Statistics
| Branch: | Revision:

root / vl.c @ 967032c3

History | View | Annotate | Download (237.2 kB)

1
/*
2
 * QEMU System Emulator
3
 *
4
 * Copyright (c) 2003-2008 Fabrice Bellard
5
 *
6
 * Permission is hereby granted, free of charge, to any person obtaining a copy
7
 * of this software and associated documentation files (the "Software"), to deal
8
 * in the Software without restriction, including without limitation the rights
9
 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10
 * copies of the Software, and to permit persons to whom the Software is
11
 * furnished to do so, subject to the following conditions:
12
 *
13
 * The above copyright notice and this permission notice shall be included in
14
 * all copies or substantial portions of the Software.
15
 *
16
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21
 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22
 * THE SOFTWARE.
23
 */
24
#include "hw/hw.h"
25
#include "hw/boards.h"
26
#include "hw/usb.h"
27
#include "hw/pcmcia.h"
28
#include "hw/pc.h"
29
#include "hw/audiodev.h"
30
#include "hw/isa.h"
31
#include "hw/baum.h"
32
#include "net.h"
33
#include "console.h"
34
#include "sysemu.h"
35
#include "gdbstub.h"
36
#include "qemu-timer.h"
37
#include "qemu-char.h"
38
#include "block.h"
39
#include "audio/audio.h"
40

    
41
#include <unistd.h>
42
#include <fcntl.h>
43
#include <signal.h>
44
#include <time.h>
45
#include <errno.h>
46
#include <sys/time.h>
47
#include <zlib.h>
48

    
49
#ifndef _WIN32
50
#include <sys/times.h>
51
#include <sys/wait.h>
52
#include <termios.h>
53
#include <sys/poll.h>
54
#include <sys/mman.h>
55
#include <sys/ioctl.h>
56
#include <sys/socket.h>
57
#include <netinet/in.h>
58
#include <dirent.h>
59
#include <netdb.h>
60
#include <sys/select.h>
61
#include <arpa/inet.h>
62
#ifdef _BSD
63
#include <sys/stat.h>
64
#ifndef __APPLE__
65
#include <libutil.h>
66
#endif
67
#elif defined (__GLIBC__) && defined (__FreeBSD_kernel__)
68
#include <freebsd/stdlib.h>
69
#else
70
#ifndef __sun__
71
#include <linux/if.h>
72
#include <linux/if_tun.h>
73
#include <pty.h>
74
#include <malloc.h>
75
#include <linux/rtc.h>
76

    
77
/* For the benefit of older linux systems which don't supply it,
78
   we use a local copy of hpet.h. */
79
/* #include <linux/hpet.h> */
80
#include "hpet.h"
81

    
82
#include <linux/ppdev.h>
83
#include <linux/parport.h>
84
#else
85
#include <sys/stat.h>
86
#include <sys/ethernet.h>
87
#include <sys/sockio.h>
88
#include <netinet/arp.h>
89
#include <netinet/in.h>
90
#include <netinet/in_systm.h>
91
#include <netinet/ip.h>
92
#include <netinet/ip_icmp.h> // must come after ip.h
93
#include <netinet/udp.h>
94
#include <netinet/tcp.h>
95
#include <net/if.h>
96
#include <syslog.h>
97
#include <stropts.h>
98
#endif
99
#endif
100
#else
101
#include <winsock2.h>
102
int inet_aton(const char *cp, struct in_addr *ia);
103
#endif
104

    
105
#if defined(CONFIG_SLIRP)
106
#include "libslirp.h"
107
#endif
108

    
109
#ifdef _WIN32
110
#include <malloc.h>
111
#include <sys/timeb.h>
112
#include <mmsystem.h>
113
#define getopt_long_only getopt_long
114
#define memalign(align, size) malloc(size)
115
#endif
116

    
117
#include "qemu_socket.h"
118

    
119
#ifdef CONFIG_SDL
120
#ifdef __APPLE__
121
#include <SDL/SDL.h>
122
#endif
123
#endif /* CONFIG_SDL */
124

    
125
#ifdef CONFIG_COCOA
126
#undef main
127
#define main qemu_main
128
#endif /* CONFIG_COCOA */
129

    
130
#include "disas.h"
131

    
132
#include "exec-all.h"
133

    
134
#define DEFAULT_NETWORK_SCRIPT "/etc/qemu-ifup"
135
#define DEFAULT_NETWORK_DOWN_SCRIPT "/etc/qemu-ifdown"
136
#ifdef __sun__
137
#define SMBD_COMMAND "/usr/sfw/sbin/smbd"
138
#else
139
#define SMBD_COMMAND "/usr/sbin/smbd"
140
#endif
141

    
142
//#define DEBUG_UNUSED_IOPORT
143
//#define DEBUG_IOPORT
144

    
145
#ifdef TARGET_PPC
146
#define DEFAULT_RAM_SIZE 144
147
#else
148
#define DEFAULT_RAM_SIZE 128
149
#endif
150
/* in ms */
151
#define GUI_REFRESH_INTERVAL 30
152

    
153
/* Max number of USB devices that can be specified on the commandline.  */
154
#define MAX_USB_CMDLINE 8
155

    
156
/* XXX: use a two level table to limit memory usage */
157
#define MAX_IOPORTS 65536
158

    
159
const char *bios_dir = CONFIG_QEMU_SHAREDIR;
160
const char *bios_name = NULL;
161
void *ioport_opaque[MAX_IOPORTS];
162
IOPortReadFunc *ioport_read_table[3][MAX_IOPORTS];
163
IOPortWriteFunc *ioport_write_table[3][MAX_IOPORTS];
164
/* Note: drives_table[MAX_DRIVES] is a dummy block driver if none available
165
   to store the VM snapshots */
166
DriveInfo drives_table[MAX_DRIVES+1];
167
int nb_drives;
168
/* point to the block driver where the snapshots are managed */
169
BlockDriverState *bs_snapshots;
170
int vga_ram_size;
171
static DisplayState display_state;
172
int nographic;
173
int curses;
174
const char* keyboard_layout = NULL;
175
int64_t ticks_per_sec;
176
ram_addr_t ram_size;
177
int pit_min_timer_count = 0;
178
int nb_nics;
179
NICInfo nd_table[MAX_NICS];
180
int vm_running;
181
static int rtc_utc = 1;
182
static int rtc_date_offset = -1; /* -1 means no change */
183
int cirrus_vga_enabled = 1;
184
int vmsvga_enabled = 0;
185
#ifdef TARGET_SPARC
186
int graphic_width = 1024;
187
int graphic_height = 768;
188
int graphic_depth = 8;
189
#else
190
int graphic_width = 800;
191
int graphic_height = 600;
192
int graphic_depth = 15;
193
#endif
194
int full_screen = 0;
195
int no_frame = 0;
196
int no_quit = 0;
197
CharDriverState *serial_hds[MAX_SERIAL_PORTS];
198
CharDriverState *parallel_hds[MAX_PARALLEL_PORTS];
199
#ifdef TARGET_I386
200
int win2k_install_hack = 0;
201
#endif
202
int usb_enabled = 0;
203
static VLANState *first_vlan;
204
int smp_cpus = 1;
205
const char *vnc_display;
206
#if defined(TARGET_SPARC)
207
#define MAX_CPUS 16
208
#elif defined(TARGET_I386)
209
#define MAX_CPUS 255
210
#else
211
#define MAX_CPUS 1
212
#endif
213
int acpi_enabled = 1;
214
int fd_bootchk = 1;
215
int no_reboot = 0;
216
int no_shutdown = 0;
217
int cursor_hide = 1;
218
int graphic_rotate = 0;
219
int daemonize = 0;
220
const char *option_rom[MAX_OPTION_ROMS];
221
int nb_option_roms;
222
int semihosting_enabled = 0;
223
int autostart = 1;
224
#ifdef TARGET_ARM
225
int old_param = 0;
226
#endif
227
const char *qemu_name;
228
int alt_grab = 0;
229
#ifdef TARGET_SPARC
230
unsigned int nb_prom_envs = 0;
231
const char *prom_envs[MAX_PROM_ENVS];
232
#endif
233
int nb_drives_opt;
234
struct drive_opt {
235
    const char *file;
236
    char opt[1024];
237
} drives_opt[MAX_DRIVES];
238

    
239
static CPUState *cur_cpu;
240
static CPUState *next_cpu;
241
static int event_pending = 1;
242

    
243
#define TFR(expr) do { if ((expr) != -1) break; } while (errno == EINTR)
244

    
245
/***********************************************************/
246
/* x86 ISA bus support */
247

    
248
target_phys_addr_t isa_mem_base = 0;
249
PicState2 *isa_pic;
250

    
251
static uint32_t default_ioport_readb(void *opaque, uint32_t address)
252
{
253
#ifdef DEBUG_UNUSED_IOPORT
254
    fprintf(stderr, "unused inb: port=0x%04x\n", address);
255
#endif
256
    return 0xff;
257
}
258

    
259
static void default_ioport_writeb(void *opaque, uint32_t address, uint32_t data)
260
{
261
#ifdef DEBUG_UNUSED_IOPORT
262
    fprintf(stderr, "unused outb: port=0x%04x data=0x%02x\n", address, data);
263
#endif
264
}
265

    
266
/* default is to make two byte accesses */
267
static uint32_t default_ioport_readw(void *opaque, uint32_t address)
268
{
269
    uint32_t data;
270
    data = ioport_read_table[0][address](ioport_opaque[address], address);
271
    address = (address + 1) & (MAX_IOPORTS - 1);
272
    data |= ioport_read_table[0][address](ioport_opaque[address], address) << 8;
273
    return data;
274
}
275

    
276
static void default_ioport_writew(void *opaque, uint32_t address, uint32_t data)
277
{
278
    ioport_write_table[0][address](ioport_opaque[address], address, data & 0xff);
279
    address = (address + 1) & (MAX_IOPORTS - 1);
280
    ioport_write_table[0][address](ioport_opaque[address], address, (data >> 8) & 0xff);
281
}
282

    
283
static uint32_t default_ioport_readl(void *opaque, uint32_t address)
284
{
285
#ifdef DEBUG_UNUSED_IOPORT
286
    fprintf(stderr, "unused inl: port=0x%04x\n", address);
287
#endif
288
    return 0xffffffff;
289
}
290

    
291
static void default_ioport_writel(void *opaque, uint32_t address, uint32_t data)
292
{
293
#ifdef DEBUG_UNUSED_IOPORT
294
    fprintf(stderr, "unused outl: port=0x%04x data=0x%02x\n", address, data);
295
#endif
296
}
297

    
298
static void init_ioports(void)
299
{
300
    int i;
301

    
302
    for(i = 0; i < MAX_IOPORTS; i++) {
303
        ioport_read_table[0][i] = default_ioport_readb;
304
        ioport_write_table[0][i] = default_ioport_writeb;
305
        ioport_read_table[1][i] = default_ioport_readw;
306
        ioport_write_table[1][i] = default_ioport_writew;
307
        ioport_read_table[2][i] = default_ioport_readl;
308
        ioport_write_table[2][i] = default_ioport_writel;
309
    }
310
}
311

    
312
/* size is the word size in byte */
313
int register_ioport_read(int start, int length, int size,
314
                         IOPortReadFunc *func, void *opaque)
315
{
316
    int i, bsize;
317

    
318
    if (size == 1) {
319
        bsize = 0;
320
    } else if (size == 2) {
321
        bsize = 1;
322
    } else if (size == 4) {
323
        bsize = 2;
324
    } else {
325
        hw_error("register_ioport_read: invalid size");
326
        return -1;
327
    }
328
    for(i = start; i < start + length; i += size) {
329
        ioport_read_table[bsize][i] = func;
330
        if (ioport_opaque[i] != NULL && ioport_opaque[i] != opaque)
331
            hw_error("register_ioport_read: invalid opaque");
332
        ioport_opaque[i] = opaque;
333
    }
334
    return 0;
335
}
336

    
337
/* size is the word size in byte */
338
int register_ioport_write(int start, int length, int size,
339
                          IOPortWriteFunc *func, void *opaque)
340
{
341
    int i, bsize;
342

    
343
    if (size == 1) {
344
        bsize = 0;
345
    } else if (size == 2) {
346
        bsize = 1;
347
    } else if (size == 4) {
348
        bsize = 2;
349
    } else {
350
        hw_error("register_ioport_write: invalid size");
351
        return -1;
352
    }
353
    for(i = start; i < start + length; i += size) {
354
        ioport_write_table[bsize][i] = func;
355
        if (ioport_opaque[i] != NULL && ioport_opaque[i] != opaque)
356
            hw_error("register_ioport_write: invalid opaque");
357
        ioport_opaque[i] = opaque;
358
    }
359
    return 0;
360
}
361

    
362
void isa_unassign_ioport(int start, int length)
363
{
364
    int i;
365

    
366
    for(i = start; i < start + length; i++) {
367
        ioport_read_table[0][i] = default_ioport_readb;
368
        ioport_read_table[1][i] = default_ioport_readw;
369
        ioport_read_table[2][i] = default_ioport_readl;
370

    
371
        ioport_write_table[0][i] = default_ioport_writeb;
372
        ioport_write_table[1][i] = default_ioport_writew;
373
        ioport_write_table[2][i] = default_ioport_writel;
374
    }
375
}
376

    
377
/***********************************************************/
378

    
379
void cpu_outb(CPUState *env, int addr, int val)
380
{
381
#ifdef DEBUG_IOPORT
382
    if (loglevel & CPU_LOG_IOPORT)
383
        fprintf(logfile, "outb: %04x %02x\n", addr, val);
384
#endif
385
    ioport_write_table[0][addr](ioport_opaque[addr], addr, val);
386
#ifdef USE_KQEMU
387
    if (env)
388
        env->last_io_time = cpu_get_time_fast();
389
#endif
390
}
391

    
392
void cpu_outw(CPUState *env, int addr, int val)
393
{
394
#ifdef DEBUG_IOPORT
395
    if (loglevel & CPU_LOG_IOPORT)
396
        fprintf(logfile, "outw: %04x %04x\n", addr, val);
397
#endif
398
    ioport_write_table[1][addr](ioport_opaque[addr], addr, val);
399
#ifdef USE_KQEMU
400
    if (env)
401
        env->last_io_time = cpu_get_time_fast();
402
#endif
403
}
404

    
405
void cpu_outl(CPUState *env, int addr, int val)
406
{
407
#ifdef DEBUG_IOPORT
408
    if (loglevel & CPU_LOG_IOPORT)
409
        fprintf(logfile, "outl: %04x %08x\n", addr, val);
410
#endif
411
    ioport_write_table[2][addr](ioport_opaque[addr], addr, val);
412
#ifdef USE_KQEMU
413
    if (env)
414
        env->last_io_time = cpu_get_time_fast();
415
#endif
416
}
417

    
418
int cpu_inb(CPUState *env, int addr)
419
{
420
    int val;
421
    val = ioport_read_table[0][addr](ioport_opaque[addr], addr);
422
#ifdef DEBUG_IOPORT
423
    if (loglevel & CPU_LOG_IOPORT)
424
        fprintf(logfile, "inb : %04x %02x\n", addr, val);
425
#endif
426
#ifdef USE_KQEMU
427
    if (env)
428
        env->last_io_time = cpu_get_time_fast();
429
#endif
430
    return val;
431
}
432

    
433
int cpu_inw(CPUState *env, int addr)
434
{
435
    int val;
436
    val = ioport_read_table[1][addr](ioport_opaque[addr], addr);
437
#ifdef DEBUG_IOPORT
438
    if (loglevel & CPU_LOG_IOPORT)
439
        fprintf(logfile, "inw : %04x %04x\n", addr, val);
440
#endif
441
#ifdef USE_KQEMU
442
    if (env)
443
        env->last_io_time = cpu_get_time_fast();
444
#endif
445
    return val;
446
}
447

    
448
int cpu_inl(CPUState *env, int addr)
449
{
450
    int val;
451
    val = ioport_read_table[2][addr](ioport_opaque[addr], addr);
452
#ifdef DEBUG_IOPORT
453
    if (loglevel & CPU_LOG_IOPORT)
454
        fprintf(logfile, "inl : %04x %08x\n", addr, val);
455
#endif
456
#ifdef USE_KQEMU
457
    if (env)
458
        env->last_io_time = cpu_get_time_fast();
459
#endif
460
    return val;
461
}
462

    
463
/***********************************************************/
464
void hw_error(const char *fmt, ...)
465
{
466
    va_list ap;
467
    CPUState *env;
468

    
469
    va_start(ap, fmt);
470
    fprintf(stderr, "qemu: hardware error: ");
471
    vfprintf(stderr, fmt, ap);
472
    fprintf(stderr, "\n");
473
    for(env = first_cpu; env != NULL; env = env->next_cpu) {
474
        fprintf(stderr, "CPU #%d:\n", env->cpu_index);
475
#ifdef TARGET_I386
476
        cpu_dump_state(env, stderr, fprintf, X86_DUMP_FPU);
477
#else
478
        cpu_dump_state(env, stderr, fprintf, 0);
479
#endif
480
    }
481
    va_end(ap);
482
    abort();
483
}
484

    
485
/***********************************************************/
486
/* keyboard/mouse */
487

    
488
static QEMUPutKBDEvent *qemu_put_kbd_event;
489
static void *qemu_put_kbd_event_opaque;
490
static QEMUPutMouseEntry *qemu_put_mouse_event_head;
491
static QEMUPutMouseEntry *qemu_put_mouse_event_current;
492

    
493
void qemu_add_kbd_event_handler(QEMUPutKBDEvent *func, void *opaque)
494
{
495
    qemu_put_kbd_event_opaque = opaque;
496
    qemu_put_kbd_event = func;
497
}
498

    
499
QEMUPutMouseEntry *qemu_add_mouse_event_handler(QEMUPutMouseEvent *func,
500
                                                void *opaque, int absolute,
501
                                                const char *name)
502
{
503
    QEMUPutMouseEntry *s, *cursor;
504

    
505
    s = qemu_mallocz(sizeof(QEMUPutMouseEntry));
506
    if (!s)
507
        return NULL;
508

    
509
    s->qemu_put_mouse_event = func;
510
    s->qemu_put_mouse_event_opaque = opaque;
511
    s->qemu_put_mouse_event_absolute = absolute;
512
    s->qemu_put_mouse_event_name = qemu_strdup(name);
513
    s->next = NULL;
514

    
515
    if (!qemu_put_mouse_event_head) {
516
        qemu_put_mouse_event_head = qemu_put_mouse_event_current = s;
517
        return s;
518
    }
519

    
520
    cursor = qemu_put_mouse_event_head;
521
    while (cursor->next != NULL)
522
        cursor = cursor->next;
523

    
524
    cursor->next = s;
525
    qemu_put_mouse_event_current = s;
526

    
527
    return s;
528
}
529

    
530
void qemu_remove_mouse_event_handler(QEMUPutMouseEntry *entry)
531
{
532
    QEMUPutMouseEntry *prev = NULL, *cursor;
533

    
534
    if (!qemu_put_mouse_event_head || entry == NULL)
535
        return;
536

    
537
    cursor = qemu_put_mouse_event_head;
538
    while (cursor != NULL && cursor != entry) {
539
        prev = cursor;
540
        cursor = cursor->next;
541
    }
542

    
543
    if (cursor == NULL) // does not exist or list empty
544
        return;
545
    else if (prev == NULL) { // entry is head
546
        qemu_put_mouse_event_head = cursor->next;
547
        if (qemu_put_mouse_event_current == entry)
548
            qemu_put_mouse_event_current = cursor->next;
549
        qemu_free(entry->qemu_put_mouse_event_name);
550
        qemu_free(entry);
551
        return;
552
    }
553

    
554
    prev->next = entry->next;
555

    
556
    if (qemu_put_mouse_event_current == entry)
557
        qemu_put_mouse_event_current = prev;
558

    
559
    qemu_free(entry->qemu_put_mouse_event_name);
560
    qemu_free(entry);
561
}
562

    
563
void kbd_put_keycode(int keycode)
564
{
565
    if (qemu_put_kbd_event) {
566
        qemu_put_kbd_event(qemu_put_kbd_event_opaque, keycode);
567
    }
568
}
569

    
570
void kbd_mouse_event(int dx, int dy, int dz, int buttons_state)
571
{
572
    QEMUPutMouseEvent *mouse_event;
573
    void *mouse_event_opaque;
574
    int width;
575

    
576
    if (!qemu_put_mouse_event_current) {
577
        return;
578
    }
579

    
580
    mouse_event =
581
        qemu_put_mouse_event_current->qemu_put_mouse_event;
582
    mouse_event_opaque =
583
        qemu_put_mouse_event_current->qemu_put_mouse_event_opaque;
584

    
585
    if (mouse_event) {
586
        if (graphic_rotate) {
587
            if (qemu_put_mouse_event_current->qemu_put_mouse_event_absolute)
588
                width = 0x7fff;
589
            else
590
                width = graphic_width - 1;
591
            mouse_event(mouse_event_opaque,
592
                                 width - dy, dx, dz, buttons_state);
593
        } else
594
            mouse_event(mouse_event_opaque,
595
                                 dx, dy, dz, buttons_state);
596
    }
597
}
598

    
599
int kbd_mouse_is_absolute(void)
600
{
601
    if (!qemu_put_mouse_event_current)
602
        return 0;
603

    
604
    return qemu_put_mouse_event_current->qemu_put_mouse_event_absolute;
605
}
606

    
607
void do_info_mice(void)
608
{
609
    QEMUPutMouseEntry *cursor;
610
    int index = 0;
611

    
612
    if (!qemu_put_mouse_event_head) {
613
        term_printf("No mouse devices connected\n");
614
        return;
615
    }
616

    
617
    term_printf("Mouse devices available:\n");
618
    cursor = qemu_put_mouse_event_head;
619
    while (cursor != NULL) {
620
        term_printf("%c Mouse #%d: %s\n",
621
                    (cursor == qemu_put_mouse_event_current ? '*' : ' '),
622
                    index, cursor->qemu_put_mouse_event_name);
623
        index++;
624
        cursor = cursor->next;
625
    }
626
}
627

    
628
void do_mouse_set(int index)
629
{
630
    QEMUPutMouseEntry *cursor;
631
    int i = 0;
632

    
633
    if (!qemu_put_mouse_event_head) {
634
        term_printf("No mouse devices connected\n");
635
        return;
636
    }
637

    
638
    cursor = qemu_put_mouse_event_head;
639
    while (cursor != NULL && index != i) {
640
        i++;
641
        cursor = cursor->next;
642
    }
643

    
644
    if (cursor != NULL)
645
        qemu_put_mouse_event_current = cursor;
646
    else
647
        term_printf("Mouse at given index not found\n");
648
}
649

    
650
/* compute with 96 bit intermediate result: (a*b)/c */
651
uint64_t muldiv64(uint64_t a, uint32_t b, uint32_t c)
652
{
653
    union {
654
        uint64_t ll;
655
        struct {
656
#ifdef WORDS_BIGENDIAN
657
            uint32_t high, low;
658
#else
659
            uint32_t low, high;
660
#endif
661
        } l;
662
    } u, res;
663
    uint64_t rl, rh;
664

    
665
    u.ll = a;
666
    rl = (uint64_t)u.l.low * (uint64_t)b;
667
    rh = (uint64_t)u.l.high * (uint64_t)b;
668
    rh += (rl >> 32);
669
    res.l.high = rh / c;
670
    res.l.low = (((rh % c) << 32) + (rl & 0xffffffff)) / c;
671
    return res.ll;
672
}
673

    
674
/***********************************************************/
675
/* real time host monotonic timer */
676

    
677
#define QEMU_TIMER_BASE 1000000000LL
678

    
679
#ifdef WIN32
680

    
681
static int64_t clock_freq;
682

    
683
static void init_get_clock(void)
684
{
685
    LARGE_INTEGER freq;
686
    int ret;
687
    ret = QueryPerformanceFrequency(&freq);
688
    if (ret == 0) {
689
        fprintf(stderr, "Could not calibrate ticks\n");
690
        exit(1);
691
    }
692
    clock_freq = freq.QuadPart;
693
}
694

    
695
static int64_t get_clock(void)
696
{
697
    LARGE_INTEGER ti;
698
    QueryPerformanceCounter(&ti);
699
    return muldiv64(ti.QuadPart, QEMU_TIMER_BASE, clock_freq);
700
}
701

    
702
#else
703

    
704
static int use_rt_clock;
705

    
706
static void init_get_clock(void)
707
{
708
    use_rt_clock = 0;
709
#if defined(__linux__)
710
    {
711
        struct timespec ts;
712
        if (clock_gettime(CLOCK_MONOTONIC, &ts) == 0) {
713
            use_rt_clock = 1;
714
        }
715
    }
716
#endif
717
}
718

    
719
static int64_t get_clock(void)
720
{
721
#if defined(__linux__)
722
    if (use_rt_clock) {
723
        struct timespec ts;
724
        clock_gettime(CLOCK_MONOTONIC, &ts);
725
        return ts.tv_sec * 1000000000LL + ts.tv_nsec;
726
    } else
727
#endif
728
    {
729
        /* XXX: using gettimeofday leads to problems if the date
730
           changes, so it should be avoided. */
731
        struct timeval tv;
732
        gettimeofday(&tv, NULL);
733
        return tv.tv_sec * 1000000000LL + (tv.tv_usec * 1000);
734
    }
735
}
736

    
737
#endif
738

    
739
/***********************************************************/
740
/* guest cycle counter */
741

    
742
static int64_t cpu_ticks_prev;
743
static int64_t cpu_ticks_offset;
744
static int64_t cpu_clock_offset;
745
static int cpu_ticks_enabled;
746

    
747
/* return the host CPU cycle counter and handle stop/restart */
748
int64_t cpu_get_ticks(void)
749
{
750
    if (!cpu_ticks_enabled) {
751
        return cpu_ticks_offset;
752
    } else {
753
        int64_t ticks;
754
        ticks = cpu_get_real_ticks();
755
        if (cpu_ticks_prev > ticks) {
756
            /* Note: non increasing ticks may happen if the host uses
757
               software suspend */
758
            cpu_ticks_offset += cpu_ticks_prev - ticks;
759
        }
760
        cpu_ticks_prev = ticks;
761
        return ticks + cpu_ticks_offset;
762
    }
763
}
764

    
765
/* return the host CPU monotonic timer and handle stop/restart */
766
static int64_t cpu_get_clock(void)
767
{
768
    int64_t ti;
769
    if (!cpu_ticks_enabled) {
770
        return cpu_clock_offset;
771
    } else {
772
        ti = get_clock();
773
        return ti + cpu_clock_offset;
774
    }
775
}
776

    
777
/* enable cpu_get_ticks() */
778
void cpu_enable_ticks(void)
779
{
780
    if (!cpu_ticks_enabled) {
781
        cpu_ticks_offset -= cpu_get_real_ticks();
782
        cpu_clock_offset -= get_clock();
783
        cpu_ticks_enabled = 1;
784
    }
785
}
786

    
787
/* disable cpu_get_ticks() : the clock is stopped. You must not call
788
   cpu_get_ticks() after that.  */
789
void cpu_disable_ticks(void)
790
{
791
    if (cpu_ticks_enabled) {
792
        cpu_ticks_offset = cpu_get_ticks();
793
        cpu_clock_offset = cpu_get_clock();
794
        cpu_ticks_enabled = 0;
795
    }
796
}
797

    
798
/***********************************************************/
799
/* timers */
800

    
801
#define QEMU_TIMER_REALTIME 0
802
#define QEMU_TIMER_VIRTUAL  1
803

    
804
struct QEMUClock {
805
    int type;
806
    /* XXX: add frequency */
807
};
808

    
809
struct QEMUTimer {
810
    QEMUClock *clock;
811
    int64_t expire_time;
812
    QEMUTimerCB *cb;
813
    void *opaque;
814
    struct QEMUTimer *next;
815
};
816

    
817
struct qemu_alarm_timer {
818
    char const *name;
819
    unsigned int flags;
820

    
821
    int (*start)(struct qemu_alarm_timer *t);
822
    void (*stop)(struct qemu_alarm_timer *t);
823
    void (*rearm)(struct qemu_alarm_timer *t);
824
    void *priv;
825
};
826

