCCR >> 2] = 0x02000210;        /* 416.0 MHz */
2277
    s->clkcfg = 0x00000009;                /* Turbo mode active */
2278
    iomemtype = cpu_register_io_memory(pxa2xx_cm_readfn,
2279
                    pxa2xx_cm_writefn, s, DEVICE_NATIVE_ENDIAN);
2280
    cpu_register_physical_memory(s->cm_base, 0x1000, iomemtype);
2281
    vmstate_register(NULL, 0, &vmstate_pxa2xx_cm, s);
2282

    
2283
    cpu_arm_set_cp_io(s->env, 14, pxa2xx_cp14_read, pxa2xx_cp14_write, s);
2284

    
2285
    s->mm_base = 0x48000000;
2286
    s->mm_regs[MDMRS >> 2] = 0x00020002;
2287
    s->mm_regs[MDREFR >> 2] = 0x03ca4000;
2288
    s->mm_regs[MECR >> 2] = 0x00000001;        /* Two PC Card sockets */
2289
    iomemtype = cpu_register_io_memory(pxa2xx_mm_readfn,
2290
                    pxa2xx_mm_writefn, s, DEVICE_NATIVE_ENDIAN);
2291
    cpu_register_physical_memory(s->mm_base, 0x1000, iomemtype);
2292
    vmstate_register(NULL, 0, &vmstate_pxa2xx_mm, s);
2293

    
2294
    s->pm_base = 0x40f00000;
2295
    iomemtype = cpu_register_io_memory(pxa2xx_pm_readfn,
2296
                    pxa2xx_pm_writefn, s, DEVICE_NATIVE_ENDIAN);
2297
    cpu_register_physical_memory(s->pm_base, 0x100, iomemtype);
2298
    vmstate_register(NULL, 0, &vmstate_pxa2xx_pm, s);
2299

    
2300
    for (i = 0; pxa255_ssp[i].io_base; i ++);
2301
    s->ssp = (SSIBus **)qemu_mallocz(sizeof(SSIBus *) * i);
2302
    for (i = 0; pxa255_ssp[i].io_base; i ++) {
2303
        DeviceState *dev;
2304
        dev = sysbus_create_simple("pxa2xx-ssp", pxa255_ssp[i].io_base,
2305
                        qdev_get_gpio_in(s->pic, pxa255_ssp[i].irqn));
2306
        s->ssp[i] = (SSIBus *)qdev_get_child_bus(dev, "ssi");
2307
    }
2308

    
2309
    if (usb_enabled) {
2310
        sysbus_create_simple("sysbus-ohci", 0x4c000000,
2311
                        qdev_get_gpio_in(s->pic, PXA2XX_PIC_USBH1));
2312
    }
2313

    
2314
    s->pcmcia[0] = pxa2xx_pcmcia_init(0x20000000);
2315
    s->pcmcia[1] = pxa2xx_pcmcia_init(0x30000000);
2316

    
2317
    sysbus_create_simple("pxa2xx_rtc", 0x40900000,
2318
                    qdev_get_gpio_in(s->pic, PXA2XX_PIC_RTCALARM));
2319

    
2320
    s->i2c[0] = pxa2xx_i2c_init(0x40301600,
2321
                    qdev_get_gpio_in(s->pic, PXA2XX_PIC_I2C), 0xffff);
2322
    s->i2c[1] = pxa2xx_i2c_init(0x40f00100,
2323
                    qdev_get_gpio_in(s->pic, PXA2XX_PIC_PWRI2C), 0xff);
2324

    
2325
    s->i2s = pxa2xx_i2s_init(0x40400000,
2326
                    qdev_get_gpio_in(s->pic, PXA2XX_PIC_I2S),
2327
                    qdev_get_gpio_in(s->dma, PXA2XX_RX_RQ_I2S),
2328
                    qdev_get_gpio_in(s->dma, PXA2XX_TX_RQ_I2S));
2329

    
2330
    /* GPIO1 resets the processor */
2331
    /* The handler can be overridden by board-specific code */
2332
    qdev_connect_gpio_out(s->gpio, 1, s->reset);
2333
    return s;
2334
}
2335

    
2336
static void pxa2xx_register_devices(void)
2337
{
2338
    i2c_register_slave(&pxa2xx_i2c_slave_info);
2339
    sysbus_register_dev("pxa2xx-ssp", sizeof(PXA2xxSSPState), pxa2xx_ssp_init);
2340
    sysbus_register_withprop(&pxa2xx_i2c_info);
2341
    sysbus_register_withprop(&pxa2xx_rtc_sysbus_info);
2342
}
2343

    
2344
device_init(pxa2xx_register_devices)