Statistics
| Branch: | Revision:

root / hw / usb-ehci.c @ 8e4faf3d

History | View | Annotate | Download (62.7 kB)

1
/*
2
 * QEMU USB EHCI Emulation
3
 *
4
 * Copyright(c) 2008  Emutex Ltd. (address@hidden)
5
 *
6
 * EHCI project was started by Mark Burkley, with contributions by
7
 * Niels de Vos.  David S. Ahern continued working on it.  Kevin Wolf,
8
 * Jan Kiszka and Vincent Palatin contributed bugfixes.
9
 *
10
 *
11
 * This library is free software; you can redistribute it and/or
12
 * modify it under the terms of the GNU Lesser General Public
13
 * License as published by the Free Software Foundation; either
14
 * version 2 of the License, or(at your option) any later version.
15
 *
16
 * This library is distributed in the hope that it will be useful,
17
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
18
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
19
 * Lesser General Public License for more details.
20
 *
21
 * You should have received a copy of the GNU General Public License
22
 * along with this program; if not, see <http://www.gnu.org/licenses/>.
23
 *
24
 * TODO:
25
 *  o Downstream port handoff
26
 */
27

    
28
#include "hw.h"
29
#include "qemu-timer.h"
30
#include "usb.h"
31
#include "pci.h"
32
#include "monitor.h"
33
#include "trace.h"
34

    
35
#define EHCI_DEBUG   0
36

    
37
#if EHCI_DEBUG
38
#define DPRINTF printf
39
#else
40
#define DPRINTF(...)
41
#endif
42

    
43
/* internal processing - reset HC to try and recover */
44
#define USB_RET_PROCERR   (-99)
45

    
46
#define MMIO_SIZE        0x1000
47

    
48
/* Capability Registers Base Address - section 2.2 */
49
#define CAPREGBASE       0x0000
50
#define CAPLENGTH        CAPREGBASE + 0x0000  // 1-byte, 0x0001 reserved
51
#define HCIVERSION       CAPREGBASE + 0x0002  // 2-bytes, i/f version #
52
#define HCSPARAMS        CAPREGBASE + 0x0004  // 4-bytes, structural params
53
#define HCCPARAMS        CAPREGBASE + 0x0008  // 4-bytes, capability params
54
#define EECP             HCCPARAMS + 1
55
#define HCSPPORTROUTE1   CAPREGBASE + 0x000c
56
#define HCSPPORTROUTE2   CAPREGBASE + 0x0010
57

    
58
#define OPREGBASE        0x0020        // Operational Registers Base Address
59

    
60
#define USBCMD           OPREGBASE + 0x0000
61
#define USBCMD_RUNSTOP   (1 << 0)      // run / Stop
62
#define USBCMD_HCRESET   (1 << 1)      // HC Reset
63
#define USBCMD_FLS       (3 << 2)      // Frame List Size
64
#define USBCMD_FLS_SH    2             // Frame List Size Shift
65
#define USBCMD_PSE       (1 << 4)      // Periodic Schedule Enable
66
#define USBCMD_ASE       (1 << 5)      // Asynch Schedule Enable
67
#define USBCMD_IAAD      (1 << 6)      // Int Asynch Advance Doorbell
68
#define USBCMD_LHCR      (1 << 7)      // Light Host Controller Reset
69
#define USBCMD_ASPMC     (3 << 8)      // Async Sched Park Mode Count
70
#define USBCMD_ASPME     (1 << 11)     // Async Sched Park Mode Enable
71
#define USBCMD_ITC       (0x7f << 16)  // Int Threshold Control
72
#define USBCMD_ITC_SH    16            // Int Threshold Control Shift
73

    
74
#define USBSTS           OPREGBASE + 0x0004
75
#define USBSTS_RO_MASK   0x0000003f
76
#define USBSTS_INT       (1 << 0)      // USB Interrupt
77
#define USBSTS_ERRINT    (1 << 1)      // Error Interrupt
78
#define USBSTS_PCD       (1 << 2)      // Port Change Detect
79
#define USBSTS_FLR       (1 << 3)      // Frame List Rollover
80
#define USBSTS_HSE       (1 << 4)      // Host System Error
81
#define USBSTS_IAA       (1 << 5)      // Interrupt on Async Advance
82
#define USBSTS_HALT      (1 << 12)     // HC Halted
83
#define USBSTS_REC       (1 << 13)     // Reclamation
84
#define USBSTS_PSS       (1 << 14)     // Periodic Schedule Status
85
#define USBSTS_ASS       (1 << 15)     // Asynchronous Schedule Status
86

    
87
/*
88
 *  Interrupt enable bits correspond to the interrupt active bits in USBSTS
89
 *  so no need to redefine here.
90
 */
91
#define USBINTR              OPREGBASE + 0x0008
92
#define USBINTR_MASK         0x0000003f
93

    
94
#define FRINDEX              OPREGBASE + 0x000c
95
#define CTRLDSSEGMENT        OPREGBASE + 0x0010
96
#define PERIODICLISTBASE     OPREGBASE + 0x0014
97
#define ASYNCLISTADDR        OPREGBASE + 0x0018
98
#define ASYNCLISTADDR_MASK   0xffffffe0
99

    
100
#define CONFIGFLAG           OPREGBASE + 0x0040
101

    
102
#define PORTSC               (OPREGBASE + 0x0044)
103
#define PORTSC_BEGIN         PORTSC
104
#define PORTSC_END           (PORTSC + 4 * NB_PORTS)
105
/*
106
 * Bits that are reserverd or are read-only are masked out of values
107
 * written to us by software
108
 */
109
#define PORTSC_RO_MASK       0x007021c5
110
#define PORTSC_RWC_MASK      0x0000002a
111
#define PORTSC_WKOC_E        (1 << 22)    // Wake on Over Current Enable
112
#define PORTSC_WKDS_E        (1 << 21)    // Wake on Disconnect Enable
113
#define PORTSC_WKCN_E        (1 << 20)    // Wake on Connect Enable
114
#define PORTSC_PTC           (15 << 16)   // Port Test Control
115
#define PORTSC_PTC_SH        16           // Port Test Control shift
116
#define PORTSC_PIC           (3 << 14)    // Port Indicator Control
117
#define PORTSC_PIC_SH        14           // Port Indicator Control Shift
118
#define PORTSC_POWNER        (1 << 13)    // Port Owner
119
#define PORTSC_PPOWER        (1 << 12)    // Port Power
120
#define PORTSC_LINESTAT      (3 << 10)    // Port Line Status
121
#define PORTSC_LINESTAT_SH   10           // Port Line Status Shift
122
#define PORTSC_PRESET        (1 << 8)     // Port Reset
123
#define PORTSC_SUSPEND       (1 << 7)     // Port Suspend
124
#define PORTSC_FPRES         (1 << 6)     // Force Port Resume
125
#define PORTSC_OCC           (1 << 5)     // Over Current Change
126
#define PORTSC_OCA           (1 << 4)     // Over Current Active
127
#define PORTSC_PEDC          (1 << 3)     // Port Enable/Disable Change
128
#define PORTSC_PED           (1 << 2)     // Port Enable/Disable
129
#define PORTSC_CSC           (1 << 1)     // Connect Status Change
130
#define PORTSC_CONNECT       (1 << 0)     // Current Connect Status
131

    
132
#define FRAME_TIMER_FREQ 1000
133
#define FRAME_TIMER_USEC (1000000 / FRAME_TIMER_FREQ)
134

    
135
#define NB_MAXINTRATE    8        // Max rate at which controller issues ints
136
#define NB_PORTS         4        // Number of downstream ports
137
#define BUFF_SIZE        5*4096   // Max bytes to transfer per transaction
138
#define MAX_ITERATIONS   20       // Max number of QH before we break the loop
139
#define MAX_QH           100      // Max allowable queue heads in a chain
140

    
141
/*  Internal periodic / asynchronous schedule state machine states
142
 */
143
typedef enum {
144
    EST_INACTIVE = 1000,
145
    EST_ACTIVE,
146
    EST_EXECUTING,
147
    EST_SLEEPING,
148
    /*  The following states are internal to the state machine function
149
    */
150
    EST_WAITLISTHEAD,
151
    EST_FETCHENTRY,
152
    EST_FETCHQH,
153
    EST_FETCHITD,
154
    EST_ADVANCEQUEUE,
155
    EST_FETCHQTD,
156
    EST_EXECUTE,
157
    EST_WRITEBACK,
158
    EST_HORIZONTALQH
159
} EHCI_STATES;
160

    
161
/* macros for accessing fields within next link pointer entry */
162
#define NLPTR_GET(x)             ((x) & 0xffffffe0)
163
#define NLPTR_TYPE_GET(x)        (((x) >> 1) & 3)
164
#define NLPTR_TBIT(x)            ((x) & 1)  // 1=invalid, 0=valid
165

    
166
/* link pointer types */
167
#define NLPTR_TYPE_ITD           0     // isoc xfer descriptor
168
#define NLPTR_TYPE_QH            1     // queue head
169
#define NLPTR_TYPE_STITD         2     // split xaction, isoc xfer descriptor
170
#define NLPTR_TYPE_FSTN          3     // frame span traversal node
171

    
172

    
173
/*  EHCI spec version 1.0 Section 3.3
174
 */
175
typedef struct EHCIitd {
176
    uint32_t next;
177

    
178
    uint32_t transact[8];
179
#define ITD_XACT_ACTIVE          (1 << 31)
180
#define ITD_XACT_DBERROR         (1 << 30)
181
#define ITD_XACT_BABBLE          (1 << 29)
182
#define ITD_XACT_XACTERR         (1 << 28)
183
#define ITD_XACT_LENGTH_MASK     0x0fff0000
184
#define ITD_XACT_LENGTH_SH       16
185
#define ITD_XACT_IOC             (1 << 15)
186
#define ITD_XACT_PGSEL_MASK      0x00007000
187
#define ITD_XACT_PGSEL_SH        12
188
#define ITD_XACT_OFFSET_MASK     0x00000fff
189

    
190
    uint32_t bufptr[7];
191
#define ITD_BUFPTR_MASK          0xfffff000
192
#define ITD_BUFPTR_SH            12
193
#define ITD_BUFPTR_EP_MASK       0x00000f00
194
#define ITD_BUFPTR_EP_SH         8
195
#define ITD_BUFPTR_DEVADDR_MASK  0x0000007f
196
#define ITD_BUFPTR_DEVADDR_SH    0
197
#define ITD_BUFPTR_DIRECTION     (1 << 11)
198
#define ITD_BUFPTR_MAXPKT_MASK   0x000007ff
199
#define ITD_BUFPTR_MAXPKT_SH     0
200
#define ITD_BUFPTR_MULT_MASK     0x00000003
201
} EHCIitd;
202

    
203
/*  EHCI spec version 1.0 Section 3.4
204
 */
205
typedef struct EHCIsitd {
206
    uint32_t next;                  // Standard next link pointer
207
    uint32_t epchar;
208
#define SITD_EPCHAR_IO              (1 << 31)
209
#define SITD_EPCHAR_PORTNUM_MASK    0x7f000000
210
#define SITD_EPCHAR_PORTNUM_SH      24
211
#define SITD_EPCHAR_HUBADD_MASK     0x007f0000
212
#define SITD_EPCHAR_HUBADDR_SH      16
213
#define SITD_EPCHAR_EPNUM_MASK      0x00000f00
214
#define SITD_EPCHAR_EPNUM_SH        8
215
#define SITD_EPCHAR_DEVADDR_MASK    0x0000007f
216

    
217
    uint32_t uframe;
218
#define SITD_UFRAME_CMASK_MASK      0x0000ff00
219
#define SITD_UFRAME_CMASK_SH        8
220
#define SITD_UFRAME_SMASK_MASK      0x000000ff
221

