Statistics
| Branch: | Revision:

root / hw / usb-musb.c @ 942ac052

History | View | Annotate | Download (41.6 kB)

1
/*
2
 * "Inventra" High-speed Dual-Role Controller (MUSB-HDRC), Mentor Graphics,
3
 * USB2.0 OTG compliant core used in various chips.
4
 *
5
 * Copyright (C) 2008 Nokia Corporation
6
 * Written by Andrzej Zaborowski <andrew@openedhand.com>
7
 *
8
 * This program is free software; you can redistribute it and/or
9
 * modify it under the terms of the GNU General Public License as
10
 * published by the Free Software Foundation; either version 2 or
11
 * (at your option) version 3 of the License.
12
 *
13
 * This program is distributed in the hope that it will be useful,
14
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16
 * GNU General Public License for more details.
17
 *
18
 * You should have received a copy of the GNU General Public License
19
 * along with this program; if not, write to the Free Software
20
 * Foundation, Inc., 59 Temple Place, Suite 330, Boston,
21
 * MA 02111-1307 USA
22
 *
23
 * Only host-mode and non-DMA accesses are currently supported.
24
 */
25
#include "qemu-common.h"
26
#include "qemu-timer.h"
27
#include "usb.h"
28
#include "irq.h"
29

    
30
/* Common USB registers */
31
#define MUSB_HDRC_FADDR                0x00        /* 8-bit */
32
#define MUSB_HDRC_POWER                0x01        /* 8-bit */
33

    
34
#define MUSB_HDRC_INTRTX        0x02        /* 16-bit */
35
#define MUSB_HDRC_INTRRX        0x04
36
#define MUSB_HDRC_INTRTXE        0x06  
37
#define MUSB_HDRC_INTRRXE        0x08  
38
#define MUSB_HDRC_INTRUSB        0x0a        /* 8 bit */
39
#define MUSB_HDRC_INTRUSBE        0x0b        /* 8 bit */
40
#define MUSB_HDRC_FRAME                0x0c        /* 16-bit */
41
#define MUSB_HDRC_INDEX                0x0e        /* 8 bit */
42
#define MUSB_HDRC_TESTMODE        0x0f        /* 8 bit */
43

    
44
/* Per-EP registers in indexed mode */
45
#define MUSB_HDRC_EP_IDX        0x10        /* 8-bit */
46

    
47
/* EP FIFOs */
48
#define MUSB_HDRC_FIFO                0x20
49

    
50
/* Additional Control Registers */
51
#define        MUSB_HDRC_DEVCTL        0x60        /* 8 bit */
52

    
53
/* These are indexed */
54
#define MUSB_HDRC_TXFIFOSZ        0x62        /* 8 bit (see masks) */
55
#define MUSB_HDRC_RXFIFOSZ        0x63        /* 8 bit (see masks) */
56
#define MUSB_HDRC_TXFIFOADDR        0x64        /* 16 bit offset shifted right 3 */
57
#define MUSB_HDRC_RXFIFOADDR        0x66        /* 16 bit offset shifted right 3 */
58

    
59
/* Some more registers */
60
#define MUSB_HDRC_VCTRL                0x68        /* 8 bit */
61
#define MUSB_HDRC_HWVERS        0x6c        /* 8 bit */
62

    
63
/* Added in HDRC 1.9(?) & MHDRC 1.4 */
64
/* ULPI pass-through */
65
#define MUSB_HDRC_ULPI_VBUSCTL        0x70
66
#define MUSB_HDRC_ULPI_REGDATA        0x74
67
#define MUSB_HDRC_ULPI_REGADDR        0x75
68
#define MUSB_HDRC_ULPI_REGCTL        0x76
69

    
70
/* Extended config & PHY control */
71
#define MUSB_HDRC_ENDCOUNT        0x78        /* 8 bit */
72
#define MUSB_HDRC_DMARAMCFG        0x79        /* 8 bit */
73
#define MUSB_HDRC_PHYWAIT        0x7a        /* 8 bit */
74
#define MUSB_HDRC_PHYVPLEN        0x7b        /* 8 bit */
75
#define MUSB_HDRC_HS_EOF1        0x7c        /* 8 bit, units of 546.1 us */
76
#define MUSB_HDRC_FS_EOF1        0x7d        /* 8 bit, units of 533.3 ns */
77
#define MUSB_HDRC_LS_EOF1        0x7e        /* 8 bit, units of 1.067 us */
78

    
79
/* Per-EP BUSCTL registers */
80
#define MUSB_HDRC_BUSCTL        0x80
81

    
82
/* Per-EP registers in flat mode */
83
#define MUSB_HDRC_EP                0x100
84

    
85
/* offsets to registers in flat model */
86
#define MUSB_HDRC_TXMAXP        0x00        /* 16 bit apparently */
87
#define MUSB_HDRC_TXCSR                0x02        /* 16 bit apparently */
88
#define MUSB_HDRC_CSR0                MUSB_HDRC_TXCSR                /* re-used for EP0 */
89
#define MUSB_HDRC_RXMAXP        0x04        /* 16 bit apparently */
90
#define MUSB_HDRC_RXCSR                0x06        /* 16 bit apparently */
91
#define MUSB_HDRC_RXCOUNT        0x08        /* 16 bit apparently */
92
#define MUSB_HDRC_COUNT0        MUSB_HDRC_RXCOUNT        /* re-used for EP0 */
93
#define MUSB_HDRC_TXTYPE        0x0a        /* 8 bit apparently */
94
#define MUSB_HDRC_TYPE0                MUSB_HDRC_TXTYPE        /* re-used for EP0 */
95
#define MUSB_HDRC_TXINTERVAL        0x0b        /* 8 bit apparently */
96
#define MUSB_HDRC_NAKLIMIT0        MUSB_HDRC_TXINTERVAL        /* re-used for EP0 */
97
#define MUSB_HDRC_RXTYPE        0x0c        /* 8 bit apparently */
98
#define MUSB_HDRC_RXINTERVAL        0x0d        /* 8 bit apparently */
99
#define MUSB_HDRC_FIFOSIZE        0x0f        /* 8 bit apparently */
100
#define MUSB_HDRC_CONFIGDATA        MGC_O_HDRC_FIFOSIZE        /* re-used for EP0 */
101

    
102
/* "Bus control" registers */
103
#define MUSB_HDRC_TXFUNCADDR        0x00
104
#define MUSB_HDRC_TXHUBADDR        0x02
105
#define MUSB_HDRC_TXHUBPORT        0x03
106

    
107
#define MUSB_HDRC_RXFUNCADDR        0x04
108
#define MUSB_HDRC_RXHUBADDR        0x06
109
#define MUSB_HDRC_RXHUBPORT        0x07
110

    
111
/*
112
 * MUSBHDRC Register bit masks
113
 */
114

    
115
/* POWER */
116
#define MGC_M_POWER_ISOUPDATE                0x80 
117
#define        MGC_M_POWER_SOFTCONN                0x40
118
#define        MGC_M_POWER_HSENAB                0x20
119
#define        MGC_M_POWER_HSMODE                0x10
120
#define MGC_M_POWER_RESET                0x08
121
#define MGC_M_POWER_RESUME                0x04
122
#define MGC_M_POWER_SUSPENDM                0x02
123
#define MGC_M_POWER_ENSUSPEND                0x01
124

    
125
/* INTRUSB */
126
#define MGC_M_INTR_SUSPEND                0x01
127
#define MGC_M_INTR_RESUME                0x02
128
#define MGC_M_INTR_RESET                0x04
129
#define MGC_M_INTR_BABBLE                0x04
130
#define MGC_M_INTR_SOF                        0x08 
131
#define MGC_M_INTR_CONNECT                0x10
132
#define MGC_M_INTR_DISCONNECT                0x20
133
#define MGC_M_INTR_SESSREQ                0x40
134
#define MGC_M_INTR_VBUSERROR                0x80        /* FOR SESSION END */
135
#define MGC_M_INTR_EP0                        0x01        /* FOR EP0 INTERRUPT */
136

    
137
/* DEVCTL */
138
#define MGC_M_DEVCTL_BDEVICE                0x80   
139
#define MGC_M_DEVCTL_FSDEV                0x40
140
#define MGC_M_DEVCTL_LSDEV                0x20
141
#define MGC_M_DEVCTL_VBUS                0x18
142
#define MGC_S_DEVCTL_VBUS                3
143
#define MGC_M_DEVCTL_HM                        0x04
144
#define MGC_M_DEVCTL_HR                        0x02
145
#define MGC_M_DEVCTL_SESSION                0x01
146