    
827
#define ALARM_FLAG_DYNTICKS  0x1
828
#define ALARM_FLAG_EXPIRED   0x2
829

    
830
static inline int alarm_has_dynticks(struct qemu_alarm_timer *t)
831
{
832
    return t->flags & ALARM_FLAG_DYNTICKS;
833
}
834

    
835
static void qemu_rearm_alarm_timer(struct qemu_alarm_timer *t)
836
{
837
    if (!alarm_has_dynticks(t))
838
        return;
839

    
840
    t->rearm(t);
841
}
842

    
843
/* TODO: MIN_TIMER_REARM_US should be optimized */
844
#define MIN_TIMER_REARM_US 250
845

    
846
static struct qemu_alarm_timer *alarm_timer;
847

    
848
#ifdef _WIN32
849

    
850
struct qemu_alarm_win32 {
851
    MMRESULT timerId;
852
    HANDLE host_alarm;
853
    unsigned int period;
854
} alarm_win32_data = {0, NULL, -1};
855

    
856
static int win32_start_timer(struct qemu_alarm_timer *t);
857
static void win32_stop_timer(struct qemu_alarm_timer *t);
858
static void win32_rearm_timer(struct qemu_alarm_timer *t);
859

    
860
#else
861

    
862
static int unix_start_timer(struct qemu_alarm_timer *t);
863
static void unix_stop_timer(struct qemu_alarm_timer *t);
864

    
865
#ifdef __linux__
866

    
867
static int dynticks_start_timer(struct qemu_alarm_timer *t);
868
static void dynticks_stop_timer(struct qemu_alarm_timer *t);
869
static void dynticks_rearm_timer(struct qemu_alarm_timer *t);
870

    
871
static int hpet_start_timer(struct qemu_alarm_timer *t);
872
static void hpet_stop_timer(struct qemu_alarm_timer *t);
873

    
874
static int rtc_start_timer(struct qemu_alarm_timer *t);
875
static void rtc_stop_timer(struct qemu_alarm_timer *t);
876

    
877
#endif /* __linux__ */
878

    
879
#endif /* _WIN32 */
880

    
881
static struct qemu_alarm_timer alarm_timers[] = {
882
#ifndef _WIN32
883
#ifdef __linux__
884
    {"dynticks", ALARM_FLAG_DYNTICKS, dynticks_start_timer,
885
     dynticks_stop_timer, dynticks_rearm_timer, NULL},
886
    /* HPET - if available - is preferred */
887
    {"hpet", 0, hpet_start_timer, hpet_stop_timer, NULL, NULL},
888
    /* ...otherwise try RTC */
889
    {"rtc", 0, rtc_start_timer, rtc_stop_timer, NULL, NULL},
890
#endif
891
    {"unix", 0, unix_start_timer, unix_stop_timer, NULL, NULL},
892
#else
893
    {"dynticks", ALARM_FLAG_DYNTICKS, win32_start_timer,
894
     win32_stop_timer, win32_rearm_timer, &alarm_win32_data},
895
    {"win32", 0, win32_start_timer,
896
     win32_stop_timer, NULL, &alarm_win32_data},
897
#endif
898
    {NULL, }
899
};
900

    
901
static void show_available_alarms(void)
902
{
903
    int i;
904

    
905
    printf("Available alarm timers, in order of precedence:\n");
906
    for (i = 0; alarm_timers[i].name; i++)
907
        printf("%s\n", alarm_timers[i].name);
908
}
909

    
910
static void configure_alarms(char const *opt)
911
{
912
    int i;
913
    int cur = 0;
914
    int count = (sizeof(alarm_timers) / sizeof(*alarm_timers)) - 1;
915
    char *arg;
916
    char *name;
917

    
918
    if (!strcmp(opt, "?")) {
919
        show_available_alarms();
920
        exit(0);
921
    }
922

    
923
    arg = strdup(opt);
924

    
925
    /* Reorder the array */
926
    name = strtok(arg, ",");
927
    while (name) {
928
        struct qemu_alarm_timer tmp;
929

    
930
        for (i = 0; i < count && alarm_timers[i].name; i++) {
931
            if (!strcmp(alarm_timers[i].name, name))
932
                break;
933
        }
934

    
935
        if (i == count) {
936
            fprintf(stderr, "Unknown clock %s\n", name);
937
            goto next;
938
        }
939

    
940
        if (i < cur)
941
            /* Ignore */
942
            goto next;
943

    
944
        /* Swap */
945
        tmp = alarm_timers[i];
946
        alarm_timers[i] = alarm_timers[cur];
947
        alarm_timers[cur] = tmp;
948

    
949
        cur++;
950
next:
951
        name = strtok(NULL, ",");
952
    }
953

    
954
    free(arg);
955

    
956
    if (cur) {
957
        /* Disable remaining timers */
958
        for (i = cur; i < count; i++)
959
            alarm_timers[i].name = NULL;
960
    } else {
961
        show_available_alarms();
962
        exit(1);
963
    }
964
}
965

    
966
QEMUClock *rt_clock;
967
QEMUClock *vm_clock;
968

    
969
static QEMUTimer *active_timers[2];
970

    
971
static QEMUClock *qemu_new_clock(int type)
972
{
973
    QEMUClock *clock;
974
    clock = qemu_mallocz(sizeof(QEMUClock));
975
    if (!clock)
976
        return NULL;
977
    clock->type = type;
978
    return clock;
979
}
980

    
981
QEMUTimer *qemu_new_timer(QEMUClock *clock, QEMUTimerCB *cb, void *opaque)
982
{
983
    QEMUTimer *ts;
984

    
985
    ts = qemu_mallocz(sizeof(QEMUTimer));
986
    ts->clock = clock;
987
    ts->cb = cb;
988
    ts->opaque = opaque;
989
    return ts;
990
}
991

    
992
void qemu_free_timer(QEMUTimer *ts)
993
{
994
    qemu_free(ts);
995
}
996

    
997
/* stop a timer, but do not dealloc it */
998
void qemu_del_timer(QEMUTimer *ts)
999
{
1000
    QEMUTimer **pt, *t;
1001

    
1002
    /* NOTE: this code must be signal safe because
1003
       qemu_timer_expired() can be called from a signal. */
1004
    pt = &active_timers[ts->clock->type];
1005
    for(;;) {
1006
        t = *pt;
1007
        if (!t)
1008
            break;
1009
        if (t == ts) {
1010
            *pt = t->next;
1011
            break;
1012
        }
1013
        pt = &t->next;
1014
    }
1015
}
1016

    
1017
/* modify the current timer so that it will be fired when current_time
1018
   >= expire_time. The corresponding callback will be called. */
1019
void qemu_mod_timer(QEMUTimer *ts, int64_t expire_time)
1020
{
1021
    QEMUTimer **pt, *t;
1022

    
1023
    qemu_del_timer(ts);
1024

    
1025
    /* add the timer in the sorted list */
1026
    /* NOTE: this code must be signal safe because
1027
       qemu_timer_expired() can be called from a signal. */
1028
    pt = &active_timers[ts->clock->type];
1029
    for(;;) {
1030
        t = *pt;
1031
        if (!t)
1032
            break;
1033
        if (t->expire_time > expire_time)
1034
            break;
1035
        pt = &t->next;
1036
    }
1037
    ts->expire_time = expire_time;
1038
    ts->next = *pt;
1039
    *pt = ts;
1040

    
1041
    /* Rearm if necessary  */
1042
    if ((alarm_timer->flags & ALARM_FLAG_EXPIRED) == 0 &&
1043
        pt == &active_timers[ts->clock->type])
1044
        qemu_rearm_alarm_timer(alarm_timer);
1045
}
1046

    
1047
int qemu_timer_pending(QEMUTimer *ts)
1048
{
1049
    QEMUTimer *t;
1050
    for(t = active_timers[ts->clock->type]; t != NULL; t = t->next) {
1051
        if (t == ts)
1052
            return 1;
1053
    }
1054
    return 0;
1055
}
1056

    
1057
static inline int qemu_timer_expired(QEMUTimer *timer_head, int64_t current_time)
1058
{
1059
    if (!timer_head)
1060
        return 0;
1061
    return (timer_head->expire_time <= current_time);
1062
}
1063

    
1064
static void qemu_run_timers(QEMUTimer **ptimer_head, int64_t current_time)
1065
{
1066
    QEMUTimer *ts;
1067

    
1068
    for(;;) {
1069
        ts = *ptimer_head;
1070
        if (!ts || ts->expire_time > current_time)
1071
            break;
1072
        /* remove timer from the list before calling the callback */
1073
        *ptimer_head = ts->next;
1074
        ts->next = NULL;
1075

    
1076
        /* run the callback (the timer list can be modified) */
1077
        ts->cb(ts->opaque);
1078
    }
1079
}
1080

    
1081
int64_t qemu_get_clock(QEMUClock *clock)
1082
{
1083
    switch(clock->type) {
1084
    case QEMU_TIMER_REALTIME:
1085
        return get_clock() / 1000000;
1086
    default:
1087
    case QEMU_TIMER_VIRTUAL:
1088
        return cpu_get_clock();
1089
    }
1090
}
1091

    
1092
static void init_timers(void)
1093
{
1094
    init_get_clock();
1095
    ticks_per_sec = QEMU_TIMER_BASE;
1096
    rt_clock = qemu_new_clock(QEMU_TIMER_REALTIME);
1097
    vm_clock = qemu_new_clock(QEMU_TIMER_VIRTUAL);
1098
}
1099

    
1100
/* save a timer */
1101
void qemu_put_timer(QEMUFile *f, QEMUTimer *ts)
1102
{
1103
    uint64_t expire_time;
1104

    
1105
    if (qemu_timer_pending(ts)) {
1106
        expire_time = ts->expire_time;
1107
    } else {
1108
        expire_time = -1;
1109
    }
1110
    qemu_put_be64(f, expire_time);
1111
}
1112

    
1113
void qemu_get_timer(QEMUFile *f, QEMUTimer *ts)
1114
{
1115
    uint64_t expire_time;
1116

    
1117
    expire_time = qemu_get_be64(f);
1118
    if (expire_time != -1) {
1119
        qemu_mod_timer(ts, expire_time);
1120
    } else {
1121
        qemu_del_timer(ts);
1122
    }
1123
}
1124

    
1125
static void timer_save(QEMUFile *f, void *opaque)
1126
{
1127
    if (cpu_ticks_enabled) {
1128
        hw_error("cannot save state if virtual timers are running");
1129
    }
1130
    qemu_put_be64(f, cpu_ticks_offset);
1131
    qemu_put_be64(f, ticks_per_sec);
1132
    qemu_put_be64(f, cpu_clock_offset);
1133
}
1134

    
1135
static int timer_load(QEMUFile *f, void *opaque, int version_id)
1136
{
1137
    if (version_id != 1 && version_id != 2)
1138
        return -EINVAL;
1139
    if (cpu_ticks_enabled) {
1140
        return -EINVAL;
1141
    }
1142
    cpu_ticks_offset=qemu_get_be64(f);
1143
    ticks_per_sec=qemu_get_be64(f);
1144
    if (version_id == 2) {
1145
        cpu_clock_offset=qemu_get_be64(f);
1146
    }
1147
    return 0;
1148
}
1149

    
1150
#ifdef _WIN32
1151
void CALLBACK host_alarm_handler(UINT uTimerID, UINT uMsg,
1152
                                 DWORD_PTR dwUser, DWORD_PTR dw1, DWORD_PTR dw2)
1153
#else
1154
static void host_alarm_handler(int host_signum)
1155
#endif
1156
{
1157
#if 0
1158
#define DISP_FREQ 1000
1159
    {
1160
        static int64_t delta_min = INT64_MAX;
1161
        static int64_t delta_max, delta_cum, last_clock, delta, ti;
1162
        static int count;
1163
        ti = qemu_get_clock(vm_clock);
1164
        if (last_clock != 0) {
1165
            delta = ti - last_clock;
1166
            if (delta < delta_min)
1167
                delta_min = delta;
1168
            if (delta > delta_max)
1169
                delta_max = delta;
1170
            delta_cum += delta;
1171
            if (++count == DISP_FREQ) {
1172
                printf("timer: min=%" PRId64 " us max=%" PRId64 " us avg=%" PRId64 " us avg_freq=%0.3f Hz\n",
1173
                       muldiv64(delta_min, 1000000, ticks_per_sec),
1174
                       muldiv64(delta_max, 1000000, ticks_per_sec),
1175
                       muldiv64(delta_cum, 1000000 / DISP_FREQ, ticks_per_sec),
1176
                       (double)ticks_per_sec / ((double)delta_cum / DISP_FREQ));
1177
                count = 0;
1178
                delta_min = INT64_MAX;
1179
                delta_max = 0;
1180
                delta_cum = 0;
1181
            }
1182
        }
1183
        last_clock = ti;
1184
    }
1185
#endif
1186
    if (alarm_has_dynticks(alarm_timer) ||
1187
        qemu_timer_expired(active_timers[QEMU_TIMER_VIRTUAL],
1188
                           qemu_get_clock(vm_clock)) ||
1189
        qemu_timer_expired(active_timers[QEMU_TIMER_REALTIME],
1190
                           qemu_get_clock(rt_clock))) {
1191
#ifdef _WIN32
1192
        struct qemu_alarm_win32 *data = ((struct qemu_alarm_timer*)dwUser)->priv;
1193
        SetEvent(data->host_alarm);
1194
#endif
1195
        CPUState *env = next_cpu;
1196

    
1197
        alarm_timer->flags |= ALARM_FLAG_EXPIRED;
1198

    
1199
        if (env) {
1200
            /* stop the currently executing cpu because a timer occured */
1201
            cpu_interrupt(env, CPU_INTERRUPT_EXIT);
1202
#ifdef USE_KQEMU
1203
            if (env->kqemu_enabled) {
1204
                kqemu_cpu_interrupt(env);
1205
            }
1206
#endif
1207
        }
1208
        event_pending = 1;
1209
    }
1210
}
1211

    
1212
static uint64_t qemu_next_deadline(void)
1213
{
1214
    int64_t nearest_delta_us = INT64_MAX;
1215
    int64_t vmdelta_us;
1216

    
1217
    if (active_timers[QEMU_TIMER_REALTIME])
1218
        nearest_delta_us = (active_timers[QEMU_TIMER_REALTIME]->expire_time -
1219
                            qemu_get_clock(rt_clock))*1000;
1220

    
1221
    if (active_timers[QEMU_TIMER_VIRTUAL]) {
1222
        /* round up */
1223
        vmdelta_us = (active_timers[QEMU_TIMER_VIRTUAL]->expire_time -
1224
                      qemu_get_clock(vm_clock)+999)/1000;
1225
        if (vmdelta_us < nearest_delta_us)
1226
            nearest_delta_us = vmdelta_us;
1227
    }
1228

    
1229
    /* Avoid arming the timer to negative, zero, or too low values */
1230
    if (nearest_delta_us <= MIN_TIMER_REARM_US)
1231
        nearest_delta_us = MIN_TIMER_REARM_US;
1232

    
1233
    return nearest_delta_us;
1234
}
1235

    
1236
#ifndef _WIN32
1237

    
1238
#if defined(__linux__)
1239

    
1240
#define RTC_FREQ 1024
1241

    
1242
static void enable_sigio_timer(int fd)
1243
{
1244
    struct sigaction act;
1245

    
1246
    /* timer signal */
1247
    sigfillset(&act.sa_mask);
1248
    act.sa_flags = 0;
1249
    act.sa_handler = host_alarm_handler;
1250

    
1251
    sigaction(SIGIO, &act, NULL);
1252
    fcntl(fd, F_SETFL, O_ASYNC);
1253
    fcntl(fd, F_SETOWN, getpid());
1254
}
1255

    
1256
static int hpet_start_timer(struct qemu_alarm_timer *t)
1257
{
1258
    struct hpet_info info;
1259
    int r, fd;
1260

    
1261
    fd = open("/dev/hpet", O_RDONLY);
1262
    if (fd < 0)
1263
        return -1;
1264

    
1265
    /* Set frequency */
1266
    r = ioctl(fd, HPET_IRQFREQ, RTC_FREQ);
1267
    if (r < 0) {
1268
        fprintf(stderr, "Could not configure '/dev/hpet' to have a 1024Hz timer. This is not a fatal\n"
1269
                "error, but for better emulation accuracy type:\n"
1270
                "'echo 1024 > /proc/sys/dev/hpet/max-user-freq' as root.\n");
1271
        goto fail;
1272
    }
1273

    
1274
    /* Check capabilities */
1275
    r = ioctl(fd, HPET_INFO, &info);
1276
    if (r < 0)
1277
        goto fail;
1278

    
1279
    /* Enable periodic mode */
1280
    r = ioctl(fd, HPET_EPI, 0);
1281
    if (info.hi_flags && (r < 0))
1282
        goto fail;
1283

    
1284
    /* Enable interrupt */
1285
    r = ioctl(fd, HPET_IE_ON, 0);
1286
    if (r < 0)
1287
        goto fail;
1288

    
1289
    enable_sigio_timer(fd);
1290
    t->priv = (void *)(long)fd;
1291

    
1292
    return 0;
1293
fail:
1294
    close(fd);
1295
    return -1;
1296
}
1297

    
1298
static void hpet_stop_timer(struct qemu_alarm_timer *t)
1299
{
1300
    int fd = (long)t->priv;
1301

    
1302
    close(fd);
1303
}
1304

    
1305
static int rtc_start_timer(struct qemu_alarm_timer *t)
1306
{
1307
    int rtc_fd;
1308
    unsigned long current_rtc_freq = 0;
1309

    
1310
    TFR(rtc_fd = open("/dev/rtc", O_RDONLY));
1311
    if (rtc_fd < 0)
1312
        return -1;
1313
    ioctl(rtc_fd, RTC_IRQP_READ, &current_rtc_freq);
1314
    if (current_rtc_freq != RTC_FREQ &&
1315
        ioctl(rtc_fd, RTC_IRQP_SET, RTC_FREQ) < 0) {
1316
        fprintf(stderr, "Could not configure '/dev/rtc' to have a 1024 Hz timer. This is not a fatal\n"
1317
                "error, but for better emulation accuracy either use a 2.6 host Linux kernel or\n"
1318
                "type 'echo 1024 > /proc/sys/dev/rtc/max-user-freq' as root.\n");
1319
        goto fail;
1320
    }
1321
    if (ioctl(rtc_fd, RTC_PIE_ON, 0) < 0) {
1322
    fail:
1323
        close(rtc_fd);
1324
        return -1;
1325
    }
1326

    
1327
    enable_sigio_timer(rtc_fd);
1328

    
1329
    t->priv = (void *)(long)rtc_fd;
1330

    
1331
    return 0;
1332
}
1333

    
1334
static void rtc_stop_timer(struct qemu_alarm_timer *t)
1335
{
1336
    int rtc_fd = (long)t->priv;
1337

    
1338
    close(rtc_fd);
1339
}
1340

    
1341
static int dynticks_start_timer(struct qemu_alarm_timer *t)
1342
{
1343
    struct sigevent ev;
1344
    timer_t host_timer;
1345
    struct sigaction act;
1346

    
1347
    sigfillset(&act.sa_mask);
1348
    act.sa_flags = 0;
1349
    act.sa_handler = host_alarm_handler;
1350

    
1351
    sigaction(SIGALRM, &act, NULL);
1352

    
1353
    ev.sigev_value.sival_int = 0;
1354
    ev.sigev_notify = SIGEV_SIGNAL;
1355
    ev.sigev_signo = SIGALRM;
1356

    
1357
    if (timer_create(CLOCK_REALTIME, &ev, &host_timer)) {
1358
        perror("timer_create");
1359

    
1360
        /* disable dynticks */
1361
        fprintf(stderr, "Dynamic Ticks disabled\n");
1362

    
1363
        return -1;
1364
    }
1365

    
1366
    t->priv = (void *)host_timer;
1367

    
1368
    return 0;
1369
}
1370

    
1371
static void dynticks_stop_timer(struct qemu_alarm_timer *t)
1372
{
1373
    timer_t host_timer = (timer_t)t->priv;
1374

    
1375
    timer_delete(host_timer);
1376
}
1377

    
1378
static void dynticks_rearm_timer(struct qemu_alarm_timer *t)
1379
{
1380
    timer_t host_timer = (timer_t)t->priv;
1381
    struct itimerspec timeout;
1382
    int64_t nearest_delta_us = INT64_MAX;
1383
    int64_t current_us;
1384

    
1385
    if (!active_timers[QEMU_TIMER_REALTIME] &&
1386
                !active_timers[QEMU_TIMER_VIRTUAL])
1387
        return;
1388

    
1389
    nearest_delta_us = qemu_next_deadline();
1390

    
1391
    /* check whether a timer is already running */
1392
    if (timer_gettime(host_timer, &timeout)) {
1393
        perror("gettime");
1394
        fprintf(stderr, "Internal timer error: aborting\n");
1395
        exit(1);
1396
    }
1397
    current_us = timeout.it_value.tv_sec * 1000000 + timeout.it_value.tv_nsec/1000;
1398
    if (current_us && current_us <= nearest_delta_us)
1399
        return;
1400

    
1401
    timeout.it_interval.tv_sec = 0;
1402
    timeout.it_interval.tv_nsec = 0; /* 0 for one-shot timer */
1403
    timeout.it_value.tv_sec =  nearest_delta_us / 1000000;
1404
    timeout.it_value.tv_nsec = (nearest_delta_us % 1000000) * 1000;
1405
    if (timer_settime(host_timer, 0 /* RELATIVE */, &timeout, NULL)) {
1406
        perror("settime");
1407
        fprintf(stderr, "Internal timer error: aborting\n");
1408
        exit(1);
1409
    }
1410
}
1411

    
1412
#endif /* defined(__linux__) */
1413

    
1414
static int unix_start_timer(struct qemu_alarm_timer *t)
1415
{
1416
    struct sigaction act;
1417
    struct itimerval itv;
1418
    int err;
1419

    
1420
    /* timer signal */
1421
    sigfillset(&act.sa_mask);
1422
    act.sa_flags = 0;
1423
    act.sa_handler = host_alarm_handler;
1424

    
1425
    sigaction(SIGALRM, &act, NULL);
1426

    
1427
    itv.it_interval.tv_sec = 0;
1428
    /* for i386 kernel 2.6 to get 1 ms */
1429
    itv.it_interval.tv_usec = 999;
1430
    itv.it_value.tv_sec = 0;
1431
    itv.it_value.tv_usec = 10 * 1000;
1432

    
1433
    err = setitimer(ITIMER_REAL, &itv, NULL);
1434
    if (err)
1435
        return -1;
1436

    
1437
    return 0;
1438
}
1439

    
1440
static void unix_stop_timer(struct qemu_alarm_timer *t)
1441
{
1442
    struct itimerval itv;
1443

    
1444
    memset(&itv, 0, sizeof(itv));
1445
    setitimer(ITIMER_REAL, &itv, NULL);
1446
}
1447

    
1448
#endif /* !defined(_WIN32) */
1449

    
1450
#ifdef _WIN32
1451

    
1452
static int win32_start_timer(struct qemu_alarm_timer *t)
1453
{
1454
    TIMECAPS tc;
1455
    struct qemu_alarm_win32 *data = t->priv;
1456
    UINT flags;
1457

    
1458
    data->host_alarm = CreateEvent(NULL, FALSE, FALSE, NULL);
1459
    if (!data->host_alarm) {
1460
        perror("Failed CreateEvent");
1461
        return -1;
1462
    }
1463

    
1464
    memset(&tc, 0, sizeof(tc));
1465
    timeGetDevCaps(&tc, sizeof(tc));
1466

    
1467
    if (data->period < tc.wPeriodMin)
1468
        data->period = tc.wPeriodMin;
1469

    
1470
    timeBeginPeriod(data->period);
1471

    
1472
    flags = TIME_CALLBACK_FUNCTION;
1473
    if (alarm_has_dynticks(t))
1474
        flags |= TIME_ONESHOT;
1475
    else
1476
        flags |= TIME_PERIODIC;
1477

    
1478
    data->timerId = timeSetEvent(1,         // interval (ms)
1479
                        data->period,       // resolution
1480
                        host_alarm_handler, // function
1481
                        (DWORD)t,           // parameter
1482
                        flags);
1483

    
1484
    if (!data->timerId) {
1485
        perror("Failed to initialize win32 alarm timer");
1486

    
1487
        timeEndPeriod(data->period);
1488
        CloseHandle(data->host_alarm);
1489
        return -1;
1490
    }
1491

    
1492
    qemu_add_wait_object(data->host_alarm, NULL, NULL);
1493

    
1494
    return 0;
1495
}
1496

    
1497
static void win32_stop_timer(struct qemu_alarm_timer *t)
1498
{
1499
    struct qemu_alarm_win32 *data = t->priv;
1500

    
1501
    timeKillEvent(data->timerId);
1502
    timeEndPeriod(data->period);
1503

    
1504
    CloseHandle(data->host_alarm);
1505
}
1506

    
1507
static void win32_rearm_timer(struct qemu_alarm_timer *t)
1508
{
1509
    struct qemu_alarm_win32 *data = t->priv;
1510
    uint64_t nearest_delta_us;
1511

    
1512
    if (!active_timers[QEMU_TIMER_REALTIME] &&
1513
                !active_timers[QEMU_TIMER_VIRTUAL])
1514
        return;
1515

    
1516
    nearest_delta_us = qemu_next_deadline();
1517
    nearest_delta_us /= 1000;
1518

    
1519
    timeKillEvent(data->timerId);
1520

    
1521
    data->timerId = timeSetEvent(1,
1522
                        data->period,
1523
                        host_alarm_handler,
1524
                        (DWORD)t,
1525
                        TIME_ONESHOT | TIME_PERIODIC);
1526

    
1527
    if (!data->timerId) {
1528
        perror("Failed to re-arm win32 alarm timer");
1529

    
1530
        timeEndPeriod(data->period);
1531
        CloseHandle(data->host_alarm);
1532
        exit(1);
1533
    }
1534
}
1535

    
1536
#endif /* _WIN32 */
1537

    
1538
static void init_timer_alarm(void)
1539
{
1540
    struct qemu_alarm_timer *t;
1541
    int i, err = -1;
1542

    
1543
    for (i = 0; alarm_timers[i].name; i++) {
1544
        t = &alarm_timers[i];
1545

    
1546
        err = t->start(t);
1547
        if (!err)
1548
            break;
1549
    }
1550

    
1551
    if (err) {
1552
        fprintf(stderr, "Unable to find any suitable alarm timer.\n");
1553
        fprintf(stderr, "Terminating\n");
1554
        exit(1);
1555
    }
1556

    
1557
    alarm_timer = t;
1558
}
1559

    
1560
static void quit_timers(void)
1561
{
1562
    alarm_timer->stop(alarm_timer);
1563
    alarm_timer = NULL;
1564
}
1565

    
1566
/***********************************************************/
1567
/* host time/date access */
1568
void qemu_get_timedate(struct tm *tm, int offset)
1569
{
1570
    time_t ti;
1571
    struct tm *ret;
1572

    
1573
    time(&ti);
1574
    ti += offset;
1575
    if (rtc_date_offset == -1) {
1576
        if (rtc_utc)
1577
            ret = gmtime(&ti);
1578
        else
1579
            ret = localtime(&ti);
1580
    } else {
1581
        ti -= rtc_date_offset;
1582
        ret = gmtime(&ti);
1583
    }
1584

    
1585
    memcpy(tm, ret, sizeof(struct tm));
1586
}
1587

    
1588
int qemu_timedate_diff(struct tm *tm)
1589
{
1590
    time_t seconds;
1591

    
1592
    if (rtc_date_offset == -1)
1593
        if (rtc_utc)
1594
            seconds = mktimegm(tm);
1595
        else
1596
            seconds = mktime(tm);
1597
    else
1598
        seconds = mktimegm(tm) + rtc_date_offset;
1599

    
1600
    return seconds - time(NULL);
1601
}
1602

    
1603
/***********************************************************/
1604
/* character device */
1605

    
1606
static void qemu_chr_event(CharDriverState *s, int event)
1607
{
1608
    if (!s->chr_event)
1609
        return;
1610
    s->chr_event(s->handler_opaque, event);
1611
}
1612