    
222
    uint32_t results;
223
#define SITD_RESULTS_IOC              (1 << 31)
224
#define SITD_RESULTS_PGSEL            (1 << 30)
225
#define SITD_RESULTS_TBYTES_MASK      0x03ff0000
226
#define SITD_RESULTS_TYBYTES_SH       16
227
#define SITD_RESULTS_CPROGMASK_MASK   0x0000ff00
228
#define SITD_RESULTS_CPROGMASK_SH     8
229
#define SITD_RESULTS_ACTIVE           (1 << 7)
230
#define SITD_RESULTS_ERR              (1 << 6)
231
#define SITD_RESULTS_DBERR            (1 << 5)
232
#define SITD_RESULTS_BABBLE           (1 << 4)
233
#define SITD_RESULTS_XACTERR          (1 << 3)
234
#define SITD_RESULTS_MISSEDUF         (1 << 2)
235
#define SITD_RESULTS_SPLITXSTATE      (1 << 1)
236

    
237
    uint32_t bufptr[2];
238
#define SITD_BUFPTR_MASK              0xfffff000
239
#define SITD_BUFPTR_CURROFF_MASK      0x00000fff
240
#define SITD_BUFPTR_TPOS_MASK         0x00000018
241
#define SITD_BUFPTR_TPOS_SH           3
242
#define SITD_BUFPTR_TCNT_MASK         0x00000007
243

    
244
    uint32_t backptr;                 // Standard next link pointer
245
} EHCIsitd;
246

    
247
/*  EHCI spec version 1.0 Section 3.5
248
 */
249
typedef struct EHCIqtd {
250
    uint32_t next;                    // Standard next link pointer
251
    uint32_t altnext;                 // Standard next link pointer
252
    uint32_t token;
253
#define QTD_TOKEN_DTOGGLE             (1 << 31)
254
#define QTD_TOKEN_TBYTES_MASK         0x7fff0000
255
#define QTD_TOKEN_TBYTES_SH           16
256
#define QTD_TOKEN_IOC                 (1 << 15)
257
#define QTD_TOKEN_CPAGE_MASK          0x00007000
258
#define QTD_TOKEN_CPAGE_SH            12
259
#define QTD_TOKEN_CERR_MASK           0x00000c00
260
#define QTD_TOKEN_CERR_SH             10
261
#define QTD_TOKEN_PID_MASK            0x00000300
262
#define QTD_TOKEN_PID_SH              8
263
#define QTD_TOKEN_ACTIVE              (1 << 7)
264
#define QTD_TOKEN_HALT                (1 << 6)
265
#define QTD_TOKEN_DBERR               (1 << 5)
266
#define QTD_TOKEN_BABBLE              (1 << 4)
267
#define QTD_TOKEN_XACTERR             (1 << 3)
268
#define QTD_TOKEN_MISSEDUF            (1 << 2)
269
#define QTD_TOKEN_SPLITXSTATE         (1 << 1)
270
#define QTD_TOKEN_PING                (1 << 0)
271

    
272
    uint32_t bufptr[5];               // Standard buffer pointer
273
#define QTD_BUFPTR_MASK               0xfffff000
274
} EHCIqtd;
275

    
276
/*  EHCI spec version 1.0 Section 3.6
277
 */
278
typedef struct EHCIqh {
279
    uint32_t next;                    // Standard next link pointer
280

    
281
    /* endpoint characteristics */
282
    uint32_t epchar;
283
#define QH_EPCHAR_RL_MASK             0xf0000000
284
#define QH_EPCHAR_RL_SH               28
285
#define QH_EPCHAR_C                   (1 << 27)
286
#define QH_EPCHAR_MPLEN_MASK          0x07FF0000
287
#define QH_EPCHAR_MPLEN_SH            16
288
#define QH_EPCHAR_H                   (1 << 15)
289
#define QH_EPCHAR_DTC                 (1 << 14)
290
#define QH_EPCHAR_EPS_MASK            0x00003000
291
#define QH_EPCHAR_EPS_SH              12
292
#define EHCI_QH_EPS_FULL              0
293
#define EHCI_QH_EPS_LOW               1
294
#define EHCI_QH_EPS_HIGH              2
295
#define EHCI_QH_EPS_RESERVED          3
296

    
297
#define QH_EPCHAR_EP_MASK             0x00000f00
298
#define QH_EPCHAR_EP_SH               8
299
#define QH_EPCHAR_I                   (1 << 7)
300
#define QH_EPCHAR_DEVADDR_MASK        0x0000007f
301
#define QH_EPCHAR_DEVADDR_SH          0
302

    
303
    /* endpoint capabilities */
304
    uint32_t epcap;
305
#define QH_EPCAP_MULT_MASK            0xc0000000
306
#define QH_EPCAP_MULT_SH              30
307
#define QH_EPCAP_PORTNUM_MASK         0x3f800000
308
#define QH_EPCAP_PORTNUM_SH           23
309
#define QH_EPCAP_HUBADDR_MASK         0x007f0000
310
#define QH_EPCAP_HUBADDR_SH           16
311
#define QH_EPCAP_CMASK_MASK           0x0000ff00
312
#define QH_EPCAP_CMASK_SH             8
313
#define QH_EPCAP_SMASK_MASK           0x000000ff
314
#define QH_EPCAP_SMASK_SH             0
315

    
316
    uint32_t current_qtd;             // Standard next link pointer
317
    uint32_t next_qtd;                // Standard next link pointer
318
    uint32_t altnext_qtd;
319
#define QH_ALTNEXT_NAKCNT_MASK        0x0000001e
320
#define QH_ALTNEXT_NAKCNT_SH          1
321

    
322
    uint32_t token;                   // Same as QTD token
323
    uint32_t bufptr[5];               // Standard buffer pointer
324
#define BUFPTR_CPROGMASK_MASK         0x000000ff
325
#define BUFPTR_FRAMETAG_MASK          0x0000001f
326
#define BUFPTR_SBYTES_MASK            0x00000fe0
327
#define BUFPTR_SBYTES_SH              5
328
} EHCIqh;
329

    
330
/*  EHCI spec version 1.0 Section 3.7
331
 */
332
typedef struct EHCIfstn {
333
    uint32_t next;                    // Standard next link pointer
334
    uint32_t backptr;                 // Standard next link pointer
335
} EHCIfstn;
336

    
337
typedef struct EHCIQueue EHCIQueue;
338
typedef struct EHCIState EHCIState;
339

    
340
enum async_state {
341
    EHCI_ASYNC_NONE = 0,
342
    EHCI_ASYNC_INFLIGHT,
343
    EHCI_ASYNC_FINISHED,
344
};
345

    
346
struct EHCIQueue {
347
    EHCIState *ehci;
348
    QTAILQ_ENTRY(EHCIQueue) next;
349
    bool async_schedule;
350
    uint32_t seen, ts;
351

    
352
    /* cached data from guest - needs to be flushed
353
     * when guest removes an entry (doorbell, handshake sequence)
354
     */
355
    EHCIqh qh;             // copy of current QH (being worked on)
356
    uint32_t qhaddr;       // address QH read from
357
    EHCIqtd qtd;           // copy of current QTD (being worked on)
358
    uint32_t qtdaddr;      // address QTD read from
359

    
360
    USBPacket packet;
361
    uint8_t buffer[BUFF_SIZE];
362
    int pid;
363
    uint32_t tbytes;
364
    enum async_state async;
365
    int usb_status;
366
};
367

    
368
struct EHCIState {
369
    PCIDevice dev;
370
    USBBus bus;
371
    qemu_irq irq;
372
    target_phys_addr_t mem_base;
373
    int mem;
374
    int num_ports;
375
    /*
376
     *  EHCI spec version 1.0 Section 2.3
377
     *  Host Controller Operational Registers
378
     */
379
    union {
380
        uint8_t mmio[MMIO_SIZE];
381
        struct {
382
            uint8_t cap[OPREGBASE];
383
            uint32_t usbcmd;
384
            uint32_t usbsts;
385
            uint32_t usbintr;
386
            uint32_t frindex;
387
            uint32_t ctrldssegment;
388
            uint32_t periodiclistbase;
389
            uint32_t asynclistaddr;
390
            uint32_t notused[9];
391
            uint32_t configflag;
392
            uint32_t portsc[NB_PORTS];
393
        };
394
    };
395

    
396
    /*
397
     *  Internal states, shadow registers, etc
398
     */
399
    uint32_t sofv;
400
    QEMUTimer *frame_timer;
401
    int attach_poll_counter;
402
    int astate;                        // Current state in asynchronous schedule
403
    int pstate;                        // Current state in periodic schedule
404
    USBPort ports[NB_PORTS];
405
    uint32_t usbsts_pending;
406
    QTAILQ_HEAD(, EHCIQueue) queues;
407

    
408
    uint32_t a_fetch_addr;   // which address to look at next
409
    uint32_t p_fetch_addr;   // which address to look at next
410

    
411
    USBPacket ipacket;
412
    uint8_t ibuffer[BUFF_SIZE];
413
    int isoch_pause;
414

    
415
    uint32_t last_run_usec;
416
    uint32_t frame_end_usec;
417
};
418

    
419
#define SET_LAST_RUN_CLOCK(s) \
420
    (s)->last_run_usec = qemu_get_clock_ns(vm_clock) / 1000;
421

    
422
/* nifty macros from Arnon's EHCI version  */
423
#define get_field(data, field) \
424
    (((data) & field##_MASK) >> field##_SH)
425

    
426
#define set_field(data, newval, field) do { \
427
    uint32_t val = *data; \
428
    val &= ~ field##_MASK; \
429
    val |= ((newval) << field##_SH) & field##_MASK; \
430
    *data = val; \
431
    } while(0)
432

    
433
static const char *ehci_state_names[] = {
434
    [ EST_INACTIVE ]     = "INACTIVE",
435
    [ EST_ACTIVE ]       = "ACTIVE",
436
    [ EST_EXECUTING ]    = "EXECUTING",
437
    [ EST_SLEEPING ]     = "SLEEPING",
438
    [ EST_WAITLISTHEAD ] = "WAITLISTHEAD",
439
    [ EST_FETCHENTRY ]   = "FETCH ENTRY",
440
    [ EST_FETCHQH ]      = "FETCH QH",
441
    [ EST_FETCHITD ]     = "FETCH ITD",
442
    [ EST_ADVANCEQUEUE ] = "ADVANCEQUEUE",
443
    [ EST_FETCHQTD ]     = "FETCH QTD",
444
    [ EST_EXECUTE ]      = "EXECUTE",
445
    [ EST_WRITEBACK ]    = "WRITEBACK",
446
    [ EST_HORIZONTALQH ] = "HORIZONTALQH",
447
};
448

    
449
static const char *ehci_mmio_names[] = {
450
    [ CAPLENGTH ]        = "CAPLENGTH",
451
    [ HCIVERSION ]       = "HCIVERSION",
452
    [ HCSPARAMS ]        = "HCSPARAMS",
453
    [ HCCPARAMS ]        = "HCCPARAMS",
454
    [ USBCMD ]           = "USBCMD",
455
    [ USBSTS ]           = "USBSTS",
456
    [ USBINTR ]          = "USBINTR",
457
    [ FRINDEX ]          = "FRINDEX",
458
    [ PERIODICLISTBASE ] = "P-LIST BASE",
459
    [ ASYNCLISTADDR ]    = "A-LIST ADDR",
460
    [ PORTSC_BEGIN ]     = "PORTSC #0",
461
    [ PORTSC_BEGIN + 4]  = "PORTSC #1",
462
    [ PORTSC_BEGIN + 8]  = "PORTSC #2",
463
    [ PORTSC_BEGIN + 12] = "PORTSC #3",
464
    [ CONFIGFLAG ]       = "CONFIGFLAG",
465
};
466