    
147
/* TESTMODE */
148
#define MGC_M_TEST_FORCE_HOST                0x80
149
#define MGC_M_TEST_FIFO_ACCESS                0x40
150
#define MGC_M_TEST_FORCE_FS                0x20
151
#define MGC_M_TEST_FORCE_HS                0x10
152
#define MGC_M_TEST_PACKET                0x08
153
#define MGC_M_TEST_K                        0x04
154
#define MGC_M_TEST_J                        0x02
155
#define MGC_M_TEST_SE0_NAK                0x01
156

    
157
/* CSR0 */
158
#define        MGC_M_CSR0_FLUSHFIFO                0x0100
159
#define MGC_M_CSR0_TXPKTRDY                0x0002
160
#define MGC_M_CSR0_RXPKTRDY                0x0001
161

    
162
/* CSR0 in Peripheral mode */
163
#define MGC_M_CSR0_P_SVDSETUPEND        0x0080
164
#define MGC_M_CSR0_P_SVDRXPKTRDY        0x0040
165
#define MGC_M_CSR0_P_SENDSTALL                0x0020
166
#define MGC_M_CSR0_P_SETUPEND                0x0010
167
#define MGC_M_CSR0_P_DATAEND                0x0008
168
#define MGC_M_CSR0_P_SENTSTALL                0x0004
169

    
170
/* CSR0 in Host mode */
171
#define MGC_M_CSR0_H_NO_PING                0x0800
172
#define MGC_M_CSR0_H_WR_DATATOGGLE        0x0400        /* set to allow setting: */
173
#define MGC_M_CSR0_H_DATATOGGLE                0x0200        /* data toggle control */
174
#define        MGC_M_CSR0_H_NAKTIMEOUT                0x0080
175
#define MGC_M_CSR0_H_STATUSPKT                0x0040
176
#define MGC_M_CSR0_H_REQPKT                0x0020
177
#define MGC_M_CSR0_H_ERROR                0x0010
178
#define MGC_M_CSR0_H_SETUPPKT                0x0008
179
#define MGC_M_CSR0_H_RXSTALL                0x0004
180

    
181
/* CONFIGDATA */
182
#define MGC_M_CONFIGDATA_MPRXE                0x80        /* auto bulk pkt combining */
183
#define MGC_M_CONFIGDATA_MPTXE                0x40        /* auto bulk pkt splitting */
184
#define MGC_M_CONFIGDATA_BIGENDIAN        0x20
185
#define MGC_M_CONFIGDATA_HBRXE                0x10        /* HB-ISO for RX */
186
#define MGC_M_CONFIGDATA_HBTXE                0x08        /* HB-ISO for TX */
187
#define MGC_M_CONFIGDATA_DYNFIFO        0x04        /* dynamic FIFO sizing */
188
#define MGC_M_CONFIGDATA_SOFTCONE        0x02        /* SoftConnect */
189
#define MGC_M_CONFIGDATA_UTMIDW                0x01        /* Width, 0 => 8b, 1 => 16b */
190

    
191
/* TXCSR in Peripheral and Host mode */
192
#define MGC_M_TXCSR_AUTOSET                0x8000
193
#define MGC_M_TXCSR_ISO                        0x4000
194
#define MGC_M_TXCSR_MODE                0x2000
195
#define MGC_M_TXCSR_DMAENAB                0x1000
196
#define MGC_M_TXCSR_FRCDATATOG                0x0800
197
#define MGC_M_TXCSR_DMAMODE                0x0400
198
#define MGC_M_TXCSR_CLRDATATOG                0x0040
199
#define MGC_M_TXCSR_FLUSHFIFO                0x0008
200
#define MGC_M_TXCSR_FIFONOTEMPTY        0x0002
201
#define MGC_M_TXCSR_TXPKTRDY                0x0001
202

    
203
/* TXCSR in Peripheral mode */
204
#define MGC_M_TXCSR_P_INCOMPTX                0x0080
205
#define MGC_M_TXCSR_P_SENTSTALL                0x0020
206
#define MGC_M_TXCSR_P_SENDSTALL                0x0010
207
#define MGC_M_TXCSR_P_UNDERRUN                0x0004
208

    
209
/* TXCSR in Host mode */
210
#define MGC_M_TXCSR_H_WR_DATATOGGLE        0x0200
211
#define MGC_M_TXCSR_H_DATATOGGLE        0x0100
212
#define MGC_M_TXCSR_H_NAKTIMEOUT        0x0080
213
#define MGC_M_TXCSR_H_RXSTALL                0x0020
214
#define MGC_M_TXCSR_H_ERROR                0x0004
215

    
216
/* RXCSR in Peripheral and Host mode */
217
#define MGC_M_RXCSR_AUTOCLEAR                0x8000
218
#define MGC_M_RXCSR_DMAENAB                0x2000
219
#define MGC_M_RXCSR_DISNYET                0x1000
220
#define MGC_M_RXCSR_DMAMODE                0x0800
221
#define MGC_M_RXCSR_INCOMPRX                0x0100
222
#define MGC_M_RXCSR_CLRDATATOG                0x0080
223
#define MGC_M_RXCSR_FLUSHFIFO                0x0010
224
#define MGC_M_RXCSR_DATAERROR                0x0008
225
#define MGC_M_RXCSR_FIFOFULL                0x0002
226
#define MGC_M_RXCSR_RXPKTRDY                0x0001
227

    
228
/* RXCSR in Peripheral mode */
229
#define MGC_M_RXCSR_P_ISO                0x4000
230
#define MGC_M_RXCSR_P_SENTSTALL                0x0040
231
#define MGC_M_RXCSR_P_SENDSTALL                0x0020
232
#define MGC_M_RXCSR_P_OVERRUN                0x0004
233

    
234
/* RXCSR in Host mode */
235
#define MGC_M_RXCSR_H_AUTOREQ                0x4000
236
#define MGC_M_RXCSR_H_WR_DATATOGGLE        0x0400
237
#define MGC_M_RXCSR_H_DATATOGGLE        0x0200
238
#define MGC_M_RXCSR_H_RXSTALL                0x0040
239
#define MGC_M_RXCSR_H_REQPKT                0x0020
240
#define MGC_M_RXCSR_H_ERROR                0x0004
241

    
242
/* HUBADDR */
243
#define MGC_M_HUBADDR_MULTI_TT                0x80
244

    
245
/* ULPI: Added in HDRC 1.9(?) & MHDRC 1.4 */
246
#define MGC_M_ULPI_VBCTL_USEEXTVBUSIND        0x02
247
#define MGC_M_ULPI_VBCTL_USEEXTVBUS        0x01
248
#define MGC_M_ULPI_REGCTL_INT_ENABLE        0x08
249
#define MGC_M_ULPI_REGCTL_READNOTWRITE        0x04
250
#define MGC_M_ULPI_REGCTL_COMPLETE        0x02
251
#define MGC_M_ULPI_REGCTL_REG                0x01
252

    
253
static void musb_attach(USBPort *port, USBDevice *dev);
254

    
255
struct musb_s {
256
    qemu_irq *irqs;
257
    USBPort port;
258

    
259
    int idx;
260
    uint8_t devctl;
261
    uint8_t power;
262
    uint8_t faddr;
263

    
264
    uint8_t intr;
265
    uint8_t mask;
266
    uint16_t tx_intr;
267
    uint16_t tx_mask;
268
    uint16_t rx_intr;
269
    uint16_t rx_mask;
270

    
271
    int setup_len;
272
    int session;
273

    
274
    uint32_t buf[0x2000];
275

    
276
    struct musb_ep_s {
277
        uint16_t faddr[2];
278
        uint8_t haddr[2];
279
        uint8_t hport[2];
280
        uint16_t csr[2];
281
        uint16_t maxp[2];
282
        uint16_t rxcount;
283
        uint8_t type[2];
284
        uint8_t interval[2];
285
        uint8_t config;
286
        uint8_t fifosize;
287
        int timeout[2];        /* Always in microframes */
288

