Statistics
| Branch: | Revision:

root / qemu-doc.texi @ 8e71621f

History | View | Annotate | Download (58 kB)

1
\input texinfo @c -*- texinfo -*-
2
@c %**start of header
3
@setfilename qemu-doc.info
4
@settitle QEMU Emulator User Documentation
5
@exampleindent 0
6
@paragraphindent 0
7
@c %**end of header
8

    
9
@iftex
10
@titlepage
11
@sp 7
12
@center @titlefont{QEMU Emulator}
13
@sp 1
14
@center @titlefont{User Documentation}
15
@sp 3
16
@end titlepage
17
@end iftex
18

    
19
@ifnottex
20
@node Top
21
@top
22

    
23
@menu
24
* Introduction::
25
* Installation::
26
* QEMU PC System emulator::
27
* QEMU System emulator for non PC targets::
28
* QEMU Linux User space emulator::
29
* compilation:: Compilation from the sources
30
* Index::
31
@end menu
32
@end ifnottex
33

    
34
@contents
35

    
36
@node Introduction
37
@chapter Introduction
38

    
39
@menu
40
* intro_features:: Features
41
@end menu
42

    
43
@node intro_features
44
@section Features
45

    
46
QEMU is a FAST! processor emulator using dynamic translation to
47
achieve good emulation speed.
48

    
49
QEMU has two operating modes:
50

    
51
@itemize @minus
52

    
53
@item 
54
Full system emulation. In this mode, QEMU emulates a full system (for
55
example a PC), including one or several processors and various
56
peripherals. It can be used to launch different Operating Systems
57
without rebooting the PC or to debug system code.
58

    
59
@item 
60
User mode emulation (Linux host only). In this mode, QEMU can launch
61
Linux processes compiled for one CPU on another CPU. It can be used to
62
launch the Wine Windows API emulator (@url{http://www.winehq.org}) or
63
to ease cross-compilation and cross-debugging.
64

    
65
@end itemize
66

    
67
QEMU can run without an host kernel driver and yet gives acceptable
68
performance. 
69

    
70
For system emulation, the following hardware targets are supported:
71
@itemize
72
@item PC (x86 or x86_64 processor)
73
@item ISA PC (old style PC without PCI bus)
74
@item PREP (PowerPC processor)
75
@item G3 BW PowerMac (PowerPC processor)
76
@item Mac99 PowerMac (PowerPC processor, in progress)
77
@item Sun4m (32-bit Sparc processor)
78
@item Sun4u (64-bit Sparc processor, in progress)
79
@item Malta board (32-bit MIPS processor)
80
@item ARM Integrator/CP (ARM926E or 1026E processor)
81
@item ARM Versatile baseboard (ARM926E)
82
@end itemize
83

    
84
For user emulation, x86, PowerPC, ARM, MIPS, Sparc32/64 and ColdFire(m68k) CPUs are supported.
85

    
86
@node Installation
87
@chapter Installation
88

    
89
If you want to compile QEMU yourself, see @ref{compilation}.
90

    
91
@menu
92
* install_linux::   Linux
93
* install_windows:: Windows
94
* install_mac::     Macintosh
95
@end menu
96

    
97
@node install_linux
98
@section Linux
99

    
100
If a precompiled package is available for your distribution - you just
101
have to install it. Otherwise, see @ref{compilation}.
102

    
103
@node install_windows
104
@section Windows
105

    
106
Download the experimental binary installer at
107
@url{http://www.free.oszoo.org/@/download.html}.
108

    
109
@node install_mac
110
@section Mac OS X
111

    
112
Download the experimental binary installer at
113
@url{http://www.free.oszoo.org/@/download.html}.
114

    
115
@node QEMU PC System emulator
116
@chapter QEMU PC System emulator
117

    
118
@menu
119
* pcsys_introduction:: Introduction
120
* pcsys_quickstart::   Quick Start
121
* sec_invocation::     Invocation
122
* pcsys_keys::         Keys
123
* pcsys_monitor::      QEMU Monitor
124
* disk_images::        Disk Images
125
* pcsys_network::      Network emulation
126
* direct_linux_boot::  Direct Linux Boot
127
* pcsys_usb::          USB emulation
128
* gdb_usage::          GDB usage
129
* pcsys_os_specific::  Target OS specific information
130
@end menu
131

    
132
@node pcsys_introduction
133
@section Introduction
134

    
135
@c man begin DESCRIPTION
136

    
137
The QEMU PC System emulator simulates the
138
following peripherals:
139

    
140
@itemize @minus
141
@item 
142
i440FX host PCI bridge and PIIX3 PCI to ISA bridge
143
@item
144
Cirrus CLGD 5446 PCI VGA card or dummy VGA card with Bochs VESA
145
extensions (hardware level, including all non standard modes).
146
@item
147
PS/2 mouse and keyboard
148
@item 
149
2 PCI IDE interfaces with hard disk and CD-ROM support
150
@item
151
Floppy disk
152
@item 
153
NE2000 PCI network adapters
154
@item
155
Serial ports
156
@item
157
Creative SoundBlaster 16 sound card
158
@item
159
ENSONIQ AudioPCI ES1370 sound card
160
@item
161
Adlib(OPL2) - Yamaha YM3812 compatible chip
162
@item
163
PCI UHCI USB controller and a virtual USB hub.
164
@end itemize
165

    
166
SMP is supported with up to 255 CPUs.
167

    
168
Note that adlib is only available when QEMU was configured with
169
-enable-adlib
170

    
171
QEMU uses the PC BIOS from the Bochs project and the Plex86/Bochs LGPL
172
VGA BIOS.
173

    
174
QEMU uses YM3812 emulation by Tatsuyuki Satoh.
175

    
176
@c man end
177

    
178
@node pcsys_quickstart
179
@section Quick Start
180

    
181
Download and uncompress the linux image (@file{linux.img}) and type:
182

    
183
@example
184
qemu linux.img
185
@end example
186

    
187
Linux should boot and give you a prompt.
188

    
189
@node sec_invocation
190
@section Invocation
191

    
192
@example
193
@c man begin SYNOPSIS
194
usage: qemu [options] [disk_image]
195
@c man end
196
@end example
197

    
198
@c man begin OPTIONS
199
@var{disk_image} is a raw hard disk image for IDE hard disk 0.
200

    
201
General options:
202
@table @option
203
@item -M machine
204
Select the emulated machine (@code{-M ?} for list)
205

    
206
@item -fda file
207
@item -fdb file
208
Use @var{file} as floppy disk 0/1 image (@pxref{disk_images}). You can
209
use the host floppy by using @file{/dev/fd0} as filename (@pxref{host_drives}).
210

    
211
@item -hda file
212
@item -hdb file
213
@item -hdc file
214
@item -hdd file
215
Use @var{file} as hard disk 0, 1, 2 or 3 image (@pxref{disk_images}).
216

    
217
@item -cdrom file
218
Use @var{file} as CD-ROM image (you cannot use @option{-hdc} and and
219
@option{-cdrom} at the same time). You can use the host CD-ROM by
220
using @file{/dev/cdrom} as filename (@pxref{host_drives}).
221

    
222
@item -boot [a|c|d|n]
223
Boot on floppy (a), hard disk (c), CD-ROM (d), or Etherboot (n). Hard disk boot
224
is the default.
225

    
226
@item -snapshot
227
Write to temporary files instead of disk image files. In this case,
228
the raw disk image you use is not written back. You can however force
229
the write back by pressing @key{C-a s} (@pxref{disk_images}).
230

    
231
@item -no-fd-bootchk
232
Disable boot signature checking for floppy disks in Bochs BIOS. It may
233
be needed to boot from old floppy disks.
234

    
235
@item -m megs
236
Set virtual RAM size to @var{megs} megabytes. Default is 128 MB.
237

    
238
@item -smp n
239
Simulate an SMP system with @var{n} CPUs. On the PC target, up to 255
240
CPUs are supported.
241

    
242
@item -nographic
243

    
244
Normally, QEMU uses SDL to display the VGA output. With this option,
245
you can totally disable graphical output so that QEMU is a simple
246
command line application. The emulated serial port is redirected on
247
the console. Therefore, you can still use QEMU to debug a Linux kernel
248
with a serial console.
249

    
250
@item -vnc display
251

    
252
Normally, QEMU uses SDL to display the VGA output.  With this option,
253
you can have QEMU listen on VNC display @var{display} and redirect the VGA
254
display over the VNC session.  It is very useful to enable the usb
255
tablet device when using this option (option @option{-usbdevice
256
tablet}). When using the VNC display, you must use the @option{-k}
257
option to set the keyboard layout if you are not using en-us.
258

    
259
@var{display} may be in the form @var{interface:d}, in which case connections
260
will only be allowed from @var{interface} on display @var{d}. Optionally,
261
@var{interface} can be omitted.  @var{display} can also be in the form
262
@var{unix:path} where @var{path} is the location of a unix socket to listen for
263
connections on.
264

    
265

    
266
@item -k language
267

    
268
Use keyboard layout @var{language} (for example @code{fr} for
269
French). This option is only needed where it is not easy to get raw PC
270
keycodes (e.g. on Macs, with some X11 servers or with a VNC
271
display). You don't normally need to use it on PC/Linux or PC/Windows
272
hosts.
273

