Statistics
| Branch: | Revision:

root / exec-all.h @ 932a6909

History | View | Annotate | Download (17.7 kB)

1
/*
2
 * internal execution defines for qemu
3
 *
4
 *  Copyright (c) 2003 Fabrice Bellard
5
 *
6
 * This library is free software; you can redistribute it and/or
7
 * modify it under the terms of the GNU Lesser General Public
8
 * License as published by the Free Software Foundation; either
9
 * version 2 of the License, or (at your option) any later version.
10
 *
11
 * This library is distributed in the hope that it will be useful,
12
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14
 * Lesser General Public License for more details.
15
 *
16
 * You should have received a copy of the GNU Lesser General Public
17
 * License along with this library; if not, write to the Free Software
18
 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
19
 */
20

    
21
/* allow to see translation results - the slowdown should be negligible, so we leave it */
22
#define DEBUG_DISAS
23

    
24
/* is_jmp field values */
25
#define DISAS_NEXT    0 /* next instruction can be analyzed */
26
#define DISAS_JUMP    1 /* only pc was modified dynamically */
27
#define DISAS_UPDATE  2 /* cpu state was modified dynamically */
28
#define DISAS_TB_JUMP 3 /* only pc was modified statically */
29

    
30
struct TranslationBlock;
31

    
32
/* XXX: make safe guess about sizes */
33
#define MAX_OP_PER_INSTR 64
34
/* A Call op needs up to 6 + 2N parameters (N = number of arguments).  */
35
#define MAX_OPC_PARAM 10
36
#define OPC_BUF_SIZE 512
37
#define OPC_MAX_SIZE (OPC_BUF_SIZE - MAX_OP_PER_INSTR)
38

    
39
/* Maximum size a TCG op can expand to.  This is complicated because a
40
   single op may require several host instructions and regirster reloads.
41
   For now take a wild guess at 128 bytes, which should allow at least
42
   a couple of fixup instructions per argument.  */
43
#define TCG_MAX_OP_SIZE 128
44

    
45
#define OPPARAM_BUF_SIZE (OPC_BUF_SIZE * MAX_OPC_PARAM)
46

    
47
extern target_ulong gen_opc_pc[OPC_BUF_SIZE];
48
extern target_ulong gen_opc_npc[OPC_BUF_SIZE];
49
extern uint8_t gen_opc_cc_op[OPC_BUF_SIZE];
50
extern uint8_t gen_opc_instr_start[OPC_BUF_SIZE];
51
extern target_ulong gen_opc_jump_pc[2];
52
extern uint32_t gen_opc_hflags[OPC_BUF_SIZE];
53

    
54
typedef void (GenOpFunc)(void);
55
typedef void (GenOpFunc1)(long);
56
typedef void (GenOpFunc2)(long, long);
57
typedef void (GenOpFunc3)(long, long, long);
58

    
59
extern FILE *logfile;
60
extern int loglevel;
61

    
62
int gen_intermediate_code(CPUState *env, struct TranslationBlock *tb);
63
int gen_intermediate_code_pc(CPUState *env, struct TranslationBlock *tb);
64
void gen_pc_load(CPUState *env, struct TranslationBlock *tb,
65
                 unsigned long searched_pc, int pc_pos, void *puc);
66

    
67
unsigned long code_gen_max_block_size(void);
68
void cpu_gen_init(void);
69
int cpu_gen_code(CPUState *env, struct TranslationBlock *tb,
70
                 int *gen_code_size_ptr);
71
int cpu_restore_state(struct TranslationBlock *tb,
72
                      CPUState *env, unsigned long searched_pc,
73
                      void *puc);
74
int cpu_restore_state_copy(struct TranslationBlock *tb,
75
                           CPUState *env, unsigned long searched_pc,
76
                           void *puc);
77
void cpu_resume_from_signal(CPUState *env1, void *puc);
78
void cpu_exec_init(CPUState *env);
79
int page_unprotect(target_ulong address, unsigned long pc, void *puc);
80
void tb_invalidate_phys_page_range(target_phys_addr_t start, target_phys_addr_t end,
81
                                   int is_cpu_write_access);
82
void tb_invalidate_page_range(target_ulong start, target_ulong end);
83
void tlb_flush_page(CPUState *env, target_ulong addr);
84
void tlb_flush(CPUState *env, int flush_global);
85
int tlb_set_page_exec(CPUState *env, target_ulong vaddr,
86
                      target_phys_addr_t paddr, int prot,
87
                      int mmu_idx, int is_softmmu);
88
static inline int tlb_set_page(CPUState *env1, target_ulong vaddr,
89
                               target_phys_addr_t paddr, int prot,
90
                               int mmu_idx, int is_softmmu)
91
{
92
    if (prot & PAGE_READ)
93
        prot |= PAGE_EXEC;
94
    return tlb_set_page_exec(env1, vaddr, paddr, prot, mmu_idx, is_softmmu);
95
}
96