    
289
        uint32_t *buf[2];
290
        int fifolen[2];
291
        int fifostart[2];
292
        int fifoaddr[2];
293
        USBPacket packey[2];
294
        int status[2];
295
        int ext_size[2];
296

    
297
        /* For callbacks' use */
298
        int epnum;
299
        int interrupt[2];
300
        struct musb_s *musb;
301
        USBCallback *delayed_cb[2];
302
        QEMUTimer *intv_timer[2];
303
        /* Duplicating the world since 2008!...  probably we should have 32
304
         * logical, single endpoints instead.  */
305
    } ep[16];
306
} *musb_init(qemu_irq *irqs)
307
{
308
    struct musb_s *s = qemu_mallocz(sizeof(*s));
309
    int i;
310

    
311
    s->irqs = irqs;
312

    
313
    s->faddr = 0x00;
314
    s->power = MGC_M_POWER_HSENAB;
315
    s->tx_intr = 0x0000;
316
    s->rx_intr = 0x0000;
317
    s->tx_mask = 0xffff;
318
    s->rx_mask = 0xffff;
319
    s->intr = 0x00;
320
    s->mask = 0x06;
321
    s->idx = 0;
322

    
323
    /* TODO: _DW */
324
    s->ep[0].config = MGC_M_CONFIGDATA_SOFTCONE | MGC_M_CONFIGDATA_DYNFIFO;
325
    for (i = 0; i < 16; i ++) {
326
        s->ep[i].fifosize = 64;
327
        s->ep[i].maxp[0] = 0x40;
328
        s->ep[i].maxp[1] = 0x40;
329
        s->ep[i].musb = s;
330
        s->ep[i].epnum = i;
331
    }
332

    
333
    qemu_register_usb_port(&s->port, s, 0, musb_attach);
334

    
335
    return s;
336
}
337

    
338
static void musb_vbus_set(struct musb_s *s, int level)
339
{
340
    if (level)
341
        s->devctl |= 3 << MGC_S_DEVCTL_VBUS;
342
    else
343
        s->devctl &= ~MGC_M_DEVCTL_VBUS;
344

    
345
    qemu_set_irq(s->irqs[musb_set_vbus], level);
346
}
347

    
348
static void musb_intr_set(struct musb_s *s, int line, int level)
349
{
350
    if (!level) {
351
        s->intr &= ~(1 << line);
352
        qemu_irq_lower(s->irqs[line]);
353
    } else if (s->mask & (1 << line)) {
354
        s->intr |= 1 << line;
355
        qemu_irq_raise(s->irqs[line]);
356
    }
357
}
358

    
359
static void musb_tx_intr_set(struct musb_s *s, int line, int level)
360
{
361
    if (!level) {
362
        s->tx_intr &= ~(1 << line);
363
        if (!s->tx_intr)
364
            qemu_irq_lower(s->irqs[musb_irq_tx]);
365
    } else if (s->tx_mask & (1 << line)) {
366
        s->tx_intr |= 1 << line;
367
        qemu_irq_raise(s->irqs[musb_irq_tx]);
368
    }
369
}
370

    
371
static void musb_rx_intr_set(struct musb_s *s, int line, int level)
372
{
373
    if (line) {
374
        if (!level) {
375
            s->rx_intr &= ~(1 << line);
376
            if (!s->rx_intr)
377
                qemu_irq_lower(s->irqs[musb_irq_rx]);
378
        } else if (s->rx_mask & (1 << line)) {
379
            s->rx_intr |= 1 << line;
380
            qemu_irq_raise(s->irqs[musb_irq_rx]);
381
        }
382
    } else
383
        musb_tx_intr_set(s, line, level);
384
}
385

    
386
uint32_t musb_core_intr_get(struct musb_s *s)
387
{
388
    return (s->rx_intr << 15) | s->tx_intr;
389
}
390

    
391
void musb_core_intr_clear(struct musb_s *s, uint32_t mask)
392
{
393
    if (s->rx_intr) {
394
        s->rx_intr &= mask >> 15;
395
        if (!s->rx_intr)
396
            qemu_irq_lower(s->irqs[musb_irq_rx]);
397
    }
398

    
399
    if (s->tx_intr) {
400
        s->tx_intr &= mask & 0xffff;
401
        if (!s->tx_intr)
402
            qemu_irq_lower(s->irqs[musb_irq_tx]);
403
    }
404
}
405

    
406
void musb_set_size(struct musb_s *s, int epnum, int size, int is_tx)
407
{
408
    s->ep[epnum].ext_size[!is_tx] = size;
409
    s->ep[epnum].fifostart[0] = 0;
410
    s->ep[epnum].fifostart[1] = 0;
411
    s->ep[epnum].fifolen[0] = 0;
412
    s->ep[epnum].fifolen[1] = 0;
413
}
414

    
415
static void musb_session_update(struct musb_s *s, int prev_dev, int prev_sess)
416
{
417
    int detect_prev = prev_dev && prev_sess;
418
    int detect = !!s->port.dev && s->session;
419

    
420
    if (detect && !detect_prev) {
421
        /* Let's skip the ID pin sense and VBUS sense formalities and
422
         * and signal a successful SRP directly.  This should work at least
423
         * for the Linux driver stack.  */
424
        musb_intr_set(s, musb_irq_connect, 1);
425

    
426
        if (s->port.dev->speed == USB_SPEED_LOW) {
427
            s->devctl &= ~MGC_M_DEVCTL_FSDEV;
428
            s->devctl |= MGC_M_DEVCTL_LSDEV;
429
        } else {
430
            s->devctl |= MGC_M_DEVCTL_FSDEV;
431
            s->devctl &= ~MGC_M_DEVCTL_LSDEV;
432
        }
433

    
434
        /* A-mode?  */
435
        s->devctl &= ~MGC_M_DEVCTL_BDEVICE;
436

    
437
        /* Host-mode bit?  */
438
        s->devctl |= MGC_M_DEVCTL_HM;
439
#if 1
440
        musb_vbus_set(s, 1);
441
#endif
442
    } else if (!detect && detect_prev) {
443
#if 1
444
        musb_vbus_set(s, 0);
445
#endif
446
    }
447
}
448

    
449
/* Attach or detach a device on our only port.  */
450
static void musb_attach(USBPort *port, USBDevice *dev)
451
{
452
    struct musb_s *s = (struct musb_s *) port->opaque;
453
    USBDevice *curr;
454

    
455
    port = &s->port;
456
    curr = port->dev;
457

    
458
    if (dev) {
459
        if (curr) {
460
            usb_attach(port, NULL);
461
            /* TODO: signal some interrupts */
462
        }
463

    
464
        musb_intr_set(s, musb_irq_vbus_request, 1);
465

    
466
        /* Send the attach message to device */
467
        usb_send_msg(dev, USB_MSG_ATTACH);
468
    } else if (curr) {
469
        /* Send the detach message */
470
        usb_send_msg(curr, USB_MSG_DETACH);
471

    
472
        musb_intr_set(s, musb_irq_disconnect, 1);
473
    }
474

    
475
    port->dev = dev;
476

    
477
    musb_session_update(s, !!curr, s->session);
478
}
479

    
480
static inline void musb_cb_tick0(void *opaque)
481
{
482
    struct musb_ep_s *ep = (struct musb_ep_s *) opaque;
483

    
484
    ep->delayed_cb[0](&ep->packey[0], opaque);
485
}
486

    
487
static inline void musb_cb_tick1(void *opaque)
488
{
489
    struct musb_ep_s *ep = (struct musb_ep_s *) opaque;
490

    
491
    ep->delayed_cb[1](&ep->packey[1], opaque);
492
}
493

    
494
#define musb_cb_tick        (dir ? musb_cb_tick1 : musb_cb_tick0)
495

    
496
static inline void musb_schedule_cb(USBPacket *packey, void *opaque, int dir)
497
{
498
    struct musb_ep_s *ep = (struct musb_ep_s *) opaque;
499
    int timeout = 0;
500

    
501
    if (ep->status[dir] == USB_RET_NAK)
502
        timeout = ep->timeout[dir];
503
    else if (ep->interrupt[dir])
504
        timeout = 8;
505
    else
506
        return musb_cb_tick(opaque);
507

    
508
    if (!ep->intv_timer[dir])
509
        ep->intv_timer[dir] = qemu_new_timer(vm_clock, musb_cb_tick, opaque);
510