    
467
static const char *nr2str(const char **n, size_t len, uint32_t nr)
468
{
469
    if (nr < len && n[nr] != NULL) {
470
        return n[nr];
471
    } else {
472
        return "unknown";
473
    }
474
}
475

    
476
static const char *state2str(uint32_t state)
477
{
478
    return nr2str(ehci_state_names, ARRAY_SIZE(ehci_state_names), state);
479
}
480

    
481
static const char *addr2str(target_phys_addr_t addr)
482
{
483
    return nr2str(ehci_mmio_names, ARRAY_SIZE(ehci_mmio_names), addr);
484
}
485

    
486
static void ehci_trace_usbsts(uint32_t mask, int state)
487
{
488
    /* interrupts */
489
    if (mask & USBSTS_INT) {
490
        trace_usb_ehci_usbsts("INT", state);
491
    }
492
    if (mask & USBSTS_ERRINT) {
493
        trace_usb_ehci_usbsts("ERRINT", state);
494
    }
495
    if (mask & USBSTS_PCD) {
496
        trace_usb_ehci_usbsts("PCD", state);
497
    }
498
    if (mask & USBSTS_FLR) {
499
        trace_usb_ehci_usbsts("FLR", state);
500
    }
501
    if (mask & USBSTS_HSE) {
502
        trace_usb_ehci_usbsts("HSE", state);
503
    }
504
    if (mask & USBSTS_IAA) {
505
        trace_usb_ehci_usbsts("IAA", state);
506
    }
507

    
508
    /* status */
509
    if (mask & USBSTS_HALT) {
510
        trace_usb_ehci_usbsts("HALT", state);
511
    }
512
    if (mask & USBSTS_REC) {
513
        trace_usb_ehci_usbsts("REC", state);
514
    }
515
    if (mask & USBSTS_PSS) {
516
        trace_usb_ehci_usbsts("PSS", state);
517
    }
518
    if (mask & USBSTS_ASS) {
519
        trace_usb_ehci_usbsts("ASS", state);
520
    }
521
}
522

    
523
static inline void ehci_set_usbsts(EHCIState *s, int mask)
524
{
525
    if ((s->usbsts & mask) == mask) {
526
        return;
527
    }
528
    ehci_trace_usbsts(mask, 1);
529
    s->usbsts |= mask;
530
}
531

    
532
static inline void ehci_clear_usbsts(EHCIState *s, int mask)
533
{
534
    if ((s->usbsts & mask) == 0) {
535
        return;
536
    }
537
    ehci_trace_usbsts(mask, 0);
538
    s->usbsts &= ~mask;
539
}
540

    
541
static inline void ehci_set_interrupt(EHCIState *s, int intr)
542
{
543
    int level = 0;
544

    
545
    // TODO honour interrupt threshold requests
546

    
547
    ehci_set_usbsts(s, intr);
548

    
549
    if ((s->usbsts & USBINTR_MASK) & s->usbintr) {
550
        level = 1;
551
    }
552

    
553
    qemu_set_irq(s->irq, level);
554
}
555

    
556
static inline void ehci_record_interrupt(EHCIState *s, int intr)
557
{
558
    s->usbsts_pending |= intr;
559
}
560

    
561
static inline void ehci_commit_interrupt(EHCIState *s)
562
{
563
    if (!s->usbsts_pending) {
564
        return;
565
    }
566
    ehci_set_interrupt(s, s->usbsts_pending);
567
    s->usbsts_pending = 0;
568
}
569

    
570
static void ehci_set_state(EHCIState *s, int async, int state)
571
{
572
    if (async) {
573
        trace_usb_ehci_state("async", state2str(state));
574
        s->astate = state;
575
    } else {
576
        trace_usb_ehci_state("periodic", state2str(state));
577
        s->pstate = state;
578
    }
579
}
580

    
581
static int ehci_get_state(EHCIState *s, int async)
582
{
583
    return async ? s->astate : s->pstate;
584
}
585

    
586
static void ehci_set_fetch_addr(EHCIState *s, int async, uint32_t addr)
587
{
588
    if (async) {
589
        s->a_fetch_addr = addr;
590
    } else {
591
        s->p_fetch_addr = addr;
592
    }
593
}
594

    
595
static int ehci_get_fetch_addr(EHCIState *s, int async)
596
{
597
    return async ? s->a_fetch_addr : s->p_fetch_addr;
598
}
599

    
600
static void ehci_trace_qh(EHCIQueue *q, target_phys_addr_t addr, EHCIqh *qh)
601
{
602
    trace_usb_ehci_qh(q, addr, qh->next,
603
                      qh->current_qtd, qh->next_qtd, qh->altnext_qtd,
604
                      get_field(qh->epchar, QH_EPCHAR_RL),
605
                      get_field(qh->epchar, QH_EPCHAR_MPLEN),
606
                      get_field(qh->epchar, QH_EPCHAR_EPS),
607
                      get_field(qh->epchar, QH_EPCHAR_EP),
608
                      get_field(qh->epchar, QH_EPCHAR_DEVADDR),
609
                      (bool)(qh->epchar & QH_EPCHAR_C),
610
                      (bool)(qh->epchar & QH_EPCHAR_H),
611
                      (bool)(qh->epchar & QH_EPCHAR_DTC),
612
                      (bool)(qh->epchar & QH_EPCHAR_I));
613
}
614

    
615
static void ehci_trace_qtd(EHCIQueue *q, target_phys_addr_t addr, EHCIqtd *qtd)
616
{
617
    trace_usb_ehci_qtd(q, addr, qtd->next, qtd->altnext,
618
                       get_field(qtd->token, QTD_TOKEN_TBYTES),
619
                       get_field(qtd->token, QTD_TOKEN_CPAGE),
620
                       get_field(qtd->token, QTD_TOKEN_CERR),
621
                       get_field(qtd->token, QTD_TOKEN_PID),
622
                       (bool)(qtd->token & QTD_TOKEN_IOC),
623
                       (bool)(qtd->token & QTD_TOKEN_ACTIVE),
624
                       (bool)(qtd->token & QTD_TOKEN_HALT),
625
                       (bool)(qtd->token & QTD_TOKEN_BABBLE),
626
                       (bool)(qtd->token & QTD_TOKEN_XACTERR));
627
}
628

    
629
static void ehci_trace_itd(EHCIState *s, target_phys_addr_t addr, EHCIitd *itd)
630
{
631
    trace_usb_ehci_itd(addr, itd->next);
632
}
633

    
634
/* queue management */
635

    
636
static EHCIQueue *ehci_alloc_queue(EHCIState *ehci, int async)
637
{
638
    EHCIQueue *q;
639

    
640
    q = qemu_mallocz(sizeof(*q));
641
    q->ehci = ehci;
642
    q->async_schedule = async;
643
    QTAILQ_INSERT_HEAD(&ehci->queues, q, next);
644
    trace_usb_ehci_queue_action(q, "alloc");
645
    return q;
646
}
647

    
648
static void ehci_free_queue(EHCIQueue *q)
649
{
650
    trace_usb_ehci_queue_action(q, "free");
651
    if (q->async == EHCI_ASYNC_INFLIGHT) {
652
        usb_cancel_packet(&q->packet);
653
    }
654
    QTAILQ_REMOVE(&q->ehci->queues, q, next);
655
    qemu_free(q);
656
}
657

    
658
static EHCIQueue *ehci_find_queue_by_qh(EHCIState *ehci, uint32_t addr)
659
{
660
    EHCIQueue *q;
661

    
662
    QTAILQ_FOREACH(q, &ehci->queues, next) {
663
        if (addr == q->qhaddr) {
664
            return q;
665
        }
666
    }
667
    return NULL;
668
}
669

    
670
static void ehci_queues_rip_unused(EHCIState *ehci)
671
{
672
    EHCIQueue *q, *tmp;
673

    
674
    QTAILQ_FOREACH_SAFE(q, &ehci->queues, next, tmp) {
675
        if (q->seen) {
676
            q->seen = 0;
677
            q->ts = ehci->last_run_usec;
678
            continue;
679
        }
680
        if (ehci->last_run_usec < q->ts + 250000) {
681
            /* allow 0.25 sec idle */
682
            continue;
683
        }
684
        ehci_free_queue(q);
685
    }
686
}
687

    
688
static void ehci_queues_rip_all(EHCIState *ehci)
689
{
690
    EHCIQueue *q, *tmp;
691

    
692
    QTAILQ_FOREACH_SAFE(q, &ehci->queues, next, tmp) {
693
        ehci_free_queue(q);
694
    }
695
}
696

    
697
/* Attach or detach a device on root hub */
698

    
699
static void ehci_attach(USBPort *port)
700
{
701
    EHCIState *s = port->opaque;
702
    uint32_t *portsc = &s->portsc[port->index];
703

    
704
    trace_usb_ehci_port_attach(port->index, port->dev->product_desc);
705

    
706
    *portsc |= PORTSC_CONNECT;
707
    *portsc |= PORTSC_CSC;
708

    
709
    /*
710
     *  If a high speed device is attached then we own this port(indicated
711
     *  by zero in the PORTSC_POWNER bit field) so set the status bit
712
     *  and set an interrupt if enabled.
713
     */
714
    if ( !(*portsc & PORTSC_POWNER)) {
715
        ehci_set_interrupt(s, USBSTS_PCD);
716
    }
717
}
718

    
719
static void ehci_detach(USBPort *port)
720
{
721
    EHCIState *s = port->opaque;
722
    uint32_t *portsc = &s->portsc[port->index];
723

    
724
    trace_usb_ehci_port_detach(port->index);
725

    
726
    *portsc &= ~PORTSC_CONNECT;
727
    *portsc |= PORTSC_CSC;
728

    
729
    /*
730
     *  If a high speed device is attached then we own this port(indicated
731
     *  by zero in the PORTSC_POWNER bit field) so set the status bit
732
     *  and set an interrupt if enabled.
733
     */
734
    if ( !(*portsc & PORTSC_POWNER)) {
735
        ehci_set_interrupt(s, USBSTS_PCD);
736
    }
737
}
738

    
739
/* 4.1 host controller initialization */
740
static void ehci_reset(void *opaque)
741
{
742
    EHCIState *s = opaque;
743
    int i;
744

    
745
    trace_usb_ehci_reset();
746

    
747
    memset(&s->mmio[OPREGBASE], 0x00, MMIO_SIZE - OPREGBASE);
748

    
749
    s->usbcmd = NB_MAXINTRATE << USBCMD_ITC_SH;
750
    s->usbsts = USBSTS_HALT;
751

    
752
    s->astate = EST_INACTIVE;
753
    s->pstate = EST_INACTIVE;
754
    s->isoch_pause = -1;
755
    s->attach_poll_counter = 0;
756

    
757
    for(i = 0; i < NB_PORTS; i++) {
758
        s->portsc[i] = PORTSC_POWNER | PORTSC_PPOWER;
759

    
760
        if (s->ports[i].dev) {
761
            usb_attach(&s->ports[i], s->ports[i].dev);
762
        }
763
    }
764
    ehci_queues_rip_all(s);
765
}
766

    
767
static uint32_t ehci_mem_readb(void *ptr, target_phys_addr_t addr)
768
{
769
    EHCIState *s = ptr;
770
    uint32_t val;
771

    
772
    val = s->mmio[addr];
773

    
774
    return val;
775
}
776

    
777
static uint32_t ehci_mem_readw(void *ptr, target_phys_addr_t addr)
778
{
779
    EHCIState *s = ptr;
780
    uint32_t val;
781