    
274
The available layouts are:
275
@example
276
ar  de-ch  es  fo     fr-ca  hu  ja  mk     no  pt-br  sv
277
da  en-gb  et  fr     fr-ch  is  lt  nl     pl  ru     th
278
de  en-us  fi  fr-be  hr     it  lv  nl-be  pt  sl     tr
279
@end example
280

    
281
The default is @code{en-us}.
282

    
283
@item -audio-help
284

    
285
Will show the audio subsystem help: list of drivers, tunable
286
parameters.
287

    
288
@item -soundhw card1,card2,... or -soundhw all
289

    
290
Enable audio and selected sound hardware. Use ? to print all
291
available sound hardware.
292

    
293
@example
294
qemu -soundhw sb16,adlib hda
295
qemu -soundhw es1370 hda
296
qemu -soundhw all hda
297
qemu -soundhw ?
298
@end example
299

    
300
@item -localtime
301
Set the real time clock to local time (the default is to UTC
302
time). This option is needed to have correct date in MS-DOS or
303
Windows.
304

    
305
@item -full-screen
306
Start in full screen.
307

    
308
@item -pidfile file
309
Store the QEMU process PID in @var{file}. It is useful if you launch QEMU
310
from a script.
311

    
312
@item -daemonize
313
Daemonize the QEMU process after initialization.  QEMU will not detach from
314
standard IO until it is ready to receive connections on any of its devices.
315
This option is a useful way for external programs to launch QEMU without having
316
to cope with initialization race conditions.
317

    
318
@item -win2k-hack
319
Use it when installing Windows 2000 to avoid a disk full bug. After
320
Windows 2000 is installed, you no longer need this option (this option
321
slows down the IDE transfers).
322

    
323
@item -option-rom file
324
Load the contents of file as an option ROM.  This option is useful to load
325
things like EtherBoot.
326

    
327
@end table
328

    
329
USB options:
330
@table @option
331

    
332
@item -usb
333
Enable the USB driver (will be the default soon)
334

    
335
@item -usbdevice devname
336
Add the USB device @var{devname}. @xref{usb_devices}.
337
@end table
338

    
339
Network options:
340

    
341
@table @option
342

    
343
@item -net nic[,vlan=n][,macaddr=addr][,model=type]
344
Create a new Network Interface Card and connect it to VLAN @var{n} (@var{n}
345
= 0 is the default). The NIC is currently an NE2000 on the PC
346
target. Optionally, the MAC address can be changed. If no
347
@option{-net} option is specified, a single NIC is created.
348
Qemu can emulate several different models of network card.  Valid values for
349
@var{type} are @code{ne2k_pci}, @code{ne2k_isa}, @code{rtl8139},
350
@code{smc91c111} and @code{lance}.  Not all devices are supported on all
351
targets.
352

    
353
@item -net user[,vlan=n][,hostname=name]
354
Use the user mode network stack which requires no administrator
355
priviledge to run.  @option{hostname=name} can be used to specify the client
356
hostname reported by the builtin DHCP server.
357

    
358
@item -net tap[,vlan=n][,fd=h][,ifname=name][,script=file]
359
Connect the host TAP network interface @var{name} to VLAN @var{n} and
360
use the network script @var{file} to configure it. The default
361
network script is @file{/etc/qemu-ifup}. If @var{name} is not
362
provided, the OS automatically provides one.  @option{fd=h} can be
363
used to specify the handle of an already opened host TAP interface. Example:
364

    
365
@example
366
qemu linux.img -net nic -net tap
367
@end example
368

    
369
More complicated example (two NICs, each one connected to a TAP device)
370
@example
371
qemu linux.img -net nic,vlan=0 -net tap,vlan=0,ifname=tap0 \
372
               -net nic,vlan=1 -net tap,vlan=1,ifname=tap1
373
@end example
374

    
375

    
376
@item -net socket[,vlan=n][,fd=h][,listen=[host]:port][,connect=host:port]
377

    
378
Connect the VLAN @var{n} to a remote VLAN in another QEMU virtual
379
machine using a TCP socket connection. If @option{listen} is
380
specified, QEMU waits for incoming connections on @var{port}
381
(@var{host} is optional). @option{connect} is used to connect to
382
another QEMU instance using the @option{listen} option. @option{fd=h}
383
specifies an already opened TCP socket.
384

    
385
Example:
386
@example
387
# launch a first QEMU instance
388
qemu linux.img -net nic,macaddr=52:54:00:12:34:56 \
389
               -net socket,listen=:1234
390
# connect the VLAN 0 of this instance to the VLAN 0
391
# of the first instance
392
qemu linux.img -net nic,macaddr=52:54:00:12:34:57 \
393
               -net socket,connect=127.0.0.1:1234
394
@end example
395

    
396
@item -net socket[,vlan=n][,fd=h][,mcast=maddr:port]
397

    
398
Create a VLAN @var{n} shared with another QEMU virtual
399
machines using a UDP multicast socket, effectively making a bus for 
400
every QEMU with same multicast address @var{maddr} and @var{port}.
401
NOTES:
402
@enumerate
403
@item 
404
Several QEMU can be running on different hosts and share same bus (assuming 
405
correct multicast setup for these hosts).
406
@item
407
mcast support is compatible with User Mode Linux (argument @option{eth@var{N}=mcast}), see
408
@url{http://user-mode-linux.sf.net}.
409
@item Use @option{fd=h} to specify an already opened UDP multicast socket.
410
@end enumerate
411

    
412
Example:
413
@example
414
# launch one QEMU instance
415
qemu linux.img -net nic,macaddr=52:54:00:12:34:56 \
416
               -net socket,mcast=230.0.0.1:1234
417
# launch another QEMU instance on same "bus"
418
qemu linux.img -net nic,macaddr=52:54:00:12:34:57 \
419
               -net socket,mcast=230.0.0.1:1234
420
# launch yet another QEMU instance on same "bus"
421
qemu linux.img -net nic,macaddr=52:54:00:12:34:58 \
422
               -net socket,mcast=230.0.0.1:1234
423
@end example
424

    
425
Example (User Mode Linux compat.):
426
@example
427
# launch QEMU instance (note mcast address selected
428
# is UML's default)
429
qemu linux.img -net nic,macaddr=52:54:00:12:34:56 \
430
               -net socket,mcast=239.192.168.1:1102
431
# launch UML
432
/path/to/linux ubd0=/path/to/root_fs eth0=mcast
433
@end example
434

    
435
@item -net none
436
Indicate that no network devices should be configured. It is used to
437
override the default configuration (@option{-net nic -net user}) which
438
is activated if no @option{-net} options are provided.
439

    
440
@item -tftp prefix
441
When using the user mode network stack, activate a built-in TFTP
442
server. All filenames beginning with @var{prefix} can be downloaded
443
from the host to the guest using a TFTP client. The TFTP client on the
444
guest must be configured in binary mode (use the command @code{bin} of
445
the Unix TFTP client). The host IP address on the guest is as usual
446
10.0.2.2.
447

    
448
@item -smb dir
449
When using the user mode network stack, activate a built-in SMB
450
server so that Windows OSes can access to the host files in @file{dir}
451
transparently.
452

    
453
In the guest Windows OS, the line:
454
@example
455
10.0.2.4 smbserver
456
@end example
457
must be added in the file @file{C:\WINDOWS\LMHOSTS} (for windows 9x/Me)
458
or @file{C:\WINNT\SYSTEM32\DRIVERS\ETC\LMHOSTS} (Windows NT/2000).
459

    
460
Then @file{dir} can be accessed in @file{\\smbserver\qemu}.
461

    
462
Note that a SAMBA server must be installed on the host OS in
463
@file{/usr/sbin/smbd}. QEMU was tested successfully with smbd version
464
2.2.7a from the Red Hat 9 and version 3.0.10-1.fc3 from Fedora Core 3.
465

    
466
@item -redir [tcp|udp]:host-port:[guest-host]:guest-port
467

    
468
When using the user mode network stack, redirect incoming TCP or UDP
469
connections to the host port @var{host-port} to the guest
470
@var{guest-host} on guest port @var{guest-port}. If @var{guest-host}
471
is not specified, its value is 10.0.2.15 (default address given by the
472
built-in DHCP server).
473

    
474
For example, to redirect host X11 connection from screen 1 to guest
475
screen 0, use the following:
476

    
477
@example
478
# on the host
479
qemu -redir tcp:6001::6000 [...]
480
# this host xterm should open in the guest X11 server
481
xterm -display :1
482
@end example
483

    
484
To redirect telnet connections from host port 5555 to telnet port on
485
the guest, use the following:
486

    
487
@example
488
# on the host
489
qemu -redir tcp:5555::23 [...]
490
telnet localhost 5555
491
@end example
492

    
493
Then when you use on the host @code{telnet localhost 5555}, you
494
connect to the guest telnet server.
495

    
496
@end table
497

    
498
Linux boot specific: When using these options, you can use a given
499
Linux kernel without installing it in the disk image. It can be useful
500
for easier testing of various kernels.
501