    
511
    qemu_mod_timer(ep->intv_timer[dir], qemu_get_clock(vm_clock) +
512
                    muldiv64(timeout, ticks_per_sec, 8000));
513
}
514

    
515
static void musb_schedule0_cb(USBPacket *packey, void *opaque)
516
{
517
    return musb_schedule_cb(packey, opaque, 0);
518
}
519

    
520
static void musb_schedule1_cb(USBPacket *packey, void *opaque)
521
{
522
    return musb_schedule_cb(packey, opaque, 1);
523
}
524

    
525
static int musb_timeout(int ttype, int speed, int val)
526
{
527
#if 1
528
    return val << 3;
529
#endif
530

    
531
    switch (ttype) {
532
    case USB_ENDPOINT_XFER_CONTROL:
533
        if (val < 2)
534
            return 0;
535
        else if (speed == USB_SPEED_HIGH)
536
            return 1 << (val - 1);
537
        else
538
            return 8 << (val - 1);
539

    
540
    case USB_ENDPOINT_XFER_INT:
541
        if (speed == USB_SPEED_HIGH)
542
            if (val < 2)
543
                return 0;
544
            else
545
                return 1 << (val - 1);
546
        else
547
            return val << 3;
548

    
549
    case USB_ENDPOINT_XFER_BULK:
550
    case USB_ENDPOINT_XFER_ISOC:
551
        if (val < 2)
552
            return 0;
553
        else if (speed == USB_SPEED_HIGH)
554
            return 1 << (val - 1);
555
        else
556
            return 8 << (val - 1);
557
        /* TODO: what with low-speed Bulk and Isochronous?  */
558
    }
559

    
560
    cpu_abort(cpu_single_env, "bad interval\n");
561
}
562

    
563
static inline void musb_packet(struct musb_s *s, struct musb_ep_s *ep,
564
                int epnum, int pid, int len, USBCallback cb, int dir)
565
{
566
    int ret;
567
    int idx = epnum && dir;
568
    int ttype;
569

    
570
    /* ep->type[0,1] contains:
571
     * in bits 7:6 the speed (0 - invalid, 1 - high, 2 - full, 3 - slow)
572
     * in bits 5:4 the transfer type (BULK / INT)
573
     * in bits 3:0 the EP num
574
     */
575
    ttype = epnum ? (ep->type[idx] >> 4) & 3 : 0;
576

    
577
    ep->timeout[dir] = musb_timeout(ttype,
578
                    ep->type[idx] >> 6, ep->interval[idx]);
579
    ep->interrupt[dir] = ttype == USB_ENDPOINT_XFER_INT;
580
    ep->delayed_cb[dir] = cb;
581
    cb = dir ? musb_schedule1_cb : musb_schedule0_cb;
582

    
583
    ep->packey[dir].pid = pid;
584
    /* A wild guess on the FADDR semantics... */
585
    ep->packey[dir].devaddr = ep->faddr[idx];
586
    ep->packey[dir].devep = ep->type[idx] & 0xf;
587
    ep->packey[dir].data = (void *) ep->buf[idx];
588
    ep->packey[dir].len = len;
589
    ep->packey[dir].complete_cb = cb;
590
    ep->packey[dir].complete_opaque = ep;
591

    
592
    if (s->port.dev)
593
        ret = s->port.dev->handle_packet(s->port.dev, &ep->packey[dir]);
594
    else
595
        ret = USB_RET_NODEV;
596

    
597
    if (ret == USB_RET_ASYNC) {
598
        ep->status[dir] = len;
599
        return;
600
    }
601

    
602
    ep->status[dir] = ret;
603
    usb_packet_complete(&ep->packey[dir]);
604
}
605

    
606
static void musb_tx_packet_complete(USBPacket *packey, void *opaque)
607
{
608
    /* Unfortunately we can't use packey->devep because that's the remote
609
     * endpoint number and may be different than our local.  */
610
    struct musb_ep_s *ep = (struct musb_ep_s *) opaque;
611
    int epnum = ep->epnum;
612
    struct musb_s *s = ep->musb;
613

    
614
    ep->fifostart[0] = 0;
615
    ep->fifolen[0] = 0;
616
#ifdef CLEAR_NAK
617
    if (ep->status[0] != USB_RET_NAK) {
618
#endif
619
        if (epnum)
620
            ep->csr[0] &= ~(MGC_M_TXCSR_FIFONOTEMPTY | MGC_M_TXCSR_TXPKTRDY);
621
        else
622
            ep->csr[0] &= ~MGC_M_CSR0_TXPKTRDY;
623
#ifdef CLEAR_NAK
624
    }
625
#endif
626

    
627
    /* Clear all of the error bits first */
628
    if (epnum)
629
        ep->csr[0] &= ~(MGC_M_TXCSR_H_ERROR | MGC_M_TXCSR_H_RXSTALL |
630
                        MGC_M_TXCSR_H_NAKTIMEOUT);
631
    else
632
        ep->csr[0] &= ~(MGC_M_CSR0_H_ERROR | MGC_M_CSR0_H_RXSTALL |
633
                        MGC_M_CSR0_H_NAKTIMEOUT | MGC_M_CSR0_H_NO_PING);
634

    
635
    if (ep->status[0] == USB_RET_STALL) {
636
        /* Command not supported by target! */
637
        ep->status[0] = 0;
638

    
639
        if (epnum)
640
            ep->csr[0] |= MGC_M_TXCSR_H_RXSTALL;
641
        else
642
            ep->csr[0] |= MGC_M_CSR0_H_RXSTALL;
643
    }
644

    
645
    if (ep->status[0] == USB_RET_NAK) {
646
        ep->status[0] = 0;
647

    
648
        /* NAK timeouts are only generated in Bulk transfers and
649
         * Data-errors in Isochronous.  */
650
        if (ep->interrupt[0]) {
651
            return;
652
        }
653

    
654
        if (epnum)
655
            ep->csr[0] |= MGC_M_TXCSR_H_NAKTIMEOUT;
656
        else
657
            ep->csr[0] |= MGC_M_CSR0_H_NAKTIMEOUT;
658
    }
659

    
660
    if (ep->status[0] < 0) {
661
        if (ep->status[0] == USB_RET_BABBLE)
662
            musb_intr_set(s, musb_irq_rst_babble, 1);
663

    
664
        /* Pretend we've tried three times already and failed (in
665
         * case of USB_TOKEN_SETUP).  */
666
        if (epnum)
667
            ep->csr[0] |= MGC_M_TXCSR_H_ERROR;
668
        else
669
            ep->csr[0] |= MGC_M_CSR0_H_ERROR;
670

    
671
        musb_tx_intr_set(s, epnum, 1);
672
        return;
673
    }
674
    /* TODO: check len for over/underruns of an OUT packet?  */
675

    
676
#ifdef SETUPLEN_HACK
677
    if (!epnum && ep->packey[0].pid == USB_TOKEN_SETUP)
678
        s->setup_len = ep->packey[0].data[6];
679
#endif
680

    
681
    /* In DMA mode: if no error, assert DMA request for this EP,
682
     * and skip the interrupt.  */
683
    musb_tx_intr_set(s, epnum, 1);
684
}
685

    
686
static void musb_rx_packet_complete(USBPacket *packey, void *opaque)
687
{
688
    /* Unfortunately we can't use packey->devep because that's the remote
689
     * endpoint number and may be different than our local.  */
690
    struct musb_ep_s *ep = (struct musb_ep_s *) opaque;
691
    int epnum = ep->epnum;
692
    struct musb_s *s = ep->musb;
693

    
694
    ep->fifostart[1] = 0;
695
    ep->fifolen[1] = 0;
696

    
697
#ifdef CLEAR_NAK
698
    if (ep->status[1] != USB_RET_NAK) {
699
#endif
700
        ep->csr[1] &= ~MGC_M_RXCSR_H_REQPKT;
701
        if (!epnum)
702
            ep->csr[0] &= ~MGC_M_CSR0_H_REQPKT;
703
#ifdef CLEAR_NAK
704
    }
705
#endif
706

    
707
    /* Clear all of the imaginable error bits first */
708
    ep->csr[1] &= ~(MGC_M_RXCSR_H_ERROR | MGC_M_RXCSR_H_RXSTALL |
709
                    MGC_M_RXCSR_DATAERROR);
710
    if (!epnum)
711
        ep->csr[0] &= ~(MGC_M_CSR0_H_ERROR | MGC_M_CSR0_H_RXSTALL |
712
                        MGC_M_CSR0_H_NAKTIMEOUT | MGC_M_CSR0_H_NO_PING);
713