    
782
    val = s->mmio[addr] | (s->mmio[addr+1] << 8);
783

    
784
    return val;
785
}
786

    
787
static uint32_t ehci_mem_readl(void *ptr, target_phys_addr_t addr)
788
{
789
    EHCIState *s = ptr;
790
    uint32_t val;
791

    
792
    val = s->mmio[addr] | (s->mmio[addr+1] << 8) |
793
          (s->mmio[addr+2] << 16) | (s->mmio[addr+3] << 24);
794

    
795
    trace_usb_ehci_mmio_readl(addr, addr2str(addr), val);
796
    return val;
797
}
798

    
799
static void ehci_mem_writeb(void *ptr, target_phys_addr_t addr, uint32_t val)
800
{
801
    fprintf(stderr, "EHCI doesn't handle byte writes to MMIO\n");
802
    exit(1);
803
}
804

    
805
static void ehci_mem_writew(void *ptr, target_phys_addr_t addr, uint32_t val)
806
{
807
    fprintf(stderr, "EHCI doesn't handle 16-bit writes to MMIO\n");
808
    exit(1);
809
}
810

    
811
static void handle_port_status_write(EHCIState *s, int port, uint32_t val)
812
{
813
    uint32_t *portsc = &s->portsc[port];
814
    int rwc;
815
    USBDevice *dev = s->ports[port].dev;
816

    
817
    rwc = val & PORTSC_RWC_MASK;
818
    val &= PORTSC_RO_MASK;
819

    
820
    // handle_read_write_clear(&val, portsc, PORTSC_PEDC | PORTSC_CSC);
821

    
822
    *portsc &= ~rwc;
823

    
824
    if ((val & PORTSC_PRESET) && !(*portsc & PORTSC_PRESET)) {
825
        trace_usb_ehci_port_reset(port, 1);
826
    }
827

    
828
    if (!(val & PORTSC_PRESET) &&(*portsc & PORTSC_PRESET)) {
829
        trace_usb_ehci_port_reset(port, 0);
830
        usb_attach(&s->ports[port], dev);
831

    
832
        // TODO how to handle reset of ports with no device
833
        if (dev) {
834
            usb_send_msg(dev, USB_MSG_RESET);
835
        }
836

    
837
        if (s->ports[port].dev) {
838
            *portsc &= ~PORTSC_CSC;
839
        }
840

    
841
        /*  Table 2.16 Set the enable bit(and enable bit change) to indicate
842
         *  to SW that this port has a high speed device attached
843
         *
844
         *  TODO - when to disable?
845
         */
846
        val |= PORTSC_PED;
847
        val |= PORTSC_PEDC;
848
    }
849

    
850
    *portsc &= ~PORTSC_RO_MASK;
851
    *portsc |= val;
852
}
853

    
854
static void ehci_mem_writel(void *ptr, target_phys_addr_t addr, uint32_t val)
855
{
856
    EHCIState *s = ptr;
857
    uint32_t *mmio = (uint32_t *)(&s->mmio[addr]);
858
    uint32_t old = *mmio;
859
    int i;
860

    
861
    trace_usb_ehci_mmio_writel(addr, addr2str(addr), val);
862

    
863
    /* Only aligned reads are allowed on OHCI */
864
    if (addr & 3) {
865
        fprintf(stderr, "usb-ehci: Mis-aligned write to addr 0x"
866
                TARGET_FMT_plx "\n", addr);
867
        return;
868
    }
869

    
870
    if (addr >= PORTSC && addr < PORTSC + 4 * NB_PORTS) {
871
        handle_port_status_write(s, (addr-PORTSC)/4, val);
872
        trace_usb_ehci_mmio_change(addr, addr2str(addr), *mmio, old);
873
        return;
874
    }
875

    
876
    if (addr < OPREGBASE) {
877
        fprintf(stderr, "usb-ehci: write attempt to read-only register"
878
                TARGET_FMT_plx "\n", addr);
879
        return;
880
    }
881

    
882

    
883
    /* Do any register specific pre-write processing here.  */
884
    switch(addr) {
885
    case USBCMD:
886
        if ((val & USBCMD_RUNSTOP) && !(s->usbcmd & USBCMD_RUNSTOP)) {
887
            qemu_mod_timer(s->frame_timer, qemu_get_clock_ns(vm_clock));
888
            SET_LAST_RUN_CLOCK(s);
889
            ehci_clear_usbsts(s, USBSTS_HALT);
890
        }
891

    
892
        if (!(val & USBCMD_RUNSTOP) && (s->usbcmd & USBCMD_RUNSTOP)) {
893
            qemu_del_timer(s->frame_timer);
894
            // TODO - should finish out some stuff before setting halt
895
            ehci_set_usbsts(s, USBSTS_HALT);
896
        }
897

    
898
        if (val & USBCMD_HCRESET) {
899
            ehci_reset(s);
900
            val &= ~USBCMD_HCRESET;
901
        }
902

    
903
        /* not supporting dynamic frame list size at the moment */
904
        if ((val & USBCMD_FLS) && !(s->usbcmd & USBCMD_FLS)) {
905
            fprintf(stderr, "attempt to set frame list size -- value %d\n",
906
                    val & USBCMD_FLS);
907
            val &= ~USBCMD_FLS;
908
        }
909
        break;
910

    
911
    case USBSTS:
912
        val &= USBSTS_RO_MASK;              // bits 6 thru 31 are RO
913
        ehci_clear_usbsts(s, val);          // bits 0 thru 5 are R/WC
914
        val = s->usbsts;
915
        ehci_set_interrupt(s, 0);
916
        break;
917

    
918
    case USBINTR:
919
        val &= USBINTR_MASK;
920
        break;
921

    
922
    case FRINDEX:
923
        s->sofv = val >> 3;
924
        break;
925

    
926
    case CONFIGFLAG:
927
        val &= 0x1;
928
        if (val) {
929
            for(i = 0; i < NB_PORTS; i++)
930
                s->portsc[i] &= ~PORTSC_POWNER;
931
        }
932
        break;
933

    
934
    case PERIODICLISTBASE:
935
        if ((s->usbcmd & USBCMD_PSE) && (s->usbcmd & USBCMD_RUNSTOP)) {
936
            fprintf(stderr,
937
              "ehci: PERIODIC list base register set while periodic schedule\n"
938
              "      is enabled and HC is enabled\n");
939
        }
940
        break;
941

    
942
    case ASYNCLISTADDR:
943
        if ((s->usbcmd & USBCMD_ASE) && (s->usbcmd & USBCMD_RUNSTOP)) {
944
            fprintf(stderr,
945
              "ehci: ASYNC list address register set while async schedule\n"
946
              "      is enabled and HC is enabled\n");
947
        }
948
        break;
949
    }
950

    
951
    *mmio = val;
952
    trace_usb_ehci_mmio_change(addr, addr2str(addr), *mmio, old);
953
}
954

    
955

    
956
// TODO : Put in common header file, duplication from usb-ohci.c
957

    
958
/* Get an array of dwords from main memory */
959
static inline int get_dwords(uint32_t addr, uint32_t *buf, int num)
960
{
961
    int i;
962

    
963
    for(i = 0; i < num; i++, buf++, addr += sizeof(*buf)) {
964
        cpu_physical_memory_rw(addr,(uint8_t *)buf, sizeof(*buf), 0);
965
        *buf = le32_to_cpu(*buf);
966
    }
967

    
968
    return 1;
969
}
970

    
971
/* Put an array of dwords in to main memory */
972
static inline int put_dwords(uint32_t addr, uint32_t *buf, int num)
973
{
974
    int i;
975

    
976
    for(i = 0; i < num; i++, buf++, addr += sizeof(*buf)) {
977
        uint32_t tmp = cpu_to_le32(*buf);
978
        cpu_physical_memory_rw(addr,(uint8_t *)&tmp, sizeof(tmp), 1);
979
    }
980

    
981
    return 1;
982
}
983

    
984
// 4.10.2
985

    
986
static int ehci_qh_do_overlay(EHCIQueue *q)
987
{
988
    int i;
989
    int dtoggle;
990
    int ping;
991
    int eps;
992
    int reload;
993

    
994
    // remember values in fields to preserve in qh after overlay
995

    
996
    dtoggle = q->qh.token & QTD_TOKEN_DTOGGLE;
997
    ping    = q->qh.token & QTD_TOKEN_PING;
998

    
999
    q->qh.current_qtd = q->qtdaddr;
1000
    q->qh.next_qtd    = q->qtd.next;
1001
    q->qh.altnext_qtd = q->qtd.altnext;
1002
    q->qh.token       = q->qtd.token;
1003

    
1004

    
1005
    eps = get_field(q->qh.epchar, QH_EPCHAR_EPS);
1006
    if (eps == EHCI_QH_EPS_HIGH) {
1007
        q->qh.token &= ~QTD_TOKEN_PING;
1008
        q->qh.token |= ping;
1009
    }
1010

    
1011
    reload = get_field(q->qh.epchar, QH_EPCHAR_RL);
1012
    set_field(&q->qh.altnext_qtd, reload, QH_ALTNEXT_NAKCNT);
1013

    
1014
    for (i = 0; i < 5; i++) {
1015
        q->qh.bufptr[i] = q->qtd.bufptr[i];
1016
    }
1017

    
1018
    if (!(q->qh.epchar & QH_EPCHAR_DTC)) {
1019
        // preserve QH DT bit
1020
        q->qh.token &= ~QTD_TOKEN_DTOGGLE;
1021
        q->qh.token |= dtoggle;
1022
    }
1023

    
1024
    q->qh.bufptr[1] &= ~BUFPTR_CPROGMASK_MASK;
1025
    q->qh.bufptr[2] &= ~BUFPTR_FRAMETAG_MASK;
1026

    
1027
    put_dwords(NLPTR_GET(q->qhaddr), (uint32_t *) &q->qh, sizeof(EHCIqh) >> 2);
1028

    
1029
    return 0;
1030
}
1031

    
1032
static int ehci_buffer_rw(EHCIQueue *q, int bytes, int rw)
1033
{
1034
    int bufpos = 0;
1035
    int cpage, offset;
1036
    uint32_t head;
1037
    uint32_t tail;
1038

    
1039

    
1040
    if (!bytes) {
1041
        return 0;
1042
    }
1043

    
1044
    cpage = get_field(q->qh.token, QTD_TOKEN_CPAGE);
1045
    if (cpage > 4) {
1046
        fprintf(stderr, "cpage out of range (%d)\n", cpage);
1047
        return USB_RET_PROCERR;
1048
    }
1049

    
1050
    offset = q->qh.bufptr[0] & ~QTD_BUFPTR_MASK;
1051

    
1052
    do {
1053
        /* start and end of this page */
1054
        head = q->qh.bufptr[cpage] & QTD_BUFPTR_MASK;
1055
        tail = head + ~QTD_BUFPTR_MASK + 1;
1056
        /* add offset into page */
1057
        head |= offset;
1058

    
1059
        if (bytes <= (tail - head)) {
1060
            tail = head + bytes;
1061
        }
1062

    
1063
        trace_usb_ehci_data(rw, cpage, offset, head, tail-head, bufpos);
1064
        cpu_physical_memory_rw(head, q->buffer + bufpos, tail - head, rw);
1065

    
1066
        bufpos += (tail - head);
1067
        offset += (tail - head);
1068
        bytes -= (tail - head);
1069

    
1070
        if (bytes > 0) {
1071
            cpage++;
1072
            offset = 0;
1073
        }
1074
    } while (bytes > 0);
1075

    
1076
    /* save cpage */
1077
    set_field(&q->qh.token, cpage, QTD_TOKEN_CPAGE);
1078