    
1613
static void qemu_chr_reset_bh(void *opaque)
1614
{
1615
    CharDriverState *s = opaque;
1616
    qemu_chr_event(s, CHR_EVENT_RESET);
1617
    qemu_bh_delete(s->bh);
1618
    s->bh = NULL;
1619
}
1620

    
1621
void qemu_chr_reset(CharDriverState *s)
1622
{
1623
    if (s->bh == NULL) {
1624
        s->bh = qemu_bh_new(qemu_chr_reset_bh, s);
1625
        qemu_bh_schedule(s->bh);
1626
    }
1627
}
1628

    
1629
int qemu_chr_write(CharDriverState *s, const uint8_t *buf, int len)
1630
{
1631
    return s->chr_write(s, buf, len);
1632
}
1633

    
1634
int qemu_chr_ioctl(CharDriverState *s, int cmd, void *arg)
1635
{
1636
    if (!s->chr_ioctl)
1637
        return -ENOTSUP;
1638
    return s->chr_ioctl(s, cmd, arg);
1639
}
1640

    
1641
int qemu_chr_can_read(CharDriverState *s)
1642
{
1643
    if (!s->chr_can_read)
1644
        return 0;
1645
    return s->chr_can_read(s->handler_opaque);
1646
}
1647

    
1648
void qemu_chr_read(CharDriverState *s, uint8_t *buf, int len)
1649
{
1650
    s->chr_read(s->handler_opaque, buf, len);
1651
}
1652

    
1653
void qemu_chr_accept_input(CharDriverState *s)
1654
{
1655
    if (s->chr_accept_input)
1656
        s->chr_accept_input(s);
1657
}
1658

    
1659
void qemu_chr_printf(CharDriverState *s, const char *fmt, ...)
1660
{
1661
    char buf[4096];
1662
    va_list ap;
1663
    va_start(ap, fmt);
1664
    vsnprintf(buf, sizeof(buf), fmt, ap);
1665
    qemu_chr_write(s, (uint8_t *)buf, strlen(buf));
1666
    va_end(ap);
1667
}
1668

    
1669
void qemu_chr_send_event(CharDriverState *s, int event)
1670
{
1671
    if (s->chr_send_event)
1672
        s->chr_send_event(s, event);
1673
}
1674

    
1675
void qemu_chr_add_handlers(CharDriverState *s,
1676
                           IOCanRWHandler *fd_can_read,
1677
                           IOReadHandler *fd_read,
1678
                           IOEventHandler *fd_event,
1679
                           void *opaque)
1680
{
1681
    s->chr_can_read = fd_can_read;
1682
    s->chr_read = fd_read;
1683
    s->chr_event = fd_event;
1684
    s->handler_opaque = opaque;
1685
    if (s->chr_update_read_handler)
1686
        s->chr_update_read_handler(s);
1687
}
1688

    
1689
static int null_chr_write(CharDriverState *chr, const uint8_t *buf, int len)
1690
{
1691
    return len;
1692
}
1693

    
1694
static CharDriverState *qemu_chr_open_null(void)
1695
{
1696
    CharDriverState *chr;
1697

    
1698
    chr = qemu_mallocz(sizeof(CharDriverState));
1699
    if (!chr)
1700
        return NULL;
1701
    chr->chr_write = null_chr_write;
1702
    return chr;
1703
}
1704

    
1705
/* MUX driver for serial I/O splitting */
1706
static int term_timestamps;
1707
static int64_t term_timestamps_start;
1708
#define MAX_MUX 4
1709
#define MUX_BUFFER_SIZE 32        /* Must be a power of 2.  */
1710
#define MUX_BUFFER_MASK (MUX_BUFFER_SIZE - 1)
1711
typedef struct {
1712
    IOCanRWHandler *chr_can_read[MAX_MUX];
1713
    IOReadHandler *chr_read[MAX_MUX];
1714
    IOEventHandler *chr_event[MAX_MUX];
1715
    void *ext_opaque[MAX_MUX];
1716
    CharDriverState *drv;
1717
    unsigned char buffer[MUX_BUFFER_SIZE];
1718
    int prod;
1719
    int cons;
1720
    int mux_cnt;
1721
    int term_got_escape;
1722
    int max_size;
1723
} MuxDriver;
1724

    
1725

    
1726
static int mux_chr_write(CharDriverState *chr, const uint8_t *buf, int len)
1727
{
1728
    MuxDriver *d = chr->opaque;
1729
    int ret;
1730
    if (!term_timestamps) {
1731
        ret = d->drv->chr_write(d->drv, buf, len);
1732
    } else {
1733
        int i;
1734

    
1735
        ret = 0;
1736
        for(i = 0; i < len; i++) {
1737
            ret += d->drv->chr_write(d->drv, buf+i, 1);
1738
            if (buf[i] == '\n') {
1739
                char buf1[64];
1740
                int64_t ti;
1741
                int secs;
1742

    
1743
                ti = get_clock();
1744
                if (term_timestamps_start == -1)
1745
                    term_timestamps_start = ti;
1746
                ti -= term_timestamps_start;
1747
                secs = ti / 1000000000;
1748
                snprintf(buf1, sizeof(buf1),
1749
                         "[%02d:%02d:%02d.%03d] ",
1750
                         secs / 3600,
1751
                         (secs / 60) % 60,
1752
                         secs % 60,
1753
                         (int)((ti / 1000000) % 1000));
1754
                d->drv->chr_write(d->drv, (uint8_t *)buf1, strlen(buf1));
1755
            }
1756
        }
1757
    }
1758
    return ret;
1759
}
1760

    
1761
static char *mux_help[] = {
1762
    "% h    print this help\n\r",
1763
    "% x    exit emulator\n\r",
1764
    "% s    save disk data back to file (if -snapshot)\n\r",
1765
    "% t    toggle console timestamps\n\r"
1766
    "% b    send break (magic sysrq)\n\r",
1767
    "% c    switch between console and monitor\n\r",
1768
    "% %  sends %\n\r",
1769
    NULL
1770
};
1771

    
1772
static int term_escape_char = 0x01; /* ctrl-a is used for escape */
1773
static void mux_print_help(CharDriverState *chr)
1774
{
1775
    int i, j;
1776
    char ebuf[15] = "Escape-Char";
1777
    char cbuf[50] = "\n\r";
1778

    
1779
    if (term_escape_char > 0 && term_escape_char < 26) {
1780
        sprintf(cbuf,"\n\r");
1781
        sprintf(ebuf,"C-%c", term_escape_char - 1 + 'a');
1782
    } else {
1783
        sprintf(cbuf,"\n\rEscape-Char set to Ascii: 0x%02x\n\r\n\r",
1784
            term_escape_char);
1785
    }
1786
    chr->chr_write(chr, (uint8_t *)cbuf, strlen(cbuf));
1787
    for (i = 0; mux_help[i] != NULL; i++) {
1788
        for (j=0; mux_help[i][j] != '\0'; j++) {
1789
            if (mux_help[i][j] == '%')
1790
                chr->chr_write(chr, (uint8_t *)ebuf, strlen(ebuf));
1791
            else
1792
                chr->chr_write(chr, (uint8_t *)&mux_help[i][j], 1);
1793
        }
1794
    }
1795
}
1796

    
1797
static int mux_proc_byte(CharDriverState *chr, MuxDriver *d, int ch)
1798
{
1799
    if (d->term_got_escape) {
1800
        d->term_got_escape = 0;
1801
        if (ch == term_escape_char)
1802
            goto send_char;
1803
        switch(ch) {
1804
        case '?':
1805
        case 'h':
1806
            mux_print_help(chr);
1807
            break;
1808
        case 'x':
1809
            {
1810
                 char *term =  "QEMU: Terminated\n\r";
1811
                 chr->chr_write(chr,(uint8_t *)term,strlen(term));
1812
                 exit(0);
1813
                 break;
1814
            }
1815
        case 's':
1816
            {
1817
                int i;
1818
                for (i = 0; i < nb_drives; i++) {
1819
                        bdrv_commit(drives_table[i].bdrv);
1820
                }
1821
            }
1822
            break;
1823
        case 'b':
1824
            qemu_chr_event(chr, CHR_EVENT_BREAK);
1825
            break;
1826
        case 'c':
1827
            /* Switch to the next registered device */
1828
            chr->focus++;
1829
            if (chr->focus >= d->mux_cnt)
1830
                chr->focus = 0;
1831
            break;
1832
       case 't':
1833
           term_timestamps = !term_timestamps;
1834
           term_timestamps_start = -1;
1835
           break;
1836
        }
1837
    } else if (ch == term_escape_char) {
1838
        d->term_got_escape = 1;
1839
    } else {
1840
    send_char:
1841
        return 1;
1842
    }
1843
    return 0;
1844
}
1845

    
1846
static void mux_chr_accept_input(CharDriverState *chr)
1847
{
1848
    int m = chr->focus;
1849
    MuxDriver *d = chr->opaque;
1850

    
1851
    while (d->prod != d->cons &&
1852
           d->chr_can_read[m] &&
1853
           d->chr_can_read[m](d->ext_opaque[m])) {
1854
        d->chr_read[m](d->ext_opaque[m],
1855
                       &d->buffer[d->cons++ & MUX_BUFFER_MASK], 1);
1856
    }
1857
}
1858

    
1859
static int mux_chr_can_read(void *opaque)
1860
{
1861
    CharDriverState *chr = opaque;
1862
    MuxDriver *d = chr->opaque;
1863

    
1864
    if ((d->prod - d->cons) < MUX_BUFFER_SIZE)
1865
        return 1;
1866
    if (d->chr_can_read[chr->focus])
1867
        return d->chr_can_read[chr->focus](d->ext_opaque[chr->focus]);
1868
    return 0;
1869
}
1870

    
1871
static void mux_chr_read(void *opaque, const uint8_t *buf, int size)
1872
{
1873
    CharDriverState *chr = opaque;
1874
    MuxDriver *d = chr->opaque;
1875
    int m = chr->focus;
1876
    int i;
1877

    
1878
    mux_chr_accept_input (opaque);
1879

    
1880
    for(i = 0; i < size; i++)
1881
        if (mux_proc_byte(chr, d, buf[i])) {
1882
            if (d->prod == d->cons &&
1883
                d->chr_can_read[m] &&
1884
                d->chr_can_read[m](d->ext_opaque[m]))
1885
                d->chr_read[m](d->ext_opaque[m], &buf[i], 1);
1886
            else
1887
                d->buffer[d->prod++ & MUX_BUFFER_MASK] = buf[i];
1888
        }
1889
}
1890

    
1891
static void mux_chr_event(void *opaque, int event)
1892
{
1893
    CharDriverState *chr = opaque;
1894
    MuxDriver *d = chr->opaque;
1895
    int i;
1896

    
1897
    /* Send the event to all registered listeners */
1898
    for (i = 0; i < d->mux_cnt; i++)
1899
        if (d->chr_event[i])
1900
            d->chr_event[i](d->ext_opaque[i], event);
1901
}
1902

    
1903
static void mux_chr_update_read_handler(CharDriverState *chr)
1904
{
1905
    MuxDriver *d = chr->opaque;
1906

    
1907
    if (d->mux_cnt >= MAX_MUX) {
1908
        fprintf(stderr, "Cannot add I/O handlers, MUX array is full\n");
1909
        return;
1910
    }
1911
    d->ext_opaque[d->mux_cnt] = chr->handler_opaque;
1912
    d->chr_can_read[d->mux_cnt] = chr->chr_can_read;
1913
    d->chr_read[d->mux_cnt] = chr->chr_read;
1914
    d->chr_event[d->mux_cnt] = chr->chr_event;
1915
    /* Fix up the real driver with mux routines */
1916
    if (d->mux_cnt == 0) {
1917
        qemu_chr_add_handlers(d->drv, mux_chr_can_read, mux_chr_read,
1918
                              mux_chr_event, chr);
1919
    }
1920
    chr->focus = d->mux_cnt;
1921
    d->mux_cnt++;
1922
}
1923

    
1924
static CharDriverState *qemu_chr_open_mux(CharDriverState *drv)
1925
{
1926
    CharDriverState *chr;
1927
    MuxDriver *d;
1928

    
1929
    chr = qemu_mallocz(sizeof(CharDriverState));
1930
    if (!chr)
1931
        return NULL;
1932
    d = qemu_mallocz(sizeof(MuxDriver));
1933
    if (!d) {
1934
        free(chr);
1935
        return NULL;
1936
    }
1937

    
1938
    chr->opaque = d;
1939
    d->drv = drv;
1940
    chr->focus = -1;
1941
    chr->chr_write = mux_chr_write;
1942
    chr->chr_update_read_handler = mux_chr_update_read_handler;
1943
    chr->chr_accept_input = mux_chr_accept_input;
1944
    return chr;
1945
}
1946

    
1947

    
1948
#ifdef _WIN32
1949

    
1950
static void socket_cleanup(void)
1951
{
1952
    WSACleanup();
1953
}
1954

    
1955
static int socket_init(void)
1956
{
1957
    WSADATA Data;
1958
    int ret, err;
1959

    
1960
    ret = WSAStartup(MAKEWORD(2,2), &Data);
1961
    if (ret != 0) {
1962
        err = WSAGetLastError();
1963
        fprintf(stderr, "WSAStartup: %d\n", err);
1964
        return -1;
1965
    }
1966
    atexit(socket_cleanup);
1967
    return 0;
1968
}
1969

    
1970
static int send_all(int fd, const uint8_t *buf, int len1)
1971
{
1972
    int ret, len;
1973

    
1974
    len = len1;
1975
    while (len > 0) {
1976
        ret = send(fd, buf, len, 0);
1977
        if (ret < 0) {
1978
            int errno;
1979
            errno = WSAGetLastError();
1980
            if (errno != WSAEWOULDBLOCK) {
1981
                return -1;
1982
            }
1983
        } else if (ret == 0) {
1984
            break;
1985
        } else {
1986
            buf += ret;
1987
            len -= ret;
1988
        }
1989
    }
1990
    return len1 - len;
1991
}
1992

    
1993
void socket_set_nonblock(int fd)
1994
{
1995
    unsigned long opt = 1;
1996
    ioctlsocket(fd, FIONBIO, &opt);
1997
}
1998

    
1999
#else
2000

    
2001
static int unix_write(int fd, const uint8_t *buf, int len1)
2002
{
2003
    int ret, len;
2004

    
2005
    len = len1;
2006
    while (len > 0) {
2007
        ret = write(fd, buf, len);
2008
        if (ret < 0) {
2009
            if (errno != EINTR && errno != EAGAIN)
2010
                return -1;
2011
        } else if (ret == 0) {
2012
            break;
2013
        } else {
2014
            buf += ret;
2015
            len -= ret;
2016
        }
2017
    }
2018
    return len1 - len;
2019
}
2020

    
2021
static inline int send_all(int fd, const uint8_t *buf, int len1)
2022
{
2023
    return unix_write(fd, buf, len1);
2024
}
2025

    
2026
void socket_set_nonblock(int fd)
2027
{
2028
    fcntl(fd, F_SETFL, O_NONBLOCK);
2029
}
2030
#endif /* !_WIN32 */
2031

    
2032
#ifndef _WIN32
2033

    
2034
typedef struct {
2035
    int fd_in, fd_out;
2036
    int max_size;
2037
} FDCharDriver;
2038

    
2039
#define STDIO_MAX_CLIENTS 1
2040
static int stdio_nb_clients = 0;
2041

    
2042
static int fd_chr_write(CharDriverState *chr, const uint8_t *buf, int len)
2043
{
2044
    FDCharDriver *s = chr->opaque;
2045
    return unix_write(s->fd_out, buf, len);
2046
}
2047

    
2048
static int fd_chr_read_poll(void *opaque)
2049
{
2050
    CharDriverState *chr = opaque;
2051
    FDCharDriver *s = chr->opaque;
2052

    
2053
    s->max_size = qemu_chr_can_read(chr);
2054
    return s->max_size;
2055
}
2056

    
2057
static void fd_chr_read(void *opaque)
2058
{
2059
    CharDriverState *chr = opaque;
2060
    FDCharDriver *s = chr->opaque;
2061
    int size, len;
2062
    uint8_t buf[1024];
2063

    
2064
    len = sizeof(buf);
2065
    if (len > s->max_size)
2066
        len = s->max_size;
2067
    if (len == 0)
2068
        return;
2069
    size = read(s->fd_in, buf, len);
2070
    if (size == 0) {
2071
        /* FD has been closed. Remove it from the active list.  */
2072
        qemu_set_fd_handler2(s->fd_in, NULL, NULL, NULL, NULL);
2073
        return;
2074
    }
2075
    if (size > 0) {
2076
        qemu_chr_read(chr, buf, size);
2077
    }
2078
}
2079

    
2080
static void fd_chr_update_read_handler(CharDriverState *chr)
2081
{
2082
    FDCharDriver *s = chr->opaque;
2083

    
2084
    if (s->fd_in >= 0) {
2085
        if (nographic && s->fd_in == 0) {
2086
        } else {
2087
            qemu_set_fd_handler2(s->fd_in, fd_chr_read_poll,
2088
                                 fd_chr_read, NULL, chr);
2089
        }
2090
    }
2091
}
2092

    
2093
static void fd_chr_close(struct CharDriverState *chr)
2094
{
2095
    FDCharDriver *s = chr->opaque;
2096

    
2097
    if (s->fd_in >= 0) {
2098
        if (nographic && s->fd_in == 0) {
2099
        } else {
2100
            qemu_set_fd_handler2(s->fd_in, NULL, NULL, NULL, NULL);
2101
        }
2102
    }
2103

    
2104
    qemu_free(s);
2105
}
2106

    
2107
/* open a character device to a unix fd */
2108
static CharDriverState *qemu_chr_open_fd(int fd_in, int fd_out)
2109
{
2110
    CharDriverState *chr;
2111
    FDCharDriver *s;
2112

    
2113
    chr = qemu_mallocz(sizeof(CharDriverState));
2114
    if (!chr)
2115
        return NULL;
2116
    s = qemu_mallocz(sizeof(FDCharDriver));
2117
    if (!s) {
2118
        free(chr);
2119
        return NULL;
2120
    }
2121
    s->fd_in = fd_in;
2122
    s->fd_out = fd_out;
2123
    chr->opaque = s;
2124
    chr->chr_write = fd_chr_write;
2125
    chr->chr_update_read_handler = fd_chr_update_read_handler;
2126
    chr->chr_close = fd_chr_close;
2127

    
2128
    qemu_chr_reset(chr);
2129

    
2130
    return chr;
2131
}
2132

    
2133
static CharDriverState *qemu_chr_open_file_out(const char *file_out)
2134
{
2135
    int fd_out;
2136

    
2137
    TFR(fd_out = open(file_out, O_WRONLY | O_TRUNC | O_CREAT | O_BINARY, 0666));
2138
    if (fd_out < 0)
2139
        return NULL;
2140
    return qemu_chr_open_fd(-1, fd_out);
2141
}
2142

    
2143
static CharDriverState *qemu_chr_open_pipe(const char *filename)
2144
{
2145
    int fd_in, fd_out;
2146
    char filename_in[256], filename_out[256];
2147

    
2148
    snprintf(filename_in, 256, "%s.in", filename);
2149
    snprintf(filename_out, 256, "%s.out", filename);
2150
    TFR(fd_in = open(filename_in, O_RDWR | O_BINARY));
2151
    TFR(fd_out = open(filename_out, O_RDWR | O_BINARY));
2152
    if (fd_in < 0 || fd_out < 0) {
2153
        if (fd_in >= 0)
2154
            close(fd_in);
2155
        if (fd_out >= 0)
2156
            close(fd_out);
2157
        TFR(fd_in = fd_out = open(filename, O_RDWR | O_BINARY));
2158
        if (fd_in < 0)
2159
            return NULL;
2160
    }
2161
    return qemu_chr_open_fd(fd_in, fd_out);
2162
}
2163

    
2164

    
2165
/* for STDIO, we handle the case where several clients use it
2166
   (nographic mode) */
2167

    
2168
#define TERM_FIFO_MAX_SIZE 1
2169

    
2170
static uint8_t term_fifo[TERM_FIFO_MAX_SIZE];
2171
static int term_fifo_size;
2172

    
2173
static int stdio_read_poll(void *opaque)
2174
{
2175
    CharDriverState *chr = opaque;
2176

    
2177
    /* try to flush the queue if needed */
2178
    if (term_fifo_size != 0 && qemu_chr_can_read(chr) > 0) {
2179
        qemu_chr_read(chr, term_fifo, 1);
2180
        term_fifo_size = 0;
2181
    }
2182
    /* see if we can absorb more chars */
2183
    if (term_fifo_size == 0)
2184
        return 1;
2185
    else
2186
        return 0;
2187
}
2188

    
2189
static void stdio_read(void *opaque)
2190
{
2191
    int size;
2192
    uint8_t buf[1];
2193
    CharDriverState *chr = opaque;
2194

    
2195
    size = read(0, buf, 1);
2196
    if (size == 0) {
2197
        /* stdin has been closed. Remove it from the active list.  */
2198
        qemu_set_fd_handler2(0, NULL, NULL, NULL, NULL);
2199
        return;
2200
    }
2201
    if (size > 0) {
2202
        if (qemu_chr_can_read(chr) > 0) {
2203
            qemu_chr_read(chr, buf, 1);
2204
        } else if (term_fifo_size == 0) {
2205
            term_fifo[term_fifo_size++] = buf[0];
2206
        }
2207
    }
2208
}
2209

    
2210
/* init terminal so that we can grab keys */
2211
static struct termios oldtty;
2212
static int old_fd0_flags;
2213
static int term_atexit_done;
2214

    
2215
static void term_exit(void)
2216
{
2217
    tcsetattr (0, TCSANOW, &oldtty);
2218
    fcntl(0, F_SETFL, old_fd0_flags);
2219
}
2220

    
2221
static void term_init(void)
2222
{
2223
    struct termios tty;
2224

    
2225
    tcgetattr (0, &tty);
2226
    oldtty = tty;
2227
    old_fd0_flags = fcntl(0, F_GETFL);
2228

    
2229
    tty.c_iflag &= ~(IGNBRK|BRKINT|PARMRK|ISTRIP
2230
                          |INLCR|IGNCR|ICRNL|IXON);
2231
    tty.c_oflag |= OPOST;
2232
    tty.c_lflag &= ~(ECHO|ECHONL|ICANON|IEXTEN);
2233
    /* if graphical mode, we allow Ctrl-C handling */
2234
    if (nographic)
2235
        tty.c_lflag &= ~ISIG;
2236
    tty.c_cflag &= ~(CSIZE|PARENB);
2237
    tty.c_cflag |= CS8;
2238
    tty.c_cc[VMIN] = 1;
2239
    tty.c_cc[VTIME] = 0;
2240

    
2241
    tcsetattr (0, TCSANOW, &tty);
2242

    
2243
    if (!term_atexit_done++)
2244
        atexit(term_exit);
2245

    
2246
    fcntl(0, F_SETFL, O_NONBLOCK);
2247
}
2248

    
2249
static void qemu_chr_close_stdio(struct CharDriverState *chr)
2250
{
2251
    term_exit();
2252
    stdio_nb_clients--;
2253
    qemu_set_fd_handler2(0, NULL, NULL, NULL, NULL);
2254
    fd_chr_close(chr);
2255
}
2256

    
2257
static CharDriverState *qemu_chr_open_stdio(void)
2258
{
2259
    CharDriverState *chr;
2260

    
2261
    if (stdio_nb_clients >= STDIO_MAX_CLIENTS)
2262
        return NULL;
2263
    chr = qemu_chr_open_fd(0, 1);
2264
    chr->chr_close = qemu_chr_close_stdio;
2265
    qemu_set_fd_handler2(0, stdio_read_poll, stdio_read, NULL, chr);
2266
    stdio_nb_clients++;
2267
    term_init();
2268

    
2269
    return chr;
2270
}
2271

    
2272
#if defined(__linux__) || defined(__sun__)
2273
static CharDriverState *qemu_chr_open_pty(void)
2274
{
2275
    struct termios tty;
2276
    char slave_name[1024];
2277
    int master_fd, slave_fd;
2278

    
2279
#if defined(__linux__)
2280
    /* Not satisfying */
2281
    if (openpty(&master_fd, &slave_fd, slave_name, NULL, NULL) < 0) {
2282
        return NULL;
2283
    }
2284
#endif
2285

    
2286
    /* Disabling local echo and line-buffered output */
2287
    tcgetattr (master_fd, &tty);
2288
    tty.c_lflag &= ~(ECHO|ICANON|ISIG);
2289
    tty.c_cc[VMIN] = 1;
2290
    tty.c_cc[VTIME] = 0;
2291
    tcsetattr (master_fd, TCSAFLUSH, &tty);
2292

    
2293
    fprintf(stderr, "char device redirected to %s\n", slave_name);
2294
    return qemu_chr_open_fd(master_fd, master_fd);
2295
}
2296

    
2297
static void tty_serial_init(int fd, int speed,
2298
                            int parity, int data_bits, int stop_bits)
2299
{
2300
    struct termios tty;
2301
    speed_t spd;
2302

    
2303
#if 0
2304
    printf("tty_serial_init: speed=%d parity=%c data=%d stop=%d\n",
2305
           speed, parity, data_bits, stop_bits);
2306
#endif
2307
    tcgetattr (fd, &tty);
2308

    
2309
#define MARGIN 1.1
2310
    if (speed <= 50 * MARGIN)
2311
        spd = B50;
2312
    else if (speed <= 75 * MARGIN)
2313
        spd = B75;
2314
    else if (speed <= 300 * MARGIN)
2315
        spd = B300;
2316
    else if (speed <= 600 * MARGIN)
2317
        spd = B600;
2318
    else if (speed <= 1200 * MARGIN)
2319
        spd = B1200;
2320
    else if (speed <= 2400 * MARGIN)
2321
        spd = B2400;
2322
    else if (speed <= 4800 * MARGIN)
2323
        spd = B4800;
2324
    else if (speed <= 9600 * MARGIN)
2325
        spd = B9600;
2326
    else if (speed <= 19200 * MARGIN)
2327
        spd = B19200;
2328
    else if (speed <= 38400 * MARGIN)
2329
        spd = B38400;
2330
    else if (speed <= 57600 * MARGIN)
2331
        spd = B57600;
2332
    else if (speed <= 115200 * MARGIN)
2333
        spd = B115200;
2334
    else
2335
        spd = B115200;
2336

    
2337
    cfsetispeed(&tty, spd);
2338
    cfsetospeed(&tty, spd);
2339

    
2340
    tty.c_iflag &= ~(IGNBRK|BRKINT|PARMRK|ISTRIP
2341
                          |INLCR|IGNCR|ICRNL|IXON);
2342
    tty.c_oflag |= OPOST;
2343
    tty.c_lflag &= ~(ECHO|ECHONL|ICANON|IEXTEN|ISIG);
2344
    tty.c_cflag &= ~(CSIZE|PARENB|PARODD|CRTSCTS|CSTOPB);
2345
    switch(data_bits) {
2346
    default:
2347
    case 8:
2348
        tty.c_cflag |= CS8;
2349
        break;
2350
    case 7:
2351
        tty.c_cflag |= CS7;
2352
        break;
2353
    case 6:
2354
        tty.c_cflag |= CS6;
2355
        break;
2356
    case 5:
2357
        tty.c_cflag |= CS5;
2358
        break;
2359
    }
2360
    switch(parity) {
2361
    default:
2362
    case 'N':
2363
        break;
2364
    case 'E':
2365
        tty.c_cflag |= PARENB;
2366
        break;
2367
    case 'O':
2368
        tty.c_cflag |= PARENB | PARODD;
2369
        break;
2370
    }
2371
    if (stop_bits == 2)
2372
        tty.c_cflag |= CSTOPB;
2373

    
2374
    tcsetattr (fd, TCSANOW, &tty);
2375
}
2376

    
2377
static int tty_serial_ioctl(CharDriverState *chr, int cmd, void *arg)
2378
{
2379
    FDCharDriver *s = chr->opaque;
2380