    
714
    if (ep->status[1] == USB_RET_STALL) {
715
        ep->status[1] = 0;
716
        packey->len = 0;
717

    
718
        ep->csr[1] |= MGC_M_RXCSR_H_RXSTALL;
719
        if (!epnum)
720
            ep->csr[0] |= MGC_M_CSR0_H_RXSTALL;
721
    }
722

    
723
    if (ep->status[1] == USB_RET_NAK) {
724
        ep->status[1] = 0;
725

    
726
        /* NAK timeouts are only generated in Bulk transfers and
727
         * Data-errors in Isochronous.  */
728
        if (ep->interrupt[1])
729
            return musb_packet(s, ep, epnum, USB_TOKEN_IN,
730
                            packey->len, musb_rx_packet_complete, 1);
731

    
732
        ep->csr[1] |= MGC_M_RXCSR_DATAERROR;
733
        if (!epnum)
734
            ep->csr[0] |= MGC_M_CSR0_H_NAKTIMEOUT;
735
    }
736

    
737
    if (ep->status[1] < 0) {
738
        if (ep->status[1] == USB_RET_BABBLE) {
739
            musb_intr_set(s, musb_irq_rst_babble, 1);
740
            return;
741
        }
742

    
743
        /* Pretend we've tried three times already and failed (in
744
         * case of a control transfer).  */
745
        ep->csr[1] |= MGC_M_RXCSR_H_ERROR;
746
        if (!epnum)
747
            ep->csr[0] |= MGC_M_CSR0_H_ERROR;
748

    
749
        musb_rx_intr_set(s, epnum, 1);
750
        return;
751
    }
752
    /* TODO: check len for over/underruns of an OUT packet?  */
753
    /* TODO: perhaps make use of e->ext_size[1] here.  */
754

    
755
    packey->len = ep->status[1];
756

    
757
    if (!(ep->csr[1] & (MGC_M_RXCSR_H_RXSTALL | MGC_M_RXCSR_DATAERROR))) {
758
        ep->csr[1] |= MGC_M_RXCSR_FIFOFULL | MGC_M_RXCSR_RXPKTRDY;
759
        if (!epnum)
760
            ep->csr[0] |= MGC_M_CSR0_RXPKTRDY;
761

    
762
        ep->rxcount = packey->len; /* XXX: MIN(packey->len, ep->maxp[1]); */
763
        /* In DMA mode: assert DMA request for this EP */
764
    }
765

    
766
    /* Only if DMA has not been asserted */
767
    musb_rx_intr_set(s, epnum, 1);
768
}
769

    
770
static void musb_tx_rdy(struct musb_s *s, int epnum)
771
{
772
    struct musb_ep_s *ep = s->ep + epnum;
773
    int pid;
774
    int total, valid = 0;
775

    
776
    ep->fifostart[0] += ep->fifolen[0];
777
    ep->fifolen[0] = 0;
778

    
779
    /* XXX: how's the total size of the packet retrieved exactly in
780
     * the generic case?  */
781
    total = ep->maxp[0] & 0x3ff;
782

    
783
    if (ep->ext_size[0]) {
784
        total = ep->ext_size[0];
785
        ep->ext_size[0] = 0;
786
        valid = 1;
787
    }
788

    
789
    /* If the packet is not fully ready yet, wait for a next segment.  */
790
    if (epnum && (ep->fifostart[0] << 2) < total)
791
        return;
792

    
793
    if (!valid)
794
        total = ep->fifostart[0] << 2;
795

    
796
    pid = USB_TOKEN_OUT;
797
    if (!epnum && (ep->csr[0] & MGC_M_CSR0_H_SETUPPKT)) {
798
        pid = USB_TOKEN_SETUP;
799
        if (total != 8)
800
            printf("%s: illegal SETUPPKT length of %i bytes\n",
801
                            __FUNCTION__, total);
802
        /* Controller should retry SETUP packets three times on errors
803
         * but it doesn't make sense for us to do that.  */
804
    }
805

    
806
    return musb_packet(s, ep, epnum, pid,
807
                    total, musb_tx_packet_complete, 0);
808
}
809

    
810
static void musb_rx_req(struct musb_s *s, int epnum)
811
{
812
    struct musb_ep_s *ep = s->ep + epnum;
813
    int total;
814

    
815
    /* If we already have a packet, which didn't fit into the
816
     * 64 bytes of the FIFO, only move the FIFO start and return. (Obsolete) */
817
    if (ep->packey[1].pid == USB_TOKEN_IN && ep->status[1] >= 0 &&
818
                    (ep->fifostart[1] << 2) + ep->rxcount <
819
                    ep->packey[1].len) {
820
        ep->fifostart[1] += ep->rxcount >> 2;
821
        ep->fifolen[1] = 0;
822

    
823
        ep->rxcount = MIN(ep->packey[0].len - (ep->fifostart[1] << 2),
824
                        ep->maxp[1]);
825

    
826
        ep->csr[1] &= ~MGC_M_RXCSR_H_REQPKT;
827
        if (!epnum)
828
            ep->csr[0] &= ~MGC_M_CSR0_H_REQPKT;
829

    
830
        /* Clear all of the error bits first */
831
        ep->csr[1] &= ~(MGC_M_RXCSR_H_ERROR | MGC_M_RXCSR_H_RXSTALL |
832
                        MGC_M_RXCSR_DATAERROR);
833
        if (!epnum)
834
            ep->csr[0] &= ~(MGC_M_CSR0_H_ERROR | MGC_M_CSR0_H_RXSTALL |
835
                            MGC_M_CSR0_H_NAKTIMEOUT | MGC_M_CSR0_H_NO_PING);
836

    
837
        ep->csr[1] |= MGC_M_RXCSR_FIFOFULL | MGC_M_RXCSR_RXPKTRDY;
838
        if (!epnum)
839
            ep->csr[0] |= MGC_M_CSR0_RXPKTRDY;
840
        musb_rx_intr_set(s, epnum, 1);
841
        return;
842
    }
843

    
844
    /* The driver sets maxp[1] to 64 or less because it knows the hardware
845
     * FIFO is this deep.  Bigger packets get split in
846
     * usb_generic_handle_packet but we can also do the splitting locally
847
     * for performance.  It turns out we can also have a bigger FIFO and
848
     * ignore the limit set in ep->maxp[1].  The Linux MUSB driver deals
849
     * OK with single packets of even 32KB and we avoid splitting, however
850
     * usb_msd.c sometimes sends a packet bigger than what Linux expects
851
     * (e.g. 8192 bytes instead of 4096) and we get an OVERRUN.  Splitting
852
     * hides this overrun from Linux.  Up to 4096 everything is fine
853
     * though.  Currently this is disabled.
854
     *
855
     * XXX: mind ep->fifosize.  */
856
    total = MIN(ep->maxp[1] & 0x3ff, sizeof(s->buf));
857

    
858
#ifdef SETUPLEN_HACK
859
    /* Why should *we* do that instead of Linux?  */
860
    if (!epnum) {
861
        if (ep->packey[0].devaddr == 2)
862
            total = MIN(s->setup_len, 8);
863
        else
864
            total = MIN(s->setup_len, 64);
865
        s->setup_len -= total;
866
    }
867
#endif
868

    
869
    return musb_packet(s, ep, epnum, USB_TOKEN_IN,
870
                    total, musb_rx_packet_complete, 1);
871
}
872

    
873
static void musb_ep_frame_cancel(struct musb_ep_s *ep, int dir)
874
{
875
    if (ep->intv_timer[dir])
876
        qemu_del_timer(ep->intv_timer[dir]);
877
}
878

    
879
/* Bus control */
880
static uint8_t musb_busctl_readb(void *opaque, int ep, int addr)
881
{
882
    struct musb_s *s = (struct musb_s *) opaque;
883

    
884
    switch (addr) {
885
    /* For USB2.0 HS hubs only */
886
    case MUSB_HDRC_TXHUBADDR:
887
        return s->ep[ep].haddr[0];
888
    case MUSB_HDRC_TXHUBPORT:
889
        return s->ep[ep].hport[0];
890
    case MUSB_HDRC_RXHUBADDR:
891
        return s->ep[ep].haddr[1];
892
    case MUSB_HDRC_RXHUBPORT:
893
        return s->ep[ep].hport[1];
894