    
97
#define CODE_GEN_ALIGN           16 /* must be >= of the size of a icache line */
98

    
99
#define CODE_GEN_PHYS_HASH_BITS     15
100
#define CODE_GEN_PHYS_HASH_SIZE     (1 << CODE_GEN_PHYS_HASH_BITS)
101

    
102
#define MIN_CODE_GEN_BUFFER_SIZE     (1024 * 1024)
103

    
104
/* estimated block size for TB allocation */
105
/* XXX: use a per code average code fragment size and modulate it
106
   according to the host CPU */
107
#if defined(CONFIG_SOFTMMU)
108
#define CODE_GEN_AVG_BLOCK_SIZE 128
109
#else
110
#define CODE_GEN_AVG_BLOCK_SIZE 64
111
#endif
112

    
113
#if defined(__powerpc__) || defined(__x86_64__) || defined(__arm__)
114
#define USE_DIRECT_JUMP
115
#endif
116
#if defined(__i386__) && !defined(_WIN32)
117
#define USE_DIRECT_JUMP
118
#endif
119

    
120
typedef struct TranslationBlock {
121
    target_ulong pc;   /* simulated PC corresponding to this block (EIP + CS base) */
122
    target_ulong cs_base; /* CS base for this block */
123
    uint64_t flags; /* flags defining in which context the code was generated */
124
    uint16_t size;      /* size of target code for this block (1 <=
125
                           size <= TARGET_PAGE_SIZE) */
126
    uint16_t cflags;    /* compile flags */
127
#define CF_TB_FP_USED  0x0002 /* fp ops are used in the TB */
128
#define CF_FP_USED     0x0004 /* fp ops are used in the TB or in a chained TB */
129
#define CF_SINGLE_INSN 0x0008 /* compile only a single instruction */
130

    
131
    uint8_t *tc_ptr;    /* pointer to the translated code */
132
    /* next matching tb for physical address. */
133
    struct TranslationBlock *phys_hash_next;
134
    /* first and second physical page containing code. The lower bit
135
       of the pointer tells the index in page_next[] */
136
    struct TranslationBlock *page_next[2];
137
    target_ulong page_addr[2];
138

    
139
    /* the following data are used to directly call another TB from
140
       the code of this one. */
141
    uint16_t tb_next_offset[2]; /* offset of original jump target */
142
#ifdef USE_DIRECT_JUMP
143
    uint16_t tb_jmp_offset[4]; /* offset of jump instruction */
144
#else
145
    unsigned long tb_next[2]; /* address of jump generated code */
146
#endif
147
    /* list of TBs jumping to this one. This is a circular list using
148
       the two least significant bits of the pointers to tell what is
149
       the next pointer: 0 = jmp_next[0], 1 = jmp_next[1], 2 =
150
       jmp_first */
151
    struct TranslationBlock *jmp_next[2];
152
    struct TranslationBlock *jmp_first;
153
} TranslationBlock;
154

    
155
static inline unsigned int tb_jmp_cache_hash_page(target_ulong pc)
156
{
157
    target_ulong tmp;
158
    tmp = pc ^ (pc >> (TARGET_PAGE_BITS - TB_JMP_PAGE_BITS));
159
    return (tmp >> (TARGET_PAGE_BITS - TB_JMP_PAGE_BITS)) & TB_JMP_PAGE_MASK;
160
}
161