    
502
@table @option
503

    
504
@item -kernel bzImage 
505
Use @var{bzImage} as kernel image.
506

    
507
@item -append cmdline 
508
Use @var{cmdline} as kernel command line
509

    
510
@item -initrd file
511
Use @var{file} as initial ram disk.
512

    
513
@end table
514

    
515
Debug/Expert options:
516
@table @option
517

    
518
@item -serial dev
519
Redirect the virtual serial port to host character device
520
@var{dev}. The default device is @code{vc} in graphical mode and
521
@code{stdio} in non graphical mode.
522

    
523
This option can be used several times to simulate up to 4 serials
524
ports.
525

    
526
Use @code{-serial none} to disable all serial ports.
527

    
528
Available character devices are:
529
@table @code
530
@item vc
531
Virtual console
532
@item pty
533
[Linux only] Pseudo TTY (a new PTY is automatically allocated)
534
@item none
535
No device is allocated.
536
@item null
537
void device
538
@item /dev/XXX
539
[Linux only] Use host tty, e.g. @file{/dev/ttyS0}. The host serial port
540
parameters are set according to the emulated ones.
541
@item /dev/parportN
542
[Linux only, parallel port only] Use host parallel port
543
@var{N}. Currently only SPP parallel port features can be used.
544
@item file:filename
545
Write output to filename. No character can be read.
546
@item stdio
547
[Unix only] standard input/output
548
@item pipe:filename
549
name pipe @var{filename}
550
@item COMn
551
[Windows only] Use host serial port @var{n}
552
@item udp:[remote_host]:remote_port[@@[src_ip]:src_port]
553
This implements UDP Net Console.  When @var{remote_host} or @var{src_ip} are not specified they default to @code{0.0.0.0}.  When not using a specifed @var{src_port} a random port is automatically chosen.
554

    
555
If you just want a simple readonly console you can use @code{netcat} or
556
@code{nc}, by starting qemu with: @code{-serial udp::4555} and nc as:
557
@code{nc -u -l -p 4555}. Any time qemu writes something to that port it
558
will appear in the netconsole session.
559

    
560
If you plan to send characters back via netconsole or you want to stop
561
and start qemu a lot of times, you should have qemu use the same
562
source port each time by using something like @code{-serial
563
udp::4555@@:4556} to qemu. Another approach is to use a patched
564
version of netcat which can listen to a TCP port and send and receive
565
characters via udp.  If you have a patched version of netcat which
566
activates telnet remote echo and single char transfer, then you can
567
use the following options to step up a netcat redirector to allow
568
telnet on port 5555 to access the qemu port.
569
@table @code
570
@item Qemu Options:
571
-serial udp::4555@@:4556
572
@item netcat options:
573
-u -P 4555 -L 0.0.0.0:4556 -t -p 5555 -I -T
574
@item telnet options:
575
localhost 5555
576
@end table
577

    
578

    
579
@item tcp:[host]:port[,server][,nowait]
580
The TCP Net Console has two modes of operation.  It can send the serial
581
I/O to a location or wait for a connection from a location.  By default
582
the TCP Net Console is sent to @var{host} at the @var{port}.  If you use
583
the @var{server} option QEMU will wait for a client socket application
584
to connect to the port before continuing, unless the @code{nowait}
585
option was specified. If @var{host} is omitted, 0.0.0.0 is assumed. Only
586
one TCP connection at a time is accepted. You can use @code{telnet} to
587
connect to the corresponding character device.
588
@table @code
589
@item Example to send tcp console to 192.168.0.2 port 4444
590
-serial tcp:192.168.0.2:4444
591
@item Example to listen and wait on port 4444 for connection
592
-serial tcp::4444,server
593
@item Example to not wait and listen on ip 192.168.0.100 port 4444
594
-serial tcp:192.168.0.100:4444,server,nowait
595
@end table
596

    
597
@item telnet:host:port[,server][,nowait]
598
The telnet protocol is used instead of raw tcp sockets.  The options
599
work the same as if you had specified @code{-serial tcp}.  The
600
difference is that the port acts like a telnet server or client using
601
telnet option negotiation.  This will also allow you to send the
602
MAGIC_SYSRQ sequence if you use a telnet that supports sending the break
603
sequence.  Typically in unix telnet you do it with Control-] and then
604
type "send break" followed by pressing the enter key.
605

    
606
@item unix:path[,server][,nowait]
607
A unix domain socket is used instead of a tcp socket.  The option works the
608
same as if you had specified @code{-serial tcp} except the unix domain socket
609
@var{path} is used for connections.
610

    
611
@end table
612

    
613
@item -parallel dev
614
Redirect the virtual parallel port to host device @var{dev} (same
615
devices as the serial port). On Linux hosts, @file{/dev/parportN} can
616
be used to use hardware devices connected on the corresponding host
617
parallel port.
618

    
619
This option can be used several times to simulate up to 3 parallel
620
ports.
621

    
622
Use @code{-parallel none} to disable all parallel ports.
623

    
624
@item -monitor dev
625
Redirect the monitor to host device @var{dev} (same devices as the
626
serial port).
627
The default device is @code{vc} in graphical mode and @code{stdio} in
628
non graphical mode.
629

    
630
@item -s
631
Wait gdb connection to port 1234 (@pxref{gdb_usage}). 
632
@item -p port
633
Change gdb connection port.
634
@item -S
635
Do not start CPU at startup (you must type 'c' in the monitor).
636
@item -d             
637
Output log in /tmp/qemu.log
638
@item -hdachs c,h,s,[,t]
639
Force hard disk 0 physical geometry (1 <= @var{c} <= 16383, 1 <=
640
@var{h} <= 16, 1 <= @var{s} <= 63) and optionally force the BIOS
641
translation mode (@var{t}=none, lba or auto). Usually QEMU can guess
642
all thoses parameters. This option is useful for old MS-DOS disk
643
images.
644

    
645
@item -L path
646
Set the directory for the BIOS, VGA BIOS and keymaps.
647

    
648
@item -std-vga
649
Simulate a standard VGA card with Bochs VBE extensions (default is
650
Cirrus Logic GD5446 PCI VGA). If your guest OS supports the VESA 2.0
651
VBE extensions (e.g. Windows XP) and if you want to use high
652
resolution modes (>= 1280x1024x16) then you should use this option.
653

    
654
@item -no-acpi
655
Disable ACPI (Advanced Configuration and Power Interface) support. Use
656
it if your guest OS complains about ACPI problems (PC target machine
657
only).
658

    
659
@item -no-reboot
660
Exit instead of rebooting.
661

    
662
@item -loadvm file
663
Start right away with a saved state (@code{loadvm} in monitor)
664

    
665
@item -semihosting
666
Enable "Angel" semihosting interface (ARM target machines only).
667
Note that this allows guest direct access to the host filesystem,
668
so should only be used with trusted guest OS.
669
@end table
670

    
671
@c man end
672

    
673
@node pcsys_keys
674
@section Keys
675

    
676
@c man begin OPTIONS
677

    
678
During the graphical emulation, you can use the following keys:
679
@table @key
680
@item Ctrl-Alt-f
681
Toggle full screen
682

    
683
@item Ctrl-Alt-n
684
Switch to virtual console 'n'. Standard console mappings are:
685
@table @emph
686
@item 1
687
Target system display
688
@item 2
689
Monitor
690
@item 3
691
Serial port
692
@end table
693

    
694
@item Ctrl-Alt
695
Toggle mouse and keyboard grab.
696
@end table
697

    
698
In the virtual consoles, you can use @key{Ctrl-Up}, @key{Ctrl-Down},
699
@key{Ctrl-PageUp} and @key{Ctrl-PageDown} to move in the back log.
700

    
701
During emulation, if you are using the @option{-nographic} option, use
702
@key{Ctrl-a h} to get terminal commands:
703

    
704
@table @key
705
@item Ctrl-a h
706
Print this help
707
@item Ctrl-a x    
708
Exit emulator
709
@item Ctrl-a s    
710
Save disk data back to file (if -snapshot)
711
@item Ctrl-a b
712
Send break (magic sysrq in Linux)
713
@item Ctrl-a c
714
Switch between console and monitor
715
@item Ctrl-a Ctrl-a
716
Send Ctrl-a
717
@end table
718
@c man end
719

    
720
@ignore
721

    
722
@c man begin SEEALSO
723
The HTML documentation of QEMU for more precise information and Linux
724
user mode emulator invocation.
725
@c man end
726

    
727
@c man begin AUTHOR
728
Fabrice Bellard
729
@c man end
730

    
731
@end ignore
732

    
733
@node pcsys_monitor
734
@section QEMU Monitor
735

    
736
The QEMU monitor is used to give complex commands to the QEMU
737
emulator. You can use it to:
738

    
739
@itemize @minus
740

    
741
@item
742
Remove or insert removable medias images
743
(such as CD-ROM or floppies)
744

    
745
@item 
746
Freeze/unfreeze the Virtual Machine (VM) and save or restore its state
747
from a disk file.
748

    
749
@item Inspect the VM state without an external debugger.
750

    
751
@end itemize
752

    
753
@subsection Commands
754

    
755
The following commands are available:
756

    
757
@table @option
758

    
759
@item help or ? [cmd]
760
Show the help for all commands or just for command @var{cmd}.
761