    
2381
    switch(cmd) {
2382
    case CHR_IOCTL_SERIAL_SET_PARAMS:
2383
        {
2384
            QEMUSerialSetParams *ssp = arg;
2385
            tty_serial_init(s->fd_in, ssp->speed, ssp->parity,
2386
                            ssp->data_bits, ssp->stop_bits);
2387
        }
2388
        break;
2389
    case CHR_IOCTL_SERIAL_SET_BREAK:
2390
        {
2391
            int enable = *(int *)arg;
2392
            if (enable)
2393
                tcsendbreak(s->fd_in, 1);
2394
        }
2395
        break;
2396
    default:
2397
        return -ENOTSUP;
2398
    }
2399
    return 0;
2400
}
2401

    
2402
static CharDriverState *qemu_chr_open_tty(const char *filename)
2403
{
2404
    CharDriverState *chr;
2405
    int fd;
2406

    
2407
    TFR(fd = open(filename, O_RDWR | O_NONBLOCK));
2408
    fcntl(fd, F_SETFL, O_NONBLOCK);
2409
    tty_serial_init(fd, 115200, 'N', 8, 1);
2410
    chr = qemu_chr_open_fd(fd, fd);
2411
    if (!chr) {
2412
        close(fd);
2413
        return NULL;
2414
    }
2415
    chr->chr_ioctl = tty_serial_ioctl;
2416
    qemu_chr_reset(chr);
2417
    return chr;
2418
}
2419
#else  /* ! __linux__ && ! __sun__ */
2420
static CharDriverState *qemu_chr_open_pty(void)
2421
{
2422
    return NULL;
2423
}
2424
#endif /* __linux__ || __sun__ */
2425

    
2426
#if defined(__linux__)
2427
typedef struct {
2428
    int fd;
2429
    int mode;
2430
} ParallelCharDriver;
2431

    
2432
static int pp_hw_mode(ParallelCharDriver *s, uint16_t mode)
2433
{
2434
    if (s->mode != mode) {
2435
        int m = mode;
2436
        if (ioctl(s->fd, PPSETMODE, &m) < 0)
2437
            return 0;
2438
        s->mode = mode;
2439
    }
2440
    return 1;
2441
}
2442

    
2443
static int pp_ioctl(CharDriverState *chr, int cmd, void *arg)
2444
{
2445
    ParallelCharDriver *drv = chr->opaque;
2446
    int fd = drv->fd;
2447
    uint8_t b;
2448

    
2449
    switch(cmd) {
2450
    case CHR_IOCTL_PP_READ_DATA:
2451
        if (ioctl(fd, PPRDATA, &b) < 0)
2452
            return -ENOTSUP;
2453
        *(uint8_t *)arg = b;
2454
        break;
2455
    case CHR_IOCTL_PP_WRITE_DATA:
2456
        b = *(uint8_t *)arg;
2457
        if (ioctl(fd, PPWDATA, &b) < 0)
2458
            return -ENOTSUP;
2459
        break;
2460
    case CHR_IOCTL_PP_READ_CONTROL:
2461
        if (ioctl(fd, PPRCONTROL, &b) < 0)
2462
            return -ENOTSUP;
2463
        /* Linux gives only the lowest bits, and no way to know data
2464
           direction! For better compatibility set the fixed upper
2465
           bits. */
2466
        *(uint8_t *)arg = b | 0xc0;
2467
        break;
2468
    case CHR_IOCTL_PP_WRITE_CONTROL:
2469
        b = *(uint8_t *)arg;
2470
        if (ioctl(fd, PPWCONTROL, &b) < 0)
2471
            return -ENOTSUP;
2472
        break;
2473
    case CHR_IOCTL_PP_READ_STATUS:
2474
        if (ioctl(fd, PPRSTATUS, &b) < 0)
2475
            return -ENOTSUP;
2476
        *(uint8_t *)arg = b;
2477
        break;
2478
    case CHR_IOCTL_PP_EPP_READ_ADDR:
2479
        if (pp_hw_mode(drv, IEEE1284_MODE_EPP|IEEE1284_ADDR)) {
2480
            struct ParallelIOArg *parg = arg;
2481
            int n = read(fd, parg->buffer, parg->count);
2482
            if (n != parg->count) {
2483
                return -EIO;
2484
            }
2485
        }
2486
        break;
2487
    case CHR_IOCTL_PP_EPP_READ:
2488
        if (pp_hw_mode(drv, IEEE1284_MODE_EPP)) {
2489
            struct ParallelIOArg *parg = arg;
2490
            int n = read(fd, parg->buffer, parg->count);
2491
            if (n != parg->count) {
2492
                return -EIO;
2493
            }
2494
        }
2495
        break;
2496
    case CHR_IOCTL_PP_EPP_WRITE_ADDR:
2497
        if (pp_hw_mode(drv, IEEE1284_MODE_EPP|IEEE1284_ADDR)) {
2498
            struct ParallelIOArg *parg = arg;
2499
            int n = write(fd, parg->buffer, parg->count);
2500
            if (n != parg->count) {
2501
                return -EIO;
2502
            }
2503
        }
2504
        break;
2505
    case CHR_IOCTL_PP_EPP_WRITE:
2506
        if (pp_hw_mode(drv, IEEE1284_MODE_EPP)) {
2507
            struct ParallelIOArg *parg = arg;
2508
            int n = write(fd, parg->buffer, parg->count);
2509
            if (n != parg->count) {
2510
                return -EIO;
2511
            }
2512
        }
2513
        break;
2514
    default:
2515
        return -ENOTSUP;
2516
    }
2517
    return 0;
2518
}
2519

    
2520
static void pp_close(CharDriverState *chr)
2521
{
2522
    ParallelCharDriver *drv = chr->opaque;
2523
    int fd = drv->fd;
2524

    
2525
    pp_hw_mode(drv, IEEE1284_MODE_COMPAT);
2526
    ioctl(fd, PPRELEASE);
2527
    close(fd);
2528
    qemu_free(drv);
2529
}
2530

    
2531
static CharDriverState *qemu_chr_open_pp(const char *filename)
2532
{
2533
    CharDriverState *chr;
2534
    ParallelCharDriver *drv;
2535
    int fd;
2536

    
2537
    TFR(fd = open(filename, O_RDWR));
2538
    if (fd < 0)
2539
        return NULL;
2540

    
2541
    if (ioctl(fd, PPCLAIM) < 0) {
2542
        close(fd);
2543
        return NULL;
2544
    }
2545

    
2546
    drv = qemu_mallocz(sizeof(ParallelCharDriver));
2547
    if (!drv) {
2548
        close(fd);
2549
        return NULL;
2550
    }
2551
    drv->fd = fd;
2552
    drv->mode = IEEE1284_MODE_COMPAT;
2553

    
2554
    chr = qemu_mallocz(sizeof(CharDriverState));
2555
    if (!chr) {
2556
        qemu_free(drv);
2557
        close(fd);
2558
        return NULL;
2559
    }
2560
    chr->chr_write = null_chr_write;
2561
    chr->chr_ioctl = pp_ioctl;
2562
    chr->chr_close = pp_close;
2563
    chr->opaque = drv;
2564

    
2565
    qemu_chr_reset(chr);
2566

    
2567
    return chr;
2568
}
2569
#endif /* __linux__ */
2570

    
2571
#else /* _WIN32 */
2572

    
2573
typedef struct {
2574
    int max_size;
2575
    HANDLE hcom, hrecv, hsend;
2576
    OVERLAPPED orecv, osend;
2577
    BOOL fpipe;
2578
    DWORD len;
2579
} WinCharState;
2580

    
2581
#define NSENDBUF 2048
2582
#define NRECVBUF 2048
2583
#define MAXCONNECT 1
2584
#define NTIMEOUT 5000
2585

    
2586
static int win_chr_poll(void *opaque);
2587
static int win_chr_pipe_poll(void *opaque);
2588

    
2589
static void win_chr_close(CharDriverState *chr)
2590
{
2591
    WinCharState *s = chr->opaque;
2592

    
2593
    if (s->hsend) {
2594
        CloseHandle(s->hsend);
2595
        s->hsend = NULL;
2596
    }
2597
    if (s->hrecv) {
2598
        CloseHandle(s->hrecv);
2599
        s->hrecv = NULL;
2600
    }
2601
    if (s->hcom) {
2602
        CloseHandle(s->hcom);
2603
        s->hcom = NULL;
2604
    }
2605
    if (s->fpipe)
2606
        qemu_del_polling_cb(win_chr_pipe_poll, chr);
2607
    else
2608
        qemu_del_polling_cb(win_chr_poll, chr);
2609
}
2610

    
2611
static int win_chr_init(CharDriverState *chr, const char *filename)
2612
{
2613
    WinCharState *s = chr->opaque;
2614
    COMMCONFIG comcfg;
2615
    COMMTIMEOUTS cto = { 0, 0, 0, 0, 0};
2616
    COMSTAT comstat;
2617
    DWORD size;
2618
    DWORD err;
2619

    
2620
    s->hsend = CreateEvent(NULL, TRUE, FALSE, NULL);
2621
    if (!s->hsend) {
2622
        fprintf(stderr, "Failed CreateEvent\n");
2623
        goto fail;
2624
    }
2625
    s->hrecv = CreateEvent(NULL, TRUE, FALSE, NULL);
2626
    if (!s->hrecv) {
2627
        fprintf(stderr, "Failed CreateEvent\n");
2628
        goto fail;
2629
    }
2630

    
2631
    s->hcom = CreateFile(filename, GENERIC_READ|GENERIC_WRITE, 0, NULL,
2632
                      OPEN_EXISTING, FILE_FLAG_OVERLAPPED, 0);
2633
    if (s->hcom == INVALID_HANDLE_VALUE) {
2634
        fprintf(stderr, "Failed CreateFile (%lu)\n", GetLastError());
2635
        s->hcom = NULL;
2636
        goto fail;
2637
    }
2638

    
2639
    if (!SetupComm(s->hcom, NRECVBUF, NSENDBUF)) {
2640
        fprintf(stderr, "Failed SetupComm\n");
2641
        goto fail;
2642
    }
2643

    
2644
    ZeroMemory(&comcfg, sizeof(COMMCONFIG));
2645
    size = sizeof(COMMCONFIG);
2646
    GetDefaultCommConfig(filename, &comcfg, &size);
2647
    comcfg.dcb.DCBlength = sizeof(DCB);
2648
    CommConfigDialog(filename, NULL, &comcfg);
2649

    
2650
    if (!SetCommState(s->hcom, &comcfg.dcb)) {
2651
        fprintf(stderr, "Failed SetCommState\n");
2652
        goto fail;
2653
    }
2654

    
2655
    if (!SetCommMask(s->hcom, EV_ERR)) {
2656
        fprintf(stderr, "Failed SetCommMask\n");
2657
        goto fail;
2658
    }
2659

    
2660
    cto.ReadIntervalTimeout = MAXDWORD;
2661
    if (!SetCommTimeouts(s->hcom, &cto)) {
2662
        fprintf(stderr, "Failed SetCommTimeouts\n");
2663
        goto fail;
2664
    }
2665

    
2666
    if (!ClearCommError(s->hcom, &err, &comstat)) {
2667
        fprintf(stderr, "Failed ClearCommError\n");
2668
        goto fail;
2669
    }
2670
    qemu_add_polling_cb(win_chr_poll, chr);
2671
    return 0;
2672

    
2673
 fail:
2674
    win_chr_close(chr);
2675
    return -1;
2676
}
2677

    
2678
static int win_chr_write(CharDriverState *chr, const uint8_t *buf, int len1)
2679
{
2680
    WinCharState *s = chr->opaque;
2681
    DWORD len, ret, size, err;
2682

    
2683
    len = len1;
2684
    ZeroMemory(&s->osend, sizeof(s->osend));
2685
    s->osend.hEvent = s->hsend;
2686
    while (len > 0) {
2687
        if (s->hsend)
2688
            ret = WriteFile(s->hcom, buf, len, &size, &s->osend);
2689
        else
2690
            ret = WriteFile(s->hcom, buf, len, &size, NULL);
2691
        if (!ret) {
2692
            err = GetLastError();
2693
            if (err == ERROR_IO_PENDING) {
2694
                ret = GetOverlappedResult(s->hcom, &s->osend, &size, TRUE);
2695
                if (ret) {
2696
                    buf += size;
2697
                    len -= size;
2698
                } else {
2699
                    break;
2700
                }
2701
            } else {
2702
                break;
2703
            }
2704
        } else {
2705
            buf += size;
2706
            len -= size;
2707
        }
2708
    }
2709
    return len1 - len;
2710
}
2711

    
2712
static int win_chr_read_poll(CharDriverState *chr)
2713
{
2714
    WinCharState *s = chr->opaque;
2715

    
2716
    s->max_size = qemu_chr_can_read(chr);
2717
    return s->max_size;
2718
}
2719

    
2720
static void win_chr_readfile(CharDriverState *chr)
2721
{
2722
    WinCharState *s = chr->opaque;
2723
    int ret, err;
2724
    uint8_t buf[1024];
2725
    DWORD size;
2726

    
2727
    ZeroMemory(&s->orecv, sizeof(s->orecv));
2728
    s->orecv.hEvent = s->hrecv;
2729
    ret = ReadFile(s->hcom, buf, s->len, &size, &s->orecv);
2730
    if (!ret) {
2731
        err = GetLastError();
2732
        if (err == ERROR_IO_PENDING) {
2733
            ret = GetOverlappedResult(s->hcom, &s->orecv, &size, TRUE);
2734
        }
2735
    }
2736

    
2737
    if (size > 0) {
2738
        qemu_chr_read(chr, buf, size);
2739
    }
2740
}
2741

    
2742
static void win_chr_read(CharDriverState *chr)
2743
{
2744
    WinCharState *s = chr->opaque;
2745

    
2746
    if (s->len > s->max_size)
2747
        s->len = s->max_size;
2748
    if (s->len == 0)
2749
        return;
2750

    
2751
    win_chr_readfile(chr);
2752
}
2753

    
2754
static int win_chr_poll(void *opaque)
2755
{
2756
    CharDriverState *chr = opaque;
2757
    WinCharState *s = chr->opaque;
2758
    COMSTAT status;
2759
    DWORD comerr;
2760

    
2761
    ClearCommError(s->hcom, &comerr, &status);
2762
    if (status.cbInQue > 0) {
2763
        s->len = status.cbInQue;
2764
        win_chr_read_poll(chr);
2765
        win_chr_read(chr);
2766
        return 1;
2767
    }
2768
    return 0;
2769
}
2770

    
2771
static CharDriverState *qemu_chr_open_win(const char *filename)
2772
{
2773
    CharDriverState *chr;
2774
    WinCharState *s;
2775

    
2776
    chr = qemu_mallocz(sizeof(CharDriverState));
2777
    if (!chr)
2778
        return NULL;
2779
    s = qemu_mallocz(sizeof(WinCharState));
2780
    if (!s) {
2781
        free(chr);
2782
        return NULL;
2783
    }
2784
    chr->opaque = s;
2785
    chr->chr_write = win_chr_write;
2786
    chr->chr_close = win_chr_close;
2787

    
2788
    if (win_chr_init(chr, filename) < 0) {
2789
        free(s);
2790
        free(chr);
2791
        return NULL;
2792
    }
2793
    qemu_chr_reset(chr);
2794
    return chr;
2795
}
2796

    
2797
static int win_chr_pipe_poll(void *opaque)
2798
{
2799
    CharDriverState *chr = opaque;
2800
    WinCharState *s = chr->opaque;
2801
    DWORD size;
2802

    
2803
    PeekNamedPipe(s->hcom, NULL, 0, NULL, &size, NULL);
2804
    if (size > 0) {
2805
        s->len = size;
2806
        win_chr_read_poll(chr);
2807
        win_chr_read(chr);
2808
        return 1;
2809
    }
2810
    return 0;
2811
}
2812

    
2813
static int win_chr_pipe_init(CharDriverState *chr, const char *filename)
2814
{
2815
    WinCharState *s = chr->opaque;
2816
    OVERLAPPED ov;
2817
    int ret;
2818
    DWORD size;
2819
    char openname[256];
2820

    
2821
    s->fpipe = TRUE;
2822

    
2823
    s->hsend = CreateEvent(NULL, TRUE, FALSE, NULL);
2824
    if (!s->hsend) {
2825
        fprintf(stderr, "Failed CreateEvent\n");
2826
        goto fail;
2827
    }
2828
    s->hrecv = CreateEvent(NULL, TRUE, FALSE, NULL);
2829
    if (!s->hrecv) {
2830
        fprintf(stderr, "Failed CreateEvent\n");
2831
        goto fail;
2832
    }
2833

    
2834
    snprintf(openname, sizeof(openname), "\\\\.\\pipe\\%s", filename);
2835
    s->hcom = CreateNamedPipe(openname, PIPE_ACCESS_DUPLEX | FILE_FLAG_OVERLAPPED,
2836
                              PIPE_TYPE_BYTE | PIPE_READMODE_BYTE |
2837
                              PIPE_WAIT,
2838
                              MAXCONNECT, NSENDBUF, NRECVBUF, NTIMEOUT, NULL);
2839
    if (s->hcom == INVALID_HANDLE_VALUE) {
2840
        fprintf(stderr, "Failed CreateNamedPipe (%lu)\n", GetLastError());
2841
        s->hcom = NULL;
2842
        goto fail;
2843
    }
2844

    
2845
    ZeroMemory(&ov, sizeof(ov));
2846
    ov.hEvent = CreateEvent(NULL, TRUE, FALSE, NULL);
2847
    ret = ConnectNamedPipe(s->hcom, &ov);
2848
    if (ret) {
2849
        fprintf(stderr, "Failed ConnectNamedPipe\n");
2850
        goto fail;
2851
    }
2852

    
2853
    ret = GetOverlappedResult(s->hcom, &ov, &size, TRUE);
2854
    if (!ret) {
2855
        fprintf(stderr, "Failed GetOverlappedResult\n");
2856
        if (ov.hEvent) {
2857
            CloseHandle(ov.hEvent);
2858
            ov.hEvent = NULL;
2859
        }
2860
        goto fail;
2861
    }
2862

    
2863
    if (ov.hEvent) {
2864
        CloseHandle(ov.hEvent);
2865
        ov.hEvent = NULL;
2866
    }
2867
    qemu_add_polling_cb(win_chr_pipe_poll, chr);
2868
    return 0;
2869

    
2870
 fail:
2871
    win_chr_close(chr);
2872
    return -1;
2873
}
2874

    
2875

    
2876
static CharDriverState *qemu_chr_open_win_pipe(const char *filename)
2877
{
2878
    CharDriverState *chr;
2879
    WinCharState *s;
2880

    
2881
    chr = qemu_mallocz(sizeof(CharDriverState));
2882
    if (!chr)
2883
        return NULL;
2884
    s = qemu_mallocz(sizeof(WinCharState));
2885
    if (!s) {
2886
        free(chr);
2887
        return NULL;
2888
    }
2889
    chr->opaque = s;
2890
    chr->chr_write = win_chr_write;
2891
    chr->chr_close = win_chr_close;
2892

    
2893
    if (win_chr_pipe_init(chr, filename) < 0) {
2894
        free(s);
2895
        free(chr);
2896
        return NULL;
2897
    }
2898
    qemu_chr_reset(chr);
2899
    return chr;
2900
}
2901

    
2902
static CharDriverState *qemu_chr_open_win_file(HANDLE fd_out)
2903
{
2904
    CharDriverState *chr;
2905
    WinCharState *s;
2906

    
2907
    chr = qemu_mallocz(sizeof(CharDriverState));
2908
    if (!chr)
2909
        return NULL;
2910
    s = qemu_mallocz(sizeof(WinCharState));
2911
    if (!s) {
2912
        free(chr);
2913
        return NULL;
2914
    }
2915
    s->hcom = fd_out;
2916
    chr->opaque = s;
2917
    chr->chr_write = win_chr_write;
2918
    qemu_chr_reset(chr);
2919
    return chr;
2920
}
2921

    
2922
static CharDriverState *qemu_chr_open_win_con(const char *filename)
2923
{
2924
    return qemu_chr_open_win_file(GetStdHandle(STD_OUTPUT_HANDLE));
2925
}
2926

    
2927
static CharDriverState *qemu_chr_open_win_file_out(const char *file_out)
2928
{
2929
    HANDLE fd_out;
2930

    
2931
    fd_out = CreateFile(file_out, GENERIC_WRITE, FILE_SHARE_READ, NULL,
2932
                        OPEN_ALWAYS, FILE_ATTRIBUTE_NORMAL, NULL);
2933
    if (fd_out == INVALID_HANDLE_VALUE)
2934
        return NULL;
2935

    
2936
    return qemu_chr_open_win_file(fd_out);
2937
}
2938
#endif /* !_WIN32 */
2939

    
2940
/***********************************************************/
2941
/* UDP Net console */
2942

    
2943
typedef struct {
2944
    int fd;
2945
    struct sockaddr_in daddr;
2946
    uint8_t buf[1024];
2947
    int bufcnt;
2948
    int bufptr;
2949
    int max_size;
2950
} NetCharDriver;
2951

    
2952
static int udp_chr_write(CharDriverState *chr, const uint8_t *buf, int len)
2953
{
2954
    NetCharDriver *s = chr->opaque;
2955

    
2956
    return sendto(s->fd, buf, len, 0,
2957
                  (struct sockaddr *)&s->daddr, sizeof(struct sockaddr_in));
2958
}
2959

    
2960
static int udp_chr_read_poll(void *opaque)
2961
{
2962
    CharDriverState *chr = opaque;
2963
    NetCharDriver *s = chr->opaque;
2964

    
2965
    s->max_size = qemu_chr_can_read(chr);
2966

    
2967
    /* If there were any stray characters in the queue process them
2968
     * first
2969
     */
2970
    while (s->max_size > 0 && s->bufptr < s->bufcnt) {
2971
        qemu_chr_read(chr, &s->buf[s->bufptr], 1);
2972
        s->bufptr++;
2973
        s->max_size = qemu_chr_can_read(chr);
2974
    }
2975
    return s->max_size;
2976
}
2977

    
2978
static void udp_chr_read(void *opaque)
2979
{
2980
    CharDriverState *chr = opaque;
2981
    NetCharDriver *s = chr->opaque;
2982

    
2983
    if (s->max_size == 0)
2984
        return;
2985
    s->bufcnt = recv(s->fd, s->buf, sizeof(s->buf), 0);
2986
    s->bufptr = s->bufcnt;
2987
    if (s->bufcnt <= 0)
2988
        return;
2989

    
2990
    s->bufptr = 0;
2991
    while (s->max_size > 0 && s->bufptr < s->bufcnt) {
2992
        qemu_chr_read(chr, &s->buf[s->bufptr], 1);
2993
        s->bufptr++;
2994
        s->max_size = qemu_chr_can_read(chr);
2995
    }
2996
}
2997

    
2998
static void udp_chr_update_read_handler(CharDriverState *chr)
2999
{
3000
    NetCharDriver *s = chr->opaque;
3001

    
3002
    if (s->fd >= 0) {
3003
        qemu_set_fd_handler2(s->fd, udp_chr_read_poll,
3004
                             udp_chr_read, NULL, chr);
3005
    }
3006
}
3007

    
3008
int parse_host_port(struct sockaddr_in *saddr, const char *str);
3009
#ifndef _WIN32
3010
static int parse_unix_path(struct sockaddr_un *uaddr, const char *str);
3011
#endif
3012
int parse_host_src_port(struct sockaddr_in *haddr,
3013
                        struct sockaddr_in *saddr,
3014
                        const char *str);
3015

    
3016
static CharDriverState *qemu_chr_open_udp(const char *def)
3017
{
3018
    CharDriverState *chr = NULL;
3019
    NetCharDriver *s = NULL;
3020
    int fd = -1;
3021
    struct sockaddr_in saddr;
3022

    
3023
    chr = qemu_mallocz(sizeof(CharDriverState));
3024
    if (!chr)
3025
        goto return_err;
3026
    s = qemu_mallocz(sizeof(NetCharDriver));
3027
    if (!s)
3028
        goto return_err;
3029

    
3030
    fd = socket(PF_INET, SOCK_DGRAM, 0);
3031
    if (fd < 0) {
3032
        perror("socket(PF_INET, SOCK_DGRAM)");
3033
        goto return_err;
3034
    }
3035

    
3036
    if (parse_host_src_port(&s->daddr, &saddr, def) < 0) {
3037
        printf("Could not parse: %s\n", def);
3038
        goto return_err;
3039
    }
3040

    
3041
    if (bind(fd, (struct sockaddr *)&saddr, sizeof(saddr)) < 0)
3042
    {
3043
        perror("bind");
3044
        goto return_err;
3045
    }
3046

    
3047
    s->fd = fd;
3048
    s->bufcnt = 0;
3049
    s->bufptr = 0;
3050
    chr->opaque = s;
3051
    chr->chr_write = udp_chr_write;
3052
    chr->chr_update_read_handler = udp_chr_update_read_handler;
3053
    return chr;
3054

    
3055
return_err:
3056
    if (chr)
3057
        free(chr);
3058
    if (s)
3059
        free(s);
3060
    if (fd >= 0)
3061
        closesocket(fd);
3062
    return NULL;
3063
}
3064

    
3065
/***********************************************************/
3066
/* TCP Net console */
3067

    
3068
typedef struct {
3069
    int fd, listen_fd;
3070
    int connected;
3071
    int max_size;
3072
    int do_telnetopt;
3073
    int do_nodelay;
3074
    int is_unix;
3075
} TCPCharDriver;
3076

    
3077
static void tcp_chr_accept(void *opaque);
3078

    
3079
static int tcp_chr_write(CharDriverState *chr, const uint8_t *buf, int len)
3080
{
3081
    TCPCharDriver *s = chr->opaque;
3082
    if (s->connected) {
3083
        return send_all(s->fd, buf, len);
3084
    } else {
3085
        /* XXX: indicate an error ? */
3086
        return len;
3087
    }
3088
}
3089

    
3090
static int tcp_chr_read_poll(void *opaque)
3091
{
3092
    CharDriverState *chr = opaque;
3093
    TCPCharDriver *s = chr->opaque;
3094
    if (!s->connected)
3095
        return 0;
3096
    s->max_size = qemu_chr_can_read(chr);
3097
    return s->max_size;
3098
}
3099

    
3100
#define IAC 255
3101
#define IAC_BREAK 243
3102
static void tcp_chr_process_IAC_bytes(CharDriverState *chr,
3103
                                      TCPCharDriver *s,
3104
                                      uint8_t *buf, int *size)
3105
{
3106
    /* Handle any telnet client's basic IAC options to satisfy char by
3107
     * char mode with no echo.  All IAC options will be removed from
3108
     * the buf and the do_telnetopt variable will be used to track the
3109
     * state of the width of the IAC information.
3110
     *
3111
     * IAC commands come in sets of 3 bytes with the exception of the
3112
     * "IAC BREAK" command and the double IAC.
3113
     */
3114

    
3115
    int i;
3116
    int j = 0;
3117

    
3118
    for (i = 0; i < *size; i++) {
3119
        if (s->do_telnetopt > 1) {
3120
            if ((unsigned char)buf[i] == IAC && s->do_telnetopt == 2) {
3121
                /* Double IAC means send an IAC */
3122
                if (j != i)
3123
                    buf[j] = buf[i];
3124
                j++;
3125
                s->do_telnetopt = 1;
3126
            } else {
3127
                if ((unsigned char)buf[i] == IAC_BREAK && s->do_telnetopt == 2) {
3128
                    /* Handle IAC break commands by sending a serial break */
3129
                    qemu_chr_event(chr, CHR_EVENT_BREAK);
3130
                    s->do_telnetopt++;
3131
                }
3132
                s->do_telnetopt++;
3133
            }
3134
            if (s->do_telnetopt >= 4) {
3135
                s->do_telnetopt = 1;
3136
            }
3137
        } else {
3138
            if ((unsigned char)buf[i] == IAC) {
3139
                s->do_telnetopt = 2;
3140
            } else {
3141
                if (j != i)
3142
                    buf[j] = buf[i];
3143
                j++;
3144
            }
3145
        }
3146
    }
3147
    *size = j;
3148
}
3149

    
3150
static void tcp_chr_read(void *opaque)
3151
{
3152
    CharDriverState *chr = opaque;
3153
    TCPCharDriver *s = chr->opaque;
3154
    uint8_t buf[1024];
3155
    int len, size;
3156