    
162
static inline unsigned int tb_jmp_cache_hash_func(target_ulong pc)
163
{
164
    target_ulong tmp;
165
    tmp = pc ^ (pc >> (TARGET_PAGE_BITS - TB_JMP_PAGE_BITS));
166
    return (((tmp >> (TARGET_PAGE_BITS - TB_JMP_PAGE_BITS)) & TB_JMP_PAGE_MASK)
167
            | (tmp & TB_JMP_ADDR_MASK));
168
}
169

    
170
static inline unsigned int tb_phys_hash_func(unsigned long pc)
171
{
172
    return pc & (CODE_GEN_PHYS_HASH_SIZE - 1);
173
}
174

    
175
TranslationBlock *tb_alloc(target_ulong pc);
176
void tb_flush(CPUState *env);
177
void tb_link_phys(TranslationBlock *tb,
178
                  target_ulong phys_pc, target_ulong phys_page2);
179

    
180
extern TranslationBlock *tb_phys_hash[CODE_GEN_PHYS_HASH_SIZE];
181
extern uint8_t *code_gen_ptr;
182
extern int code_gen_max_blocks;
183

    
184
#if defined(USE_DIRECT_JUMP)
185

    
186
#if defined(__powerpc__)
187
static inline void tb_set_jmp_target1(unsigned long jmp_addr, unsigned long addr)
188
{
189
    uint32_t val, *ptr;
190
    long disp = addr - jmp_addr;
191

    
192
    ptr = (uint32_t *)jmp_addr;
193
    val = *ptr;
194

    
195
    if ((disp << 6) >> 6 != disp) {
196
        uint16_t *p1;
197

    
198
        p1 = (uint16_t *) ptr;
199
        *ptr = (val & ~0x03fffffc) | 4;
200
        p1[3] = addr >> 16;
201
        p1[5] = addr & 0xffff;
202
    } else {
203
        /* patch the branch destination */
204
        val = (val & ~0x03fffffc) | (disp & 0x03fffffc);
205
        *ptr = val;
206
    }
207
    /* flush icache */
208
    asm volatile ("dcbst 0,%0" : : "r"(ptr) : "memory");
209
    asm volatile ("sync" : : : "memory");
210
    asm volatile ("icbi 0,%0" : : "r"(ptr) : "memory");
211
    asm volatile ("sync" : : : "memory");
212
    asm volatile ("isync" : : : "memory");
213
}
214
#elif defined(__i386__) || defined(__x86_64__)
215
static inline void tb_set_jmp_target1(unsigned long jmp_addr, unsigned long addr)
216
{
217
    /* patch the branch destination */
218
    *(uint32_t *)jmp_addr = addr - (jmp_addr + 4);
219
    /* no need to flush icache explicitely */
220
}
221
#elif defined(__arm__)
222
static inline void tb_set_jmp_target1(unsigned long jmp_addr, unsigned long addr)
223
{
224
    register unsigned long _beg __asm ("a1");
225
    register unsigned long _end __asm ("a2");
226
    register unsigned long _flg __asm ("a3");
227

    
228
    /* we could use a ldr pc, [pc, #-4] kind of branch and avoid the flush */
229
    *(uint32_t *)jmp_addr |= ((addr - (jmp_addr + 8)) >> 2) & 0xffffff;
230

    
231
    /* flush icache */
232
    _beg = jmp_addr;
233
    _end = jmp_addr + 4;
234
    _flg = 0;
235
    __asm __volatile__ ("swi 0x9f0002" : : "r" (_beg), "r" (_end), "r" (_flg));
236
}
237
#endif
238

    
239
static inline void tb_set_jmp_target(TranslationBlock *tb,
240
                                     int n, unsigned long addr)
241
{
242
    unsigned long offset;
243

    
244
    offset = tb->tb_jmp_offset[n];
245
    tb_set_jmp_target1((unsigned long)(tb->tc_ptr + offset), addr);
246
    offset = tb->tb_jmp_offset[n + 2];
247
    if (offset != 0xffff)
248
        tb_set_jmp_target1((unsigned long)(tb->tc_ptr + offset), addr);
249
}
250

    
251
#else
252

    
253
/* set the jump target */
254
static inline void tb_set_jmp_target(TranslationBlock *tb,
255
                                     int n, unsigned long addr)
256
{
257
    tb->tb_next[n] = addr;
258
}
259