    
762
@item commit  
763
Commit changes to the disk images (if -snapshot is used)
764

    
765
@item info subcommand 
766
show various information about the system state
767

    
768
@table @option
769
@item info network
770
show the various VLANs and the associated devices
771
@item info block
772
show the block devices
773
@item info registers
774
show the cpu registers
775
@item info history
776
show the command line history
777
@item info pci
778
show emulated PCI device
779
@item info usb
780
show USB devices plugged on the virtual USB hub
781
@item info usbhost
782
show all USB host devices
783
@item info capture
784
show information about active capturing
785
@item info snapshots
786
show list of VM snapshots
787
@item info mice
788
show which guest mouse is receiving events
789
@end table
790

    
791
@item q or quit
792
Quit the emulator.
793

    
794
@item eject [-f] device
795
Eject a removable media (use -f to force it).
796

    
797
@item change device filename
798
Change a removable media.
799

    
800
@item screendump filename
801
Save screen into PPM image @var{filename}.
802

    
803
@item mouse_move dx dy [dz]
804
Move the active mouse to the specified coordinates @var{dx} @var{dy}
805
with optional scroll axis @var{dz}.
806

    
807
@item mouse_button val
808
Change the active mouse button state @var{val} (1=L, 2=M, 4=R).
809

    
810
@item mouse_set index
811
Set which mouse device receives events at given @var{index}, index
812
can be obtained with
813
@example
814
info mice
815
@end example
816

    
817
@item wavcapture filename [frequency [bits [channels]]]
818
Capture audio into @var{filename}. Using sample rate @var{frequency}
819
bits per sample @var{bits} and number of channels @var{channels}.
820

    
821
Defaults:
822
@itemize @minus
823
@item Sample rate = 44100 Hz - CD quality
824
@item Bits = 16
825
@item Number of channels = 2 - Stereo
826
@end itemize
827

    
828
@item stopcapture index
829
Stop capture with a given @var{index}, index can be obtained with
830
@example
831
info capture
832
@end example
833

    
834
@item log item1[,...]
835
Activate logging of the specified items to @file{/tmp/qemu.log}.
836

    
837
@item savevm [tag|id]
838
Create a snapshot of the whole virtual machine. If @var{tag} is
839
provided, it is used as human readable identifier. If there is already
840
a snapshot with the same tag or ID, it is replaced. More info at
841
@ref{vm_snapshots}.
842

    
843
@item loadvm tag|id
844
Set the whole virtual machine to the snapshot identified by the tag
845
@var{tag} or the unique snapshot ID @var{id}.
846

    
847
@item delvm tag|id
848
Delete the snapshot identified by @var{tag} or @var{id}.
849

    
850
@item stop
851
Stop emulation.
852

    
853
@item c or cont
854
Resume emulation.
855

    
856
@item gdbserver [port]
857
Start gdbserver session (default port=1234)
858

    
859
@item x/fmt addr
860
Virtual memory dump starting at @var{addr}.
861

    
862
@item xp /fmt addr
863
Physical memory dump starting at @var{addr}.
864

    
865
@var{fmt} is a format which tells the command how to format the
866
data. Its syntax is: @option{/@{count@}@{format@}@{size@}}
867

    
868
@table @var
869
@item count 
870
is the number of items to be dumped.
871

    
872
@item format
873
can be x (hexa), d (signed decimal), u (unsigned decimal), o (octal),
874
c (char) or i (asm instruction).
875

    
876
@item size
877
can be b (8 bits), h (16 bits), w (32 bits) or g (64 bits). On x86,
878
@code{h} or @code{w} can be specified with the @code{i} format to
879
respectively select 16 or 32 bit code instruction size.
880

    
881
@end table
882

    
883
Examples: 
884
@itemize
885
@item
886
Dump 10 instructions at the current instruction pointer:
887
@example 
888
(qemu) x/10i $eip
889
0x90107063:  ret
890
0x90107064:  sti
891
0x90107065:  lea    0x0(%esi,1),%esi
892
0x90107069:  lea    0x0(%edi,1),%edi
893
0x90107070:  ret
894
0x90107071:  jmp    0x90107080
895
0x90107073:  nop
896
0x90107074:  nop
897
0x90107075:  nop
898
0x90107076:  nop
899
@end example
900

    
901
@item
902
Dump 80 16 bit values at the start of the video memory.
903
@smallexample 
904
(qemu) xp/80hx 0xb8000
905
0x000b8000: 0x0b50 0x0b6c 0x0b65 0x0b78 0x0b38 0x0b36 0x0b2f 0x0b42
906
0x000b8010: 0x0b6f 0x0b63 0x0b68 0x0b73 0x0b20 0x0b56 0x0b47 0x0b41
907
0x000b8020: 0x0b42 0x0b69 0x0b6f 0x0b73 0x0b20 0x0b63 0x0b75 0x0b72
908
0x000b8030: 0x0b72 0x0b65 0x0b6e 0x0b74 0x0b2d 0x0b63 0x0b76 0x0b73
909
0x000b8040: 0x0b20 0x0b30 0x0b35 0x0b20 0x0b4e 0x0b6f 0x0b76 0x0b20
910
0x000b8050: 0x0b32 0x0b30 0x0b30 0x0b33 0x0720 0x0720 0x0720 0x0720
911
0x000b8060: 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720
912
0x000b8070: 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720
913
0x000b8080: 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720
914
0x000b8090: 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720
915
@end smallexample
916
@end itemize
917

    
918
@item p or print/fmt expr
919

    
920
Print expression value. Only the @var{format} part of @var{fmt} is
921
used.
922

    
923
@item sendkey keys
924

    
925
Send @var{keys} to the emulator. Use @code{-} to press several keys
926
simultaneously. Example:
927
@example
928
sendkey ctrl-alt-f1
929
@end example
930

    
931
This command is useful to send keys that your graphical user interface
932
intercepts at low level, such as @code{ctrl-alt-f1} in X Window.
933

    
934
@item system_reset
935

    
936
Reset the system.
937

    
938
@item usb_add devname
939

    
940
Add the USB device @var{devname}.  For details of available devices see
941
@ref{usb_devices}
942

    
943
@item usb_del devname
944

    
945
Remove the USB device @var{devname} from the QEMU virtual USB
946
hub. @var{devname} has the syntax @code{bus.addr}. Use the monitor
947
command @code{info usb} to see the devices you can remove.
948

    
949
@end table
950

    
951
@subsection Integer expressions
952

    
953
The monitor understands integers expressions for every integer
954
argument. You can use register names to get the value of specifics
955
CPU registers by prefixing them with @emph{$}.
956

    
957
@node disk_images
958
@section Disk Images
959

    
960
Since version 0.6.1, QEMU supports many disk image formats, including
961
growable disk images (their size increase as non empty sectors are
962
written), compressed and encrypted disk images. Version 0.8.3 added
963
the new qcow2 disk image format which is essential to support VM
964
snapshots.
965

    
966
@menu
967
* disk_images_quickstart::    Quick start for disk image creation
968
* disk_images_snapshot_mode:: Snapshot mode
969
* vm_snapshots::              VM snapshots
970
* qemu_img_invocation::       qemu-img Invocation
971
* host_drives::               Using host drives
972
* disk_images_fat_images::    Virtual FAT disk images
973
@end menu
974

    
975
@node disk_images_quickstart
976
@subsection Quick start for disk image creation
977

    
978
You can create a disk image with the command:
979
@example
980
qemu-img create myimage.img mysize
981
@end example
982
where @var{myimage.img} is the disk image filename and @var{mysize} is its
983
size in kilobytes. You can add an @code{M} suffix to give the size in
984
megabytes and a @code{G} suffix for gigabytes.
985

    
986
See @ref{qemu_img_invocation} for more information.
987

    
988
@node disk_images_snapshot_mode
989
@subsection Snapshot mode
990

    
991
If you use the option @option{-snapshot}, all disk images are
992
considered as read only. When sectors in written, they are written in
993
a temporary file created in @file{/tmp}. You can however force the
994
write back to the raw disk images by using the @code{commit} monitor
995
command (or @key{C-a s} in the serial console).
996

    
997
@node vm_snapshots
998
@subsection VM snapshots
999

    
1000
VM snapshots are snapshots of the complete virtual machine including
1001
CPU state, RAM, device state and the content of all the writable
1002
disks. In order to use VM snapshots, you must have at least one non
1003
removable and writable block device using the @code{qcow2} disk image
1004
format. Normally this device is the first virtual hard drive.
1005

    
1006
Use the monitor command @code{savevm} to create a new VM snapshot or
1007
replace an existing one. A human readable name can be assigned to each
1008
snapshot in addition to its numerical ID.
1009

    
1010
Use @code{loadvm} to restore a VM snapshot and @code{delvm} to remove
1011
a VM snapshot. @code{info snapshots} lists the available snapshots
1012
with their associated information:
1013

    
1014
@example
1015
(qemu) info snapshots
1016
Snapshot devices: hda
1017
Snapshot list (from hda):
1018
ID        TAG                 VM SIZE                DATE       VM CLOCK
1019
1         start                   41M 2006-08-06 12:38:02   00:00:14.954
1020
2                                 40M 2006-08-06 12:43:29   00:00:18.633
1021
3         msys                    40M 2006-08-06 12:44:04   00:00:23.514
1022
@end example
1023