    
1079
    /* save offset into cpage */
1080
    q->qh.bufptr[0] &= QTD_BUFPTR_MASK;
1081
    q->qh.bufptr[0] |= offset;
1082

    
1083
    return 0;
1084
}
1085

    
1086
static void ehci_async_complete_packet(USBDevice *dev, USBPacket *packet)
1087
{
1088
    EHCIQueue *q = container_of(packet, EHCIQueue, packet);
1089

    
1090
    trace_usb_ehci_queue_action(q, "wakeup");
1091
    assert(q->async == EHCI_ASYNC_INFLIGHT);
1092
    q->async = EHCI_ASYNC_FINISHED;
1093
    q->usb_status = packet->len;
1094
}
1095

    
1096
static void ehci_execute_complete(EHCIQueue *q)
1097
{
1098
    int c_err, reload;
1099

    
1100
    assert(q->async != EHCI_ASYNC_INFLIGHT);
1101
    q->async = EHCI_ASYNC_NONE;
1102

    
1103
    DPRINTF("execute_complete: qhaddr 0x%x, next %x, qtdaddr 0x%x, status %d\n",
1104
            q->qhaddr, q->qh.next, q->qtdaddr, q->usb_status);
1105

    
1106
    if (q->usb_status < 0) {
1107
err:
1108
        /* TO-DO: put this is in a function that can be invoked below as well */
1109
        c_err = get_field(q->qh.token, QTD_TOKEN_CERR);
1110
        c_err--;
1111
        set_field(&q->qh.token, c_err, QTD_TOKEN_CERR);
1112

    
1113
        switch(q->usb_status) {
1114
        case USB_RET_NODEV:
1115
            q->qh.token |= (QTD_TOKEN_HALT | QTD_TOKEN_XACTERR);
1116
            ehci_record_interrupt(q->ehci, USBSTS_ERRINT);
1117
            break;
1118
        case USB_RET_STALL:
1119
            q->qh.token |= QTD_TOKEN_HALT;
1120
            ehci_record_interrupt(q->ehci, USBSTS_ERRINT);
1121
            break;
1122
        case USB_RET_NAK:
1123
            /* 4.10.3 */
1124
            reload = get_field(q->qh.epchar, QH_EPCHAR_RL);
1125
            if ((q->pid == USB_TOKEN_IN) && reload) {
1126
                int nakcnt = get_field(q->qh.altnext_qtd, QH_ALTNEXT_NAKCNT);
1127
                nakcnt--;
1128
                set_field(&q->qh.altnext_qtd, nakcnt, QH_ALTNEXT_NAKCNT);
1129
            } else if (!reload) {
1130
                return;
1131
            }
1132
            break;
1133
        case USB_RET_BABBLE:
1134
            q->qh.token |= (QTD_TOKEN_HALT | QTD_TOKEN_BABBLE);
1135
            ehci_record_interrupt(q->ehci, USBSTS_ERRINT);
1136
            break;
1137
        default:
1138
            /* should not be triggerable */
1139
            fprintf(stderr, "USB invalid response %d to handle\n", q->usb_status);
1140
            assert(0);
1141
            break;
1142
        }
1143
    } else {
1144
        // DPRINTF("Short packet condition\n");
1145
        // TODO check 4.12 for splits
1146

    
1147
        if ((q->usb_status > q->tbytes) && (q->pid == USB_TOKEN_IN)) {
1148
            q->usb_status = USB_RET_BABBLE;
1149
            goto err;
1150
        }
1151

    
1152
        if (q->tbytes && q->pid == USB_TOKEN_IN) {
1153
            if (ehci_buffer_rw(q, q->usb_status, 1) != 0) {
1154
                q->usb_status = USB_RET_PROCERR;
1155
                return;
1156
            }
1157
            q->tbytes -= q->usb_status;
1158
        } else {
1159
            q->tbytes = 0;
1160
        }
1161

    
1162
        DPRINTF("updating tbytes to %d\n", q->tbytes);
1163
        set_field(&q->qh.token, q->tbytes, QTD_TOKEN_TBYTES);
1164
    }
1165

    
1166
    q->qh.token ^= QTD_TOKEN_DTOGGLE;
1167
    q->qh.token &= ~QTD_TOKEN_ACTIVE;
1168

    
1169
    if ((q->usb_status >= 0) && (q->qh.token & QTD_TOKEN_IOC)) {
1170
        ehci_record_interrupt(q->ehci, USBSTS_INT);
1171
    }
1172
}
1173

    
1174
// 4.10.3
1175

    
1176
static int ehci_execute(EHCIQueue *q)
1177
{
1178
    USBPort *port;
1179
    USBDevice *dev;
1180
    int ret;
1181
    int i;
1182
    int endp;
1183
    int devadr;
1184

    
1185
    if ( !(q->qh.token & QTD_TOKEN_ACTIVE)) {
1186
        fprintf(stderr, "Attempting to execute inactive QH\n");
1187
        return USB_RET_PROCERR;
1188
    }
1189

    
1190
    q->tbytes = (q->qh.token & QTD_TOKEN_TBYTES_MASK) >> QTD_TOKEN_TBYTES_SH;
1191
    if (q->tbytes > BUFF_SIZE) {
1192
        fprintf(stderr, "Request for more bytes than allowed\n");
1193
        return USB_RET_PROCERR;
1194
    }
1195

    
1196
    q->pid = (q->qh.token & QTD_TOKEN_PID_MASK) >> QTD_TOKEN_PID_SH;
1197
    switch(q->pid) {
1198
        case 0: q->pid = USB_TOKEN_OUT; break;
1199
        case 1: q->pid = USB_TOKEN_IN; break;
1200
        case 2: q->pid = USB_TOKEN_SETUP; break;
1201
        default: fprintf(stderr, "bad token\n"); break;
1202
    }
1203

    
1204
    if ((q->tbytes && q->pid != USB_TOKEN_IN) &&
1205
        (ehci_buffer_rw(q, q->tbytes, 0) != 0)) {
1206
        return USB_RET_PROCERR;
1207
    }
1208

    
1209
    endp = get_field(q->qh.epchar, QH_EPCHAR_EP);
1210
    devadr = get_field(q->qh.epchar, QH_EPCHAR_DEVADDR);
1211

    
1212
    ret = USB_RET_NODEV;
1213

    
1214
    // TO-DO: associating device with ehci port
1215
    for(i = 0; i < NB_PORTS; i++) {
1216
        port = &q->ehci->ports[i];
1217
        dev = port->dev;
1218

    
1219
        // TODO sometime we will also need to check if we are the port owner
1220

    
1221
        if (!(q->ehci->portsc[i] &(PORTSC_CONNECT))) {
1222
            DPRINTF("Port %d, no exec, not connected(%08X)\n",
1223
                    i, q->ehci->portsc[i]);
1224
            continue;
1225
        }
1226

    
1227
        q->packet.pid = q->pid;
1228
        q->packet.devaddr = devadr;
1229
        q->packet.devep = endp;
1230
        q->packet.data = q->buffer;
1231
        q->packet.len = q->tbytes;
1232

    
1233
        ret = usb_handle_packet(dev, &q->packet);
1234

    
1235
        DPRINTF("submit: qh %x next %x qtd %x pid %x len %d (total %d) endp %x ret %d\n",
1236
                q->qhaddr, q->qh.next, q->qtdaddr, q->pid,
1237
                q->packet.len, q->tbytes, endp, ret);
1238

    
1239
        if (ret != USB_RET_NODEV) {
1240
            break;
1241
        }
1242
    }
1243

    
1244
    if (ret > BUFF_SIZE) {
1245
        fprintf(stderr, "ret from usb_handle_packet > BUFF_SIZE\n");
1246
        return USB_RET_PROCERR;
1247
    }
1248

    
1249
    return ret;
1250
}
1251

    
1252
/*  4.7.2
1253
 */
1254

    
1255
static int ehci_process_itd(EHCIState *ehci,
1256
                            EHCIitd *itd)
1257
{
1258
    USBPort *port;
1259
    USBDevice *dev;
1260
    int ret;
1261
    int i, j;
1262
    int ptr;
1263
    int pid;
1264
    int pg;
1265
    int len;
1266
    int dir;
1267
    int devadr;
1268
    int endp;
1269

    
1270
    dir =(itd->bufptr[1] & ITD_BUFPTR_DIRECTION);
1271
    devadr = get_field(itd->bufptr[0], ITD_BUFPTR_DEVADDR);
1272
    endp = get_field(itd->bufptr[0], ITD_BUFPTR_EP);
1273
    /* maxpkt = get_field(itd->bufptr[1], ITD_BUFPTR_MAXPKT); */
1274

    
1275
    for(i = 0; i < 8; i++) {
1276
        if (itd->transact[i] & ITD_XACT_ACTIVE) {
1277
            DPRINTF("ISOCHRONOUS active for frame %d, interval %d\n",
1278
                    ehci->frindex >> 3, i);
1279

    
1280
            pg = get_field(itd->transact[i], ITD_XACT_PGSEL);
1281
            ptr = (itd->bufptr[pg] & ITD_BUFPTR_MASK) |
1282
                (itd->transact[i] & ITD_XACT_OFFSET_MASK);
1283
            len = get_field(itd->transact[i], ITD_XACT_LENGTH);
1284

    
1285
            if (len > BUFF_SIZE) {
1286
                return USB_RET_PROCERR;
1287
            }
1288

    
1289
            DPRINTF("ISOCH: buffer %08X len %d\n", ptr, len);
1290

    
1291
            if (!dir) {
1292
                cpu_physical_memory_rw(ptr, &ehci->ibuffer[0], len, 0);
1293
                pid = USB_TOKEN_OUT;
1294
            } else
1295
                pid = USB_TOKEN_IN;
1296

    
1297
            ret = USB_RET_NODEV;
1298

    
1299
            for (j = 0; j < NB_PORTS; j++) {
1300
                port = &ehci->ports[j];
1301
                dev = port->dev;
1302

    
1303
                // TODO sometime we will also need to check if we are the port owner
1304

    
1305
                if (!(ehci->portsc[j] &(PORTSC_CONNECT))) {
1306
                    DPRINTF("Port %d, no exec, not connected(%08X)\n",
1307
                            j, ehci->portsc[j]);
1308
                    continue;
1309
                }
1310

    
1311
                ehci->ipacket.pid = pid;
1312
                ehci->ipacket.devaddr = devadr;
1313
                ehci->ipacket.devep = endp;
1314
                ehci->ipacket.data = ehci->ibuffer;
1315
                ehci->ipacket.len = len;
1316

    
1317
                DPRINTF("calling usb_handle_packet\n");
1318
                ret = usb_handle_packet(dev, &ehci->ipacket);
1319

    
1320
                if (ret != USB_RET_NODEV) {
1321
                    break;
1322
                }
1323
            }
1324

    
1325
            /*  In isoch, there is no facility to indicate a NAK so let's
1326
             *  instead just complete a zero-byte transaction.  Setting
1327
             *  DBERR seems too draconian.
1328
             */
1329

    
1330
            if (ret == USB_RET_NAK) {
1331
                if (ehci->isoch_pause > 0) {
1332
                    DPRINTF("ISOCH: received a NAK but paused so returning\n");
1333
                    ehci->isoch_pause--;
1334
                    return 0;
1335
                } else if (ehci->isoch_pause == -1) {
1336
                    DPRINTF("ISOCH: recv NAK & isoch pause inactive, setting\n");
1337
                    // Pause frindex for up to 50 msec waiting for data from
1338
                    // remote
1339
                    ehci->isoch_pause = 50;
1340
                    return 0;
1341
                } else {
1342
                    DPRINTF("ISOCH: isoch pause timeout! return 0\n");
1343
                    ret = 0;
1344
                }
1345
            } else {
1346
                DPRINTF("ISOCH: received ACK, clearing pause\n");
1347
                ehci->isoch_pause = -1;
1348
            }
1349