    
3157
    if (!s->connected || s->max_size <= 0)
3158
        return;
3159
    len = sizeof(buf);
3160
    if (len > s->max_size)
3161
        len = s->max_size;
3162
    size = recv(s->fd, buf, len, 0);
3163
    if (size == 0) {
3164
        /* connection closed */
3165
        s->connected = 0;
3166
        if (s->listen_fd >= 0) {
3167
            qemu_set_fd_handler(s->listen_fd, tcp_chr_accept, NULL, chr);
3168
        }
3169
        qemu_set_fd_handler(s->fd, NULL, NULL, NULL);
3170
        closesocket(s->fd);
3171
        s->fd = -1;
3172
    } else if (size > 0) {
3173
        if (s->do_telnetopt)
3174
            tcp_chr_process_IAC_bytes(chr, s, buf, &size);
3175
        if (size > 0)
3176
            qemu_chr_read(chr, buf, size);
3177
    }
3178
}
3179

    
3180
static void tcp_chr_connect(void *opaque)
3181
{
3182
    CharDriverState *chr = opaque;
3183
    TCPCharDriver *s = chr->opaque;
3184

    
3185
    s->connected = 1;
3186
    qemu_set_fd_handler2(s->fd, tcp_chr_read_poll,
3187
                         tcp_chr_read, NULL, chr);
3188
    qemu_chr_reset(chr);
3189
}
3190

    
3191
#define IACSET(x,a,b,c) x[0] = a; x[1] = b; x[2] = c;
3192
static void tcp_chr_telnet_init(int fd)
3193
{
3194
    char buf[3];
3195
    /* Send the telnet negotion to put telnet in binary, no echo, single char mode */
3196
    IACSET(buf, 0xff, 0xfb, 0x01);  /* IAC WILL ECHO */
3197
    send(fd, (char *)buf, 3, 0);
3198
    IACSET(buf, 0xff, 0xfb, 0x03);  /* IAC WILL Suppress go ahead */
3199
    send(fd, (char *)buf, 3, 0);
3200
    IACSET(buf, 0xff, 0xfb, 0x00);  /* IAC WILL Binary */
3201
    send(fd, (char *)buf, 3, 0);
3202
    IACSET(buf, 0xff, 0xfd, 0x00);  /* IAC DO Binary */
3203
    send(fd, (char *)buf, 3, 0);
3204
}
3205

    
3206
static void socket_set_nodelay(int fd)
3207
{
3208
    int val = 1;
3209
    setsockopt(fd, IPPROTO_TCP, TCP_NODELAY, (char *)&val, sizeof(val));
3210
}
3211

    
3212
static void tcp_chr_accept(void *opaque)
3213
{
3214
    CharDriverState *chr = opaque;
3215
    TCPCharDriver *s = chr->opaque;
3216
    struct sockaddr_in saddr;
3217
#ifndef _WIN32
3218
    struct sockaddr_un uaddr;
3219
#endif
3220
    struct sockaddr *addr;
3221
    socklen_t len;
3222
    int fd;
3223

    
3224
    for(;;) {
3225
#ifndef _WIN32
3226
        if (s->is_unix) {
3227
            len = sizeof(uaddr);
3228
            addr = (struct sockaddr *)&uaddr;
3229
        } else
3230
#endif
3231
        {
3232
            len = sizeof(saddr);
3233
            addr = (struct sockaddr *)&saddr;
3234
        }
3235
        fd = accept(s->listen_fd, addr, &len);
3236
        if (fd < 0 && errno != EINTR) {
3237
            return;
3238
        } else if (fd >= 0) {
3239
            if (s->do_telnetopt)
3240
                tcp_chr_telnet_init(fd);
3241
            break;
3242
        }
3243
    }
3244
    socket_set_nonblock(fd);
3245
    if (s->do_nodelay)
3246
        socket_set_nodelay(fd);
3247
    s->fd = fd;
3248
    qemu_set_fd_handler(s->listen_fd, NULL, NULL, NULL);
3249
    tcp_chr_connect(chr);
3250
}
3251

    
3252
static void tcp_chr_close(CharDriverState *chr)
3253
{
3254
    TCPCharDriver *s = chr->opaque;
3255
    if (s->fd >= 0)
3256
        closesocket(s->fd);
3257
    if (s->listen_fd >= 0)
3258
        closesocket(s->listen_fd);
3259
    qemu_free(s);
3260
}
3261

    
3262
static CharDriverState *qemu_chr_open_tcp(const char *host_str,
3263
                                          int is_telnet,
3264
                                          int is_unix)
3265
{
3266
    CharDriverState *chr = NULL;
3267
    TCPCharDriver *s = NULL;
3268
    int fd = -1, ret, err, val;
3269
    int is_listen = 0;
3270
    int is_waitconnect = 1;
3271
    int do_nodelay = 0;
3272
    const char *ptr;
3273
    struct sockaddr_in saddr;
3274
#ifndef _WIN32
3275
    struct sockaddr_un uaddr;
3276
#endif
3277
    struct sockaddr *addr;
3278
    socklen_t addrlen;
3279

    
3280
#ifndef _WIN32
3281
    if (is_unix) {
3282
        addr = (struct sockaddr *)&uaddr;
3283
        addrlen = sizeof(uaddr);
3284
        if (parse_unix_path(&uaddr, host_str) < 0)
3285
            goto fail;
3286
    } else
3287
#endif
3288
    {
3289
        addr = (struct sockaddr *)&saddr;
3290
        addrlen = sizeof(saddr);
3291
        if (parse_host_port(&saddr, host_str) < 0)
3292
            goto fail;
3293
    }
3294

    
3295
    ptr = host_str;
3296
    while((ptr = strchr(ptr,','))) {
3297
        ptr++;
3298
        if (!strncmp(ptr,"server",6)) {
3299
            is_listen = 1;
3300
        } else if (!strncmp(ptr,"nowait",6)) {
3301
            is_waitconnect = 0;
3302
        } else if (!strncmp(ptr,"nodelay",6)) {
3303
            do_nodelay = 1;
3304
        } else {
3305
            printf("Unknown option: %s\n", ptr);
3306
            goto fail;
3307
        }
3308
    }
3309
    if (!is_listen)
3310
        is_waitconnect = 0;
3311

    
3312
    chr = qemu_mallocz(sizeof(CharDriverState));
3313
    if (!chr)
3314
        goto fail;
3315
    s = qemu_mallocz(sizeof(TCPCharDriver));
3316
    if (!s)
3317
        goto fail;
3318

    
3319
#ifndef _WIN32
3320
    if (is_unix)
3321
        fd = socket(PF_UNIX, SOCK_STREAM, 0);
3322
    else
3323
#endif
3324
        fd = socket(PF_INET, SOCK_STREAM, 0);
3325

    
3326
    if (fd < 0)
3327
        goto fail;
3328

    
3329
    if (!is_waitconnect)
3330
        socket_set_nonblock(fd);
3331

    
3332
    s->connected = 0;
3333
    s->fd = -1;
3334
    s->listen_fd = -1;
3335
    s->is_unix = is_unix;
3336
    s->do_nodelay = do_nodelay && !is_unix;
3337

    
3338
    chr->opaque = s;
3339
    chr->chr_write = tcp_chr_write;
3340
    chr->chr_close = tcp_chr_close;
3341

    
3342
    if (is_listen) {
3343
        /* allow fast reuse */
3344
#ifndef _WIN32
3345
        if (is_unix) {
3346
            char path[109];
3347
            strncpy(path, uaddr.sun_path, 108);
3348
            path[108] = 0;
3349
            unlink(path);
3350
        } else
3351
#endif
3352
        {
3353
            val = 1;
3354
            setsockopt(fd, SOL_SOCKET, SO_REUSEADDR, (const char *)&val, sizeof(val));
3355
        }
3356

    
3357
        ret = bind(fd, addr, addrlen);
3358
        if (ret < 0)
3359
            goto fail;
3360

    
3361
        ret = listen(fd, 0);
3362
        if (ret < 0)
3363
            goto fail;
3364

    
3365
        s->listen_fd = fd;
3366
        qemu_set_fd_handler(s->listen_fd, tcp_chr_accept, NULL, chr);
3367
        if (is_telnet)
3368
            s->do_telnetopt = 1;
3369
    } else {
3370
        for(;;) {
3371
            ret = connect(fd, addr, addrlen);
3372
            if (ret < 0) {
3373
                err = socket_error();
3374
                if (err == EINTR || err == EWOULDBLOCK) {
3375
                } else if (err == EINPROGRESS) {
3376
                    break;
3377
#ifdef _WIN32
3378
                } else if (err == WSAEALREADY) {
3379
                    break;
3380
#endif
3381
                } else {
3382
                    goto fail;
3383
                }
3384
            } else {
3385
                s->connected = 1;
3386
                break;
3387
            }
3388
        }
3389
        s->fd = fd;
3390
        socket_set_nodelay(fd);
3391
        if (s->connected)
3392
            tcp_chr_connect(chr);
3393
        else
3394
            qemu_set_fd_handler(s->fd, NULL, tcp_chr_connect, chr);
3395
    }
3396

    
3397
    if (is_listen && is_waitconnect) {
3398
        printf("QEMU waiting for connection on: %s\n", host_str);
3399
        tcp_chr_accept(chr);
3400
        socket_set_nonblock(s->listen_fd);
3401
    }
3402

    
3403
    return chr;
3404
 fail:
3405
    if (fd >= 0)
3406
        closesocket(fd);
3407
    qemu_free(s);
3408
    qemu_free(chr);
3409
    return NULL;
3410
}
3411

    
3412
CharDriverState *qemu_chr_open(const char *filename)
3413
{
3414
    const char *p;
3415

    
3416
    if (!strcmp(filename, "vc")) {
3417
        return text_console_init(&display_state, 0);
3418
    } else if (strstart(filename, "vc:", &p)) {
3419
        return text_console_init(&display_state, p);
3420
    } else if (!strcmp(filename, "null")) {
3421
        return qemu_chr_open_null();
3422
    } else
3423
    if (strstart(filename, "tcp:", &p)) {
3424
        return qemu_chr_open_tcp(p, 0, 0);
3425
    } else
3426
    if (strstart(filename, "telnet:", &p)) {
3427
        return qemu_chr_open_tcp(p, 1, 0);
3428
    } else
3429
    if (strstart(filename, "udp:", &p)) {
3430
        return qemu_chr_open_udp(p);
3431
    } else
3432
    if (strstart(filename, "mon:", &p)) {
3433
        CharDriverState *drv = qemu_chr_open(p);
3434
        if (drv) {
3435
            drv = qemu_chr_open_mux(drv);
3436
            monitor_init(drv, !nographic);
3437
            return drv;
3438
        }
3439
        printf("Unable to open driver: %s\n", p);
3440
        return 0;
3441
    } else
3442
#ifndef _WIN32
3443
    if (strstart(filename, "unix:", &p)) {
3444
        return qemu_chr_open_tcp(p, 0, 1);
3445
    } else if (strstart(filename, "file:", &p)) {
3446
        return qemu_chr_open_file_out(p);
3447
    } else if (strstart(filename, "pipe:", &p)) {
3448
        return qemu_chr_open_pipe(p);
3449
    } else if (!strcmp(filename, "pty")) {
3450
        return qemu_chr_open_pty();
3451
    } else if (!strcmp(filename, "stdio")) {
3452
        return qemu_chr_open_stdio();
3453
    } else
3454
#if defined(__linux__)
3455
    if (strstart(filename, "/dev/parport", NULL)) {
3456
        return qemu_chr_open_pp(filename);
3457
    } else
3458
#endif
3459
#if defined(__linux__) || defined(__sun__)
3460
    if (strstart(filename, "/dev/", NULL)) {
3461
        return qemu_chr_open_tty(filename);
3462
    } else
3463
#endif
3464
#else /* !_WIN32 */
3465
    if (strstart(filename, "COM", NULL)) {
3466
        return qemu_chr_open_win(filename);
3467
    } else
3468
    if (strstart(filename, "pipe:", &p)) {
3469
        return qemu_chr_open_win_pipe(p);
3470
    } else
3471
    if (strstart(filename, "con:", NULL)) {
3472
        return qemu_chr_open_win_con(filename);
3473
    } else
3474
    if (strstart(filename, "file:", &p)) {
3475
        return qemu_chr_open_win_file_out(p);
3476
    } else
3477
#endif
3478
#ifdef CONFIG_BRLAPI
3479
    if (!strcmp(filename, "braille")) {
3480
        return chr_baum_init();
3481
    } else
3482
#endif
3483
    {
3484
        return NULL;
3485
    }
3486
}
3487

    
3488
void qemu_chr_close(CharDriverState *chr)
3489
{
3490
    if (chr->chr_close)
3491
        chr->chr_close(chr);
3492
    qemu_free(chr);
3493
}
3494

    
3495
/***********************************************************/
3496
/* network device redirectors */
3497

    
3498
__attribute__ (( unused ))
3499
static void hex_dump(FILE *f, const uint8_t *buf, int size)
3500
{
3501
    int len, i, j, c;
3502

    
3503
    for(i=0;i<size;i+=16) {
3504
        len = size - i;
3505
        if (len > 16)
3506
            len = 16;
3507
        fprintf(f, "%08x ", i);
3508
        for(j=0;j<16;j++) {
3509
            if (j < len)
3510
                fprintf(f, " %02x", buf[i+j]);
3511
            else
3512
                fprintf(f, "   ");
3513
        }
3514
        fprintf(f, " ");
3515
        for(j=0;j<len;j++) {
3516
            c = buf[i+j];
3517
            if (c < ' ' || c > '~')
3518
                c = '.';
3519
            fprintf(f, "%c", c);
3520
        }
3521
        fprintf(f, "\n");
3522
    }
3523
}
3524

    
3525
static int parse_macaddr(uint8_t *macaddr, const char *p)
3526
{
3527
    int i;
3528
    char *last_char;
3529
    long int offset;
3530

    
3531
    errno = 0;
3532
    offset = strtol(p, &last_char, 0);    
3533
    if (0 == errno && '\0' == *last_char &&
3534
            offset >= 0 && offset <= 0xFFFFFF) {
3535
        macaddr[3] = (offset & 0xFF0000) >> 16;
3536
        macaddr[4] = (offset & 0xFF00) >> 8;
3537
        macaddr[5] = offset & 0xFF;
3538
        return 0;
3539
    } else {
3540
        for(i = 0; i < 6; i++) {
3541
            macaddr[i] = strtol(p, (char **)&p, 16);
3542
            if (i == 5) {
3543
                if (*p != '\0')
3544
                    return -1;
3545
            } else {
3546
                if (*p != ':' && *p != '-')
3547
                    return -1;
3548
                p++;
3549
            }
3550
        }
3551
        return 0;    
3552
    }
3553

    
3554
    return -1;
3555
}
3556

    
3557
static int get_str_sep(char *buf, int buf_size, const char **pp, int sep)
3558
{
3559
    const char *p, *p1;
3560
    int len;
3561
    p = *pp;
3562
    p1 = strchr(p, sep);
3563
    if (!p1)
3564
        return -1;
3565
    len = p1 - p;
3566
    p1++;
3567
    if (buf_size > 0) {
3568
        if (len > buf_size - 1)
3569
            len = buf_size - 1;
3570
        memcpy(buf, p, len);
3571
        buf[len] = '\0';
3572
    }
3573
    *pp = p1;
3574
    return 0;
3575
}
3576

    
3577
int parse_host_src_port(struct sockaddr_in *haddr,
3578
                        struct sockaddr_in *saddr,
3579
                        const char *input_str)
3580
{
3581
    char *str = strdup(input_str);
3582
    char *host_str = str;
3583
    char *src_str;
3584
    char *ptr;
3585

    
3586
    /*
3587
     * Chop off any extra arguments at the end of the string which
3588
     * would start with a comma, then fill in the src port information
3589
     * if it was provided else use the "any address" and "any port".
3590
     */
3591
    if ((ptr = strchr(str,',')))
3592
        *ptr = '\0';
3593

    
3594
    if ((src_str = strchr(input_str,'@'))) {
3595
        *src_str = '\0';
3596
        src_str++;
3597
    }
3598

    
3599
    if (parse_host_port(haddr, host_str) < 0)
3600
        goto fail;
3601

    
3602
    if (!src_str || *src_str == '\0')
3603
        src_str = ":0";
3604

    
3605
    if (parse_host_port(saddr, src_str) < 0)
3606
        goto fail;
3607

    
3608
    free(str);
3609
    return(0);
3610

    
3611
fail:
3612
    free(str);
3613
    return -1;
3614
}
3615

    
3616
int parse_host_port(struct sockaddr_in *saddr, const char *str)
3617
{
3618
    char buf[512];
3619
    struct hostent *he;
3620
    const char *p, *r;
3621
    int port;
3622

    
3623
    p = str;
3624
    if (get_str_sep(buf, sizeof(buf), &p, ':') < 0)
3625
        return -1;
3626
    saddr->sin_family = AF_INET;
3627
    if (buf[0] == '\0') {
3628
        saddr->sin_addr.s_addr = 0;
3629
    } else {
3630
        if (isdigit(buf[0])) {
3631
            if (!inet_aton(buf, &saddr->sin_addr))
3632
                return -1;
3633
        } else {
3634
            if ((he = gethostbyname(buf)) == NULL)
3635
                return - 1;
3636
            saddr->sin_addr = *(struct in_addr *)he->h_addr;
3637
        }
3638
    }
3639
    port = strtol(p, (char **)&r, 0);
3640
    if (r == p)
3641
        return -1;
3642
    saddr->sin_port = htons(port);
3643
    return 0;
3644
}
3645

    
3646
#ifndef _WIN32
3647
static int parse_unix_path(struct sockaddr_un *uaddr, const char *str)
3648
{
3649
    const char *p;
3650
    int len;
3651

    
3652
    len = MIN(108, strlen(str));
3653
    p = strchr(str, ',');
3654
    if (p)
3655
        len = MIN(len, p - str);
3656

    
3657
    memset(uaddr, 0, sizeof(*uaddr));
3658

    
3659
    uaddr->sun_family = AF_UNIX;
3660
    memcpy(uaddr->sun_path, str, len);
3661

    
3662
    return 0;
3663
}
3664
#endif
3665

    
3666
/* find or alloc a new VLAN */
3667
VLANState *qemu_find_vlan(int id)
3668
{
3669
    VLANState **pvlan, *vlan;
3670
    for(vlan = first_vlan; vlan != NULL; vlan = vlan->next) {
3671
        if (vlan->id == id)
3672
            return vlan;
3673
    }
3674
    vlan = qemu_mallocz(sizeof(VLANState));
3675
    if (!vlan)
3676
        return NULL;
3677
    vlan->id = id;
3678
    vlan->next = NULL;
3679
    pvlan = &first_vlan;
3680
    while (*pvlan != NULL)
3681
        pvlan = &(*pvlan)->next;
3682
    *pvlan = vlan;
3683
    return vlan;
3684
}
3685

    
3686
VLANClientState *qemu_new_vlan_client(VLANState *vlan,
3687
                                      IOReadHandler *fd_read,
3688
                                      IOCanRWHandler *fd_can_read,
3689
                                      void *opaque)
3690
{
3691
    VLANClientState *vc, **pvc;
3692
    vc = qemu_mallocz(sizeof(VLANClientState));
3693
    if (!vc)
3694
        return NULL;
3695
    vc->fd_read = fd_read;
3696
    vc->fd_can_read = fd_can_read;
3697
    vc->opaque = opaque;
3698
    vc->vlan = vlan;
3699

    
3700
    vc->next = NULL;
3701
    pvc = &vlan->first_client;
3702
    while (*pvc != NULL)
3703
        pvc = &(*pvc)->next;
3704
    *pvc = vc;
3705
    return vc;
3706
}
3707

    
3708
int qemu_can_send_packet(VLANClientState *vc1)
3709
{
3710
    VLANState *vlan = vc1->vlan;
3711
    VLANClientState *vc;
3712

    
3713
    for(vc = vlan->first_client; vc != NULL; vc = vc->next) {
3714
        if (vc != vc1) {
3715
            if (vc->fd_can_read && vc->fd_can_read(vc->opaque))
3716
                return 1;
3717
        }
3718
    }
3719
    return 0;
3720
}
3721

    
3722
void qemu_send_packet(VLANClientState *vc1, const uint8_t *buf, int size)
3723
{
3724
    VLANState *vlan = vc1->vlan;
3725
    VLANClientState *vc;
3726

    
3727
#if 0
3728
    printf("vlan %d send:\n", vlan->id);
3729
    hex_dump(stdout, buf, size);
3730
#endif
3731
    for(vc = vlan->first_client; vc != NULL; vc = vc->next) {
3732
        if (vc != vc1) {
3733
            vc->fd_read(vc->opaque, buf, size);
3734
        }
3735
    }
3736
}
3737

    
3738
#if defined(CONFIG_SLIRP)
3739

    
3740
/* slirp network adapter */
3741

    
3742
static int slirp_inited;
3743
static VLANClientState *slirp_vc;
3744

    
3745
int slirp_can_output(void)
3746
{
3747
    return !slirp_vc || qemu_can_send_packet(slirp_vc);
3748
}
3749

    
3750
void slirp_output(const uint8_t *pkt, int pkt_len)
3751
{
3752
#if 0
3753
    printf("slirp output:\n");
3754
    hex_dump(stdout, pkt, pkt_len);
3755
#endif
3756
    if (!slirp_vc)
3757
        return;
3758
    qemu_send_packet(slirp_vc, pkt, pkt_len);
3759
}
3760

    
3761
static void slirp_receive(void *opaque, const uint8_t *buf, int size)
3762
{
3763
#if 0
3764
    printf("slirp input:\n");
3765
    hex_dump(stdout, buf, size);
3766
#endif
3767
    slirp_input(buf, size);
3768
}
3769

    
3770
static int net_slirp_init(VLANState *vlan)
3771
{
3772
    if (!slirp_inited) {
3773
        slirp_inited = 1;
3774
        slirp_init();
3775
    }
3776
    slirp_vc = qemu_new_vlan_client(vlan,
3777
                                    slirp_receive, NULL, NULL);
3778
    snprintf(slirp_vc->info_str, sizeof(slirp_vc->info_str), "user redirector");
3779
    return 0;
3780
}
3781

    
3782
static void net_slirp_redir(const char *redir_str)
3783
{
3784
    int is_udp;
3785
    char buf[256], *r;
3786
    const char *p;
3787
    struct in_addr guest_addr;
3788
    int host_port, guest_port;
3789

    
3790
    if (!slirp_inited) {
3791
        slirp_inited = 1;
3792
        slirp_init();
3793
    }
3794

    
3795
    p = redir_str;
3796
    if (get_str_sep(buf, sizeof(buf), &p, ':') < 0)
3797
        goto fail;
3798
    if (!strcmp(buf, "tcp")) {
3799
        is_udp = 0;
3800
    } else if (!strcmp(buf, "udp")) {
3801
        is_udp = 1;
3802
    } else {
3803
        goto fail;
3804
    }
3805

    
3806
    if (get_str_sep(buf, sizeof(buf), &p, ':') < 0)
3807
        goto fail;
3808
    host_port = strtol(buf, &r, 0);
3809
    if (r == buf)
3810
        goto fail;
3811

    
3812
    if (get_str_sep(buf, sizeof(buf), &p, ':') < 0)
3813
        goto fail;
3814
    if (buf[0] == '\0') {
3815
        pstrcpy(buf, sizeof(buf), "10.0.2.15");
3816
    }
3817
    if (!inet_aton(buf, &guest_addr))
3818
        goto fail;
3819

    
3820
    guest_port = strtol(p, &r, 0);
3821
    if (r == p)
3822
        goto fail;
3823

    
3824
    if (slirp_redir(is_udp, host_port, guest_addr, guest_port) < 0) {
3825
        fprintf(stderr, "qemu: could not set up redirection\n");
3826
        exit(1);
3827
    }
3828
    return;
3829
 fail:
3830
    fprintf(stderr, "qemu: syntax: -redir [tcp|udp]:host-port:[guest-host]:guest-port\n");
3831
    exit(1);
3832
}
3833

    
3834
#ifndef _WIN32
3835

    
3836
char smb_dir[1024];
3837

    
3838
static void erase_dir(char *dir_name)
3839
{
3840
    DIR *d;
3841
    struct dirent *de;
3842
    char filename[1024];
3843

    
3844
    /* erase all the files in the directory */
3845
    if ((d = opendir(dir_name)) != 0) {
3846
        for(;;) {
3847
            de = readdir(d);
3848
            if (!de)
3849
                break;
3850
            if (strcmp(de->d_name, ".") != 0 &&
3851
                strcmp(de->d_name, "..") != 0) {
3852
                snprintf(filename, sizeof(filename), "%s/%s",
3853
                         smb_dir, de->d_name);
3854
                if (unlink(filename) != 0)  /* is it a directory? */
3855
                    erase_dir(filename);
3856
            }
3857
        }
3858
        closedir(d);
3859
        rmdir(dir_name);
3860
    }
3861
}
3862

    
3863
/* automatic user mode samba server configuration */
3864
static void smb_exit(void)
3865
{
3866
    erase_dir(smb_dir);
3867
}
3868

    
3869
/* automatic user mode samba server configuration */
3870
static void net_slirp_smb(const char *exported_dir)
3871
{
3872
    char smb_conf[1024];
3873
    char smb_cmdline[1024];
3874
    FILE *f;
3875

    
3876
    if (!slirp_inited) {
3877
        slirp_inited = 1;
3878
        slirp_init();
3879
    }
3880

    
3881
    /* XXX: better tmp dir construction */
3882
    snprintf(smb_dir, sizeof(smb_dir), "/tmp/qemu-smb.%d", getpid());
3883
    if (mkdir(smb_dir, 0700) < 0) {
3884
        fprintf(stderr, "qemu: could not create samba server dir '%s'\n", smb_dir);
3885
        exit(1);
3886
    }
3887
    snprintf(smb_conf, sizeof(smb_conf), "%s/%s", smb_dir, "smb.conf");
3888

    
3889
    f = fopen(smb_conf, "w");
3890
    if (!f) {
3891
        fprintf(stderr, "qemu: could not create samba server configuration file '%s'\n", smb_conf);
3892
        exit(1);
3893
    }
3894
    fprintf(f,
3895
            "[global]\n"
3896
            "private dir=%s\n"
3897
            "smb ports=0\n"
3898
            "socket address=127.0.0.1\n"
3899
            "pid directory=%s\n"
3900
            "lock directory=%s\n"
3901
            "log file=%s/log.smbd\n"
3902
            "smb passwd file=%s/smbpasswd\n"
3903
            "security = share\n"
3904
            "[qemu]\n"
3905
            "path=%s\n"
3906
            "read only=no\n"
3907
            "guest ok=yes\n",
3908
            smb_dir,
3909
            smb_dir,
3910
            smb_dir,
3911
            smb_dir,
3912
            smb_dir,
3913
            exported_dir
3914
            );
3915
    fclose(f);
3916
    atexit(smb_exit);
3917

    
3918
    snprintf(smb_cmdline, sizeof(smb_cmdline), "%s -s %s",
3919
             SMBD_COMMAND, smb_conf);
3920

    
3921
    slirp_add_exec(0, smb_cmdline, 4, 139);
3922
}
3923

    
3924
#endif /* !defined(_WIN32) */
3925
void do_info_slirp(void)
3926
{
3927
    slirp_stats();
3928
}
3929

    
3930
#endif /* CONFIG_SLIRP */
3931

    
3932
#if !defined(_WIN32)
3933

    
3934
typedef struct TAPState {
3935
    VLANClientState *vc;
3936
    int fd;
3937
    char down_script[1024];
3938
} TAPState;
3939

    
3940
static void tap_receive(void *opaque, const uint8_t *buf, int size)
3941
{
3942
    TAPState *s = opaque;
3943
    int ret;
3944
    for(;;) {
3945
        ret = write(s->fd, buf, size);
3946
        if (ret < 0 && (errno == EINTR || errno == EAGAIN)) {
3947
        } else {
3948
            break;
3949
        }
3950
    }
3951
}
3952