    
1024
A VM snapshot is made of a VM state info (its size is shown in
1025
@code{info snapshots}) and a snapshot of every writable disk image.
1026
The VM state info is stored in the first @code{qcow2} non removable
1027
and writable block device. The disk image snapshots are stored in
1028
every disk image. The size of a snapshot in a disk image is difficult
1029
to evaluate and is not shown by @code{info snapshots} because the
1030
associated disk sectors are shared among all the snapshots to save
1031
disk space (otherwise each snapshot would need a full copy of all the
1032
disk images).
1033

    
1034
When using the (unrelated) @code{-snapshot} option
1035
(@ref{disk_images_snapshot_mode}), you can always make VM snapshots,
1036
but they are deleted as soon as you exit QEMU.
1037

    
1038
VM snapshots currently have the following known limitations:
1039
@itemize
1040
@item 
1041
They cannot cope with removable devices if they are removed or
1042
inserted after a snapshot is done.
1043
@item 
1044
A few device drivers still have incomplete snapshot support so their
1045
state is not saved or restored properly (in particular USB).
1046
@end itemize
1047

    
1048
@node qemu_img_invocation
1049
@subsection @code{qemu-img} Invocation
1050

    
1051
@include qemu-img.texi
1052

    
1053
@node host_drives
1054
@subsection Using host drives
1055

    
1056
In addition to disk image files, QEMU can directly access host
1057
devices. We describe here the usage for QEMU version >= 0.8.3.
1058

    
1059
@subsubsection Linux
1060

    
1061
On Linux, you can directly use the host device filename instead of a
1062
disk image filename provided you have enough proviledge to access
1063
it. For example, use @file{/dev/cdrom} to access to the CDROM or
1064
@file{/dev/fd0} for the floppy.
1065

    
1066
@table @code
1067
@item CD
1068
You can specify a CDROM device even if no CDROM is loaded. QEMU has
1069
specific code to detect CDROM insertion or removal. CDROM ejection by
1070
the guest OS is supported. Currently only data CDs are supported.
1071
@item Floppy
1072
You can specify a floppy device even if no floppy is loaded. Floppy
1073
removal is currently not detected accurately (if you change floppy
1074
without doing floppy access while the floppy is not loaded, the guest
1075
OS will think that the same floppy is loaded).
1076
@item Hard disks
1077
Hard disks can be used. Normally you must specify the whole disk
1078
(@file{/dev/hdb} instead of @file{/dev/hdb1}) so that the guest OS can
1079
see it as a partitioned disk. WARNING: unless you know what you do, it
1080
is better to only make READ-ONLY accesses to the hard disk otherwise
1081
you may corrupt your host data (use the @option{-snapshot} command
1082
line option or modify the device permissions accordingly).
1083
@end table
1084

    
1085
@subsubsection Windows
1086

    
1087
@table @code
1088
@item CD
1089
The prefered syntax is the drive letter (e.g. @file{d:}). The
1090
alternate syntax @file{\\.\d:} is supported. @file{/dev/cdrom} is
1091
supported as an alias to the first CDROM drive.
1092

    
1093
Currently there is no specific code to handle removable medias, so it
1094
is better to use the @code{change} or @code{eject} monitor commands to
1095
change or eject media.
1096
@item Hard disks
1097
Hard disks can be used with the syntax: @file{\\.\PhysicalDriveN}
1098
where @var{N} is the drive number (0 is the first hard disk).
1099

    
1100
WARNING: unless you know what you do, it is better to only make
1101
READ-ONLY accesses to the hard disk otherwise you may corrupt your
1102
host data (use the @option{-snapshot} command line so that the
1103
modifications are written in a temporary file).
1104
@end table
1105

    
1106

    
1107
@subsubsection Mac OS X
1108

    
1109
@file{/dev/cdrom} is an alias to the first CDROM. 
1110

    
1111
Currently there is no specific code to handle removable medias, so it
1112
is better to use the @code{change} or @code{eject} monitor commands to
1113
change or eject media.
1114

    
1115
@node disk_images_fat_images
1116
@subsection Virtual FAT disk images
1117

    
1118
QEMU can automatically create a virtual FAT disk image from a
1119
directory tree. In order to use it, just type:
1120

    
1121
@example 
1122
qemu linux.img -hdb fat:/my_directory
1123
@end example
1124

    
1125
Then you access access to all the files in the @file{/my_directory}
1126
directory without having to copy them in a disk image or to export
1127
them via SAMBA or NFS. The default access is @emph{read-only}.
1128

    
1129
Floppies can be emulated with the @code{:floppy:} option:
1130

    
1131
@example 
1132
qemu linux.img -fda fat:floppy:/my_directory
1133
@end example
1134

    
1135
A read/write support is available for testing (beta stage) with the
1136
@code{:rw:} option:
1137

    
1138
@example 
1139
qemu linux.img -fda fat:floppy:rw:/my_directory
1140
@end example
1141

    
1142
What you should @emph{never} do:
1143
@itemize
1144
@item use non-ASCII filenames ;
1145
@item use "-snapshot" together with ":rw:" ;
1146
@item expect it to work when loadvm'ing ;
1147
@item write to the FAT directory on the host system while accessing it with the guest system.
1148
@end itemize
1149

    
1150
@node pcsys_network
1151
@section Network emulation
1152

    
1153
QEMU can simulate several networks cards (NE2000 boards on the PC
1154
target) and can connect them to an arbitrary number of Virtual Local
1155
Area Networks (VLANs). Host TAP devices can be connected to any QEMU
1156
VLAN. VLAN can be connected between separate instances of QEMU to
1157
simulate large networks. For simpler usage, a non priviledged user mode
1158
network stack can replace the TAP device to have a basic network
1159
connection.
1160

    
1161
@subsection VLANs
1162

    
1163
QEMU simulates several VLANs. A VLAN can be symbolised as a virtual
1164
connection between several network devices. These devices can be for
1165
example QEMU virtual Ethernet cards or virtual Host ethernet devices
1166
(TAP devices).
1167

    
1168
@subsection Using TAP network interfaces
1169

    
1170
This is the standard way to connect QEMU to a real network. QEMU adds
1171
a virtual network device on your host (called @code{tapN}), and you
1172
can then configure it as if it was a real ethernet card.
1173

    
1174
@subsubsection Linux host
1175

    
1176
As an example, you can download the @file{linux-test-xxx.tar.gz}
1177
archive and copy the script @file{qemu-ifup} in @file{/etc} and
1178
configure properly @code{sudo} so that the command @code{ifconfig}
1179
contained in @file{qemu-ifup} can be executed as root. You must verify
1180
that your host kernel supports the TAP network interfaces: the
1181
device @file{/dev/net/tun} must be present.
1182

    
1183
See @ref{sec_invocation} to have examples of command lines using the
1184
TAP network interfaces.
1185

    
1186
@subsubsection Windows host
1187

    
1188
There is a virtual ethernet driver for Windows 2000/XP systems, called
1189
TAP-Win32. But it is not included in standard QEMU for Windows,
1190
so you will need to get it separately. It is part of OpenVPN package,
1191
so download OpenVPN from : @url{http://openvpn.net/}.
1192

    
1193
@subsection Using the user mode network stack
1194

    
1195
By using the option @option{-net user} (default configuration if no
1196
@option{-net} option is specified), QEMU uses a completely user mode
1197
network stack (you don't need root priviledge to use the virtual
1198
network). The virtual network configuration is the following:
1199

    
1200
@example
1201

    
1202
         QEMU VLAN      <------>  Firewall/DHCP server <-----> Internet
1203
                           |          (10.0.2.2)
1204
                           |
1205
                           ---->  DNS server (10.0.2.3)
1206
                           |     
1207
                           ---->  SMB server (10.0.2.4)
1208
@end example
1209

    
1210
The QEMU VM behaves as if it was behind a firewall which blocks all
1211
incoming connections. You can use a DHCP client to automatically
1212
configure the network in the QEMU VM. The DHCP server assign addresses
1213
to the hosts starting from 10.0.2.15.
1214

    
1215
In order to check that the user mode network is working, you can ping
1216
the address 10.0.2.2 and verify that you got an address in the range
1217
10.0.2.x from the QEMU virtual DHCP server.
1218

    
1219
Note that @code{ping} is not supported reliably to the internet as it
1220
would require root priviledges. It means you can only ping the local
1221
router (10.0.2.2).
1222

    
1223
When using the built-in TFTP server, the router is also the TFTP
1224
server.
1225

    
1226
When using the @option{-redir} option, TCP or UDP connections can be
1227
redirected from the host to the guest. It allows for example to
1228
redirect X11, telnet or SSH connections.
1229

    
1230
@subsection Connecting VLANs between QEMU instances
1231

    
1232
Using the @option{-net socket} option, it is possible to make VLANs
1233
that span several QEMU instances. See @ref{sec_invocation} to have a
1234
basic example.
1235

    
1236
@node direct_linux_boot
1237
@section Direct Linux Boot
1238

    
1239
This section explains how to launch a Linux kernel inside QEMU without
1240
having to make a full bootable image. It is very useful for fast Linux
1241
kernel testing.
1242