    
1350
            if (ret >= 0) {
1351
                itd->transact[i] &= ~ITD_XACT_ACTIVE;
1352

    
1353
                if (itd->transact[i] & ITD_XACT_IOC) {
1354
                    ehci_record_interrupt(ehci, USBSTS_INT);
1355
                }
1356
            }
1357

    
1358
            if (ret >= 0 && dir) {
1359
                cpu_physical_memory_rw(ptr, &ehci->ibuffer[0], len, 1);
1360

    
1361
                if (ret != len) {
1362
                    DPRINTF("ISOCH IN expected %d, got %d\n",
1363
                            len, ret);
1364
                    set_field(&itd->transact[i], ret, ITD_XACT_LENGTH);
1365
                }
1366
            }
1367
        }
1368
    }
1369
    return 0;
1370
}
1371

    
1372
/*  This state is the entry point for asynchronous schedule
1373
 *  processing.  Entry here consitutes a EHCI start event state (4.8.5)
1374
 */
1375
static int ehci_state_waitlisthead(EHCIState *ehci,  int async)
1376
{
1377
    EHCIqh qh;
1378
    int i = 0;
1379
    int again = 0;
1380
    uint32_t entry = ehci->asynclistaddr;
1381

    
1382
    /* set reclamation flag at start event (4.8.6) */
1383
    if (async) {
1384
        ehci_set_usbsts(ehci, USBSTS_REC);
1385
    }
1386

    
1387
    ehci_queues_rip_unused(ehci);
1388

    
1389
    /*  Find the head of the list (4.9.1.1) */
1390
    for(i = 0; i < MAX_QH; i++) {
1391
        get_dwords(NLPTR_GET(entry), (uint32_t *) &qh, sizeof(EHCIqh) >> 2);
1392
        ehci_trace_qh(NULL, NLPTR_GET(entry), &qh);
1393

    
1394
        if (qh.epchar & QH_EPCHAR_H) {
1395
            if (async) {
1396
                entry |= (NLPTR_TYPE_QH << 1);
1397
            }
1398

    
1399
            ehci_set_fetch_addr(ehci, async, entry);
1400
            ehci_set_state(ehci, async, EST_FETCHENTRY);
1401
            again = 1;
1402
            goto out;
1403
        }
1404

    
1405
        entry = qh.next;
1406
        if (entry == ehci->asynclistaddr) {
1407
            break;
1408
        }
1409
    }
1410

    
1411
    /* no head found for list. */
1412

    
1413
    ehci_set_state(ehci, async, EST_ACTIVE);
1414

    
1415
out:
1416
    return again;
1417
}
1418

    
1419

    
1420
/*  This state is the entry point for periodic schedule processing as
1421
 *  well as being a continuation state for async processing.
1422
 */
1423
static int ehci_state_fetchentry(EHCIState *ehci, int async)
1424
{
1425
    int again = 0;
1426
    uint32_t entry = ehci_get_fetch_addr(ehci, async);
1427

    
1428
#if EHCI_DEBUG == 0
1429
    if (qemu_get_clock_ns(vm_clock) / 1000 >= ehci->frame_end_usec) {
1430
        if (async) {
1431
            DPRINTF("FETCHENTRY: FRAME timer elapsed, exit state machine\n");
1432
            goto out;
1433
        } else {
1434
            DPRINTF("FETCHENTRY: WARNING "
1435
                    "- frame timer elapsed during periodic\n");
1436
        }
1437
    }
1438
#endif
1439
    if (entry < 0x1000) {
1440
        DPRINTF("fetchentry: entry invalid (0x%08x)\n", entry);
1441
        ehci_set_state(ehci, async, EST_ACTIVE);
1442
        goto out;
1443
    }
1444

    
1445
    /* section 4.8, only QH in async schedule */
1446
    if (async && (NLPTR_TYPE_GET(entry) != NLPTR_TYPE_QH)) {
1447
        fprintf(stderr, "non queue head request in async schedule\n");
1448
        return -1;
1449
    }
1450

    
1451
    switch (NLPTR_TYPE_GET(entry)) {
1452
    case NLPTR_TYPE_QH:
1453
        ehci_set_state(ehci, async, EST_FETCHQH);
1454
        again = 1;
1455
        break;
1456

    
1457
    case NLPTR_TYPE_ITD:
1458
        ehci_set_state(ehci, async, EST_FETCHITD);
1459
        again = 1;
1460
        break;
1461

    
1462
    default:
1463
        // TODO: handle siTD and FSTN types
1464
        fprintf(stderr, "FETCHENTRY: entry at %X is of type %d "
1465
                "which is not supported yet\n", entry, NLPTR_TYPE_GET(entry));
1466
        return -1;
1467
    }
1468

    
1469
out:
1470
    return again;
1471
}
1472

    
1473
static EHCIQueue *ehci_state_fetchqh(EHCIState *ehci, int async)
1474
{
1475
    uint32_t entry;
1476
    EHCIQueue *q;
1477
    int reload;
1478

    
1479
    entry = ehci_get_fetch_addr(ehci, async);
1480
    q = ehci_find_queue_by_qh(ehci, entry);
1481
    if (NULL == q) {
1482
        q = ehci_alloc_queue(ehci, async);
1483
    }
1484
    q->qhaddr = entry;
1485
    q->seen++;
1486

    
1487
    if (q->seen > 1) {
1488
        /* we are going in circles -- stop processing */
1489
        ehci_set_state(ehci, async, EST_ACTIVE);
1490
        q = NULL;
1491
        goto out;
1492
    }
1493

    
1494
    get_dwords(NLPTR_GET(q->qhaddr), (uint32_t *) &q->qh, sizeof(EHCIqh) >> 2);
1495
    ehci_trace_qh(q, NLPTR_GET(q->qhaddr), &q->qh);
1496

    
1497
    if (q->async == EHCI_ASYNC_INFLIGHT) {
1498
        /* I/O still in progress -- skip queue */
1499
        ehci_set_state(ehci, async, EST_HORIZONTALQH);
1500
        goto out;
1501
    }
1502
    if (q->async == EHCI_ASYNC_FINISHED) {
1503
        /* I/O finished -- continue processing queue */
1504
        trace_usb_ehci_queue_action(q, "resume");
1505
        ehci_set_state(ehci, async, EST_EXECUTING);
1506
        goto out;
1507
    }
1508

    
1509
    if (async && (q->qh.epchar & QH_EPCHAR_H)) {
1510

    
1511
        /*  EHCI spec version 1.0 Section 4.8.3 & 4.10.1 */
1512
        if (ehci->usbsts & USBSTS_REC) {
1513
            ehci_clear_usbsts(ehci, USBSTS_REC);
1514
        } else {
1515
            DPRINTF("FETCHQH:  QH 0x%08x. H-bit set, reclamation status reset"
1516
                       " - done processing\n", q->qhaddr);
1517
            ehci_set_state(ehci, async, EST_ACTIVE);
1518
            q = NULL;
1519
            goto out;
1520
        }
1521
    }
1522

    
1523
#if EHCI_DEBUG
1524
    if (q->qhaddr != q->qh.next) {
1525
    DPRINTF("FETCHQH:  QH 0x%08x (h %x halt %x active %x) next 0x%08x\n",
1526
               q->qhaddr,
1527
               q->qh.epchar & QH_EPCHAR_H,
1528
               q->qh.token & QTD_TOKEN_HALT,
1529
               q->qh.token & QTD_TOKEN_ACTIVE,
1530
               q->qh.next);
1531
    }
1532
#endif
1533

    
1534
    reload = get_field(q->qh.epchar, QH_EPCHAR_RL);
1535
    if (reload) {
1536
        set_field(&q->qh.altnext_qtd, reload, QH_ALTNEXT_NAKCNT);
1537
    }
1538

    
1539
    if (q->qh.token & QTD_TOKEN_HALT) {
1540
        ehci_set_state(ehci, async, EST_HORIZONTALQH);
1541

    
1542
    } else if ((q->qh.token & QTD_TOKEN_ACTIVE) && (q->qh.current_qtd > 0x1000)) {
1543
        q->qtdaddr = q->qh.current_qtd;
1544
        ehci_set_state(ehci, async, EST_FETCHQTD);
1545

    
1546
    } else {
1547
        /*  EHCI spec version 1.0 Section 4.10.2 */
1548
        ehci_set_state(ehci, async, EST_ADVANCEQUEUE);
1549
    }
1550

    
1551
out:
1552
    return q;
1553
}
1554

    
1555
static int ehci_state_fetchitd(EHCIState *ehci, int async)
1556
{
1557
    uint32_t entry;
1558
    EHCIitd itd;
1559

    
1560
    assert(!async);
1561
    entry = ehci_get_fetch_addr(ehci, async);
1562

    
1563
    get_dwords(NLPTR_GET(entry),(uint32_t *) &itd,
1564
               sizeof(EHCIitd) >> 2);
1565
    ehci_trace_itd(ehci, entry, &itd);
1566

    
1567
    if (ehci_process_itd(ehci, &itd) != 0) {
1568
        return -1;
1569
    }
1570

    
1571
    put_dwords(NLPTR_GET(entry), (uint32_t *) &itd,
1572
                sizeof(EHCIitd) >> 2);
1573
    ehci_set_fetch_addr(ehci, async, itd.next);
1574
    ehci_set_state(ehci, async, EST_FETCHENTRY);
1575

    
1576
    return 1;
1577
}
1578

    
1579
/* Section 4.10.2 - paragraph 3 */
1580
static int ehci_state_advqueue(EHCIQueue *q, int async)
1581
{
1582
#if 0
1583
    /* TO-DO: 4.10.2 - paragraph 2
1584
     * if I-bit is set to 1 and QH is not active
1585
     * go to horizontal QH
1586
     */
1587
    if (I-bit set) {
1588
        ehci_set_state(ehci, async, EST_HORIZONTALQH);
1589
        goto out;
1590
    }
1591
#endif
1592

    
1593
    /*
1594
     * want data and alt-next qTD is valid
1595
     */
1596
    if (((q->qh.token & QTD_TOKEN_TBYTES_MASK) != 0) &&
1597
        (q->qh.altnext_qtd > 0x1000) &&
1598
        (NLPTR_TBIT(q->qh.altnext_qtd) == 0)) {
1599
        q->qtdaddr = q->qh.altnext_qtd;
1600
        ehci_set_state(q->ehci, async, EST_FETCHQTD);
1601

    
1602
    /*
1603
     *  next qTD is valid
1604
     */
1605
    } else if ((q->qh.next_qtd > 0x1000) &&
1606
               (NLPTR_TBIT(q->qh.next_qtd) == 0)) {
1607
        q->qtdaddr = q->qh.next_qtd;
1608
        ehci_set_state(q->ehci, async, EST_FETCHQTD);
1609

    
1610
    /*
1611
     *  no valid qTD, try next QH
1612
     */
1613
    } else {
1614
        ehci_set_state(q->ehci, async, EST_HORIZONTALQH);
1615
    }
1616

    
1617
    return 1;
1618
}
1619

    
1620
/* Section 4.10.2 - paragraph 4 */
1621
static int ehci_state_fetchqtd(EHCIQueue *q, int async)
1622
{
1623
    int again = 0;
1624

    
1625
    get_dwords(NLPTR_GET(q->qtdaddr),(uint32_t *) &q->qtd, sizeof(EHCIqtd) >> 2);
1626
    ehci_trace_qtd(q, NLPTR_GET(q->qtdaddr), &q->qtd);
1627