    
895
    default:
896
        printf("%s: unknown register at %02x\n", __FUNCTION__, addr);
897
        return 0x00;
898
    };
899
}
900

    
901
static void musb_busctl_writeb(void *opaque, int ep, int addr, uint8_t value)
902
{
903
    struct musb_s *s = (struct musb_s *) opaque;
904

    
905
    switch (addr) {
906
    case MUSB_HDRC_TXHUBADDR:
907
        s->ep[ep].haddr[0] = value;
908
        break;
909
    case MUSB_HDRC_TXHUBPORT:
910
        s->ep[ep].hport[0] = value;
911
        break;
912
    case MUSB_HDRC_RXHUBADDR:
913
        s->ep[ep].haddr[1] = value;
914
        break;
915
    case MUSB_HDRC_RXHUBPORT:
916
        s->ep[ep].hport[1] = value;
917
        break;
918

    
919
    default:
920
        printf("%s: unknown register at %02x\n", __FUNCTION__, addr);
921
    };
922
}
923

    
924
static uint16_t musb_busctl_readh(void *opaque, int ep, int addr)
925
{
926
    struct musb_s *s = (struct musb_s *) opaque;
927

    
928
    switch (addr) {
929
    case MUSB_HDRC_TXFUNCADDR:
930
        return s->ep[ep].faddr[0];
931
    case MUSB_HDRC_RXFUNCADDR:
932
        return s->ep[ep].faddr[1];
933

    
934
    default:
935
        return musb_busctl_readb(s, ep, addr) |
936
                (musb_busctl_readb(s, ep, addr | 1) << 8);
937
    };
938
}
939

    
940
static void musb_busctl_writeh(void *opaque, int ep, int addr, uint16_t value)
941
{
942
    struct musb_s *s = (struct musb_s *) opaque;
943

    
944
    switch (addr) {
945
    case MUSB_HDRC_TXFUNCADDR:
946
        s->ep[ep].faddr[0] = value;
947
        break;
948
    case MUSB_HDRC_RXFUNCADDR:
949
        s->ep[ep].faddr[1] = value;
950
        break;
951

    
952
    default:
953
        musb_busctl_writeb(s, ep, addr, value & 0xff);
954
        musb_busctl_writeb(s, ep, addr | 1, value >> 8);
955
    };
956
}
957

    
958
/* Endpoint control */
959
static uint8_t musb_ep_readb(void *opaque, int ep, int addr)
960
{
961
    struct musb_s *s = (struct musb_s *) opaque;
962

    
963
    switch (addr) {
964
    case MUSB_HDRC_TXTYPE:
965
        return s->ep[ep].type[0];
966
    case MUSB_HDRC_TXINTERVAL:
967
        return s->ep[ep].interval[0];
968
    case MUSB_HDRC_RXTYPE:
969
        return s->ep[ep].type[1];
970
    case MUSB_HDRC_RXINTERVAL:
971
        return s->ep[ep].interval[1];
972
    case (MUSB_HDRC_FIFOSIZE & ~1):
973
        return 0x00;
974
    case MUSB_HDRC_FIFOSIZE:
975
        return ep ? s->ep[ep].fifosize : s->ep[ep].config;
976

    
977
    default:
978
        printf("%s: unknown register at %02x\n", __FUNCTION__, addr);
979
        return 0x00;
980
    };
981
}
982

    
983
static void musb_ep_writeb(void *opaque, int ep, int addr, uint8_t value)
984
{
985
    struct musb_s *s = (struct musb_s *) opaque;
986

    
987
    switch (addr) {
988
    case MUSB_HDRC_TXTYPE:
989
        s->ep[ep].type[0] = value;
990
        break;
991
    case MUSB_HDRC_TXINTERVAL:
992
        s->ep[ep].interval[0] = value;
993
        musb_ep_frame_cancel(&s->ep[ep], 0);
994
        break;
995
    case MUSB_HDRC_RXTYPE:
996
        s->ep[ep].type[1] = value;
997
        break;
998
    case MUSB_HDRC_RXINTERVAL:
999
        s->ep[ep].interval[1] = value;
1000
        musb_ep_frame_cancel(&s->ep[ep], 1);
1001
        break;
1002
    case (MUSB_HDRC_FIFOSIZE & ~1):
1003
        break;
1004
    case MUSB_HDRC_FIFOSIZE:
1005
        printf("%s: somebody messes with fifosize (now %i bytes)\n",
1006
                        __FUNCTION__, value);
1007
        s->ep[ep].fifosize = value;
1008
        break;
1009

    
1010
    default:
1011
        printf("%s: unknown register at %02x\n", __FUNCTION__, addr);
1012
    };
1013
}
1014

    
1015
static uint16_t musb_ep_readh(void *opaque, int ep, int addr)
1016
{
1017
    struct musb_s *s = (struct musb_s *) opaque;
1018
    uint16_t ret;
1019

    
1020
    switch (addr) {
1021
    case MUSB_HDRC_TXMAXP:
1022
        return s->ep[ep].maxp[0];
1023
    case MUSB_HDRC_TXCSR:
1024
        return s->ep[ep].csr[0];
1025
    case MUSB_HDRC_RXMAXP:
1026
        return s->ep[ep].maxp[1];
1027
    case MUSB_HDRC_RXCSR:
1028
        ret = s->ep[ep].csr[1];
1029

    
1030
        /* TODO: This and other bits probably depend on
1031
         * ep->csr[1] & MGC_M_RXCSR_AUTOCLEAR.  */
1032
        if (s->ep[ep].csr[1] & MGC_M_RXCSR_AUTOCLEAR)
1033
            s->ep[ep].csr[1] &= ~MGC_M_RXCSR_RXPKTRDY;
1034

    
1035
        return ret;
1036
    case MUSB_HDRC_RXCOUNT:
1037
        return s->ep[ep].rxcount;
1038

    
1039
    default:
1040
        return musb_ep_readb(s, ep, addr) |
1041
                (musb_ep_readb(s, ep, addr | 1) << 8);
1042
    };
1043
}
1044

    
1045
static void musb_ep_writeh(void *opaque, int ep, int addr, uint16_t value)
1046
{
1047
    struct musb_s *s = (struct musb_s *) opaque;
1048

    
1049
    switch (addr) {
1050
    case MUSB_HDRC_TXMAXP:
1051
        s->ep[ep].maxp[0] = value;
1052
        break;
1053
    case MUSB_HDRC_TXCSR:
1054
        if (ep) {
1055
            s->ep[ep].csr[0] &= value & 0xa6;
1056
            s->ep[ep].csr[0] |= value & 0xff59;
1057
        } else {
1058
            s->ep[ep].csr[0] &= value & 0x85;
1059
            s->ep[ep].csr[0] |= value & 0xf7a;
1060
        }
1061

    
1062
        musb_ep_frame_cancel(&s->ep[ep], 0);
1063

    
1064
        if ((ep && (value & MGC_M_TXCSR_FLUSHFIFO)) ||
1065
                        (!ep && (value & MGC_M_CSR0_FLUSHFIFO))) {
1066
            s->ep[ep].fifolen[0] = 0;
1067
            s->ep[ep].fifostart[0] = 0;
1068
            if (ep)
1069
                s->ep[ep].csr[0] &=
1070
                        ~(MGC_M_TXCSR_FIFONOTEMPTY | MGC_M_TXCSR_TXPKTRDY);
1071
            else
1072
                s->ep[ep].csr[0] &=
1073
                        ~(MGC_M_CSR0_TXPKTRDY | MGC_M_CSR0_RXPKTRDY);
1074
        }
1075
        if (
1076
                        (ep &&
1077
#ifdef CLEAR_NAK
1078
                         (value & MGC_M_TXCSR_TXPKTRDY) &&
1079
                         !(value & MGC_M_TXCSR_H_NAKTIMEOUT)) ||
1080
#else
1081
                         (value & MGC_M_TXCSR_TXPKTRDY)) ||
1082
#endif
1083
                        (!ep &&
1084
#ifdef CLEAR_NAK
1085
                         (value & MGC_M_CSR0_TXPKTRDY) &&
1086
                         !(value & MGC_M_CSR0_H_NAKTIMEOUT)))
1087
#else
1088
                         (value & MGC_M_CSR0_TXPKTRDY)))
1089
#endif
1090
            musb_tx_rdy(s, ep);
1091
        if (!ep &&
1092
                        (value & MGC_M_CSR0_H_REQPKT) &&
1093
#ifdef CLEAR_NAK
1094
                        !(value & (MGC_M_CSR0_H_NAKTIMEOUT |
1095
                                        MGC_M_CSR0_RXPKTRDY)))
1096
#else
1097
                        !(value & MGC_M_CSR0_RXPKTRDY))
1098
#endif
1099
            musb_rx_req(s, ep);
1100
        break;
1101