    
1243
The syntax is:
1244
@example
1245
qemu -kernel arch/i386/boot/bzImage -hda root-2.4.20.img -append "root=/dev/hda"
1246
@end example
1247

    
1248
Use @option{-kernel} to provide the Linux kernel image and
1249
@option{-append} to give the kernel command line arguments. The
1250
@option{-initrd} option can be used to provide an INITRD image.
1251

    
1252
When using the direct Linux boot, a disk image for the first hard disk
1253
@file{hda} is required because its boot sector is used to launch the
1254
Linux kernel.
1255

    
1256
If you do not need graphical output, you can disable it and redirect
1257
the virtual serial port and the QEMU monitor to the console with the
1258
@option{-nographic} option. The typical command line is:
1259
@example
1260
qemu -kernel arch/i386/boot/bzImage -hda root-2.4.20.img \
1261
     -append "root=/dev/hda console=ttyS0" -nographic
1262
@end example
1263

    
1264
Use @key{Ctrl-a c} to switch between the serial console and the
1265
monitor (@pxref{pcsys_keys}).
1266

    
1267
@node pcsys_usb
1268
@section USB emulation
1269

    
1270
QEMU emulates a PCI UHCI USB controller. You can virtually plug
1271
virtual USB devices or real host USB devices (experimental, works only
1272
on Linux hosts).  Qemu will automatically create and connect virtual USB hubs
1273
as necessary to connect multiple USB devices.
1274

    
1275
@menu
1276
* usb_devices::
1277
* host_usb_devices::
1278
@end menu
1279
@node usb_devices
1280
@subsection Connecting USB devices
1281

    
1282
USB devices can be connected with the @option{-usbdevice} commandline option
1283
or the @code{usb_add} monitor command.  Available devices are:
1284

    
1285
@table @var
1286
@item @code{mouse}
1287
Virtual Mouse.  This will override the PS/2 mouse emulation when activated.
1288
@item @code{tablet}
1289
Pointer device that uses absolute coordinates (like a touchscreen).
1290
This means qemu is able to report the mouse position without having
1291
to grab the mouse.  Also overrides the PS/2 mouse emulation when activated.
1292
@item @code{disk:file}
1293
Mass storage device based on @var{file} (@pxref{disk_images})
1294
@item @code{host:bus.addr}
1295
Pass through the host device identified by @var{bus.addr}
1296
(Linux only)
1297
@item @code{host:vendor_id:product_id}
1298
Pass through the host device identified by @var{vendor_id:product_id}
1299
(Linux only)
1300
@end table
1301

    
1302
@node host_usb_devices
1303
@subsection Using host USB devices on a Linux host
1304

    
1305
WARNING: this is an experimental feature. QEMU will slow down when
1306
using it. USB devices requiring real time streaming (i.e. USB Video
1307
Cameras) are not supported yet.
1308

    
1309
@enumerate
1310
@item If you use an early Linux 2.4 kernel, verify that no Linux driver 
1311
is actually using the USB device. A simple way to do that is simply to
1312
disable the corresponding kernel module by renaming it from @file{mydriver.o}
1313
to @file{mydriver.o.disabled}.
1314

    
1315
@item Verify that @file{/proc/bus/usb} is working (most Linux distributions should enable it by default). You should see something like that:
1316
@example
1317
ls /proc/bus/usb
1318
001  devices  drivers
1319
@end example
1320

    
1321
@item Since only root can access to the USB devices directly, you can either launch QEMU as root or change the permissions of the USB devices you want to use. For testing, the following suffices:
1322
@example
1323
chown -R myuid /proc/bus/usb
1324
@end example
1325

    
1326
@item Launch QEMU and do in the monitor:
1327
@example 
1328
info usbhost
1329
  Device 1.2, speed 480 Mb/s
1330
    Class 00: USB device 1234:5678, USB DISK
1331
@end example
1332
You should see the list of the devices you can use (Never try to use
1333
hubs, it won't work).
1334

    
1335
@item Add the device in QEMU by using:
1336
@example 
1337
usb_add host:1234:5678
1338
@end example
1339

    
1340
Normally the guest OS should report that a new USB device is
1341
plugged. You can use the option @option{-usbdevice} to do the same.
1342

    
1343
@item Now you can try to use the host USB device in QEMU.
1344

    
1345
@end enumerate
1346

    
1347
When relaunching QEMU, you may have to unplug and plug again the USB
1348
device to make it work again (this is a bug).
1349

    
1350
@node gdb_usage
1351
@section GDB usage
1352

    
1353
QEMU has a primitive support to work with gdb, so that you can do
1354
'Ctrl-C' while the virtual machine is running and inspect its state.
1355

    
1356
In order to use gdb, launch qemu with the '-s' option. It will wait for a
1357
gdb connection:
1358
@example
1359
> qemu -s -kernel arch/i386/boot/bzImage -hda root-2.4.20.img \
1360
       -append "root=/dev/hda"
1361
Connected to host network interface: tun0
1362
Waiting gdb connection on port 1234
1363
@end example
1364

    
1365
Then launch gdb on the 'vmlinux' executable:
1366
@example
1367
> gdb vmlinux
1368
@end example
1369

    
1370
In gdb, connect to QEMU:
1371
@example
1372
(gdb) target remote localhost:1234
1373
@end example
1374

    
1375
Then you can use gdb normally. For example, type 'c' to launch the kernel:
1376
@example
1377
(gdb) c
1378
@end example
1379

    
1380
Here are some useful tips in order to use gdb on system code:
1381

    
1382
@enumerate
1383
@item
1384
Use @code{info reg} to display all the CPU registers.
1385
@item
1386
Use @code{x/10i $eip} to display the code at the PC position.
1387
@item
1388
Use @code{set architecture i8086} to dump 16 bit code. Then use
1389
@code{x/10i $cs*16+$eip} to dump the code at the PC position.
1390
@end enumerate
1391

    
1392
@node pcsys_os_specific
1393
@section Target OS specific information
1394

    
1395
@subsection Linux
1396

    
1397
To have access to SVGA graphic modes under X11, use the @code{vesa} or
1398
the @code{cirrus} X11 driver. For optimal performances, use 16 bit
1399
color depth in the guest and the host OS.
1400

    
1401
When using a 2.6 guest Linux kernel, you should add the option
1402
@code{clock=pit} on the kernel command line because the 2.6 Linux
1403
kernels make very strict real time clock checks by default that QEMU
1404
cannot simulate exactly.
1405

    
1406
When using a 2.6 guest Linux kernel, verify that the 4G/4G patch is
1407
not activated because QEMU is slower with this patch. The QEMU
1408
Accelerator Module is also much slower in this case. Earlier Fedora
1409
Core 3 Linux kernel (< 2.6.9-1.724_FC3) were known to incorporte this
1410
patch by default. Newer kernels don't have it.
1411

    
1412
@subsection Windows
1413

    
1414
If you have a slow host, using Windows 95 is better as it gives the
1415
best speed. Windows 2000 is also a good choice.
1416

    
1417
@subsubsection SVGA graphic modes support
1418

    
1419
QEMU emulates a Cirrus Logic GD5446 Video
1420
card. All Windows versions starting from Windows 95 should recognize
1421
and use this graphic card. For optimal performances, use 16 bit color
1422
depth in the guest and the host OS.
1423

    
1424
If you are using Windows XP as guest OS and if you want to use high
1425
resolution modes which the Cirrus Logic BIOS does not support (i.e. >=
1426
1280x1024x16), then you should use the VESA VBE virtual graphic card
1427
(option @option{-std-vga}).
1428

    
1429
@subsubsection CPU usage reduction
1430

    
1431
Windows 9x does not correctly use the CPU HLT
1432
instruction. The result is that it takes host CPU cycles even when
1433
idle. You can install the utility from
1434
@url{http://www.user.cityline.ru/~maxamn/amnhltm.zip} to solve this
1435
problem. Note that no such tool is needed for NT, 2000 or XP.
1436

    
1437
@subsubsection Windows 2000 disk full problem
1438

    
1439
Windows 2000 has a bug which gives a disk full problem during its
1440
installation. When installing it, use the @option{-win2k-hack} QEMU
1441
option to enable a specific workaround. After Windows 2000 is
1442
installed, you no longer need this option (this option slows down the
1443
IDE transfers).
1444

    
1445
@subsubsection Windows 2000 shutdown
1446

    
1447
Windows 2000 cannot automatically shutdown in QEMU although Windows 98
1448
can. It comes from the fact that Windows 2000 does not automatically
1449
use the APM driver provided by the BIOS.
1450

    
1451
In order to correct that, do the following (thanks to Struan
1452
Bartlett): go to the Control Panel => Add/Remove Hardware & Next =>
1453
Add/Troubleshoot a device => Add a new device & Next => No, select the
1454
hardware from a list & Next => NT Apm/Legacy Support & Next => Next
1455
(again) a few times. Now the driver is installed and Windows 2000 now
1456
correctly instructs QEMU to shutdown at the appropriate moment. 
1457

