Statistics
| Branch: | Revision:

root / target-ppc / kvm.c @ 94a8d39a

History | View | Annotate | Download (9.5 kB)

1
/*
2
 * PowerPC implementation of KVM hooks
3
 *
4
 * Copyright IBM Corp. 2007
5
 *
6
 * Authors:
7
 *  Jerone Young <jyoung5@us.ibm.com>
8
 *  Christian Ehrhardt <ehrhardt@linux.vnet.ibm.com>
9
 *  Hollis Blanchard <hollisb@us.ibm.com>
10
 *
11
 * This work is licensed under the terms of the GNU GPL, version 2 or later.
12
 * See the COPYING file in the top-level directory.
13
 *
14
 */
15

    
16
#include <sys/types.h>
17
#include <sys/ioctl.h>
18
#include <sys/mman.h>
19

    
20
#include <linux/kvm.h>
21

    
22
#include "qemu-common.h"
23
#include "qemu-timer.h"
24
#include "sysemu.h"
25
#include "kvm.h"
26
#include "kvm_ppc.h"
27
#include "cpu.h"
28
#include "device_tree.h"
29

    
30
//#define DEBUG_KVM
31

    
32
#ifdef DEBUG_KVM
33
#define dprintf(fmt, ...) \
34
    do { fprintf(stderr, fmt, ## __VA_ARGS__); } while (0)
35
#else
36
#define dprintf(fmt, ...) \
37
    do { } while (0)
38
#endif
39

    
40
const KVMCapabilityInfo kvm_arch_required_capabilities[] = {
41
    KVM_CAP_LAST_INFO
42
};
43

    
44
static int cap_interrupt_unset = false;
45
static int cap_interrupt_level = false;
46

    
47
/* XXX We have a race condition where we actually have a level triggered
48
 *     interrupt, but the infrastructure can't expose that yet, so the guest
49
 *     takes but ignores it, goes to sleep and never gets notified that there's
50
 *     still an interrupt pending.
51
 *
52
 *     As a quick workaround, let's just wake up again 20 ms after we injected
53
 *     an interrupt. That way we can assure that we're always reinjecting
54
 *     interrupts in case the guest swallowed them.
55
 */
56
static QEMUTimer *idle_timer;
57

    
58
static void kvm_kick_env(void *env)
59
{
60
    qemu_cpu_kick(env);
61
}
62

    
63
int kvm_arch_init(KVMState *s)
64
{
65
#ifdef KVM_CAP_PPC_UNSET_IRQ
66
    cap_interrupt_unset = kvm_check_extension(s, KVM_CAP_PPC_UNSET_IRQ);
67
#endif
68
#ifdef KVM_CAP_PPC_IRQ_LEVEL
69
    cap_interrupt_level = kvm_check_extension(s, KVM_CAP_PPC_IRQ_LEVEL);
70
#endif
71

    
72
    if (!cap_interrupt_level) {
73
        fprintf(stderr, "KVM: Couldn't find level irq capability. Expect the "
74
                        "VM to stall at times!\n");
75
    }
76

    
77
    return 0;
78
}
79

    
80
int kvm_arch_init_vcpu(CPUState *cenv)
81
{
82
    int ret = 0;
83
    struct kvm_sregs sregs;
84

    
85
    sregs.pvr = cenv->spr[SPR_PVR];
86
    ret = kvm_vcpu_ioctl(cenv, KVM_SET_SREGS, &sregs);
87

    
88
    idle_timer = qemu_new_timer(vm_clock, kvm_kick_env, cenv);
89

    
90
    return ret;
91
}
92

    
93
void kvm_arch_reset_vcpu(CPUState *env)
94
{
95
}
96

    
97
int kvm_arch_put_registers(CPUState *env, int level)
98
{
99
    struct kvm_regs regs;
100
    int ret;
101
    int i;
102

    
103
    ret = kvm_vcpu_ioctl(env, KVM_GET_REGS, &regs);
104
    if (ret < 0)
105
        return ret;
106

    
107
    regs.ctr = env->ctr;
108
    regs.lr  = env->lr;
109
    regs.xer = env->xer;
110
    regs.msr = env->msr;
111
    regs.pc = env->nip;
112

    
113
    regs.srr0 = env->spr[SPR_SRR0];
114
    regs.srr1 = env->spr[SPR_SRR1];
115

    
116
    regs.sprg0 = env->spr[SPR_SPRG0];
117
    regs.sprg1 = env->spr[SPR_SPRG1];
118
    regs.sprg2 = env->spr[SPR_SPRG2];
119
    regs.sprg3 = env->spr[SPR_SPRG3];
120
    regs.sprg4 = env->spr[SPR_SPRG4];
121
    regs.sprg5 = env->spr[SPR_SPRG5];
122
    regs.sprg6 = env->spr[SPR_SPRG6];
123
    regs.sprg7 = env->spr[SPR_SPRG7];
124

    
125
    for (i = 0;i < 32; i++)
126
        regs.gpr[i] = env->gpr[i];
127

    
128
    ret = kvm_vcpu_ioctl(env, KVM_SET_REGS, &regs);
129
    if (ret < 0)
130
        return ret;
131