    
260
#endif
261

    
262
static inline void tb_add_jump(TranslationBlock *tb, int n,
263
                               TranslationBlock *tb_next)
264
{
265
    /* NOTE: this test is only needed for thread safety */
266
    if (!tb->jmp_next[n]) {
267
        /* patch the native jump address */
268
        tb_set_jmp_target(tb, n, (unsigned long)tb_next->tc_ptr);
269

    
270
        /* add in TB jmp circular list */
271
        tb->jmp_next[n] = tb_next->jmp_first;
272
        tb_next->jmp_first = (TranslationBlock *)((long)(tb) | (n));
273
    }
274
}
275

    
276
TranslationBlock *tb_find_pc(unsigned long pc_ptr);
277

    
278
#ifndef offsetof
279
#define offsetof(type, field) ((size_t) &((type *)0)->field)
280
#endif
281

    
282
#if defined(_WIN32)
283
#define ASM_DATA_SECTION ".section \".data\"\n"
284
#define ASM_PREVIOUS_SECTION ".section .text\n"
285
#elif defined(__APPLE__)
286
#define ASM_DATA_SECTION ".data\n"
287
#define ASM_PREVIOUS_SECTION ".text\n"
288
#else
289
#define ASM_DATA_SECTION ".section \".data\"\n"
290
#define ASM_PREVIOUS_SECTION ".previous\n"
291
#endif
292

    
293
#define ASM_OP_LABEL_NAME(n, opname) \
294
    ASM_NAME(__op_label) #n "." ASM_NAME(opname)
295

    
296
extern CPUWriteMemoryFunc *io_mem_write[IO_MEM_NB_ENTRIES][4];
297
extern CPUReadMemoryFunc *io_mem_read[IO_MEM_NB_ENTRIES][4];
298
extern void *io_mem_opaque[IO_MEM_NB_ENTRIES];
299

    
300
#if defined(__hppa__)
301

    
302
typedef int spinlock_t[4];
303

    
304
#define SPIN_LOCK_UNLOCKED { 1, 1, 1, 1 }
305

    
306
static inline void resetlock (spinlock_t *p)
307
{
308
    (*p)[0] = (*p)[1] = (*p)[2] = (*p)[3] = 1;
309
}
310

    
311
#else
312

    
313
typedef int spinlock_t;
314

    
315
#define SPIN_LOCK_UNLOCKED 0
316

    
317
static inline void resetlock (spinlock_t *p)
318
{
319
    *p = SPIN_LOCK_UNLOCKED;
320
}
321

    
322
#endif
323

    
324
#if defined(__powerpc__)
325
static inline int testandset (int *p)
326
{
327
    int ret;
328
    __asm__ __volatile__ (
329
                          "0:    lwarx %0,0,%1\n"
330
                          "      xor. %0,%3,%0\n"
331
                          "      bne 1f\n"
332
                          "      stwcx. %2,0,%1\n"
333
                          "      bne- 0b\n"
334
                          "1:    "
335
                          : "=&r" (ret)
336
                          : "r" (p), "r" (1), "r" (0)
337
                          : "cr0", "memory");
338
    return ret;
339
}
340
#elif defined(__i386__)
341
static inline int testandset (int *p)
342
{
343
    long int readval = 0;
344

    
345
    __asm__ __volatile__ ("lock; cmpxchgl %2, %0"
346
                          : "+m" (*p), "+a" (readval)
347
                          : "r" (1)
348
                          : "cc");
349
    return readval;
350
}
351
#elif defined(__x86_64__)
352
static inline int testandset (int *p)
353
{
354
    long int readval = 0;
355

    
356
    __asm__ __volatile__ ("lock; cmpxchgl %2, %0"
357
                          : "+m" (*p), "+a" (readval)
358
                          : "r" (1)
359
                          : "cc");
360
    return readval;
361
}
362
#elif defined(__s390__)
363
static inline int testandset (int *p)
364
{
365
    int ret;
366

    
367
    __asm__ __volatile__ ("0: cs    %0,%1,0(%2)\n"
368
                          "   jl    0b"
369
                          : "=&d" (ret)
370
                          : "r" (1), "a" (p), "0" (*p)
371
                          : "cc", "memory" );
372
    return ret;
373
}
374
#elif defined(__alpha__)
375
static inline int testandset (int *p)
376
{
377
    int ret;
378
    unsigned long one;
379