    
1102
    case MUSB_HDRC_RXMAXP:
1103
        s->ep[ep].maxp[1] = value;
1104
        break;
1105
    case MUSB_HDRC_RXCSR:
1106
        /* (DMA mode only) */
1107
        if (
1108
                (value & MGC_M_RXCSR_H_AUTOREQ) &&
1109
                !(value & MGC_M_RXCSR_RXPKTRDY) &&
1110
                (s->ep[ep].csr[1] & MGC_M_RXCSR_RXPKTRDY))
1111
            value |= MGC_M_RXCSR_H_REQPKT;
1112

    
1113
        s->ep[ep].csr[1] &= 0x102 | (value & 0x4d);
1114
        s->ep[ep].csr[1] |= value & 0xfeb0;
1115

    
1116
        musb_ep_frame_cancel(&s->ep[ep], 1);
1117

    
1118
        if (value & MGC_M_RXCSR_FLUSHFIFO) {
1119
            s->ep[ep].fifolen[1] = 0;
1120
            s->ep[ep].fifostart[1] = 0;
1121
            s->ep[ep].csr[1] &= ~(MGC_M_RXCSR_FIFOFULL | MGC_M_RXCSR_RXPKTRDY);
1122
            /* If double buffering and we have two packets ready, flush
1123
             * only the first one and set up the fifo at the second packet.  */
1124
        }
1125
#ifdef CLEAR_NAK
1126
        if ((value & MGC_M_RXCSR_H_REQPKT) && !(value & MGC_M_RXCSR_DATAERROR))
1127
#else
1128
        if (value & MGC_M_RXCSR_H_REQPKT)
1129
#endif
1130
            musb_rx_req(s, ep);
1131
        break;
1132
    case MUSB_HDRC_RXCOUNT:
1133
        s->ep[ep].rxcount = value;
1134
        break;
1135

    
1136
    default:
1137
        musb_ep_writeb(s, ep, addr, value & 0xff);
1138
        musb_ep_writeb(s, ep, addr | 1, value >> 8);
1139
    };
1140
}
1141

    
1142
/* Generic control */
1143
static uint32_t musb_readb(void *opaque, target_phys_addr_t addr)
1144
{
1145
    struct musb_s *s = (struct musb_s *) opaque;
1146
    int ep, i;
1147
    uint8_t ret;
1148

    
1149
    switch (addr) {
1150
    case MUSB_HDRC_FADDR:
1151
        return s->faddr;
1152
    case MUSB_HDRC_POWER:
1153
        return s->power;
1154
    case MUSB_HDRC_INTRUSB:
1155
        ret = s->intr;
1156
        for (i = 0; i < sizeof(ret) * 8; i ++)
1157
            if (ret & (1 << i))
1158
                musb_intr_set(s, i, 0);
1159
        return ret;
1160
    case MUSB_HDRC_INTRUSBE:
1161
        return s->mask;
1162
    case MUSB_HDRC_INDEX:
1163
        return s->idx;
1164
    case MUSB_HDRC_TESTMODE:
1165
        return 0x00;
1166

    
1167
    case MUSB_HDRC_EP_IDX ... (MUSB_HDRC_EP_IDX + 0xf):
1168
        return musb_ep_readb(s, s->idx, addr & 0xf);
1169

    
1170
    case MUSB_HDRC_DEVCTL:
1171
        return s->devctl;
1172

    
1173
    case MUSB_HDRC_TXFIFOSZ:
1174
    case MUSB_HDRC_RXFIFOSZ:
1175
    case MUSB_HDRC_VCTRL:
1176
        /* TODO */
1177
        return 0x00;
1178

    
1179
    case MUSB_HDRC_HWVERS:
1180
        return (1 << 10) | 400;
1181

    
1182
    case (MUSB_HDRC_VCTRL | 1):
1183
    case (MUSB_HDRC_HWVERS | 1):
1184
    case (MUSB_HDRC_DEVCTL | 1):
1185
        return 0x00;
1186

    
1187
    case MUSB_HDRC_BUSCTL ... (MUSB_HDRC_BUSCTL + 0x7f):
1188
        ep = (addr >> 3) & 0xf;
1189
        return musb_busctl_readb(s, ep, addr & 0x7);
1190

    
1191
    case MUSB_HDRC_EP ... (MUSB_HDRC_EP + 0xff):
1192
        ep = (addr >> 4) & 0xf;
1193
        return musb_ep_readb(s, ep, addr & 0xf);
1194

    
1195
    default:
1196
        printf("%s: unknown register at %02x\n", __FUNCTION__, (int) addr);
1197
        return 0x00;
1198
    };
1199
}
1200

    
1201
static void musb_writeb(void *opaque, target_phys_addr_t addr, uint32_t value)
1202
{
1203
    struct musb_s *s = (struct musb_s *) opaque;
1204
    int ep;
1205

    
1206
    switch (addr) {
1207
    case MUSB_HDRC_FADDR:
1208
        s->faddr = value & 0x7f;
1209
        break;
1210
    case MUSB_HDRC_POWER:
1211
        s->power = (value & 0xef) | (s->power & 0x10);
1212
        /* MGC_M_POWER_RESET is also read-only in Peripheral Mode */
1213
        if ((value & MGC_M_POWER_RESET) && s->port.dev) {
1214
            usb_send_msg(s->port.dev, USB_MSG_RESET);
1215
            /* Negotiate high-speed operation if MGC_M_POWER_HSENAB is set.  */
1216
            if ((value & MGC_M_POWER_HSENAB) &&
1217
                            s->port.dev->speed == USB_SPEED_HIGH)
1218
                s->power |= MGC_M_POWER_HSMODE;        /* Success */
1219
            /* Restart frame counting.  */
1220
        }
1221
        if (value & MGC_M_POWER_SUSPENDM) {
1222
            /* When all transfers finish, suspend and if MGC_M_POWER_ENSUSPEND
1223
             * is set, also go into low power mode.  Frame counting stops.  */
1224
            /* XXX: Cleared when the interrupt register is read */
1225
        }
1226
        if (value & MGC_M_POWER_RESUME) {
1227
            /* Wait 20ms and signal resuming on the bus.  Frame counting
1228
             * restarts.  */
1229
        }
1230
        break;
1231
    case MUSB_HDRC_INTRUSB:
1232
        break;
1233
    case MUSB_HDRC_INTRUSBE:
1234
        s->mask = value & 0xff;
1235
        break;
1236
    case MUSB_HDRC_INDEX:
1237
        s->idx = value & 0xf;
1238
        break;
1239
    case MUSB_HDRC_TESTMODE:
1240
        break;
1241

    
1242
    case MUSB_HDRC_EP_IDX ... (MUSB_HDRC_EP_IDX + 0xf):
1243
        musb_ep_writeb(s, s->idx, addr & 0xf, value);
1244
        break;
1245

    
1246
    case MUSB_HDRC_DEVCTL:
1247
        s->session = !!(value & MGC_M_DEVCTL_SESSION);
1248
        musb_session_update(s,
1249
                        !!s->port.dev,
1250
                        !!(s->devctl & MGC_M_DEVCTL_SESSION));
1251

    
1252
        /* It seems this is the only R/W bit in this register?  */
1253
        s->devctl &= ~MGC_M_DEVCTL_SESSION;
1254
        s->devctl |= value & MGC_M_DEVCTL_SESSION;
1255
        break;
1256

    
1257
    case MUSB_HDRC_TXFIFOSZ:
1258
    case MUSB_HDRC_RXFIFOSZ:
1259
    case MUSB_HDRC_VCTRL:
1260
        /* TODO */
1261
        break;
1262