    
3953
static void tap_send(void *opaque)
3954
{
3955
    TAPState *s = opaque;
3956
    uint8_t buf[4096];
3957
    int size;
3958

    
3959
#ifdef __sun__
3960
    struct strbuf sbuf;
3961
    int f = 0;
3962
    sbuf.maxlen = sizeof(buf);
3963
    sbuf.buf = buf;
3964
    size = getmsg(s->fd, NULL, &sbuf, &f) >=0 ? sbuf.len : -1;
3965
#else
3966
    size = read(s->fd, buf, sizeof(buf));
3967
#endif
3968
    if (size > 0) {
3969
        qemu_send_packet(s->vc, buf, size);
3970
    }
3971
}
3972

    
3973
/* fd support */
3974

    
3975
static TAPState *net_tap_fd_init(VLANState *vlan, int fd)
3976
{
3977
    TAPState *s;
3978

    
3979
    s = qemu_mallocz(sizeof(TAPState));
3980
    if (!s)
3981
        return NULL;
3982
    s->fd = fd;
3983
    s->vc = qemu_new_vlan_client(vlan, tap_receive, NULL, s);
3984
    qemu_set_fd_handler(s->fd, tap_send, NULL, s);
3985
    snprintf(s->vc->info_str, sizeof(s->vc->info_str), "tap: fd=%d", fd);
3986
    return s;
3987
}
3988

    
3989
#if defined (_BSD) || defined (__FreeBSD_kernel__)
3990
static int tap_open(char *ifname, int ifname_size)
3991
{
3992
    int fd;
3993
    char *dev;
3994
    struct stat s;
3995

    
3996
    TFR(fd = open("/dev/tap", O_RDWR));
3997
    if (fd < 0) {
3998
        fprintf(stderr, "warning: could not open /dev/tap: no virtual network emulation\n");
3999
        return -1;
4000
    }
4001

    
4002
    fstat(fd, &s);
4003
    dev = devname(s.st_rdev, S_IFCHR);
4004
    pstrcpy(ifname, ifname_size, dev);
4005

    
4006
    fcntl(fd, F_SETFL, O_NONBLOCK);
4007
    return fd;
4008
}
4009
#elif defined(__sun__)
4010
#define TUNNEWPPA       (('T'<<16) | 0x0001)
4011
/*
4012
 * Allocate TAP device, returns opened fd.
4013
 * Stores dev name in the first arg(must be large enough).
4014
 */
4015
int tap_alloc(char *dev)
4016
{
4017
    int tap_fd, if_fd, ppa = -1;
4018
    static int ip_fd = 0;
4019
    char *ptr;
4020

    
4021
    static int arp_fd = 0;
4022
    int ip_muxid, arp_muxid;
4023
    struct strioctl  strioc_if, strioc_ppa;
4024
    int link_type = I_PLINK;;
4025
    struct lifreq ifr;
4026
    char actual_name[32] = "";
4027

    
4028
    memset(&ifr, 0x0, sizeof(ifr));
4029

    
4030
    if( *dev ){
4031
       ptr = dev;
4032
       while( *ptr && !isdigit((int)*ptr) ) ptr++;
4033
       ppa = atoi(ptr);
4034
    }
4035

    
4036
    /* Check if IP device was opened */
4037
    if( ip_fd )
4038
       close(ip_fd);
4039

    
4040
    TFR(ip_fd = open("/dev/udp", O_RDWR, 0));
4041
    if (ip_fd < 0) {
4042
       syslog(LOG_ERR, "Can't open /dev/ip (actually /dev/udp)");
4043
       return -1;
4044
    }
4045

    
4046
    TFR(tap_fd = open("/dev/tap", O_RDWR, 0));
4047
    if (tap_fd < 0) {
4048
       syslog(LOG_ERR, "Can't open /dev/tap");
4049
       return -1;
4050
    }
4051

    
4052
    /* Assign a new PPA and get its unit number. */
4053
    strioc_ppa.ic_cmd = TUNNEWPPA;
4054
    strioc_ppa.ic_timout = 0;
4055
    strioc_ppa.ic_len = sizeof(ppa);
4056
    strioc_ppa.ic_dp = (char *)&ppa;
4057
    if ((ppa = ioctl (tap_fd, I_STR, &strioc_ppa)) < 0)
4058
       syslog (LOG_ERR, "Can't assign new interface");
4059

    
4060
    TFR(if_fd = open("/dev/tap", O_RDWR, 0));
4061
    if (if_fd < 0) {
4062
       syslog(LOG_ERR, "Can't open /dev/tap (2)");
4063
       return -1;
4064
    }
4065
    if(ioctl(if_fd, I_PUSH, "ip") < 0){
4066
       syslog(LOG_ERR, "Can't push IP module");
4067
       return -1;
4068
    }
4069

    
4070
    if (ioctl(if_fd, SIOCGLIFFLAGS, &ifr) < 0)
4071
        syslog(LOG_ERR, "Can't get flags\n");
4072

    
4073
    snprintf (actual_name, 32, "tap%d", ppa);
4074
    strncpy (ifr.lifr_name, actual_name, sizeof (ifr.lifr_name));
4075

    
4076
    ifr.lifr_ppa = ppa;
4077
    /* Assign ppa according to the unit number returned by tun device */
4078

    
4079
    if (ioctl (if_fd, SIOCSLIFNAME, &ifr) < 0)
4080
        syslog (LOG_ERR, "Can't set PPA %d", ppa);
4081
    if (ioctl(if_fd, SIOCGLIFFLAGS, &ifr) <0)
4082
        syslog (LOG_ERR, "Can't get flags\n");
4083
    /* Push arp module to if_fd */
4084
    if (ioctl (if_fd, I_PUSH, "arp") < 0)
4085
        syslog (LOG_ERR, "Can't push ARP module (2)");
4086

    
4087
    /* Push arp module to ip_fd */
4088
    if (ioctl (ip_fd, I_POP, NULL) < 0)
4089
        syslog (LOG_ERR, "I_POP failed\n");
4090
    if (ioctl (ip_fd, I_PUSH, "arp") < 0)
4091
        syslog (LOG_ERR, "Can't push ARP module (3)\n");
4092
    /* Open arp_fd */
4093
    TFR(arp_fd = open ("/dev/tap", O_RDWR, 0));
4094
    if (arp_fd < 0)
4095
       syslog (LOG_ERR, "Can't open %s\n", "/dev/tap");
4096

    
4097
    /* Set ifname to arp */
4098
    strioc_if.ic_cmd = SIOCSLIFNAME;
4099
    strioc_if.ic_timout = 0;
4100
    strioc_if.ic_len = sizeof(ifr);
4101
    strioc_if.ic_dp = (char *)&ifr;
4102
    if (ioctl(arp_fd, I_STR, &strioc_if) < 0){
4103
        syslog (LOG_ERR, "Can't set ifname to arp\n");
4104
    }
4105

    
4106
    if((ip_muxid = ioctl(ip_fd, I_LINK, if_fd)) < 0){
4107
       syslog(LOG_ERR, "Can't link TAP device to IP");
4108
       return -1;
4109
    }
4110

    
4111
    if ((arp_muxid = ioctl (ip_fd, link_type, arp_fd)) < 0)
4112
        syslog (LOG_ERR, "Can't link TAP device to ARP");
4113

    
4114
    close (if_fd);
4115

    
4116
    memset(&ifr, 0x0, sizeof(ifr));
4117
    strncpy (ifr.lifr_name, actual_name, sizeof (ifr.lifr_name));
4118
    ifr.lifr_ip_muxid  = ip_muxid;
4119
    ifr.lifr_arp_muxid = arp_muxid;
4120

    
4121
    if (ioctl (ip_fd, SIOCSLIFMUXID, &ifr) < 0)
4122
    {
4123
      ioctl (ip_fd, I_PUNLINK , arp_muxid);
4124
      ioctl (ip_fd, I_PUNLINK, ip_muxid);
4125
      syslog (LOG_ERR, "Can't set multiplexor id");
4126
    }
4127

    
4128
    sprintf(dev, "tap%d", ppa);
4129
    return tap_fd;
4130
}
4131

    
4132
static int tap_open(char *ifname, int ifname_size)
4133
{
4134
    char  dev[10]="";
4135
    int fd;
4136
    if( (fd = tap_alloc(dev)) < 0 ){
4137
       fprintf(stderr, "Cannot allocate TAP device\n");
4138
       return -1;
4139
    }
4140
    pstrcpy(ifname, ifname_size, dev);
4141
    fcntl(fd, F_SETFL, O_NONBLOCK);
4142
    return fd;
4143
}
4144
#else
4145
static int tap_open(char *ifname, int ifname_size)
4146
{
4147
    struct ifreq ifr;
4148
    int fd, ret;
4149

    
4150
    TFR(fd = open("/dev/net/tun", O_RDWR));
4151
    if (fd < 0) {
4152
        fprintf(stderr, "warning: could not open /dev/net/tun: no virtual network emulation\n");
4153
        return -1;
4154
    }
4155
    memset(&ifr, 0, sizeof(ifr));
4156
    ifr.ifr_flags = IFF_TAP | IFF_NO_PI;
4157
    if (ifname[0] != '\0')
4158
        pstrcpy(ifr.ifr_name, IFNAMSIZ, ifname);
4159
    else
4160
        pstrcpy(ifr.ifr_name, IFNAMSIZ, "tap%d");
4161
    ret = ioctl(fd, TUNSETIFF, (void *) &ifr);
4162
    if (ret != 0) {
4163
        fprintf(stderr, "warning: could not configure /dev/net/tun: no virtual network emulation\n");
4164
        close(fd);
4165
        return -1;
4166
    }
4167
    pstrcpy(ifname, ifname_size, ifr.ifr_name);
4168
    fcntl(fd, F_SETFL, O_NONBLOCK);
4169
    return fd;
4170
}
4171
#endif
4172

    
4173
static int launch_script(const char *setup_script, const char *ifname, int fd)
4174
{
4175
    int pid, status;
4176
    char *args[3];
4177
    char **parg;
4178

    
4179
        /* try to launch network script */
4180
        pid = fork();
4181
        if (pid >= 0) {
4182
            if (pid == 0) {
4183
                int open_max = sysconf (_SC_OPEN_MAX), i;
4184
                for (i = 0; i < open_max; i++)
4185
                    if (i != STDIN_FILENO &&
4186
                        i != STDOUT_FILENO &&
4187
                        i != STDERR_FILENO &&
4188
                        i != fd)
4189
                        close(i);
4190

    
4191
                parg = args;
4192
                *parg++ = (char *)setup_script;
4193
                *parg++ = (char *)ifname;
4194
                *parg++ = NULL;
4195
                execv(setup_script, args);
4196
                _exit(1);
4197
            }
4198
            while (waitpid(pid, &status, 0) != pid);
4199
            if (!WIFEXITED(status) ||
4200
                WEXITSTATUS(status) != 0) {
4201
                fprintf(stderr, "%s: could not launch network script\n",
4202
                        setup_script);
4203
                return -1;
4204
            }
4205
        }
4206
    return 0;
4207
}
4208

    
4209
static int net_tap_init(VLANState *vlan, const char *ifname1,
4210
                        const char *setup_script, const char *down_script)
4211
{
4212
    TAPState *s;
4213
    int fd;
4214
    char ifname[128];
4215

    
4216
    if (ifname1 != NULL)
4217
        pstrcpy(ifname, sizeof(ifname), ifname1);
4218
    else
4219
        ifname[0] = '\0';
4220
    TFR(fd = tap_open(ifname, sizeof(ifname)));
4221
    if (fd < 0)
4222
        return -1;
4223

    
4224
    if (!setup_script || !strcmp(setup_script, "no"))
4225
        setup_script = "";
4226
    if (setup_script[0] != '\0') {
4227
        if (launch_script(setup_script, ifname, fd))
4228
            return -1;
4229
    }
4230
    s = net_tap_fd_init(vlan, fd);
4231
    if (!s)
4232
        return -1;
4233
    snprintf(s->vc->info_str, sizeof(s->vc->info_str),
4234
             "tap: ifname=%s setup_script=%s", ifname, setup_script);
4235
    if (down_script && strcmp(down_script, "no"))
4236
        snprintf(s->down_script, sizeof(s->down_script), "%s", down_script);
4237
    return 0;
4238
}
4239

    
4240
#endif /* !_WIN32 */
4241

    
4242
/* network connection */
4243
typedef struct NetSocketState {
4244
    VLANClientState *vc;
4245
    int fd;
4246
    int state; /* 0 = getting length, 1 = getting data */
4247
    int index;
4248
    int packet_len;
4249
    uint8_t buf[4096];
4250
    struct sockaddr_in dgram_dst; /* contains inet host and port destination iff connectionless (SOCK_DGRAM) */
4251
} NetSocketState;
4252

    
4253
typedef struct NetSocketListenState {
4254
    VLANState *vlan;
4255
    int fd;
4256
} NetSocketListenState;
4257

    
4258
/* XXX: we consider we can send the whole packet without blocking */
4259
static void net_socket_receive(void *opaque, const uint8_t *buf, int size)
4260
{
4261
    NetSocketState *s = opaque;
4262
    uint32_t len;
4263
    len = htonl(size);
4264

    
4265
    send_all(s->fd, (const uint8_t *)&len, sizeof(len));
4266
    send_all(s->fd, buf, size);
4267
}
4268

    
4269
static void net_socket_receive_dgram(void *opaque, const uint8_t *buf, int size)
4270
{
4271
    NetSocketState *s = opaque;
4272
    sendto(s->fd, buf, size, 0,
4273
           (struct sockaddr *)&s->dgram_dst, sizeof(s->dgram_dst));
4274
}
4275

    
4276
static void net_socket_send(void *opaque)
4277
{
4278
    NetSocketState *s = opaque;
4279
    int l, size, err;
4280
    uint8_t buf1[4096];
4281
    const uint8_t *buf;
4282

    
4283
    size = recv(s->fd, buf1, sizeof(buf1), 0);
4284
    if (size < 0) {
4285
        err = socket_error();
4286
        if (err != EWOULDBLOCK)
4287
            goto eoc;
4288
    } else if (size == 0) {
4289
        /* end of connection */
4290
    eoc:
4291
        qemu_set_fd_handler(s->fd, NULL, NULL, NULL);
4292
        closesocket(s->fd);
4293
        return;
4294
    }
4295
    buf = buf1;
4296
    while (size > 0) {
4297
        /* reassemble a packet from the network */
4298
        switch(s->state) {
4299
        case 0:
4300
            l = 4 - s->index;
4301
            if (l > size)
4302
                l = size;
4303
            memcpy(s->buf + s->index, buf, l);
4304
            buf += l;
4305
            size -= l;
4306
            s->index += l;
4307
            if (s->index == 4) {
4308
                /* got length */
4309
                s->packet_len = ntohl(*(uint32_t *)s->buf);
4310
                s->index = 0;
4311
                s->state = 1;
4312
            }
4313
            break;
4314
        case 1:
4315
            l = s->packet_len - s->index;
4316
            if (l > size)
4317
                l = size;
4318
            memcpy(s->buf + s->index, buf, l);
4319
            s->index += l;
4320
            buf += l;
4321
            size -= l;
4322
            if (s->index >= s->packet_len) {
4323
                qemu_send_packet(s->vc, s->buf, s->packet_len);
4324
                s->index = 0;
4325
                s->state = 0;
4326
            }
4327
            break;
4328
        }
4329
    }
4330
}
4331

    
4332
static void net_socket_send_dgram(void *opaque)
4333
{
4334
    NetSocketState *s = opaque;
4335
    int size;
4336

    
4337
    size = recv(s->fd, s->buf, sizeof(s->buf), 0);
4338
    if (size < 0)
4339
        return;
4340
    if (size == 0) {
4341
        /* end of connection */
4342
        qemu_set_fd_handler(s->fd, NULL, NULL, NULL);
4343
        return;
4344
    }
4345
    qemu_send_packet(s->vc, s->buf, size);
4346
}
4347

    
4348
static int net_socket_mcast_create(struct sockaddr_in *mcastaddr)
4349
{
4350
    struct ip_mreq imr;
4351
    int fd;
4352
    int val, ret;
4353
    if (!IN_MULTICAST(ntohl(mcastaddr->sin_addr.s_addr))) {
4354
        fprintf(stderr, "qemu: error: specified mcastaddr \"%s\" (0x%08x) does not contain a multicast address\n",
4355
                inet_ntoa(mcastaddr->sin_addr),
4356
                (int)ntohl(mcastaddr->sin_addr.s_addr));
4357
        return -1;
4358

    
4359
    }
4360
    fd = socket(PF_INET, SOCK_DGRAM, 0);
4361
    if (fd < 0) {
4362
        perror("socket(PF_INET, SOCK_DGRAM)");
4363
        return -1;
4364
    }
4365

    
4366
    val = 1;
4367
    ret=setsockopt(fd, SOL_SOCKET, SO_REUSEADDR,
4368
                   (const char *)&val, sizeof(val));
4369
    if (ret < 0) {
4370
        perror("setsockopt(SOL_SOCKET, SO_REUSEADDR)");
4371
        goto fail;
4372
    }
4373

    
4374
    ret = bind(fd, (struct sockaddr *)mcastaddr, sizeof(*mcastaddr));
4375
    if (ret < 0) {
4376
        perror("bind");
4377
        goto fail;
4378
    }
4379

    
4380
    /* Add host to multicast group */
4381
    imr.imr_multiaddr = mcastaddr->sin_addr;
4382
    imr.imr_interface.s_addr = htonl(INADDR_ANY);
4383

    
4384
    ret = setsockopt(fd, IPPROTO_IP, IP_ADD_MEMBERSHIP,
4385
                     (const char *)&imr, sizeof(struct ip_mreq));
4386
    if (ret < 0) {
4387
        perror("setsockopt(IP_ADD_MEMBERSHIP)");
4388
        goto fail;
4389
    }
4390

    
4391
    /* Force mcast msgs to loopback (eg. several QEMUs in same host */
4392
    val = 1;
4393
    ret=setsockopt(fd, IPPROTO_IP, IP_MULTICAST_LOOP,
4394
                   (const char *)&val, sizeof(val));
4395
    if (ret < 0) {
4396
        perror("setsockopt(SOL_IP, IP_MULTICAST_LOOP)");
4397
        goto fail;
4398
    }
4399

    
4400
    socket_set_nonblock(fd);
4401
    return fd;
4402
fail:
4403
    if (fd >= 0)
4404
        closesocket(fd);
4405
    return -1;
4406
}
4407

    
4408
static NetSocketState *net_socket_fd_init_dgram(VLANState *vlan, int fd,
4409
                                          int is_connected)
4410
{
4411
    struct sockaddr_in saddr;
4412
    int newfd;
4413
    socklen_t saddr_len;
4414
    NetSocketState *s;
4415

    
4416
    /* fd passed: multicast: "learn" dgram_dst address from bound address and save it
4417
     * Because this may be "shared" socket from a "master" process, datagrams would be recv()
4418
     * by ONLY ONE process: we must "clone" this dgram socket --jjo
4419
     */
4420

    
4421
    if (is_connected) {
4422
        if (getsockname(fd, (struct sockaddr *) &saddr, &saddr_len) == 0) {
4423
            /* must be bound */
4424
            if (saddr.sin_addr.s_addr==0) {
4425
                fprintf(stderr, "qemu: error: init_dgram: fd=%d unbound, cannot setup multicast dst addr\n",
4426
                        fd);
4427
                return NULL;
4428
            }
4429
            /* clone dgram socket */
4430
            newfd = net_socket_mcast_create(&saddr);
4431
            if (newfd < 0) {
4432
                /* error already reported by net_socket_mcast_create() */
4433
                close(fd);
4434
                return NULL;
4435
            }
4436
            /* clone newfd to fd, close newfd */
4437
            dup2(newfd, fd);
4438
            close(newfd);
4439

    
4440
        } else {
4441
            fprintf(stderr, "qemu: error: init_dgram: fd=%d failed getsockname(): %s\n",
4442
                    fd, strerror(errno));
4443
            return NULL;
4444
        }
4445
    }
4446

    
4447
    s = qemu_mallocz(sizeof(NetSocketState));
4448
    if (!s)
4449
        return NULL;
4450
    s->fd = fd;
4451

    
4452
    s->vc = qemu_new_vlan_client(vlan, net_socket_receive_dgram, NULL, s);
4453
    qemu_set_fd_handler(s->fd, net_socket_send_dgram, NULL, s);
4454

    
4455
    /* mcast: save bound address as dst */
4456
    if (is_connected) s->dgram_dst=saddr;
4457

    
4458
    snprintf(s->vc->info_str, sizeof(s->vc->info_str),
4459
            "socket: fd=%d (%s mcast=%s:%d)",
4460
            fd, is_connected? "cloned" : "",
4461
            inet_ntoa(saddr.sin_addr), ntohs(saddr.sin_port));
4462
    return s;
4463
}
4464

    
4465
static void net_socket_connect(void *opaque)
4466
{
4467
    NetSocketState *s = opaque;
4468
    qemu_set_fd_handler(s->fd, net_socket_send, NULL, s);
4469
}
4470

    
4471
static NetSocketState *net_socket_fd_init_stream(VLANState *vlan, int fd,
4472
                                          int is_connected)
4473
{
4474
    NetSocketState *s;
4475
    s = qemu_mallocz(sizeof(NetSocketState));
4476
    if (!s)
4477
        return NULL;
4478
    s->fd = fd;
4479
    s->vc = qemu_new_vlan_client(vlan,
4480
                                 net_socket_receive, NULL, s);
4481
    snprintf(s->vc->info_str, sizeof(s->vc->info_str),
4482
             "socket: fd=%d", fd);
4483
    if (is_connected) {
4484
        net_socket_connect(s);
4485
    } else {
4486
        qemu_set_fd_handler(s->fd, NULL, net_socket_connect, s);
4487
    }
4488
    return s;
4489
}
4490

    
4491
static NetSocketState *net_socket_fd_init(VLANState *vlan, int fd,
4492
                                          int is_connected)
4493
{
4494
    int so_type=-1, optlen=sizeof(so_type);
4495

    
4496
    if(getsockopt(fd, SOL_SOCKET, SO_TYPE, (char *)&so_type,
4497
        (socklen_t *)&optlen)< 0) {
4498
        fprintf(stderr, "qemu: error: getsockopt(SO_TYPE) for fd=%d failed\n", fd);
4499
        return NULL;
4500
    }
4501
    switch(so_type) {
4502
    case SOCK_DGRAM:
4503
        return net_socket_fd_init_dgram(vlan, fd, is_connected);
4504
    case SOCK_STREAM:
4505
        return net_socket_fd_init_stream(vlan, fd, is_connected);
4506
    default:
4507
        /* who knows ... this could be a eg. a pty, do warn and continue as stream */
4508
        fprintf(stderr, "qemu: warning: socket type=%d for fd=%d is not SOCK_DGRAM or SOCK_STREAM\n", so_type, fd);
4509
        return net_socket_fd_init_stream(vlan, fd, is_connected);
4510
    }
4511
    return NULL;
4512
}
4513

    
4514
static void net_socket_accept(void *opaque)
4515
{
4516
    NetSocketListenState *s = opaque;
4517
    NetSocketState *s1;
4518
    struct sockaddr_in saddr;
4519
    socklen_t len;
4520
    int fd;
4521

    
4522
    for(;;) {
4523
        len = sizeof(saddr);
4524
        fd = accept(s->fd, (struct sockaddr *)&saddr, &len);
4525
        if (fd < 0 && errno != EINTR) {
4526
            return;
4527
        } else if (fd >= 0) {
4528
            break;
4529
        }
4530
    }
4531
    s1 = net_socket_fd_init(s->vlan, fd, 1);
4532
    if (!s1) {
4533
        closesocket(fd);
4534
    } else {
4535
        snprintf(s1->vc->info_str, sizeof(s1->vc->info_str),
4536
                 "socket: connection from %s:%d",
4537
                 inet_ntoa(saddr.sin_addr), ntohs(saddr.sin_port));
4538
    }
4539
}
4540

    
4541
static int net_socket_listen_init(VLANState *vlan, const char *host_str)
4542
{
4543
    NetSocketListenState *s;
4544
    int fd, val, ret;
4545
    struct sockaddr_in saddr;
4546

    
4547
    if (parse_host_port(&saddr, host_str) < 0)
4548
        return -1;
4549

    
4550
    s = qemu_mallocz(sizeof(NetSocketListenState));
4551
    if (!s)
4552
        return -1;
4553

    
4554
    fd = socket(PF_INET, SOCK_STREAM, 0);
4555
    if (fd < 0) {
4556
        perror("socket");
4557
        return -1;
4558
    }
4559
    socket_set_nonblock(fd);
4560

    
4561
    /* allow fast reuse */
4562
    val = 1;
4563
    setsockopt(fd, SOL_SOCKET, SO_REUSEADDR, (const char *)&val, sizeof(val));
4564

    
4565
    ret = bind(fd, (struct sockaddr *)&saddr, sizeof(saddr));
4566
    if (ret < 0) {
4567
        perror("bind");
4568
        return -1;
4569
    }
4570
    ret = listen(fd, 0);
4571
    if (ret < 0) {
4572
        perror("listen");
4573
        return -1;
4574
    }
4575
    s->vlan = vlan;
4576
    s->fd = fd;
4577
    qemu_set_fd_handler(fd, net_socket_accept, NULL, s);
4578
    return 0;
4579
}
4580

    
4581
static int net_socket_connect_init(VLANState *vlan, const char *host_str)
4582
{
4583
    NetSocketState *s;
4584
    int fd, connected, ret, err;
4585
    struct sockaddr_in saddr;
4586

    
4587
    if (parse_host_port(&saddr, host_str) < 0)
4588
        return -1;
4589

    
4590
    fd = socket(PF_INET, SOCK_STREAM, 0);
4591
    if (fd < 0) {
4592
        perror("socket");
4593
        return -1;
4594
    }
4595
    socket_set_nonblock(fd);
4596

    
4597
    connected = 0;
4598
    for(;;) {
4599
        ret = connect(fd, (struct sockaddr *)&saddr, sizeof(saddr));
4600
        if (ret < 0) {
4601
            err = socket_error();
4602
            if (err == EINTR || err == EWOULDBLOCK) {
4603
            } else if (err == EINPROGRESS) {
4604
                break;
4605
#ifdef _WIN32
4606
            } else if (err == WSAEALREADY) {
4607
                break;
4608
#endif
4609
            } else {
4610
                perror("connect");
4611
                closesocket(fd);
4612
                return -1;
4613
            }
4614
        } else {
4615
            connected = 1;
4616
            break;
4617
        }
4618
    }
4619
    s = net_socket_fd_init(vlan, fd, connected);
4620
    if (!s)
4621
        return -1;
4622
    snprintf(s->vc->info_str, sizeof(s->vc->info_str),
4623
             "socket: connect to %s:%d",
4624
             inet_ntoa(saddr.sin_addr), ntohs(saddr.sin_port));
4625
    return 0;
4626
}
4627

    
4628
static int net_socket_mcast_init(VLANState *vlan, const char *host_str)
4629
{
4630
    NetSocketState *s;
4631
    int fd;
4632
    struct sockaddr_in saddr;
4633

    
4634
    if (parse_host_port(&saddr, host_str) < 0)
4635
        return -1;
4636

    
4637

    
4638
    fd = net_socket_mcast_create(&saddr);
4639
    if (fd < 0)
4640
        return -1;
4641

    
4642
    s = net_socket_fd_init(vlan, fd, 0);
4643
    if (!s)
4644
        return -1;
4645

    
4646
    s->dgram_dst = saddr;
4647

    
4648
    snprintf(s->vc->info_str, sizeof(s->vc->info_str),
4649
             "socket: mcast=%s:%d",
4650
             inet_ntoa(saddr.sin_addr), ntohs(saddr.sin_port));
4651
    return 0;
4652

    
4653
}
4654

    
4655
static const char *get_opt_name(char *buf, int buf_size, const char *p)
4656
{
4657
    char *q;
4658

    
4659
    q = buf;
4660
    while (*p != '\0' && *p != '=') {
4661
        if (q && (q - buf) < buf_size - 1)
4662
            *q++ = *p;
4663
        p++;
4664
    }
4665
    if (q)
4666
        *q = '\0';
4667