    
380
    __asm__ __volatile__ ("0:        mov 1,%2\n"
381
                          "        ldl_l %0,%1\n"
382
                          "        stl_c %2,%1\n"
383
                          "        beq %2,1f\n"
384
                          ".subsection 2\n"
385
                          "1:        br 0b\n"
386
                          ".previous"
387
                          : "=r" (ret), "=m" (*p), "=r" (one)
388
                          : "m" (*p));
389
    return ret;
390
}
391
#elif defined(__sparc__)
392
static inline int testandset (int *p)
393
{
394
        int ret;
395

    
396
        __asm__ __volatile__("ldstub        [%1], %0"
397
                             : "=r" (ret)
398
                             : "r" (p)
399
                             : "memory");
400

    
401
        return (ret ? 1 : 0);
402
}
403
#elif defined(__arm__)
404
static inline int testandset (int *spinlock)
405
{
406
    register unsigned int ret;
407
    __asm__ __volatile__("swp %0, %1, [%2]"
408
                         : "=r"(ret)
409
                         : "0"(1), "r"(spinlock));
410

    
411
    return ret;
412
}
413
#elif defined(__mc68000)
414
static inline int testandset (int *p)
415
{
416
    char ret;
417
    __asm__ __volatile__("tas %1; sne %0"
418
                         : "=r" (ret)
419
                         : "m" (p)
420
                         : "cc","memory");
421
    return ret;
422
}
423
#elif defined(__hppa__)
424

    
425
/* Because malloc only guarantees 8-byte alignment for malloc'd data,
426
   and GCC only guarantees 8-byte alignment for stack locals, we can't
427
   be assured of 16-byte alignment for atomic lock data even if we
428
   specify "__attribute ((aligned(16)))" in the type declaration.  So,
429
   we use a struct containing an array of four ints for the atomic lock
430
   type and dynamically select the 16-byte aligned int from the array
431
   for the semaphore.  */
432
#define __PA_LDCW_ALIGNMENT 16
433
static inline void *ldcw_align (void *p) {
434
    unsigned long a = (unsigned long)p;
435
    a = (a + __PA_LDCW_ALIGNMENT - 1) & ~(__PA_LDCW_ALIGNMENT - 1);
436
    return (void *)a;
437
}
438

    
439
static inline int testandset (spinlock_t *p)
440
{
441
    unsigned int ret;
442
    p = ldcw_align(p);
443
    __asm__ __volatile__("ldcw 0(%1),%0"
444
                         : "=r" (ret)
445
                         : "r" (p)
446
                         : "memory" );
447
    return !ret;
448
}
449

    
450
#elif defined(__ia64)
451

    
452
#include <ia64intrin.h>
453

    
454
static inline int testandset (int *p)
455
{
456
    return __sync_lock_test_and_set (p, 1);
457
}
458
#elif defined(__mips__)
459
static inline int testandset (int *p)
460
{
461
    int ret;
462

    
463
    __asm__ __volatile__ (
464
        "        .set push                \n"
465
        "        .set noat                \n"
466
        "        .set mips2                \n"
467
        "1:        li        $1, 1                \n"
468
        "        ll        %0, %1                \n"
469
        "        sc        $1, %1                \n"
470
        "        beqz        $1, 1b                \n"
471
        "        .set pop                "
472
        : "=r" (ret), "+R" (*p)
473
        :
474
        : "memory");
475

    
476
    return ret;
477
}
478
#else
479
#error unimplemented CPU support
480
#endif
481

    
482
#if defined(CONFIG_USER_ONLY)
483
static inline void spin_lock(spinlock_t *lock)
484
{
485
    while (testandset(lock));
486
}
487

    
488
static inline void spin_unlock(spinlock_t *lock)
489
{
490
    resetlock(lock);
491
}
492

    
493
static inline int spin_trylock(spinlock_t *lock)
494
{
495
    return !testandset(lock);
496
}
497
#else
498
static inline void spin_lock(spinlock_t *lock)
499
{
500
}
501