    
132
    return ret;
133
}
134

    
135
int kvm_arch_get_registers(CPUState *env)
136
{
137
    struct kvm_regs regs;
138
    struct kvm_sregs sregs;
139
    int i, ret;
140

    
141
    ret = kvm_vcpu_ioctl(env, KVM_GET_REGS, &regs);
142
    if (ret < 0)
143
        return ret;
144

    
145
    ret = kvm_vcpu_ioctl(env, KVM_GET_SREGS, &sregs);
146
    if (ret < 0)
147
        return ret;
148

    
149
    env->ctr = regs.ctr;
150
    env->lr = regs.lr;
151
    env->xer = regs.xer;
152
    env->msr = regs.msr;
153
    env->nip = regs.pc;
154

    
155
    env->spr[SPR_SRR0] = regs.srr0;
156
    env->spr[SPR_SRR1] = regs.srr1;
157

    
158
    env->spr[SPR_SPRG0] = regs.sprg0;
159
    env->spr[SPR_SPRG1] = regs.sprg1;
160
    env->spr[SPR_SPRG2] = regs.sprg2;
161
    env->spr[SPR_SPRG3] = regs.sprg3;
162
    env->spr[SPR_SPRG4] = regs.sprg4;
163
    env->spr[SPR_SPRG5] = regs.sprg5;
164
    env->spr[SPR_SPRG6] = regs.sprg6;
165
    env->spr[SPR_SPRG7] = regs.sprg7;
166

    
167
    for (i = 0;i < 32; i++)
168
        env->gpr[i] = regs.gpr[i];
169

    
170
#ifdef KVM_CAP_PPC_SEGSTATE
171
    if (kvm_check_extension(env->kvm_state, KVM_CAP_PPC_SEGSTATE)) {
172
        env->sdr1 = sregs.u.s.sdr1;
173

    
174
        /* Sync SLB */
175
#ifdef TARGET_PPC64
176
        for (i = 0; i < 64; i++) {
177
            ppc_store_slb(env, sregs.u.s.ppc64.slb[i].slbe,
178
                               sregs.u.s.ppc64.slb[i].slbv);
179
        }
180
#endif
181

    
182
        /* Sync SRs */
183
        for (i = 0; i < 16; i++) {
184
            env->sr[i] = sregs.u.s.ppc32.sr[i];
185
        }
186

    
187
        /* Sync BATs */
188
        for (i = 0; i < 8; i++) {
189
            env->DBAT[0][i] = sregs.u.s.ppc32.dbat[i] & 0xffffffff;
190
            env->DBAT[1][i] = sregs.u.s.ppc32.dbat[i] >> 32;
191
            env->IBAT[0][i] = sregs.u.s.ppc32.ibat[i] & 0xffffffff;
192
            env->IBAT[1][i] = sregs.u.s.ppc32.ibat[i] >> 32;
193
        }
194
    }
195
#endif
196

    
197
    return 0;
198
}
199

    
200
int kvmppc_set_interrupt(CPUState *env, int irq, int level)
201
{
202
    unsigned virq = level ? KVM_INTERRUPT_SET_LEVEL : KVM_INTERRUPT_UNSET;
203

    
204
    if (irq != PPC_INTERRUPT_EXT) {
205
        return 0;
206
    }
207

    
208
    if (!kvm_enabled() || !cap_interrupt_unset || !cap_interrupt_level) {
209
        return 0;
210
    }
211

    
212
    kvm_vcpu_ioctl(env, KVM_INTERRUPT, &virq);
213

    
214
    return 0;
215
}
216

    
217
#if defined(TARGET_PPCEMB)
218
#define PPC_INPUT_INT PPC40x_INPUT_INT
219
#elif defined(TARGET_PPC64)
220
#define PPC_INPUT_INT PPC970_INPUT_INT
221
#else
222
#define PPC_INPUT_INT PPC6xx_INPUT_INT
223
#endif
224

    
225
int kvm_arch_pre_run(CPUState *env, struct kvm_run *run)
226
{
227
    int r;
228
    unsigned irq;
229

    
230
    /* PowerPC Qemu tracks the various core input pins (interrupt, critical
231
     * interrupt, reset, etc) in PPC-specific env->irq_input_state. */
232
    if (!cap_interrupt_level &&
233
        run->ready_for_interrupt_injection &&
234
        (env->interrupt_request & CPU_INTERRUPT_HARD) &&
235
        (env->irq_input_state & (1<<PPC_INPUT_INT)))
236
    {
237
        /* For now KVM disregards the 'irq' argument. However, in the
238
         * future KVM could cache it in-kernel to avoid a heavyweight exit
239
         * when reading the UIC.
240
         */
241
        irq = KVM_INTERRUPT_SET;
242

    
243
        dprintf("injected interrupt %d\n", irq);
244
        r = kvm_vcpu_ioctl(env, KVM_INTERRUPT, &irq);
245
        if (r < 0)
246
            printf("cpu %d fail inject %x\n", env->cpu_index, irq);
247