    
1628
    if (q->qtd.token & QTD_TOKEN_ACTIVE) {
1629
        ehci_set_state(q->ehci, async, EST_EXECUTE);
1630
        again = 1;
1631
    } else {
1632
        ehci_set_state(q->ehci, async, EST_HORIZONTALQH);
1633
        again = 1;
1634
    }
1635

    
1636
    return again;
1637
}
1638

    
1639
static int ehci_state_horizqh(EHCIQueue *q, int async)
1640
{
1641
    int again = 0;
1642

    
1643
    if (ehci_get_fetch_addr(q->ehci, async) != q->qh.next) {
1644
        ehci_set_fetch_addr(q->ehci, async, q->qh.next);
1645
        ehci_set_state(q->ehci, async, EST_FETCHENTRY);
1646
        again = 1;
1647
    } else {
1648
        ehci_set_state(q->ehci, async, EST_ACTIVE);
1649
    }
1650

    
1651
    return again;
1652
}
1653

    
1654
/*
1655
 *  Write the qh back to guest physical memory.  This step isn't
1656
 *  in the EHCI spec but we need to do it since we don't share
1657
 *  physical memory with our guest VM.
1658
 *
1659
 *  The first three dwords are read-only for the EHCI, so skip them
1660
 *  when writing back the qh.
1661
 */
1662
static void ehci_flush_qh(EHCIQueue *q)
1663
{
1664
    uint32_t *qh = (uint32_t *) &q->qh;
1665
    uint32_t dwords = sizeof(EHCIqh) >> 2;
1666
    uint32_t addr = NLPTR_GET(q->qhaddr);
1667

    
1668
    put_dwords(addr + 3 * sizeof(uint32_t), qh + 3, dwords - 3);
1669
}
1670

    
1671
static int ehci_state_execute(EHCIQueue *q, int async)
1672
{
1673
    int again = 0;
1674
    int reload, nakcnt;
1675
    int smask;
1676

    
1677
    if (ehci_qh_do_overlay(q) != 0) {
1678
        return -1;
1679
    }
1680

    
1681
    smask = get_field(q->qh.epcap, QH_EPCAP_SMASK);
1682

    
1683
    if (!smask) {
1684
        reload = get_field(q->qh.epchar, QH_EPCHAR_RL);
1685
        nakcnt = get_field(q->qh.altnext_qtd, QH_ALTNEXT_NAKCNT);
1686
        if (reload && !nakcnt) {
1687
            ehci_set_state(q->ehci, async, EST_HORIZONTALQH);
1688
            again = 1;
1689
            goto out;
1690
        }
1691
    }
1692

    
1693
    // TODO verify enough time remains in the uframe as in 4.4.1.1
1694
    // TODO write back ptr to async list when done or out of time
1695
    // TODO Windows does not seem to ever set the MULT field
1696

    
1697
    if (!async) {
1698
        int transactCtr = get_field(q->qh.epcap, QH_EPCAP_MULT);
1699
        if (!transactCtr) {
1700
            ehci_set_state(q->ehci, async, EST_HORIZONTALQH);
1701
            again = 1;
1702
            goto out;
1703
        }
1704
    }
1705

    
1706
    if (async) {
1707
        ehci_set_usbsts(q->ehci, USBSTS_REC);
1708
    }
1709

    
1710
    q->usb_status = ehci_execute(q);
1711
    if (q->usb_status == USB_RET_PROCERR) {
1712
        again = -1;
1713
        goto out;
1714
    }
1715
    if (q->usb_status == USB_RET_ASYNC) {
1716
        ehci_flush_qh(q);
1717
        trace_usb_ehci_queue_action(q, "suspend");
1718
        q->async = EHCI_ASYNC_INFLIGHT;
1719
        ehci_set_state(q->ehci, async, EST_HORIZONTALQH);
1720
        again = 1;
1721
        goto out;
1722
    }
1723

    
1724
    ehci_set_state(q->ehci, async, EST_EXECUTING);
1725
    again = 1;
1726

    
1727
out:
1728
    return again;
1729
}
1730

    
1731
static int ehci_state_executing(EHCIQueue *q, int async)
1732
{
1733
    int again = 0;
1734
    int reload, nakcnt;
1735

    
1736
    ehci_execute_complete(q);
1737
    if (q->usb_status == USB_RET_ASYNC) {
1738
        goto out;
1739
    }
1740
    if (q->usb_status == USB_RET_PROCERR) {
1741
        again = -1;
1742
        goto out;
1743
    }
1744

    
1745
    // 4.10.3
1746
    if (!async) {
1747
        int transactCtr = get_field(q->qh.epcap, QH_EPCAP_MULT);
1748
        transactCtr--;
1749
        set_field(&q->qh.epcap, transactCtr, QH_EPCAP_MULT);
1750
        // 4.10.3, bottom of page 82, should exit this state when transaction
1751
        // counter decrements to 0
1752
    }
1753

    
1754
    reload = get_field(q->qh.epchar, QH_EPCHAR_RL);
1755
    if (reload) {
1756
        nakcnt = get_field(q->qh.altnext_qtd, QH_ALTNEXT_NAKCNT);
1757
        if (q->usb_status == USB_RET_NAK) {
1758
            if (nakcnt) {
1759
                nakcnt--;
1760
            }
1761
        } else {
1762
            nakcnt = reload;
1763
        }
1764
        set_field(&q->qh.altnext_qtd, nakcnt, QH_ALTNEXT_NAKCNT);
1765
    }
1766

    
1767
    /* 4.10.5 */
1768
    if ((q->usb_status == USB_RET_NAK) || (q->qh.token & QTD_TOKEN_ACTIVE)) {
1769
        ehci_set_state(q->ehci, async, EST_HORIZONTALQH);
1770
    } else {
1771
        ehci_set_state(q->ehci, async, EST_WRITEBACK);
1772
    }
1773

    
1774
    again = 1;
1775

    
1776
out:
1777
    ehci_flush_qh(q);
1778
    return again;
1779
}
1780

    
1781

    
1782
static int ehci_state_writeback(EHCIQueue *q, int async)
1783
{
1784
    int again = 0;
1785

    
1786
    /*  Write back the QTD from the QH area */
1787
    ehci_trace_qtd(q, NLPTR_GET(q->qtdaddr), (EHCIqtd*) &q->qh.next_qtd);
1788
    put_dwords(NLPTR_GET(q->qtdaddr),(uint32_t *) &q->qh.next_qtd,
1789
                sizeof(EHCIqtd) >> 2);
1790

    
1791
    /*
1792
     * EHCI specs say go horizontal here.
1793
     *
1794
     * We can also advance the queue here for performance reasons.  We
1795
     * need to take care to only take that shortcut in case we've
1796
     * processed the qtd just written back without errors, i.e. halt
1797
     * bit is clear.
1798
     */
1799
    if (q->qh.token & QTD_TOKEN_HALT) {
1800
        ehci_set_state(q->ehci, async, EST_HORIZONTALQH);
1801
        again = 1;
1802
    } else {
1803
        ehci_set_state(q->ehci, async, EST_ADVANCEQUEUE);
1804
        again = 1;
1805
    }
1806
    return again;
1807
}
1808

    
1809
/*
1810
 * This is the state machine that is common to both async and periodic
1811
 */
1812

    
1813
static void ehci_advance_state(EHCIState *ehci,
1814
                               int async)
1815
{
1816
    EHCIQueue *q = NULL;
1817
    int again;
1818
    int iter = 0;
1819

    
1820
    do {
1821
        if (ehci_get_state(ehci, async) == EST_FETCHQH) {
1822
            iter++;
1823
            /* if we are roaming a lot of QH without executing a qTD
1824
             * something is wrong with the linked list. TO-DO: why is
1825
             * this hack needed?
1826
             */
1827
            assert(iter < MAX_ITERATIONS);
1828
#if 0
1829
            if (iter > MAX_ITERATIONS) {
1830
                DPRINTF("\n*** advance_state: bailing on MAX ITERATIONS***\n");
1831
                ehci_set_state(ehci, async, EST_ACTIVE);
1832
                break;
1833
            }
1834
#endif
1835
        }
1836
        switch(ehci_get_state(ehci, async)) {
1837
        case EST_WAITLISTHEAD:
1838
            again = ehci_state_waitlisthead(ehci, async);
1839
            break;
1840

    
1841
        case EST_FETCHENTRY:
1842
            again = ehci_state_fetchentry(ehci, async);
1843
            break;
1844

    
1845
        case EST_FETCHQH:
1846
            q = ehci_state_fetchqh(ehci, async);
1847
            again = q ? 1 : 0;
1848
            break;
1849

    
1850
        case EST_FETCHITD:
1851
            again = ehci_state_fetchitd(ehci, async);
1852
            break;
1853

    
1854
        case EST_ADVANCEQUEUE:
1855
            again = ehci_state_advqueue(q, async);
1856
            break;
1857

    
1858
        case EST_FETCHQTD:
1859
            again = ehci_state_fetchqtd(q, async);
1860
            break;
1861

    
1862
        case EST_HORIZONTALQH:
1863
            again = ehci_state_horizqh(q, async);
1864
            break;
1865

    
1866
        case EST_EXECUTE:
1867
            iter = 0;
1868
            again = ehci_state_execute(q, async);
1869
            break;
1870

    
1871
        case EST_EXECUTING:
1872
            assert(q != NULL);
1873
            again = ehci_state_executing(q, async);
1874
            break;
1875

    
1876
        case EST_WRITEBACK:
1877
            again = ehci_state_writeback(q, async);
1878
            break;
1879

    
1880
        default:
1881
            fprintf(stderr, "Bad state!\n");
1882
            again = -1;
1883
            assert(0);
1884
            break;
1885
        }
1886

    
1887
        if (again < 0) {
1888
            fprintf(stderr, "processing error - resetting ehci HC\n");
1889
            ehci_reset(ehci);
1890
            again = 0;
1891
            assert(0);
1892
        }
1893
    }
1894
    while (again);
1895

    
1896
    ehci_commit_interrupt(ehci);
1897
}
1898

    
1899
static void ehci_advance_async_state(EHCIState *ehci)
1900
{
1901
    int async = 1;
1902

    
1903
    switch(ehci_get_state(ehci, async)) {
1904
    case EST_INACTIVE:
1905
        if (!(ehci->usbcmd & USBCMD_ASE)) {
1906
            break;
1907
        }
1908
        ehci_set_usbsts(ehci, USBSTS_ASS);
1909
        ehci_set_state(ehci, async, EST_ACTIVE);
1910
        // No break, fall through to ACTIVE
1911

    
1912
    case EST_ACTIVE:
1913
        if ( !(ehci->usbcmd & USBCMD_ASE)) {
1914
            ehci_clear_usbsts(ehci, USBSTS_ASS);
1915
            ehci_set_state(ehci, async, EST_INACTIVE);
1916
            break;
1917
        }
1918

    
1919
        /* If the doorbell is set, the guest wants to make a change to the
1920
         * schedule. The host controller needs to release cached data.
1921
         * (section 4.8.2)
1922
         */
1923
        if (ehci->usbcmd & USBCMD_IAAD) {
1924
            DPRINTF("ASYNC: doorbell request acknowledged\n");
1925
            ehci->usbcmd &= ~USBCMD_IAAD;
1926
            ehci_set_interrupt(ehci, USBSTS_IAA);
1927
            break;
1928
        }
1929

    
1930
        /* make sure guest has acknowledged */
1931
        /* TO-DO: is this really needed? */
1932
        if (ehci->usbsts & USBSTS_IAA) {
1933
            DPRINTF("IAA status bit still set.\n");
1934
            break;
1935
        }
1936

    
1937
        /* check that address register has been set */
1938
        if (ehci->asynclistaddr == 0) {
1939
            break;
1940
        }
1941