    
1458
@subsubsection Share a directory between Unix and Windows
1459

    
1460
See @ref{sec_invocation} about the help of the option @option{-smb}.
1461

    
1462
@subsubsection Windows XP security problem
1463

    
1464
Some releases of Windows XP install correctly but give a security
1465
error when booting:
1466
@example
1467
A problem is preventing Windows from accurately checking the
1468
license for this computer. Error code: 0x800703e6.
1469
@end example
1470

    
1471
The workaround is to install a service pack for XP after a boot in safe
1472
mode. Then reboot, and the problem should go away. Since there is no
1473
network while in safe mode, its recommended to download the full
1474
installation of SP1 or SP2 and transfer that via an ISO or using the
1475
vvfat block device ("-hdb fat:directory_which_holds_the_SP").
1476

    
1477
@subsection MS-DOS and FreeDOS
1478

    
1479
@subsubsection CPU usage reduction
1480

    
1481
DOS does not correctly use the CPU HLT instruction. The result is that
1482
it takes host CPU cycles even when idle. You can install the utility
1483
from @url{http://www.vmware.com/software/dosidle210.zip} to solve this
1484
problem.
1485

    
1486
@node QEMU System emulator for non PC targets
1487
@chapter QEMU System emulator for non PC targets
1488

    
1489
QEMU is a generic emulator and it emulates many non PC
1490
machines. Most of the options are similar to the PC emulator. The
1491
differences are mentionned in the following sections.
1492

    
1493
@menu
1494
* QEMU PowerPC System emulator::
1495
* Sparc32 System emulator invocation::
1496
* Sparc64 System emulator invocation::
1497
* MIPS System emulator invocation::
1498
* ARM System emulator invocation::
1499
@end menu
1500

    
1501
@node QEMU PowerPC System emulator
1502
@section QEMU PowerPC System emulator
1503

    
1504
Use the executable @file{qemu-system-ppc} to simulate a complete PREP
1505
or PowerMac PowerPC system.
1506

    
1507
QEMU emulates the following PowerMac peripherals:
1508

    
1509
@itemize @minus
1510
@item 
1511
UniNorth PCI Bridge 
1512
@item
1513
PCI VGA compatible card with VESA Bochs Extensions
1514
@item 
1515
2 PMAC IDE interfaces with hard disk and CD-ROM support
1516
@item 
1517
NE2000 PCI adapters
1518
@item
1519
Non Volatile RAM
1520
@item
1521
VIA-CUDA with ADB keyboard and mouse.
1522
@end itemize
1523

    
1524
QEMU emulates the following PREP peripherals:
1525

    
1526
@itemize @minus
1527
@item 
1528
PCI Bridge
1529
@item
1530
PCI VGA compatible card with VESA Bochs Extensions
1531
@item 
1532
2 IDE interfaces with hard disk and CD-ROM support
1533
@item
1534
Floppy disk
1535
@item 
1536
NE2000 network adapters
1537
@item
1538
Serial port
1539
@item
1540
PREP Non Volatile RAM
1541
@item
1542
PC compatible keyboard and mouse.
1543
@end itemize
1544

    
1545
QEMU uses the Open Hack'Ware Open Firmware Compatible BIOS available at
1546
@url{http://perso.magic.fr/l_indien/OpenHackWare/index.htm}.
1547

    
1548
@c man begin OPTIONS
1549

    
1550
The following options are specific to the PowerPC emulation:
1551

    
1552
@table @option
1553

    
1554
@item -g WxH[xDEPTH]  
1555

    
1556
Set the initial VGA graphic mode. The default is 800x600x15.
1557

    
1558
@end table
1559

    
1560
@c man end 
1561

    
1562

    
1563
More information is available at
1564
@url{http://perso.magic.fr/l_indien/qemu-ppc/}.
1565

    
1566
@node Sparc32 System emulator invocation
1567
@section Sparc32 System emulator invocation
1568

    
1569
Use the executable @file{qemu-system-sparc} to simulate a SparcStation 5
1570
(sun4m architecture). The emulation is somewhat complete.
1571

    
1572
QEMU emulates the following sun4m peripherals:
1573

    
1574
@itemize @minus
1575
@item
1576
IOMMU
1577
@item
1578
TCX Frame buffer
1579
@item 
1580
Lance (Am7990) Ethernet
1581
@item
1582
Non Volatile RAM M48T08
1583
@item
1584
Slave I/O: timers, interrupt controllers, Zilog serial ports, keyboard
1585
and power/reset logic
1586
@item
1587
ESP SCSI controller with hard disk and CD-ROM support
1588
@item
1589
Floppy drive
1590
@end itemize
1591

    
1592
The number of peripherals is fixed in the architecture.
1593

    
1594
Since version 0.8.2, QEMU uses OpenBIOS
1595
@url{http://www.openbios.org/}. OpenBIOS is a free (GPL v2) portable
1596
firmware implementation. The goal is to implement a 100% IEEE
1597
1275-1994 (referred to as Open Firmware) compliant firmware.
1598

    
1599
A sample Linux 2.6 series kernel and ram disk image are available on
1600
the QEMU web site. Please note that currently NetBSD, OpenBSD or
1601
Solaris kernels don't work.
1602

    
1603
@c man begin OPTIONS
1604

    
1605
The following options are specific to the Sparc emulation:
1606

    
1607
@table @option
1608

    
1609
@item -g WxH
1610

    
1611
Set the initial TCX graphic mode. The default is 1024x768.
1612

    
1613
@end table
1614

    
1615
@c man end 
1616

    
1617
@node Sparc64 System emulator invocation
1618
@section Sparc64 System emulator invocation
1619

    
1620
Use the executable @file{qemu-system-sparc64} to simulate a Sun4u machine.
1621
The emulator is not usable for anything yet.
1622

    
1623
QEMU emulates the following sun4u peripherals:
1624

    
1625
@itemize @minus
1626
@item
1627
UltraSparc IIi APB PCI Bridge 
1628
@item
1629
PCI VGA compatible card with VESA Bochs Extensions
1630
@item
1631
Non Volatile RAM M48T59
1632
@item
1633
PC-compatible serial ports
1634
@end itemize
1635

    
1636
@node MIPS System emulator invocation
1637
@section MIPS System emulator invocation
1638

    
1639
Use the executable @file{qemu-system-mips} to simulate a MIPS machine.
1640
The emulator is able to boot a Linux kernel and to run a Linux Debian
1641
installation from NFS. The following devices are emulated:
1642

    
1643
@itemize @minus
1644
@item 
1645
MIPS R4K CPU
1646
@item
1647
PC style serial port
1648
@item
1649
NE2000 network card
1650
@end itemize
1651

    
1652
More information is available in the QEMU mailing-list archive.
1653

    
1654
@node ARM System emulator invocation
1655
@section ARM System emulator invocation
1656

    
1657
Use the executable @file{qemu-system-arm} to simulate a ARM
1658
machine. The ARM Integrator/CP board is emulated with the following
1659
devices:
1660

    
1661
@itemize @minus
1662
@item
1663
ARM926E or ARM1026E CPU
1664
@item
1665
Two PL011 UARTs
1666
@item 
1667
SMC 91c111 Ethernet adapter
1668
@item
1669
PL110 LCD controller
1670
@item
1671
PL050 KMI with PS/2 keyboard and mouse.
1672
@end itemize
1673

    
1674
The ARM Versatile baseboard is emulated with the following devices:
1675

    
1676
@itemize @minus
1677
@item
1678
ARM926E CPU
1679
@item
1680
PL190 Vectored Interrupt Controller
1681
@item
1682
Four PL011 UARTs
1683
@item 
1684
SMC 91c111 Ethernet adapter
1685
@item
1686
PL110 LCD controller
1687
@item
1688
PL050 KMI with PS/2 keyboard and mouse.
1689
@item
1690
PCI host bridge.  Note the emulated PCI bridge only provides access to
1691
PCI memory space.  It does not provide access to PCI IO space.
1692
This means some devices (eg. ne2k_pci NIC) are not useable, and others
1693
(eg. rtl8139 NIC) are only useable when the guest drivers use the memory
1694
mapped control registers.
1695
@item
1696
PCI OHCI USB controller.
1697
@item
1698
LSI53C895A PCI SCSI Host Bus Adapter with hard disk and CD-ROM devices.
1699
@end itemize
1700

    
1701
A Linux 2.6 test image is available on the QEMU web site. More
1702
information is available in the QEMU mailing-list archive.
1703

    
1704
@node QEMU Linux User space emulator 
1705
@chapter QEMU Linux User space emulator 
1706

    
1707
@menu
1708
* Quick Start::
1709
* Wine launch::
1710
* Command line options::
1711
* Other binaries::
1712
@end menu
1713

    
1714
@node Quick Start
1715
@section Quick Start
1716

    
1717
In order to launch a Linux process, QEMU needs the process executable
1718
itself and all the target (x86) dynamic libraries used by it. 
1719

    
1720
@itemize
1721

    
1722
@item On x86, you can just try to launch any process by using the native
1723
libraries:
1724

    
1725
@example 
1726
qemu-i386 -L / /bin/ls
1727
@end example
1728

    
1729
@code{-L /} tells that the x86 dynamic linker must be searched with a
1730
@file{/} prefix.
1731