    
4668
    return p;
4669
}
4670

    
4671
static const char *get_opt_value(char *buf, int buf_size, const char *p)
4672
{
4673
    char *q;
4674

    
4675
    q = buf;
4676
    while (*p != '\0') {
4677
        if (*p == ',') {
4678
            if (*(p + 1) != ',')
4679
                break;
4680
            p++;
4681
        }
4682
        if (q && (q - buf) < buf_size - 1)
4683
            *q++ = *p;
4684
        p++;
4685
    }
4686
    if (q)
4687
        *q = '\0';
4688

    
4689
    return p;
4690
}
4691

    
4692
static int get_param_value(char *buf, int buf_size,
4693
                           const char *tag, const char *str)
4694
{
4695
    const char *p;
4696
    char option[128];
4697

    
4698
    p = str;
4699
    for(;;) {
4700
        p = get_opt_name(option, sizeof(option), p);
4701
        if (*p != '=')
4702
            break;
4703
        p++;
4704
        if (!strcmp(tag, option)) {
4705
            (void)get_opt_value(buf, buf_size, p);
4706
            return strlen(buf);
4707
        } else {
4708
            p = get_opt_value(NULL, 0, p);
4709
        }
4710
        if (*p != ',')
4711
            break;
4712
        p++;
4713
    }
4714
    return 0;
4715
}
4716

    
4717
static int check_params(char *buf, int buf_size,
4718
                        char **params, const char *str)
4719
{
4720
    const char *p;
4721
    int i;
4722

    
4723
    p = str;
4724
    for(;;) {
4725
        p = get_opt_name(buf, buf_size, p);
4726
        if (*p != '=')
4727
            return -1;
4728
        p++;
4729
        for(i = 0; params[i] != NULL; i++)
4730
            if (!strcmp(params[i], buf))
4731
                break;
4732
        if (params[i] == NULL)
4733
            return -1;
4734
        p = get_opt_value(NULL, 0, p);
4735
        if (*p != ',')
4736
            break;
4737
        p++;
4738
    }
4739
    return 0;
4740
}
4741

    
4742

    
4743
static int net_client_init(const char *str)
4744
{
4745
    const char *p;
4746
    char *q;
4747
    char device[64];
4748
    char buf[1024];
4749
    int vlan_id, ret;
4750
    VLANState *vlan;
4751

    
4752
    p = str;
4753
    q = device;
4754
    while (*p != '\0' && *p != ',') {
4755
        if ((q - device) < sizeof(device) - 1)
4756
            *q++ = *p;
4757
        p++;
4758
    }
4759
    *q = '\0';
4760
    if (*p == ',')
4761
        p++;
4762
    vlan_id = 0;
4763
    if (get_param_value(buf, sizeof(buf), "vlan", p)) {
4764
        vlan_id = strtol(buf, NULL, 0);
4765
    }
4766
    vlan = qemu_find_vlan(vlan_id);
4767
    if (!vlan) {
4768
        fprintf(stderr, "Could not create vlan %d\n", vlan_id);
4769
        return -1;
4770
    }
4771
    if (!strcmp(device, "nic")) {
4772
        NICInfo *nd;
4773
        uint8_t *macaddr;
4774

    
4775
        if (nb_nics >= MAX_NICS) {
4776
            fprintf(stderr, "Too Many NICs\n");
4777
            return -1;
4778
        }
4779
        nd = &nd_table[nb_nics];
4780
        macaddr = nd->macaddr;
4781
        macaddr[0] = 0x52;
4782
        macaddr[1] = 0x54;
4783
        macaddr[2] = 0x00;
4784
        macaddr[3] = 0x12;
4785
        macaddr[4] = 0x34;
4786
        macaddr[5] = 0x56 + nb_nics;
4787

    
4788
        if (get_param_value(buf, sizeof(buf), "macaddr", p)) {
4789
            if (parse_macaddr(macaddr, buf) < 0) {
4790
                fprintf(stderr, "invalid syntax for ethernet address\n");
4791
                return -1;
4792
            }
4793
        }
4794
        if (get_param_value(buf, sizeof(buf), "model", p)) {
4795
            nd->model = strdup(buf);
4796
        }
4797
        nd->vlan = vlan;
4798
        nb_nics++;
4799
        vlan->nb_guest_devs++;
4800
        ret = 0;
4801
    } else
4802
    if (!strcmp(device, "none")) {
4803
        /* does nothing. It is needed to signal that no network cards
4804
           are wanted */
4805
        ret = 0;
4806
    } else
4807
#ifdef CONFIG_SLIRP
4808
    if (!strcmp(device, "user")) {
4809
        if (get_param_value(buf, sizeof(buf), "hostname", p)) {
4810
            pstrcpy(slirp_hostname, sizeof(slirp_hostname), buf);
4811
        }
4812
        vlan->nb_host_devs++;
4813
        ret = net_slirp_init(vlan);
4814
    } else
4815
#endif
4816
#ifdef _WIN32
4817
    if (!strcmp(device, "tap")) {
4818
        char ifname[64];
4819
        if (get_param_value(ifname, sizeof(ifname), "ifname", p) <= 0) {
4820
            fprintf(stderr, "tap: no interface name\n");
4821
            return -1;
4822
        }
4823
        vlan->nb_host_devs++;
4824
        ret = tap_win32_init(vlan, ifname);
4825
    } else
4826
#else
4827
    if (!strcmp(device, "tap")) {
4828
        char ifname[64];
4829
        char setup_script[1024], down_script[1024];
4830
        int fd;
4831
        vlan->nb_host_devs++;
4832
        if (get_param_value(buf, sizeof(buf), "fd", p) > 0) {
4833
            fd = strtol(buf, NULL, 0);
4834
            fcntl(fd, F_SETFL, O_NONBLOCK);
4835
            ret = -1;
4836
            if (net_tap_fd_init(vlan, fd))
4837
                ret = 0;
4838
        } else {
4839
            if (get_param_value(ifname, sizeof(ifname), "ifname", p) <= 0) {
4840
                ifname[0] = '\0';
4841
            }
4842
            if (get_param_value(setup_script, sizeof(setup_script), "script", p) == 0) {
4843
                pstrcpy(setup_script, sizeof(setup_script), DEFAULT_NETWORK_SCRIPT);
4844
            }
4845
            if (get_param_value(down_script, sizeof(down_script), "downscript", p) == 0) {
4846
                pstrcpy(down_script, sizeof(down_script), DEFAULT_NETWORK_DOWN_SCRIPT);
4847
            }
4848
            ret = net_tap_init(vlan, ifname, setup_script, down_script);
4849
        }
4850
    } else
4851
#endif
4852
    if (!strcmp(device, "socket")) {
4853
        if (get_param_value(buf, sizeof(buf), "fd", p) > 0) {
4854
            int fd;
4855
            fd = strtol(buf, NULL, 0);
4856
            ret = -1;
4857
            if (net_socket_fd_init(vlan, fd, 1))
4858
                ret = 0;
4859
        } else if (get_param_value(buf, sizeof(buf), "listen", p) > 0) {
4860
            ret = net_socket_listen_init(vlan, buf);
4861
        } else if (get_param_value(buf, sizeof(buf), "connect", p) > 0) {
4862
            ret = net_socket_connect_init(vlan, buf);
4863
        } else if (get_param_value(buf, sizeof(buf), "mcast", p) > 0) {
4864
            ret = net_socket_mcast_init(vlan, buf);
4865
        } else {
4866
            fprintf(stderr, "Unknown socket options: %s\n", p);
4867
            return -1;
4868
        }
4869
        vlan->nb_host_devs++;
4870
    } else
4871
    {
4872
        fprintf(stderr, "Unknown network device: %s\n", device);
4873
        return -1;
4874
    }
4875
    if (ret < 0) {
4876
        fprintf(stderr, "Could not initialize device '%s'\n", device);
4877
    }
4878

    
4879
    return ret;
4880
}
4881

    
4882
void do_info_network(void)
4883
{
4884
    VLANState *vlan;
4885
    VLANClientState *vc;
4886

    
4887
    for(vlan = first_vlan; vlan != NULL; vlan = vlan->next) {
4888
        term_printf("VLAN %d devices:\n", vlan->id);
4889
        for(vc = vlan->first_client; vc != NULL; vc = vc->next)
4890
            term_printf("  %s\n", vc->info_str);
4891
    }
4892
}
4893

    
4894
#define HD_ALIAS "index=%d,media=disk"
4895
#ifdef TARGET_PPC
4896
#define CDROM_ALIAS "index=1,media=cdrom"
4897
#else
4898
#define CDROM_ALIAS "index=2,media=cdrom"
4899
#endif
4900
#define FD_ALIAS "index=%d,if=floppy"
4901
#define PFLASH_ALIAS "if=pflash"
4902
#define MTD_ALIAS "if=mtd"
4903
#define SD_ALIAS "index=0,if=sd"
4904

    
4905
static int drive_add(const char *file, const char *fmt, ...)
4906
{
4907
    va_list ap;
4908

    
4909
    if (nb_drives_opt >= MAX_DRIVES) {
4910
        fprintf(stderr, "qemu: too many drives\n");
4911
        exit(1);
4912
    }
4913

    
4914
    drives_opt[nb_drives_opt].file = file;
4915
    va_start(ap, fmt);
4916
    vsnprintf(drives_opt[nb_drives_opt].opt,
4917
              sizeof(drives_opt[0].opt), fmt, ap);
4918
    va_end(ap);
4919

    
4920
    return nb_drives_opt++;
4921
}
4922

    
4923
int drive_get_index(BlockInterfaceType type, int bus, int unit)
4924
{
4925
    int index;
4926

    
4927
    /* seek interface, bus and unit */
4928

    
4929
    for (index = 0; index < nb_drives; index++)
4930
        if (drives_table[index].type == type &&
4931
            drives_table[index].bus == bus &&
4932
            drives_table[index].unit == unit)
4933
        return index;
4934

    
4935
    return -1;
4936
}
4937

    
4938
int drive_get_max_bus(BlockInterfaceType type)
4939
{
4940
    int max_bus;
4941
    int index;
4942

    
4943
    max_bus = -1;
4944
    for (index = 0; index < nb_drives; index++) {
4945
        if(drives_table[index].type == type &&
4946
           drives_table[index].bus > max_bus)
4947
            max_bus = drives_table[index].bus;
4948
    }
4949
    return max_bus;
4950
}
4951

    
4952
static int drive_init(struct drive_opt *arg, int snapshot,
4953
                      QEMUMachine *machine)
4954
{
4955
    char buf[128];
4956
    char file[1024];
4957
    char devname[128];
4958
    const char *mediastr = "";
4959
    BlockInterfaceType type;
4960
    enum { MEDIA_DISK, MEDIA_CDROM } media;
4961
    int bus_id, unit_id;
4962
    int cyls, heads, secs, translation;
4963
    BlockDriverState *bdrv;
4964
    int max_devs;
4965
    int index;
4966
    int cache;
4967
    int bdrv_flags;
4968
    char *str = arg->opt;
4969
    char *params[] = { "bus", "unit", "if", "index", "cyls", "heads",
4970
                       "secs", "trans", "media", "snapshot", "file",
4971
                       "cache", NULL };
4972

    
4973
    if (check_params(buf, sizeof(buf), params, str) < 0) {
4974
         fprintf(stderr, "qemu: unknown parameter '%s' in '%s'\n",
4975
                         buf, str);
4976
         return -1;
4977
    }
4978

    
4979
    file[0] = 0;
4980
    cyls = heads = secs = 0;
4981
    bus_id = 0;
4982
    unit_id = -1;
4983
    translation = BIOS_ATA_TRANSLATION_AUTO;
4984
    index = -1;
4985
    cache = 1;
4986

    
4987
    if (!strcmp(machine->name, "realview") ||
4988
        !strcmp(machine->name, "SS-5") ||
4989
        !strcmp(machine->name, "SS-10") ||
4990
        !strcmp(machine->name, "SS-600MP") ||
4991
        !strcmp(machine->name, "versatilepb") ||
4992
        !strcmp(machine->name, "versatileab")) {
4993
        type = IF_SCSI;
4994
        max_devs = MAX_SCSI_DEVS;
4995
        strcpy(devname, "scsi");
4996
    } else {
4997
        type = IF_IDE;
4998
        max_devs = MAX_IDE_DEVS;
4999
        strcpy(devname, "ide");
5000
    }
5001
    media = MEDIA_DISK;
5002

    
5003
    /* extract parameters */
5004

    
5005
    if (get_param_value(buf, sizeof(buf), "bus", str)) {
5006
        bus_id = strtol(buf, NULL, 0);
5007
        if (bus_id < 0) {
5008
            fprintf(stderr, "qemu: '%s' invalid bus id\n", str);
5009
            return -1;
5010
        }
5011
    }
5012

    
5013
    if (get_param_value(buf, sizeof(buf), "unit", str)) {
5014
        unit_id = strtol(buf, NULL, 0);
5015
        if (unit_id < 0) {
5016
            fprintf(stderr, "qemu: '%s' invalid unit id\n", str);
5017
            return -1;
5018
        }
5019
    }
5020

    
5021
    if (get_param_value(buf, sizeof(buf), "if", str)) {
5022
        strncpy(devname, buf, sizeof(devname));
5023
        if (!strcmp(buf, "ide")) {
5024
            type = IF_IDE;
5025
            max_devs = MAX_IDE_DEVS;
5026
        } else if (!strcmp(buf, "scsi")) {
5027
            type = IF_SCSI;
5028
            max_devs = MAX_SCSI_DEVS;
5029
        } else if (!strcmp(buf, "floppy")) {
5030
            type = IF_FLOPPY;
5031
            max_devs = 0;
5032
        } else if (!strcmp(buf, "pflash")) {
5033
            type = IF_PFLASH;
5034
            max_devs = 0;
5035
        } else if (!strcmp(buf, "mtd")) {
5036
            type = IF_MTD;
5037
            max_devs = 0;
5038
        } else if (!strcmp(buf, "sd")) {
5039
            type = IF_SD;
5040
            max_devs = 0;
5041
        } else {
5042
            fprintf(stderr, "qemu: '%s' unsupported bus type '%s'\n", str, buf);
5043
            return -1;
5044
        }
5045
    }
5046

    
5047
    if (get_param_value(buf, sizeof(buf), "index", str)) {
5048
        index = strtol(buf, NULL, 0);
5049
        if (index < 0) {
5050
            fprintf(stderr, "qemu: '%s' invalid index\n", str);
5051
            return -1;
5052
        }
5053
    }
5054

    
5055
    if (get_param_value(buf, sizeof(buf), "cyls", str)) {
5056
        cyls = strtol(buf, NULL, 0);
5057
    }
5058

    
5059
    if (get_param_value(buf, sizeof(buf), "heads", str)) {
5060
        heads = strtol(buf, NULL, 0);
5061
    }
5062

    
5063
    if (get_param_value(buf, sizeof(buf), "secs", str)) {
5064
        secs = strtol(buf, NULL, 0);
5065
    }
5066

    
5067
    if (cyls || heads || secs) {
5068
        if (cyls < 1 || cyls > 16383) {
5069
            fprintf(stderr, "qemu: '%s' invalid physical cyls number\n", str);
5070
            return -1;
5071
        }
5072
        if (heads < 1 || heads > 16) {
5073
            fprintf(stderr, "qemu: '%s' invalid physical heads number\n", str);
5074
            return -1;
5075
        }
5076
        if (secs < 1 || secs > 63) {
5077
            fprintf(stderr, "qemu: '%s' invalid physical secs number\n", str);
5078
            return -1;
5079
        }
5080
    }
5081

    
5082
    if (get_param_value(buf, sizeof(buf), "trans", str)) {
5083
        if (!cyls) {
5084
            fprintf(stderr,
5085
                    "qemu: '%s' trans must be used with cyls,heads and secs\n",
5086
                    str);
5087
            return -1;
5088
        }
5089
        if (!strcmp(buf, "none"))
5090
            translation = BIOS_ATA_TRANSLATION_NONE;
5091
        else if (!strcmp(buf, "lba"))
5092
            translation = BIOS_ATA_TRANSLATION_LBA;
5093
        else if (!strcmp(buf, "auto"))
5094
            translation = BIOS_ATA_TRANSLATION_AUTO;
5095
        else {
5096
            fprintf(stderr, "qemu: '%s' invalid translation type\n", str);
5097
            return -1;
5098
        }
5099
    }
5100

    
5101
    if (get_param_value(buf, sizeof(buf), "media", str)) {
5102
        if (!strcmp(buf, "disk")) {
5103
            media = MEDIA_DISK;
5104
        } else if (!strcmp(buf, "cdrom")) {
5105
            if (cyls || secs || heads) {
5106
                fprintf(stderr,
5107
                        "qemu: '%s' invalid physical CHS format\n", str);
5108
                return -1;
5109
            }
5110
            media = MEDIA_CDROM;
5111
        } else {
5112
            fprintf(stderr, "qemu: '%s' invalid media\n", str);
5113
            return -1;
5114
        }
5115
    }
5116

    
5117
    if (get_param_value(buf, sizeof(buf), "snapshot", str)) {
5118
        if (!strcmp(buf, "on"))
5119
            snapshot = 1;
5120
        else if (!strcmp(buf, "off"))
5121
            snapshot = 0;
5122
        else {
5123
            fprintf(stderr, "qemu: '%s' invalid snapshot option\n", str);
5124
            return -1;
5125
        }
5126
    }
5127

    
5128
    if (get_param_value(buf, sizeof(buf), "cache", str)) {
5129
        if (!strcmp(buf, "off"))
5130
            cache = 0;
5131
        else if (!strcmp(buf, "on"))
5132
            cache = 1;
5133
        else {
5134
           fprintf(stderr, "qemu: invalid cache option\n");
5135
           return -1;
5136
        }
5137
    }
5138

    
5139
    if (arg->file == NULL)
5140
        get_param_value(file, sizeof(file), "file", str);
5141
    else
5142
        pstrcpy(file, sizeof(file), arg->file);
5143

    
5144
    /* compute bus and unit according index */
5145

    
5146
    if (index != -1) {
5147
        if (bus_id != 0 || unit_id != -1) {
5148
            fprintf(stderr,
5149
                    "qemu: '%s' index cannot be used with bus and unit\n", str);
5150
            return -1;
5151
        }
5152
        if (max_devs == 0)
5153
        {
5154
            unit_id = index;
5155
            bus_id = 0;
5156
        } else {
5157
            unit_id = index % max_devs;
5158
            bus_id = index / max_devs;
5159
        }
5160
    }
5161

    
5162
    /* if user doesn't specify a unit_id,
5163
     * try to find the first free
5164
     */
5165

    
5166
    if (unit_id == -1) {
5167
       unit_id = 0;
5168
       while (drive_get_index(type, bus_id, unit_id) != -1) {
5169
           unit_id++;
5170
           if (max_devs && unit_id >= max_devs) {
5171
               unit_id -= max_devs;
5172
               bus_id++;
5173
           }
5174
       }
5175
    }
5176

    
5177
    /* check unit id */
5178

    
5179
    if (max_devs && unit_id >= max_devs) {
5180
        fprintf(stderr, "qemu: '%s' unit %d too big (max is %d)\n",
5181
                        str, unit_id, max_devs - 1);
5182
        return -1;
5183
    }
5184

    
5185
    /*
5186
     * ignore multiple definitions
5187
     */
5188

    
5189
    if (drive_get_index(type, bus_id, unit_id) != -1)
5190
        return 0;
5191

    
5192
    /* init */
5193

    
5194
    if (type == IF_IDE || type == IF_SCSI)
5195
        mediastr = (media == MEDIA_CDROM) ? "-cd" : "-hd";
5196
    if (max_devs)
5197
        snprintf(buf, sizeof(buf), "%s%i%s%i",
5198
                 devname, bus_id, mediastr, unit_id);
5199
    else
5200
        snprintf(buf, sizeof(buf), "%s%s%i",
5201
                 devname, mediastr, unit_id);
5202
    bdrv = bdrv_new(buf);
5203
    drives_table[nb_drives].bdrv = bdrv;
5204
    drives_table[nb_drives].type = type;
5205
    drives_table[nb_drives].bus = bus_id;
5206
    drives_table[nb_drives].unit = unit_id;
5207
    nb_drives++;
5208

    
5209
    switch(type) {
5210
    case IF_IDE:
5211
    case IF_SCSI:
5212
        switch(media) {
5213
        case MEDIA_DISK:
5214
            if (cyls != 0) {
5215
                bdrv_set_geometry_hint(bdrv, cyls, heads, secs);
5216
                bdrv_set_translation_hint(bdrv, translation);
5217
            }
5218
            break;
5219
        case MEDIA_CDROM:
5220
            bdrv_set_type_hint(bdrv, BDRV_TYPE_CDROM);
5221
            break;
5222
        }
5223
        break;
5224
    case IF_SD:
5225
        /* FIXME: This isn't really a floppy, but it's a reasonable
5226
           approximation.  */
5227
    case IF_FLOPPY:
5228
        bdrv_set_type_hint(bdrv, BDRV_TYPE_FLOPPY);
5229
        break;
5230
    case IF_PFLASH:
5231
    case IF_MTD:
5232
        break;
5233
    }
5234
    if (!file[0])
5235
        return 0;
5236
    bdrv_flags = 0;
5237
    if (snapshot)
5238
        bdrv_flags |= BDRV_O_SNAPSHOT;
5239
    if (!cache)
5240
        bdrv_flags |= BDRV_O_DIRECT;
5241
    if (bdrv_open(bdrv, file, bdrv_flags) < 0 || qemu_key_check(bdrv, file)) {
5242
        fprintf(stderr, "qemu: could not open disk image %s\n",
5243
                        file);
5244
        return -1;
5245
    }
5246
    return 0;
5247
}
5248

    
5249
/***********************************************************/
5250
/* USB devices */
5251

    
5252
static USBPort *used_usb_ports;
5253
static USBPort *free_usb_ports;
5254

    
5255
/* ??? Maybe change this to register a hub to keep track of the topology.  */
5256
void qemu_register_usb_port(USBPort *port, void *opaque, int index,
5257
                            usb_attachfn attach)
5258
{
5259
    port->opaque = opaque;
5260
    port->index = index;
5261
    port->attach = attach;
5262
    port->next = free_usb_ports;
5263
    free_usb_ports = port;
5264
}
5265

    
5266
static int usb_device_add(const char *devname)
5267
{
5268
    const char *p;
5269
    USBDevice *dev;
5270
    USBPort *port;
5271

    
5272
    if (!free_usb_ports)
5273
        return -1;
5274

    
5275
    if (strstart(devname, "host:", &p)) {
5276
        dev = usb_host_device_open(p);
5277
    } else if (!strcmp(devname, "mouse")) {
5278
        dev = usb_mouse_init();
5279
    } else if (!strcmp(devname, "tablet")) {
5280
        dev = usb_tablet_init();
5281
    } else if (!strcmp(devname, "keyboard")) {
5282
        dev = usb_keyboard_init();
5283
    } else if (strstart(devname, "disk:", &p)) {
5284
        dev = usb_msd_init(p);
5285
    } else if (!strcmp(devname, "wacom-tablet")) {
5286
        dev = usb_wacom_init();
5287
    } else if (strstart(devname, "serial:", &p)) {
5288
        dev = usb_serial_init(p);
5289
#ifdef CONFIG_BRLAPI
5290
    } else if (!strcmp(devname, "braille")) {
5291
        dev = usb_baum_init();
5292
#endif
5293
    } else {
5294
        return -1;
5295
    }
5296
    if (!dev)
5297
        return -1;
5298

    
5299
    /* Find a USB port to add the device to.  */
5300
    port = free_usb_ports;
5301
    if (!port->next) {
5302
        USBDevice *hub;
5303

    
5304
        /* Create a new hub and chain it on.  */
5305
        free_usb_ports = NULL;
5306
        port->next = used_usb_ports;
5307
        used_usb_ports = port;
5308

    
5309
        hub = usb_hub_init(VM_USB_HUB_SIZE);
5310
        usb_attach(port, hub);
5311
        port = free_usb_ports;
5312
    }
5313

    
5314
    free_usb_ports = port->next;
5315
    port->next = used_usb_ports;
5316
    used_usb_ports = port;
5317
    usb_attach(port, dev);
5318
    return 0;
5319
}
5320

    
5321
static int usb_device_del(const char *devname)
5322
{
5323
    USBPort *port;
5324
    USBPort **lastp;
5325
    USBDevice *dev;
5326
    int bus_num, addr;
5327
    const char *p;
5328

    
5329
    if (!used_usb_ports)
5330
        return -1;
5331

    
5332
    p = strchr(devname, '.');
5333
    if (!p)
5334
        return -1;
5335
    bus_num = strtoul(devname, NULL, 0);
5336
    addr = strtoul(p + 1, NULL, 0);
5337
    if (bus_num != 0)
5338
        return -1;
5339

    
5340
    lastp = &used_usb_ports;
5341
    port = used_usb_ports;
5342
    while (port && port->dev->addr != addr) {
5343
        lastp = &port->next;
5344
        port = port->next;
5345
    }
5346

    
5347
    if (!port)
5348
        return -1;
5349

    
5350
    dev = port->dev;
5351
    *lastp = port->next;
5352
    usb_attach(port, NULL);
5353
    dev->handle_destroy(dev);
5354
    port->next = free_usb_ports;
5355
    free_usb_ports = port;
5356
    return 0;
5357
}
5358

    
5359
void do_usb_add(const char *devname)
5360
{
5361
    int ret;
5362
    ret = usb_device_add(devname);
5363
    if (ret < 0)
5364
        term_printf("Could not add USB device '%s'\n", devname);
5365
}
5366

    
5367
void do_usb_del(const char *devname)
5368
{
5369
    int ret;
5370
    ret = usb_device_del(devname);
5371
    if (ret < 0)
5372
        term_printf("Could not remove USB device '%s'\n", devname);
5373
}
5374

    
5375
void usb_info(void)
5376
{
5377
    USBDevice *dev;
5378
    USBPort *port;
5379
    const char *speed_str;
5380

    
5381
    if (!usb_enabled) {
5382
        term_printf("USB support not enabled\n");
5383
        return;
5384
    }
5385

    
5386
    for (port = used_usb_ports; port; port = port->next) {
5387
        dev = port->dev;
5388
        if (!dev)
5389
            continue;
5390
        switch(dev->speed) {
5391
        case USB_SPEED_LOW:
5392
            speed_str = "1.5";
5393
            break;
5394
        case USB_SPEED_FULL:
5395
            speed_str = "12";
5396
            break;
5397
        case USB_SPEED_HIGH:
5398
            speed_str = "480";
5399
            break;
5400
        default:
5401
            speed_str = "?";
5402
            break;
5403
        }
5404
        term_printf("  Device %d.%d, Speed %s Mb/s, Product %s\n",
5405
                    0, dev->addr, speed_str, dev->devname);
5406
    }
5407
}
5408

    
5409
/***********************************************************/
5410
/* PCMCIA/Cardbus */
5411

    
5412
static struct pcmcia_socket_entry_s {
5413
    struct pcmcia_socket_s *socket;
5414
    struct pcmcia_socket_entry_s *next;
5415
} *pcmcia_sockets = 0;
5416

    
5417
void pcmcia_socket_register(struct pcmcia_socket_s *socket)
5418
{
5419
    struct pcmcia_socket_entry_s *entry;
5420

    
5421
    entry = qemu_malloc(sizeof(struct pcmcia_socket_entry_s));
5422
    entry->socket = socket;
5423
    entry->next = pcmcia_sockets;
5424
    pcmcia_sockets = entry;
5425
}
5426

    
5427
void pcmcia_socket_unregister(struct pcmcia_socket_s *socket)
5428
{
5429
    struct pcmcia_socket_entry_s *entry, **ptr;
5430

    
5431
    ptr = &pcmcia_sockets;
5432
    for (entry = *ptr; entry; ptr = &entry->next, entry = *ptr)
5433
        if (entry->socket == socket) {
5434
            *ptr = entry->next;
5435
            qemu_free(entry);
5436
        }
5437
}
5438