    
1942
        ehci_set_state(ehci, async, EST_WAITLISTHEAD);
1943
        /* fall through */
1944

    
1945
    case EST_FETCHENTRY:
1946
        /* fall through */
1947

    
1948
    case EST_EXECUTING:
1949
        ehci_advance_state(ehci, async);
1950
        break;
1951

    
1952
    default:
1953
        /* this should only be due to a developer mistake */
1954
        fprintf(stderr, "ehci: Bad asynchronous state %d. "
1955
                "Resetting to active\n", ehci->astate);
1956
        assert(0);
1957
    }
1958
}
1959

    
1960
static void ehci_advance_periodic_state(EHCIState *ehci)
1961
{
1962
    uint32_t entry;
1963
    uint32_t list;
1964
    int async = 0;
1965

    
1966
    // 4.6
1967

    
1968
    switch(ehci_get_state(ehci, async)) {
1969
    case EST_INACTIVE:
1970
        if ( !(ehci->frindex & 7) && (ehci->usbcmd & USBCMD_PSE)) {
1971
            ehci_set_usbsts(ehci, USBSTS_PSS);
1972
            ehci_set_state(ehci, async, EST_ACTIVE);
1973
            // No break, fall through to ACTIVE
1974
        } else
1975
            break;
1976

    
1977
    case EST_ACTIVE:
1978
        if ( !(ehci->frindex & 7) && !(ehci->usbcmd & USBCMD_PSE)) {
1979
            ehci_clear_usbsts(ehci, USBSTS_PSS);
1980
            ehci_set_state(ehci, async, EST_INACTIVE);
1981
            break;
1982
        }
1983

    
1984
        list = ehci->periodiclistbase & 0xfffff000;
1985
        /* check that register has been set */
1986
        if (list == 0) {
1987
            break;
1988
        }
1989
        list |= ((ehci->frindex & 0x1ff8) >> 1);
1990

    
1991
        cpu_physical_memory_rw(list, (uint8_t *) &entry, sizeof entry, 0);
1992
        entry = le32_to_cpu(entry);
1993

    
1994
        DPRINTF("PERIODIC state adv fr=%d.  [%08X] -> %08X\n",
1995
                ehci->frindex / 8, list, entry);
1996
        ehci_set_fetch_addr(ehci, async,entry);
1997
        ehci_set_state(ehci, async, EST_FETCHENTRY);
1998
        ehci_advance_state(ehci, async);
1999
        break;
2000

    
2001
    case EST_EXECUTING:
2002
        DPRINTF("PERIODIC state adv for executing\n");
2003
        ehci_advance_state(ehci, async);
2004
        break;
2005

    
2006
    default:
2007
        /* this should only be due to a developer mistake */
2008
        fprintf(stderr, "ehci: Bad periodic state %d. "
2009
                "Resetting to active\n", ehci->pstate);
2010
        assert(0);
2011
    }
2012
}
2013

    
2014
static void ehci_frame_timer(void *opaque)
2015
{
2016
    EHCIState *ehci = opaque;
2017
    int64_t expire_time, t_now;
2018
    int usec_elapsed;
2019
    int frames;
2020
    int usec_now;
2021
    int i;
2022
    int skipped_frames = 0;
2023

    
2024

    
2025
    t_now = qemu_get_clock_ns(vm_clock);
2026
    expire_time = t_now + (get_ticks_per_sec() / FRAME_TIMER_FREQ);
2027
    if (expire_time == t_now) {
2028
        expire_time++;
2029
    }
2030

    
2031
    usec_now = t_now / 1000;
2032
    usec_elapsed = usec_now - ehci->last_run_usec;
2033
    frames = usec_elapsed / FRAME_TIMER_USEC;
2034
    ehci->frame_end_usec = usec_now + FRAME_TIMER_USEC - 10;
2035

    
2036
    for (i = 0; i < frames; i++) {
2037
        if ( !(ehci->usbsts & USBSTS_HALT)) {
2038
            if (ehci->isoch_pause <= 0) {
2039
                ehci->frindex += 8;
2040
            }
2041

    
2042
            if (ehci->frindex > 0x00001fff) {
2043
                ehci->frindex = 0;
2044
                ehci_set_interrupt(ehci, USBSTS_FLR);
2045
            }
2046

    
2047
            ehci->sofv = (ehci->frindex - 1) >> 3;
2048
            ehci->sofv &= 0x000003ff;
2049
        }
2050

    
2051
        if (frames - i > 10) {
2052
            skipped_frames++;
2053
        } else {
2054
            // TODO could this cause periodic frames to get skipped if async
2055
            // active?
2056
            if (ehci_get_state(ehci, 1) != EST_EXECUTING) {
2057
                ehci_advance_periodic_state(ehci);
2058
            }
2059
        }
2060

    
2061
        ehci->last_run_usec += FRAME_TIMER_USEC;
2062
    }
2063

    
2064
#if 0
2065
    if (skipped_frames) {
2066
        DPRINTF("WARNING - EHCI skipped %d frames\n", skipped_frames);
2067
    }
2068
#endif
2069

    
2070
    /*  Async is not inside loop since it executes everything it can once
2071
     *  called
2072
     */
2073
    if (ehci_get_state(ehci, 0) != EST_EXECUTING) {
2074
        ehci_advance_async_state(ehci);
2075
    }
2076

    
2077
    qemu_mod_timer(ehci->frame_timer, expire_time);
2078
}
2079

    
2080
static CPUReadMemoryFunc *ehci_readfn[3]={
2081
    ehci_mem_readb,
2082
    ehci_mem_readw,
2083
    ehci_mem_readl
2084
};
2085

    
2086
static CPUWriteMemoryFunc *ehci_writefn[3]={
2087
    ehci_mem_writeb,
2088
    ehci_mem_writew,
2089
    ehci_mem_writel
2090
};
2091

    
2092
static void ehci_map(PCIDevice *pci_dev, int region_num,
2093
                     pcibus_t addr, pcibus_t size, int type)
2094
{
2095
    EHCIState *s =(EHCIState *)pci_dev;
2096

    
2097
    DPRINTF("ehci_map: region %d, addr %08" PRIx64 ", size %" PRId64 ", s->mem %08X\n",
2098
            region_num, addr, size, s->mem);
2099
    s->mem_base = addr;
2100
    cpu_register_physical_memory(addr, size, s->mem);
2101
}
2102

    
2103
static int usb_ehci_initfn(PCIDevice *dev);
2104

    
2105
static USBPortOps ehci_port_ops = {
2106
    .attach = ehci_attach,
2107
    .detach = ehci_detach,
2108
    .complete = ehci_async_complete_packet,
2109
};
2110

    
2111
static PCIDeviceInfo ehci_info = {
2112
    .qdev.name    = "usb-ehci",
2113
    .qdev.size    = sizeof(EHCIState),
2114
    .init         = usb_ehci_initfn,
2115
};
2116

    
2117
static int usb_ehci_initfn(PCIDevice *dev)
2118
{
2119
    EHCIState *s = DO_UPCAST(EHCIState, dev, dev);
2120
    uint8_t *pci_conf = s->dev.config;
2121
    int i;
2122

    
2123
    pci_config_set_vendor_id(pci_conf, PCI_VENDOR_ID_INTEL);
2124
    pci_config_set_device_id(pci_conf, PCI_DEVICE_ID_INTEL_82801D);
2125
    pci_set_byte(&pci_conf[PCI_REVISION_ID], 0x10);
2126
    pci_set_byte(&pci_conf[PCI_CLASS_PROG], 0x20);
2127
    pci_config_set_class(pci_conf, PCI_CLASS_SERIAL_USB);
2128
    pci_set_byte(&pci_conf[PCI_HEADER_TYPE], PCI_HEADER_TYPE_NORMAL);
2129

    
2130
    /* capabilities pointer */
2131
    pci_set_byte(&pci_conf[PCI_CAPABILITY_LIST], 0x00);
2132
    //pci_set_byte(&pci_conf[PCI_CAPABILITY_LIST], 0x50);
2133

    
2134
    pci_set_byte(&pci_conf[PCI_INTERRUPT_PIN], 4); // interrupt pin 3
2135
    pci_set_byte(&pci_conf[PCI_MIN_GNT], 0);
2136
    pci_set_byte(&pci_conf[PCI_MAX_LAT], 0);
2137

    
2138
    // pci_conf[0x50] = 0x01; // power management caps
2139

    
2140
    pci_set_byte(&pci_conf[0x60], 0x20);  // spec release number (2.1.4)
2141
    pci_set_byte(&pci_conf[0x61], 0x20);  // frame length adjustment (2.1.5)
2142
    pci_set_word(&pci_conf[0x62], 0x00);  // port wake up capability (2.1.6)
2143

    
2144
    pci_conf[0x64] = 0x00;
2145
    pci_conf[0x65] = 0x00;
2146
    pci_conf[0x66] = 0x00;
2147
    pci_conf[0x67] = 0x00;
2148
    pci_conf[0x68] = 0x01;
2149
    pci_conf[0x69] = 0x00;
2150
    pci_conf[0x6a] = 0x00;
2151
    pci_conf[0x6b] = 0x00;  // USBLEGSUP
2152
    pci_conf[0x6c] = 0x00;
2153
    pci_conf[0x6d] = 0x00;
2154
    pci_conf[0x6e] = 0x00;
2155
    pci_conf[0x6f] = 0xc0;  // USBLEFCTLSTS
2156

    
2157
    // 2.2 host controller interface version
2158
    s->mmio[0x00] = (uint8_t) OPREGBASE;
2159
    s->mmio[0x01] = 0x00;
2160
    s->mmio[0x02] = 0x00;
2161
    s->mmio[0x03] = 0x01;        // HC version
2162
    s->mmio[0x04] = NB_PORTS;    // Number of downstream ports
2163
    s->mmio[0x05] = 0x00;        // No companion ports at present
2164
    s->mmio[0x06] = 0x00;
2165
    s->mmio[0x07] = 0x00;
2166
    s->mmio[0x08] = 0x80;        // We can cache whole frame, not 64-bit capable
2167
    s->mmio[0x09] = 0x68;        // EECP
2168
    s->mmio[0x0a] = 0x00;
2169
    s->mmio[0x0b] = 0x00;
2170

    
2171
    s->irq = s->dev.irq[3];
2172

    
2173
    usb_bus_new(&s->bus, &s->dev.qdev);
2174
    for(i = 0; i < NB_PORTS; i++) {
2175
        usb_register_port(&s->bus, &s->ports[i], s, i, &ehci_port_ops,
2176
                          USB_SPEED_MASK_HIGH);
2177
        usb_port_location(&s->ports[i], NULL, i+1);
2178
        s->ports[i].dev = 0;
2179
    }
2180

    
2181
    s->frame_timer = qemu_new_timer_ns(vm_clock, ehci_frame_timer, s);
2182
    QTAILQ_INIT(&s->queues);
2183

    
2184
    qemu_register_reset(ehci_reset, s);
2185

    
2186
    s->mem = cpu_register_io_memory(ehci_readfn, ehci_writefn, s,
2187
                                    DEVICE_LITTLE_ENDIAN);
2188

    
2189
    pci_register_bar(&s->dev, 0, MMIO_SIZE, PCI_BASE_ADDRESS_SPACE_MEMORY,
2190
                                                            ehci_map);
2191

    
2192
    fprintf(stderr, "*** EHCI support is under development ***\n");
2193

    
2194
    return 0;
2195
}
2196

    
2197
static void ehci_register(void)
2198
{
2199
    pci_qdev_register(&ehci_info);
2200
}
2201
device_init(ehci_register);
2202

    
2203
/*
2204
 * vim: expandtab ts=4
2205
 */