    
1263
    case (MUSB_HDRC_VCTRL | 1):
1264
    case (MUSB_HDRC_DEVCTL | 1):
1265
        break;
1266

    
1267
    case MUSB_HDRC_BUSCTL ... (MUSB_HDRC_BUSCTL + 0x7f):
1268
        ep = (addr >> 3) & 0xf;
1269
        musb_busctl_writeb(s, ep, addr & 0x7, value);
1270
        break;
1271

    
1272
    case MUSB_HDRC_EP ... (MUSB_HDRC_EP + 0xff):
1273
        ep = (addr >> 4) & 0xf;
1274
        musb_ep_writeb(s, ep, addr & 0xf, value);
1275
        break;
1276

    
1277
    default:
1278
        printf("%s: unknown register at %02x\n", __FUNCTION__, (int) addr);
1279
    };
1280
}
1281

    
1282
static uint32_t musb_readh(void *opaque, target_phys_addr_t addr)
1283
{
1284
    struct musb_s *s = (struct musb_s *) opaque;
1285
    int ep, i;
1286
    uint16_t ret;
1287

    
1288
    switch (addr) {
1289
    case MUSB_HDRC_INTRTX:
1290
        ret = s->tx_intr;
1291
        /* Auto clear */
1292
        for (i = 0; i < sizeof(ret) * 8; i ++)
1293
            if (ret & (1 << i))
1294
                musb_tx_intr_set(s, i, 0);
1295
        return ret;
1296
    case MUSB_HDRC_INTRRX:
1297
        ret = s->rx_intr;
1298
        /* Auto clear */
1299
        for (i = 0; i < sizeof(ret) * 8; i ++)
1300
            if (ret & (1 << i))
1301
                musb_rx_intr_set(s, i, 0);
1302
        return ret;
1303
    case MUSB_HDRC_INTRTXE:
1304
        return s->tx_mask;
1305
    case MUSB_HDRC_INTRRXE:
1306
        return s->rx_mask;
1307

    
1308
    case MUSB_HDRC_FRAME:
1309
        /* TODO */
1310
        return 0x0000;
1311
    case MUSB_HDRC_TXFIFOADDR:
1312
        return s->ep[s->idx].fifoaddr[0];
1313
    case MUSB_HDRC_RXFIFOADDR:
1314
        return s->ep[s->idx].fifoaddr[1];
1315

    
1316
    case MUSB_HDRC_EP_IDX ... (MUSB_HDRC_EP_IDX + 0xf):
1317
        return musb_ep_readh(s, s->idx, addr & 0xf);
1318

    
1319
    case MUSB_HDRC_BUSCTL ... (MUSB_HDRC_BUSCTL + 0x7f):
1320
        ep = (addr >> 3) & 0xf;
1321
        return musb_busctl_readh(s, ep, addr & 0x7);
1322

    
1323
    case MUSB_HDRC_EP ... (MUSB_HDRC_EP + 0xff):
1324
        ep = (addr >> 4) & 0xf;
1325
        return musb_ep_readh(s, ep, addr & 0xf);
1326

    
1327
    default:
1328
        return musb_readb(s, addr) | (musb_readb(s, addr | 1) << 8);
1329
    };
1330
}
1331

    
1332
static void musb_writeh(void *opaque, target_phys_addr_t addr, uint32_t value)
1333
{
1334
    struct musb_s *s = (struct musb_s *) opaque;
1335
    int ep;
1336

    
1337
    switch (addr) {
1338
    case MUSB_HDRC_INTRTXE:
1339
        s->tx_mask = value;
1340
        /* XXX: the masks seem to apply on the raising edge like with
1341
         * edge-triggered interrupts, thus no need to update.  I may be
1342
         * wrong though.  */
1343
        break;
1344
    case MUSB_HDRC_INTRRXE:
1345
        s->rx_mask = value;
1346
        break;
1347

    
1348
    case MUSB_HDRC_FRAME:
1349
        /* TODO */
1350
        break;
1351
    case MUSB_HDRC_TXFIFOADDR:
1352
        s->ep[s->idx].fifoaddr[0] = value;
1353
        s->ep[s->idx].buf[0] =
1354
                s->buf + ((value << 1) & (sizeof(s->buf) / 4 - 1));
1355
        break;
1356
    case MUSB_HDRC_RXFIFOADDR:
1357
        s->ep[s->idx].fifoaddr[1] = value;
1358
        s->ep[s->idx].buf[1] =
1359
                s->buf + ((value << 1) & (sizeof(s->buf) / 4 - 1));
1360
        break;
1361

    
1362
    case MUSB_HDRC_EP_IDX ... (MUSB_HDRC_EP_IDX + 0xf):
1363
        musb_ep_writeh(s, s->idx, addr & 0xf, value);
1364
        break;
1365

    
1366
    case MUSB_HDRC_BUSCTL ... (MUSB_HDRC_BUSCTL + 0x7f):
1367
        ep = (addr >> 3) & 0xf;
1368
        musb_busctl_writeh(s, ep, addr & 0x7, value);
1369
        break;
1370

    
1371
    case MUSB_HDRC_EP ... (MUSB_HDRC_EP + 0xff):
1372
        ep = (addr >> 4) & 0xf;
1373
        musb_ep_writeh(s, ep, addr & 0xf, value);
1374
        break;
1375

    
1376
    default:
1377
        musb_writeb(s, addr, value & 0xff);
1378
        musb_writeb(s, addr | 1, value >> 8);
1379
    };
1380
}
1381

    
1382
static uint32_t musb_readw(void *opaque, target_phys_addr_t addr)
1383
{
1384
    struct musb_s *s = (struct musb_s *) opaque;
1385
    struct musb_ep_s *ep;
1386
    int epnum;
1387

    
1388
    switch (addr) {
1389
    case MUSB_HDRC_FIFO ... (MUSB_HDRC_FIFO + 0x3f):
1390
        epnum = ((addr - MUSB_HDRC_FIFO) >> 2) & 0xf;
1391
        ep = s->ep + epnum;
1392

    
1393
        if (ep->fifolen[1] >= 16) {
1394
            /* We have a FIFO underrun */
1395
            printf("%s: EP%i FIFO is now empty, stop reading\n",
1396
                            __FUNCTION__, epnum);
1397
            return 0x00000000;
1398
        }
1399
        /* In DMA mode clear RXPKTRDY and set REQPKT automatically
1400
         * (if AUTOREQ is set) */
1401

    
1402
        ep->csr[1] &= ~MGC_M_RXCSR_FIFOFULL;
1403
        return ep->buf[1][ep->fifostart[1] + ep->fifolen[1] ++];
1404

    
1405
    default:
1406
        printf("%s: unknown register at %02x\n", __FUNCTION__, (int) addr);
1407
        return 0x00000000;
1408
    };
1409
}
1410

    
1411
static void musb_writew(void *opaque, target_phys_addr_t addr, uint32_t value)
1412
{
1413
    struct musb_s *s = (struct musb_s *) opaque;
1414
    struct musb_ep_s *ep;
1415
    int epnum;
1416

    
1417
    switch (addr) {
1418
    case MUSB_HDRC_FIFO ... (MUSB_HDRC_FIFO + 0x3f):
1419
        epnum = ((addr - MUSB_HDRC_FIFO) >> 2) & 0xf;
1420
        ep = s->ep + epnum;
1421

    
1422
        if (ep->fifolen[0] >= 16) {
1423
            /* We have a FIFO overrun */
1424
            printf("%s: EP%i FIFO exceeded 64 bytes, stop feeding data\n",
1425
                            __FUNCTION__, epnum);
1426
            break;
1427
        }
1428

    
1429
        ep->buf[0][ep->fifostart[0] + ep->fifolen[0] ++] = value;
1430
        if (epnum)
1431
            ep->csr[0] |= MGC_M_TXCSR_FIFONOTEMPTY;
1432
        break;
1433

    
1434
    default:
1435
        printf("%s: unknown register at %02x\n", __FUNCTION__, (int) addr);
1436
    };
1437
}
1438

    
1439
CPUReadMemoryFunc *musb_read[] = {
1440
    musb_readb,
1441
    musb_readh,
1442
    musb_readw,
1443
};
1444

    
1445
CPUWriteMemoryFunc *musb_write[] = {
1446
    musb_writeb,
1447
    musb_writeh,
1448
    musb_writew,
1449
};