    
248
        /* Always wake up soon in case the interrupt was level based */
249
        qemu_mod_timer(idle_timer, qemu_get_clock(vm_clock) +
250
                       (get_ticks_per_sec() / 50));
251
    }
252

    
253
    /* We don't know if there are more interrupts pending after this. However,
254
     * the guest will return to userspace in the course of handling this one
255
     * anyways, so we will get a chance to deliver the rest. */
256
    return 0;
257
}
258

    
259
int kvm_arch_post_run(CPUState *env, struct kvm_run *run)
260
{
261
    return 0;
262
}
263

    
264
int kvm_arch_process_irqchip_events(CPUState *env)
265
{
266
    return 0;
267
}
268

    
269
static int kvmppc_handle_halt(CPUState *env)
270
{
271
    if (!(env->interrupt_request & CPU_INTERRUPT_HARD) && (msr_ee)) {
272
        env->halted = 1;
273
        env->exception_index = EXCP_HLT;
274
    }
275

    
276
    return 1;
277
}
278

    
279
/* map dcr access to existing qemu dcr emulation */
280
static int kvmppc_handle_dcr_read(CPUState *env, uint32_t dcrn, uint32_t *data)
281
{
282
    if (ppc_dcr_read(env->dcr_env, dcrn, data) < 0)
283
        fprintf(stderr, "Read to unhandled DCR (0x%x)\n", dcrn);
284

    
285
    return 1;
286
}
287

    
288
static int kvmppc_handle_dcr_write(CPUState *env, uint32_t dcrn, uint32_t data)
289
{
290
    if (ppc_dcr_write(env->dcr_env, dcrn, data) < 0)
291
        fprintf(stderr, "Write to unhandled DCR (0x%x)\n", dcrn);
292

    
293
    return 1;
294
}
295

    
296
int kvm_arch_handle_exit(CPUState *env, struct kvm_run *run)
297
{
298
    int ret = 0;
299

    
300
    switch (run->exit_reason) {
301
    case KVM_EXIT_DCR:
302
        if (run->dcr.is_write) {
303
            dprintf("handle dcr write\n");
304
            ret = kvmppc_handle_dcr_write(env, run->dcr.dcrn, run->dcr.data);
305
        } else {
306
            dprintf("handle dcr read\n");
307
            ret = kvmppc_handle_dcr_read(env, run->dcr.dcrn, &run->dcr.data);
308
        }
309
        break;
310
    case KVM_EXIT_HLT:
311
        dprintf("handle halt\n");
312
        ret = kvmppc_handle_halt(env);
313
        break;
314
    default:
315
        fprintf(stderr, "KVM: unknown exit reason %d\n", run->exit_reason);
316
        ret = -1;
317
        break;
318
    }
319

    
320
    return ret;
321
}
322

    
323
static int read_cpuinfo(const char *field, char *value, int len)
324
{
325
    FILE *f;
326
    int ret = -1;
327
    int field_len = strlen(field);
328
    char line[512];
329

    
330
    f = fopen("/proc/cpuinfo", "r");
331
    if (!f) {
332
        return -1;
333
    }
334

    
335
    do {
336
        if(!fgets(line, sizeof(line), f)) {
337
            break;
338
        }
339
        if (!strncmp(line, field, field_len)) {
340
            strncpy(value, line, len);
341
            ret = 0;
342
            break;
343
        }
344
    } while(*line);
345

    
346
    fclose(f);
347

    
348
    return ret;
349
}
350

    
351
uint32_t kvmppc_get_tbfreq(void)
352
{
353
    char line[512];
354
    char *ns;
355
    uint32_t retval = get_ticks_per_sec();
356

    
357
    if (read_cpuinfo("timebase", line, sizeof(line))) {
358
        return retval;
359
    }
360

    
361
    if (!(ns = strchr(line, ':'))) {
362
        return retval;
363
    }
364

    
365
    ns++;
366

    
367
    retval = atoi(ns);
368
    return retval;
369
}
370

    
371
int kvmppc_get_hypercall(CPUState *env, uint8_t *buf, int buf_len)
372
{
373
    uint32_t *hc = (uint32_t*)buf;
374

    
375
#ifdef KVM_CAP_PPC_GET_PVINFO
376
    struct kvm_ppc_pvinfo pvinfo;
377

    
378
    if (kvm_check_extension(env->kvm_state, KVM_CAP_PPC_GET_PVINFO) &&
379
        !kvm_vm_ioctl(env->kvm_state, KVM_PPC_GET_PVINFO, &pvinfo)) {
380
        memcpy(buf, pvinfo.hcall, buf_len);
381

    
382
        return 0;
383
    }
384
#endif
385

    
386
    /*
387
     * Fallback to always fail hypercalls:
388
     *
389
     *     li r3, -1
390
     *     nop
391
     *     nop
392
     *     nop
393
     */
394

    
395
    hc[0] = 0x3860ffff;
396
    hc[1] = 0x60000000;
397
    hc[2] = 0x60000000;
398
    hc[3] = 0x60000000;
399

    
400
    return 0;
401
}
402

    
403
bool kvm_arch_stop_on_emulation_error(CPUState *env)
404
{
405
    return true;
406
}