    
502
static inline void spin_unlock(spinlock_t *lock)
503
{
504
}
505

    
506
static inline int spin_trylock(spinlock_t *lock)
507
{
508
    return 1;
509
}
510
#endif
511

    
512
extern spinlock_t tb_lock;
513

    
514
extern int tb_invalidated_flag;
515

    
516
#if !defined(CONFIG_USER_ONLY)
517

    
518
void tlb_fill(target_ulong addr, int is_write, int mmu_idx,
519
              void *retaddr);
520

    
521
#define ACCESS_TYPE (NB_MMU_MODES + 1)
522
#define MEMSUFFIX _code
523
#define env cpu_single_env
524

    
525
#define DATA_SIZE 1
526
#include "softmmu_header.h"
527

    
528
#define DATA_SIZE 2
529
#include "softmmu_header.h"
530

    
531
#define DATA_SIZE 4
532
#include "softmmu_header.h"
533

    
534
#define DATA_SIZE 8
535
#include "softmmu_header.h"
536

    
537
#undef ACCESS_TYPE
538
#undef MEMSUFFIX
539
#undef env
540

    
541
#endif
542

    
543
#if defined(CONFIG_USER_ONLY)
544
static inline target_ulong get_phys_addr_code(CPUState *env1, target_ulong addr)
545
{
546
    return addr;
547
}
548
#else
549
/* NOTE: this function can trigger an exception */
550
/* NOTE2: the returned address is not exactly the physical address: it
551
   is the offset relative to phys_ram_base */
552
static inline target_ulong get_phys_addr_code(CPUState *env1, target_ulong addr)
553
{
554
    int mmu_idx, page_index, pd;
555

    
556
    page_index = (addr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
557
    mmu_idx = cpu_mmu_index(env1);
558
    if (__builtin_expect(env1->tlb_table[mmu_idx][page_index].addr_code !=
559
                         (addr & TARGET_PAGE_MASK), 0)) {
560
        ldub_code(addr);
561
    }
562
    pd = env1->tlb_table[mmu_idx][page_index].addr_code & ~TARGET_PAGE_MASK;
563
    if (pd > IO_MEM_ROM && !(pd & IO_MEM_ROMD)) {
564
#if defined(TARGET_SPARC) || defined(TARGET_MIPS)
565
        do_unassigned_access(addr, 0, 1, 0);
566
#else
567
        cpu_abort(env1, "Trying to execute code outside RAM or ROM at 0x" TARGET_FMT_lx "\n", addr);
568
#endif
569
    }
570
    return addr + env1->tlb_table[mmu_idx][page_index].addend - (unsigned long)phys_ram_base;
571
}
572
#endif
573

    
574
#ifdef USE_KQEMU
575
#define KQEMU_MODIFY_PAGE_MASK (0xff & ~(VGA_DIRTY_FLAG | CODE_DIRTY_FLAG))
576

    
577
#define MSR_QPI_COMMBASE 0xfabe0010
578

    
579
int kqemu_init(CPUState *env);
580
int kqemu_cpu_exec(CPUState *env);
581
void kqemu_flush_page(CPUState *env, target_ulong addr);
582
void kqemu_flush(CPUState *env, int global);
583
void kqemu_set_notdirty(CPUState *env, ram_addr_t ram_addr);
584
void kqemu_modify_page(CPUState *env, ram_addr_t ram_addr);
585
void kqemu_set_phys_mem(uint64_t start_addr, ram_addr_t size, 
586
                        ram_addr_t phys_offset);
587
void kqemu_cpu_interrupt(CPUState *env);
588
void kqemu_record_dump(void);
589

    
590
extern uint32_t kqemu_comm_base;
591

    
592
static inline int kqemu_is_ok(CPUState *env)
593
{
594
    return(env->kqemu_enabled &&
595
           (env->cr[0] & CR0_PE_MASK) &&
596
           !(env->hflags & HF_INHIBIT_IRQ_MASK) &&
597
           (env->eflags & IF_MASK) &&
598
           !(env->eflags & VM_MASK) &&
599
           (env->kqemu_enabled == 2 ||
600
            ((env->hflags & HF_CPL_MASK) == 3 &&
601
             (env->eflags & IOPL_MASK) != IOPL_MASK)));
602
}
603

    
604
#endif