    
1732
@item Since QEMU is also a linux process, you can launch qemu with qemu (NOTE: you can only do that if you compiled QEMU from the sources):
1733

    
1734
@example 
1735
qemu-i386 -L / qemu-i386 -L / /bin/ls
1736
@end example
1737

    
1738
@item On non x86 CPUs, you need first to download at least an x86 glibc
1739
(@file{qemu-runtime-i386-XXX-.tar.gz} on the QEMU web page). Ensure that
1740
@code{LD_LIBRARY_PATH} is not set:
1741

    
1742
@example
1743
unset LD_LIBRARY_PATH 
1744
@end example
1745

    
1746
Then you can launch the precompiled @file{ls} x86 executable:
1747

    
1748
@example
1749
qemu-i386 tests/i386/ls
1750
@end example
1751
You can look at @file{qemu-binfmt-conf.sh} so that
1752
QEMU is automatically launched by the Linux kernel when you try to
1753
launch x86 executables. It requires the @code{binfmt_misc} module in the
1754
Linux kernel.
1755

    
1756
@item The x86 version of QEMU is also included. You can try weird things such as:
1757
@example
1758
qemu-i386 /usr/local/qemu-i386/bin/qemu-i386 \
1759
          /usr/local/qemu-i386/bin/ls-i386
1760
@end example
1761

    
1762
@end itemize
1763

    
1764
@node Wine launch
1765
@section Wine launch
1766

    
1767
@itemize
1768

    
1769
@item Ensure that you have a working QEMU with the x86 glibc
1770
distribution (see previous section). In order to verify it, you must be
1771
able to do:
1772

    
1773
@example
1774
qemu-i386 /usr/local/qemu-i386/bin/ls-i386
1775
@end example
1776

    
1777
@item Download the binary x86 Wine install
1778
(@file{qemu-XXX-i386-wine.tar.gz} on the QEMU web page). 
1779

    
1780
@item Configure Wine on your account. Look at the provided script
1781
@file{/usr/local/qemu-i386/@/bin/wine-conf.sh}. Your previous
1782
@code{$@{HOME@}/.wine} directory is saved to @code{$@{HOME@}/.wine.org}.
1783

    
1784
@item Then you can try the example @file{putty.exe}:
1785

    
1786
@example
1787
qemu-i386 /usr/local/qemu-i386/wine/bin/wine \
1788
          /usr/local/qemu-i386/wine/c/Program\ Files/putty.exe
1789
@end example
1790

    
1791
@end itemize
1792

    
1793
@node Command line options
1794
@section Command line options
1795

    
1796
@example
1797
usage: qemu-i386 [-h] [-d] [-L path] [-s size] program [arguments...]
1798
@end example
1799

    
1800
@table @option
1801
@item -h
1802
Print the help
1803
@item -L path   
1804
Set the x86 elf interpreter prefix (default=/usr/local/qemu-i386)
1805
@item -s size
1806
Set the x86 stack size in bytes (default=524288)
1807
@end table
1808

    
1809
Debug options:
1810

    
1811
@table @option
1812
@item -d
1813
Activate log (logfile=/tmp/qemu.log)
1814
@item -p pagesize
1815
Act as if the host page size was 'pagesize' bytes
1816
@end table
1817

    
1818
@node Other binaries
1819
@section Other binaries
1820

    
1821
@command{qemu-arm} is also capable of running ARM "Angel" semihosted ELF
1822
binaries (as implemented by the arm-elf and arm-eabi Newlib/GDB
1823
configurations), and arm-uclinux bFLT format binaries.
1824

    
1825
@command{qemu-m68k} is capable of running semihosted binaries using the BDM
1826
(m5xxx-ram-hosted.ld) or m68k-sim (sim.ld) syscall interfaces, and
1827
coldfire uClinux bFLT format binaries.
1828

    
1829
The binary format is detected automatically.
1830

    
1831
@node compilation
1832
@chapter Compilation from the sources
1833

    
1834
@menu
1835
* Linux/Unix::
1836
* Windows::
1837
* Cross compilation for Windows with Linux::
1838
* Mac OS X::
1839
@end menu
1840

    
1841
@node Linux/Unix
1842
@section Linux/Unix
1843

    
1844
@subsection Compilation
1845

    
1846
First you must decompress the sources:
1847
@example
1848
cd /tmp
1849
tar zxvf qemu-x.y.z.tar.gz
1850
cd qemu-x.y.z
1851
@end example
1852

    
1853
Then you configure QEMU and build it (usually no options are needed):
1854
@example
1855
./configure
1856
make
1857
@end example
1858

    
1859
Then type as root user:
1860
@example
1861
make install
1862
@end example
1863
to install QEMU in @file{/usr/local}.
1864

    
1865
@subsection Tested tool versions
1866

    
1867
In order to compile QEMU successfully, it is very important that you
1868
have the right tools. The most important one is gcc. I cannot guaranty
1869
that QEMU works if you do not use a tested gcc version. Look at
1870
'configure' and 'Makefile' if you want to make a different gcc
1871
version work.
1872

    
1873
@example
1874
host      gcc      binutils      glibc    linux       distribution
1875
----------------------------------------------------------------------
1876
x86       3.2      2.13.2        2.1.3    2.4.18
1877
          2.96     2.11.93.0.2   2.2.5    2.4.18      Red Hat 7.3
1878
          3.2.2    2.13.90.0.18  2.3.2    2.4.20      Red Hat 9
1879

    
1880
PowerPC   3.3 [4]  2.13.90.0.18  2.3.1    2.4.20briq
1881
          3.2
1882

    
1883
Alpha     3.3 [1]  2.14.90.0.4   2.2.5    2.2.20 [2]  Debian 3.0
1884

    
1885
Sparc32   2.95.4   2.12.90.0.1   2.2.5    2.4.18      Debian 3.0
1886

    
1887
ARM       2.95.4   2.12.90.0.1   2.2.5    2.4.9 [3]   Debian 3.0
1888

    
1889
[1] On Alpha, QEMU needs the gcc 'visibility' attribute only available
1890
    for gcc version >= 3.3.
1891
[2] Linux >= 2.4.20 is necessary for precise exception support
1892
    (untested).
1893
[3] 2.4.9-ac10-rmk2-np1-cerf2
1894

    
1895
[4] gcc 2.95.x generates invalid code when using too many register
1896
variables. You must use gcc 3.x on PowerPC.
1897
@end example
1898

    
1899
@node Windows
1900
@section Windows
1901

    
1902
@itemize
1903
@item Install the current versions of MSYS and MinGW from
1904
@url{http://www.mingw.org/}. You can find detailed installation
1905
instructions in the download section and the FAQ.
1906

    
1907
@item Download 
1908
the MinGW development library of SDL 1.2.x
1909
(@file{SDL-devel-1.2.x-@/mingw32.tar.gz}) from
1910
@url{http://www.libsdl.org}. Unpack it in a temporary place, and
1911
unpack the archive @file{i386-mingw32msvc.tar.gz} in the MinGW tool
1912
directory. Edit the @file{sdl-config} script so that it gives the
1913
correct SDL directory when invoked.
1914

    
1915
@item Extract the current version of QEMU.
1916
 
1917
@item Start the MSYS shell (file @file{msys.bat}).
1918

    
1919
@item Change to the QEMU directory. Launch @file{./configure} and 
1920
@file{make}.  If you have problems using SDL, verify that
1921
@file{sdl-config} can be launched from the MSYS command line.
1922

    
1923
@item You can install QEMU in @file{Program Files/Qemu} by typing 
1924
@file{make install}. Don't forget to copy @file{SDL.dll} in
1925
@file{Program Files/Qemu}.
1926

    
1927
@end itemize
1928

    
1929
@node Cross compilation for Windows with Linux
1930
@section Cross compilation for Windows with Linux
1931

    
1932
@itemize
1933
@item
1934
Install the MinGW cross compilation tools available at
1935
@url{http://www.mingw.org/}.
1936

    
1937
@item 
1938
Install the Win32 version of SDL (@url{http://www.libsdl.org}) by
1939
unpacking @file{i386-mingw32msvc.tar.gz}. Set up the PATH environment
1940
variable so that @file{i386-mingw32msvc-sdl-config} can be launched by
1941
the QEMU configuration script.
1942

    
1943
@item 
1944
Configure QEMU for Windows cross compilation:
1945
@example
1946
./configure --enable-mingw32
1947
@end example
1948
If necessary, you can change the cross-prefix according to the prefix
1949
choosen for the MinGW tools with --cross-prefix. You can also use
1950
--prefix to set the Win32 install path.
1951

    
1952
@item You can install QEMU in the installation directory by typing 
1953
@file{make install}. Don't forget to copy @file{SDL.dll} in the
1954
installation directory. 
1955

    
1956
@end itemize
1957

    
1958
Note: Currently, Wine does not seem able to launch
1959
QEMU for Win32.
1960

    
1961
@node Mac OS X
1962
@section Mac OS X
1963

    
1964
The Mac OS X patches are not fully merged in QEMU, so you should look
1965
at the QEMU mailing list archive to have all the necessary
1966
information.
1967

    
1968
@node Index
1969
@chapter Index
1970
@printindex cp
1971

    
1972
@bye