    
5439
void pcmcia_info(void)
5440
{
5441
    struct pcmcia_socket_entry_s *iter;
5442
    if (!pcmcia_sockets)
5443
        term_printf("No PCMCIA sockets\n");
5444

    
5445
    for (iter = pcmcia_sockets; iter; iter = iter->next)
5446
        term_printf("%s: %s\n", iter->socket->slot_string,
5447
                    iter->socket->attached ? iter->socket->card_string :
5448
                    "Empty");
5449
}
5450

    
5451
/***********************************************************/
5452
/* dumb display */
5453

    
5454
static void dumb_update(DisplayState *ds, int x, int y, int w, int h)
5455
{
5456
}
5457

    
5458
static void dumb_resize(DisplayState *ds, int w, int h)
5459
{
5460
}
5461

    
5462
static void dumb_refresh(DisplayState *ds)
5463
{
5464
#if defined(CONFIG_SDL)
5465
    vga_hw_update();
5466
#endif
5467
}
5468

    
5469
static void dumb_display_init(DisplayState *ds)
5470
{
5471
    ds->data = NULL;
5472
    ds->linesize = 0;
5473
    ds->depth = 0;
5474
    ds->dpy_update = dumb_update;
5475
    ds->dpy_resize = dumb_resize;
5476
    ds->dpy_refresh = dumb_refresh;
5477
}
5478

    
5479
/***********************************************************/
5480
/* I/O handling */
5481

    
5482
#define MAX_IO_HANDLERS 64
5483

    
5484
typedef struct IOHandlerRecord {
5485
    int fd;
5486
    IOCanRWHandler *fd_read_poll;
5487
    IOHandler *fd_read;
5488
    IOHandler *fd_write;
5489
    int deleted;
5490
    void *opaque;
5491
    /* temporary data */
5492
    struct pollfd *ufd;
5493
    struct IOHandlerRecord *next;
5494
} IOHandlerRecord;
5495

    
5496
static IOHandlerRecord *first_io_handler;
5497

    
5498
/* XXX: fd_read_poll should be suppressed, but an API change is
5499
   necessary in the character devices to suppress fd_can_read(). */
5500
int qemu_set_fd_handler2(int fd,
5501
                         IOCanRWHandler *fd_read_poll,
5502
                         IOHandler *fd_read,
5503
                         IOHandler *fd_write,
5504
                         void *opaque)
5505
{
5506
    IOHandlerRecord **pioh, *ioh;
5507

    
5508
    if (!fd_read && !fd_write) {
5509
        pioh = &first_io_handler;
5510
        for(;;) {
5511
            ioh = *pioh;
5512
            if (ioh == NULL)
5513
                break;
5514
            if (ioh->fd == fd) {
5515
                ioh->deleted = 1;
5516
                break;
5517
            }
5518
            pioh = &ioh->next;
5519
        }
5520
    } else {
5521
        for(ioh = first_io_handler; ioh != NULL; ioh = ioh->next) {
5522
            if (ioh->fd == fd)
5523
                goto found;
5524
        }
5525
        ioh = qemu_mallocz(sizeof(IOHandlerRecord));
5526
        if (!ioh)
5527
            return -1;
5528
        ioh->next = first_io_handler;
5529
        first_io_handler = ioh;
5530
    found:
5531
        ioh->fd = fd;
5532
        ioh->fd_read_poll = fd_read_poll;
5533
        ioh->fd_read = fd_read;
5534
        ioh->fd_write = fd_write;
5535
        ioh->opaque = opaque;
5536
        ioh->deleted = 0;
5537
    }
5538
    return 0;
5539
}
5540

    
5541
int qemu_set_fd_handler(int fd,
5542
                        IOHandler *fd_read,
5543
                        IOHandler *fd_write,
5544
                        void *opaque)
5545
{
5546
    return qemu_set_fd_handler2(fd, NULL, fd_read, fd_write, opaque);
5547
}
5548

    
5549
/***********************************************************/
5550
/* Polling handling */
5551

    
5552
typedef struct PollingEntry {
5553
    PollingFunc *func;
5554
    void *opaque;
5555
    struct PollingEntry *next;
5556
} PollingEntry;
5557

    
5558
static PollingEntry *first_polling_entry;
5559

    
5560
int qemu_add_polling_cb(PollingFunc *func, void *opaque)
5561
{
5562
    PollingEntry **ppe, *pe;
5563
    pe = qemu_mallocz(sizeof(PollingEntry));
5564
    if (!pe)
5565
        return -1;
5566
    pe->func = func;
5567
    pe->opaque = opaque;
5568
    for(ppe = &first_polling_entry; *ppe != NULL; ppe = &(*ppe)->next);
5569
    *ppe = pe;
5570
    return 0;
5571
}
5572

    
5573
void qemu_del_polling_cb(PollingFunc *func, void *opaque)
5574
{
5575
    PollingEntry **ppe, *pe;
5576
    for(ppe = &first_polling_entry; *ppe != NULL; ppe = &(*ppe)->next) {
5577
        pe = *ppe;
5578
        if (pe->func == func && pe->opaque == opaque) {
5579
            *ppe = pe->next;
5580
            qemu_free(pe);
5581
            break;
5582
        }
5583
    }
5584
}
5585

    
5586
#ifdef _WIN32
5587
/***********************************************************/
5588
/* Wait objects support */
5589
typedef struct WaitObjects {
5590
    int num;
5591
    HANDLE events[MAXIMUM_WAIT_OBJECTS + 1];
5592
    WaitObjectFunc *func[MAXIMUM_WAIT_OBJECTS + 1];
5593
    void *opaque[MAXIMUM_WAIT_OBJECTS + 1];
5594
} WaitObjects;
5595

    
5596
static WaitObjects wait_objects = {0};
5597

    
5598
int qemu_add_wait_object(HANDLE handle, WaitObjectFunc *func, void *opaque)
5599
{
5600
    WaitObjects *w = &wait_objects;
5601

    
5602
    if (w->num >= MAXIMUM_WAIT_OBJECTS)
5603
        return -1;
5604
    w->events[w->num] = handle;
5605
    w->func[w->num] = func;
5606
    w->opaque[w->num] = opaque;
5607
    w->num++;
5608
    return 0;
5609
}
5610

    
5611
void qemu_del_wait_object(HANDLE handle, WaitObjectFunc *func, void *opaque)
5612
{
5613
    int i, found;
5614
    WaitObjects *w = &wait_objects;
5615

    
5616
    found = 0;
5617
    for (i = 0; i < w->num; i++) {
5618
        if (w->events[i] == handle)
5619
            found = 1;
5620
        if (found) {
5621
            w->events[i] = w->events[i + 1];
5622
            w->func[i] = w->func[i + 1];
5623
            w->opaque[i] = w->opaque[i + 1];
5624
        }
5625
    }
5626
    if (found)
5627
        w->num--;
5628
}
5629
#endif
5630

    
5631
/***********************************************************/
5632
/* savevm/loadvm support */
5633

    
5634
#define IO_BUF_SIZE 32768
5635

    
5636
struct QEMUFile {
5637
    FILE *outfile;
5638
    BlockDriverState *bs;
5639
    int is_file;
5640
    int is_writable;
5641
    int64_t base_offset;
5642
    int64_t buf_offset; /* start of buffer when writing, end of buffer
5643
                           when reading */
5644
    int buf_index;
5645
    int buf_size; /* 0 when writing */
5646
    uint8_t buf[IO_BUF_SIZE];
5647
};
5648

    
5649
QEMUFile *qemu_fopen(const char *filename, const char *mode)
5650
{
5651
    QEMUFile *f;
5652

    
5653
    f = qemu_mallocz(sizeof(QEMUFile));
5654
    if (!f)
5655
        return NULL;
5656
    if (!strcmp(mode, "wb")) {
5657
        f->is_writable = 1;
5658
    } else if (!strcmp(mode, "rb")) {
5659
        f->is_writable = 0;
5660
    } else {
5661
        goto fail;
5662
    }
5663
    f->outfile = fopen(filename, mode);
5664
    if (!f->outfile)
5665
        goto fail;
5666
    f->is_file = 1;
5667
    return f;
5668
 fail:
5669
    if (f->outfile)
5670
        fclose(f->outfile);
5671
    qemu_free(f);
5672
    return NULL;
5673
}
5674

    
5675
static QEMUFile *qemu_fopen_bdrv(BlockDriverState *bs, int64_t offset, int is_writable)
5676
{
5677
    QEMUFile *f;
5678

    
5679
    f = qemu_mallocz(sizeof(QEMUFile));
5680
    if (!f)
5681
        return NULL;
5682
    f->is_file = 0;
5683
    f->bs = bs;
5684
    f->is_writable = is_writable;
5685
    f->base_offset = offset;
5686
    return f;
5687
}
5688

    
5689
void qemu_fflush(QEMUFile *f)
5690
{
5691
    if (!f->is_writable)
5692
        return;
5693
    if (f->buf_index > 0) {
5694
        if (f->is_file) {
5695
            fseek(f->outfile, f->buf_offset, SEEK_SET);
5696
            fwrite(f->buf, 1, f->buf_index, f->outfile);
5697
        } else {
5698
            bdrv_pwrite(f->bs, f->base_offset + f->buf_offset,
5699
                        f->buf, f->buf_index);
5700
        }
5701
        f->buf_offset += f->buf_index;
5702
        f->buf_index = 0;
5703
    }
5704
}
5705

    
5706
static void qemu_fill_buffer(QEMUFile *f)
5707
{
5708
    int len;
5709

    
5710
    if (f->is_writable)
5711
        return;
5712
    if (f->is_file) {
5713
        fseek(f->outfile, f->buf_offset, SEEK_SET);
5714
        len = fread(f->buf, 1, IO_BUF_SIZE, f->outfile);
5715
        if (len < 0)
5716
            len = 0;
5717
    } else {
5718
        len = bdrv_pread(f->bs, f->base_offset + f->buf_offset,
5719
                         f->buf, IO_BUF_SIZE);
5720
        if (len < 0)
5721
            len = 0;
5722
    }
5723
    f->buf_index = 0;
5724
    f->buf_size = len;
5725
    f->buf_offset += len;
5726
}
5727

    
5728
void qemu_fclose(QEMUFile *f)
5729
{
5730
    if (f->is_writable)
5731
        qemu_fflush(f);
5732
    if (f->is_file) {
5733
        fclose(f->outfile);
5734
    }
5735
    qemu_free(f);
5736
}
5737

    
5738
void qemu_put_buffer(QEMUFile *f, const uint8_t *buf, int size)
5739
{
5740
    int l;
5741
    while (size > 0) {
5742
        l = IO_BUF_SIZE - f->buf_index;
5743
        if (l > size)
5744
            l = size;
5745
        memcpy(f->buf + f->buf_index, buf, l);
5746
        f->buf_index += l;
5747
        buf += l;
5748
        size -= l;
5749
        if (f->buf_index >= IO_BUF_SIZE)
5750
            qemu_fflush(f);
5751
    }
5752
}
5753

    
5754
void qemu_put_byte(QEMUFile *f, int v)
5755
{
5756
    f->buf[f->buf_index++] = v;
5757
    if (f->buf_index >= IO_BUF_SIZE)
5758
        qemu_fflush(f);
5759
}
5760

    
5761
int qemu_get_buffer(QEMUFile *f, uint8_t *buf, int size1)
5762
{
5763
    int size, l;
5764

    
5765
    size = size1;
5766
    while (size > 0) {
5767
        l = f->buf_size - f->buf_index;
5768
        if (l == 0) {
5769
            qemu_fill_buffer(f);
5770
            l = f->buf_size - f->buf_index;
5771
            if (l == 0)
5772
                break;
5773
        }
5774
        if (l > size)
5775
            l = size;
5776
        memcpy(buf, f->buf + f->buf_index, l);
5777
        f->buf_index += l;
5778
        buf += l;
5779
        size -= l;
5780
    }
5781
    return size1 - size;
5782
}
5783

    
5784
int qemu_get_byte(QEMUFile *f)
5785
{
5786
    if (f->buf_index >= f->buf_size) {
5787
        qemu_fill_buffer(f);
5788
        if (f->buf_index >= f->buf_size)
5789
            return 0;
5790
    }
5791
    return f->buf[f->buf_index++];
5792
}
5793

    
5794
int64_t qemu_ftell(QEMUFile *f)
5795
{
5796
    return f->buf_offset - f->buf_size + f->buf_index;
5797
}
5798

    
5799
int64_t qemu_fseek(QEMUFile *f, int64_t pos, int whence)
5800
{
5801
    if (whence == SEEK_SET) {
5802
        /* nothing to do */
5803
    } else if (whence == SEEK_CUR) {
5804
        pos += qemu_ftell(f);
5805
    } else {
5806
        /* SEEK_END not supported */
5807
        return -1;
5808
    }
5809
    if (f->is_writable) {
5810
        qemu_fflush(f);
5811
        f->buf_offset = pos;
5812
    } else {
5813
        f->buf_offset = pos;
5814
        f->buf_index = 0;
5815
        f->buf_size = 0;
5816
    }
5817
    return pos;
5818
}
5819

    
5820
void qemu_put_be16(QEMUFile *f, unsigned int v)
5821
{
5822
    qemu_put_byte(f, v >> 8);
5823
    qemu_put_byte(f, v);
5824
}
5825

    
5826
void qemu_put_be32(QEMUFile *f, unsigned int v)
5827
{
5828
    qemu_put_byte(f, v >> 24);
5829
    qemu_put_byte(f, v >> 16);
5830
    qemu_put_byte(f, v >> 8);
5831
    qemu_put_byte(f, v);
5832
}
5833

    
5834
void qemu_put_be64(QEMUFile *f, uint64_t v)
5835
{
5836
    qemu_put_be32(f, v >> 32);
5837
    qemu_put_be32(f, v);
5838
}
5839

    
5840
unsigned int qemu_get_be16(QEMUFile *f)
5841
{
5842
    unsigned int v;
5843
    v = qemu_get_byte(f) << 8;
5844
    v |= qemu_get_byte(f);
5845
    return v;
5846
}
5847

    
5848
unsigned int qemu_get_be32(QEMUFile *f)
5849
{
5850
    unsigned int v;
5851
    v = qemu_get_byte(f) << 24;
5852
    v |= qemu_get_byte(f) << 16;
5853
    v |= qemu_get_byte(f) << 8;
5854
    v |= qemu_get_byte(f);
5855
    return v;
5856
}
5857

    
5858
uint64_t qemu_get_be64(QEMUFile *f)
5859
{
5860
    uint64_t v;
5861
    v = (uint64_t)qemu_get_be32(f) << 32;
5862
    v |= qemu_get_be32(f);
5863
    return v;
5864
}
5865

    
5866
typedef struct SaveStateEntry {
5867
    char idstr[256];
5868
    int instance_id;
5869
    int version_id;
5870
    SaveStateHandler *save_state;
5871
    LoadStateHandler *load_state;
5872
    void *opaque;
5873
    struct SaveStateEntry *next;
5874
} SaveStateEntry;
5875

    
5876
static SaveStateEntry *first_se;
5877

    
5878
int register_savevm(const char *idstr,
5879
                    int instance_id,
5880
                    int version_id,
5881
                    SaveStateHandler *save_state,
5882
                    LoadStateHandler *load_state,
5883
                    void *opaque)
5884
{
5885
    SaveStateEntry *se, **pse;
5886

    
5887
    se = qemu_malloc(sizeof(SaveStateEntry));
5888
    if (!se)
5889
        return -1;
5890
    pstrcpy(se->idstr, sizeof(se->idstr), idstr);
5891
    se->instance_id = instance_id;
5892
    se->version_id = version_id;
5893
    se->save_state = save_state;
5894
    se->load_state = load_state;
5895
    se->opaque = opaque;
5896
    se->next = NULL;
5897

    
5898
    /* add at the end of list */
5899
    pse = &first_se;
5900
    while (*pse != NULL)
5901
        pse = &(*pse)->next;
5902
    *pse = se;
5903
    return 0;
5904
}
5905

    
5906
#define QEMU_VM_FILE_MAGIC   0x5145564d
5907
#define QEMU_VM_FILE_VERSION 0x00000002
5908

    
5909
static int qemu_savevm_state(QEMUFile *f)
5910
{
5911
    SaveStateEntry *se;
5912
    int len, ret;
5913
    int64_t cur_pos, len_pos, total_len_pos;
5914

    
5915
    qemu_put_be32(f, QEMU_VM_FILE_MAGIC);
5916
    qemu_put_be32(f, QEMU_VM_FILE_VERSION);
5917
    total_len_pos = qemu_ftell(f);
5918
    qemu_put_be64(f, 0); /* total size */
5919

    
5920
    for(se = first_se; se != NULL; se = se->next) {
5921
        /* ID string */
5922
        len = strlen(se->idstr);
5923
        qemu_put_byte(f, len);
5924
        qemu_put_buffer(f, (uint8_t *)se->idstr, len);
5925

    
5926
        qemu_put_be32(f, se->instance_id);
5927
        qemu_put_be32(f, se->version_id);
5928

    
5929
        /* record size: filled later */
5930
        len_pos = qemu_ftell(f);
5931
        qemu_put_be32(f, 0);
5932
        se->save_state(f, se->opaque);
5933

    
5934
        /* fill record size */
5935
        cur_pos = qemu_ftell(f);
5936
        len = cur_pos - len_pos - 4;
5937
        qemu_fseek(f, len_pos, SEEK_SET);
5938
        qemu_put_be32(f, len);
5939
        qemu_fseek(f, cur_pos, SEEK_SET);
5940
    }
5941
    cur_pos = qemu_ftell(f);
5942
    qemu_fseek(f, total_len_pos, SEEK_SET);
5943
    qemu_put_be64(f, cur_pos - total_len_pos - 8);
5944
    qemu_fseek(f, cur_pos, SEEK_SET);
5945

    
5946
    ret = 0;
5947
    return ret;
5948
}
5949

    
5950
static SaveStateEntry *find_se(const char *idstr, int instance_id)
5951
{
5952
    SaveStateEntry *se;
5953

    
5954
    for(se = first_se; se != NULL; se = se->next) {
5955
        if (!strcmp(se->idstr, idstr) &&
5956
            instance_id == se->instance_id)
5957
            return se;
5958
    }
5959
    return NULL;
5960
}
5961

    
5962
static int qemu_loadvm_state(QEMUFile *f)
5963
{
5964
    SaveStateEntry *se;
5965
    int len, ret, instance_id, record_len, version_id;
5966
    int64_t total_len, end_pos, cur_pos;
5967
    unsigned int v;
5968
    char idstr[256];
5969

    
5970
    v = qemu_get_be32(f);
5971
    if (v != QEMU_VM_FILE_MAGIC)
5972
        goto fail;
5973
    v = qemu_get_be32(f);
5974
    if (v != QEMU_VM_FILE_VERSION) {
5975
    fail:
5976
        ret = -1;
5977
        goto the_end;
5978
    }
5979
    total_len = qemu_get_be64(f);
5980
    end_pos = total_len + qemu_ftell(f);
5981
    for(;;) {
5982
        if (qemu_ftell(f) >= end_pos)
5983
            break;
5984
        len = qemu_get_byte(f);
5985
        qemu_get_buffer(f, (uint8_t *)idstr, len);
5986
        idstr[len] = '\0';
5987
        instance_id = qemu_get_be32(f);
5988
        version_id = qemu_get_be32(f);
5989
        record_len = qemu_get_be32(f);
5990
#if 0
5991
        printf("idstr=%s instance=0x%x version=%d len=%d\n",
5992
               idstr, instance_id, version_id, record_len);
5993
#endif
5994
        cur_pos = qemu_ftell(f);
5995
        se = find_se(idstr, instance_id);
5996
        if (!se) {
5997
            fprintf(stderr, "qemu: warning: instance 0x%x of device '%s' not present in current VM\n",
5998
                    instance_id, idstr);
5999
        } else {
6000
            ret = se->load_state(f, se->opaque, version_id);
6001
            if (ret < 0) {
6002
                fprintf(stderr, "qemu: warning: error while loading state for instance 0x%x of device '%s'\n",
6003
                        instance_id, idstr);
6004
            }
6005
        }
6006
        /* always seek to exact end of record */
6007
        qemu_fseek(f, cur_pos + record_len, SEEK_SET);
6008
    }
6009
    ret = 0;
6010
 the_end:
6011
    return ret;
6012
}
6013

    
6014
/* device can contain snapshots */
6015
static int bdrv_can_snapshot(BlockDriverState *bs)
6016
{
6017
    return (bs &&
6018
            !bdrv_is_removable(bs) &&
6019
            !bdrv_is_read_only(bs));
6020
}
6021

    
6022
/* device must be snapshots in order to have a reliable snapshot */
6023
static int bdrv_has_snapshot(BlockDriverState *bs)
6024
{
6025
    return (bs &&
6026
            !bdrv_is_removable(bs) &&
6027
            !bdrv_is_read_only(bs));
6028
}
6029

    
6030
static BlockDriverState *get_bs_snapshots(void)
6031
{
6032
    BlockDriverState *bs;
6033
    int i;
6034

    
6035
    if (bs_snapshots)
6036
        return bs_snapshots;
6037
    for(i = 0; i <= nb_drives; i++) {
6038
        bs = drives_table[i].bdrv;
6039
        if (bdrv_can_snapshot(bs))
6040
            goto ok;
6041
    }
6042
    return NULL;
6043
 ok:
6044
    bs_snapshots = bs;
6045
    return bs;
6046
}
6047

    
6048
static int bdrv_snapshot_find(BlockDriverState *bs, QEMUSnapshotInfo *sn_info,
6049
                              const char *name)
6050
{
6051
    QEMUSnapshotInfo *sn_tab, *sn;
6052
    int nb_sns, i, ret;
6053

    
6054
    ret = -ENOENT;
6055
    nb_sns = bdrv_snapshot_list(bs, &sn_tab);
6056
    if (nb_sns < 0)
6057
        return ret;
6058
    for(i = 0; i < nb_sns; i++) {
6059
        sn = &sn_tab[i];
6060
        if (!strcmp(sn->id_str, name) || !strcmp(sn->name, name)) {
6061
            *sn_info = *sn;
6062
            ret = 0;
6063
            break;
6064
        }
6065
    }
6066
    qemu_free(sn_tab);
6067
    return ret;
6068
}
6069

    
6070
void do_savevm(const char *name)
6071
{
6072
    BlockDriverState *bs, *bs1;
6073
    QEMUSnapshotInfo sn1, *sn = &sn1, old_sn1, *old_sn = &old_sn1;
6074
    int must_delete, ret, i;
6075
    BlockDriverInfo bdi1, *bdi = &bdi1;
6076
    QEMUFile *f;
6077
    int saved_vm_running;
6078
#ifdef _WIN32
6079
    struct _timeb tb;
6080
#else
6081
    struct timeval tv;
6082
#endif
6083

    
6084
    bs = get_bs_snapshots();
6085
    if (!bs) {
6086
        term_printf("No block device can accept snapshots\n");
6087
        return;
6088
    }
6089

    
6090
    /* ??? Should this occur after vm_stop?  */
6091
    qemu_aio_flush();
6092

    
6093
    saved_vm_running = vm_running;
6094
    vm_stop(0);
6095

    
6096
    must_delete = 0;
6097
    if (name) {
6098
        ret = bdrv_snapshot_find(bs, old_sn, name);
6099
        if (ret >= 0) {
6100
            must_delete = 1;
6101
        }
6102
    }
6103
    memset(sn, 0, sizeof(*sn));
6104
    if (must_delete) {
6105
        pstrcpy(sn->name, sizeof(sn->name), old_sn->name);
6106
        pstrcpy(sn->id_str, sizeof(sn->id_str), old_sn->id_str);
6107
    } else {
6108
        if (name)
6109
            pstrcpy(sn->name, sizeof(sn->name), name);
6110
    }
6111

    
6112
    /* fill auxiliary fields */
6113
#ifdef _WIN32
6114
    _ftime(&tb);
6115
    sn->date_sec = tb.time;
6116
    sn->date_nsec = tb.millitm * 1000000;
6117
#else
6118
    gettimeofday(&tv, NULL);
6119
    sn->date_sec = tv.tv_sec;
6120
    sn->date_nsec = tv.tv_usec * 1000;
6121
#endif
6122
    sn->vm_clock_nsec = qemu_get_clock(vm_clock);
6123

    
6124
    if (bdrv_get_info(bs, bdi) < 0 || bdi->vm_state_offset <= 0) {
6125
        term_printf("Device %s does not support VM state snapshots\n",
6126
                    bdrv_get_device_name(bs));
6127
        goto the_end;
6128
    }
6129

    
6130
    /* save the VM state */
6131
    f = qemu_fopen_bdrv(bs, bdi->vm_state_offset, 1);
6132
    if (!f) {
6133
        term_printf("Could not open VM state file\n");
6134
        goto the_end;
6135
    }
6136
    ret = qemu_savevm_state(f);
6137
    sn->vm_state_size = qemu_ftell(f);
6138
    qemu_fclose(f);
6139
    if (ret < 0) {
6140
        term_printf("Error %d while writing VM\n", ret);
6141
        goto the_end;
6142
    }
6143

    
6144
    /* create the snapshots */
6145

    
6146
    for(i = 0; i < nb_drives; i++) {
6147
        bs1 = drives_table[i].bdrv;
6148
        if (bdrv_has_snapshot(bs1)) {
6149
            if (must_delete) {
6150
                ret = bdrv_snapshot_delete(bs1, old_sn->id_str);
6151
                if (ret < 0) {
6152
                    term_printf("Error while deleting snapshot on '%s'\n",
6153
                                bdrv_get_device_name(bs1));
6154
                }
6155
            }
6156
            ret = bdrv_snapshot_create(bs1, sn);
6157
            if (ret < 0) {
6158
                term_printf("Error while creating snapshot on '%s'\n",
6159
                            bdrv_get_device_name(bs1));
6160
            }
6161
        }
6162
    }
6163

    
6164
 the_end:
6165
    if (saved_vm_running)
6166
        vm_start();
6167
}
6168

    
6169
void do_loadvm(const char *name)
6170
{
6171
    BlockDriverState *bs, *bs1;
6172
    BlockDriverInfo bdi1, *bdi = &bdi1;
6173
    QEMUFile *f;
6174
    int i, ret;
6175
    int saved_vm_running;
6176

    
6177
    bs = get_bs_snapshots();
6178
    if (!bs) {
6179
        term_printf("No block device supports snapshots\n");
6180
        return;
6181
    }
6182

    
6183
    /* Flush all IO requests so they don't interfere with the new state.  */
6184
    qemu_aio_flush();
6185

    
6186
    saved_vm_running = vm_running;
6187
    vm_stop(0);
6188

    
6189
    for(i = 0; i <= nb_drives; i++) {
6190
        bs1 = drives_table[i].bdrv;
6191
        if (bdrv_has_snapshot(bs1)) {
6192
            ret = bdrv_snapshot_goto(bs1, name);
6193
            if (ret < 0) {
6194
                if (bs != bs1)
6195
                    term_printf("Warning: ");
6196
                switch(ret) {
6197
                case -ENOTSUP:
6198
                    term_printf("Snapshots not supported on device '%s'\n",
6199
                                bdrv_get_device_name(bs1));
6200
                    break;
6201
                case -ENOENT:
6202
                    term_printf("Could not find snapshot '%s' on device '%s'\n",
6203
                                name, bdrv_get_device_name(bs1));
6204
                    break;
6205
                default:
6206
                    term_printf("Error %d while activating snapshot on '%s'\n",
6207
                                ret, bdrv_get_device_name(bs1));
6208
                    break;
6209
                }
6210
                /* fatal on snapshot block device */
6211
                if (bs == bs1)
6212
                    goto the_end;
6213
            }
6214
        }
6215
    }
6216

    
6217
    if (bdrv_get_info(bs, bdi) < 0 || bdi->vm_state_offset <= 0) {
6218
        term_printf("Device %s does not support VM state snapshots\n",
6219
                    bdrv_get_device_name(bs));
6220
        return;
6221
    }
6222

    
6223
    /* restore the VM state */
6224
    f = qemu_fopen_bdrv(bs, bdi->vm_state_offset, 0);
6225
    if (!f) {
6226
        term_printf("Could not open VM state file\n");
6227
        goto the_end;
6228
    }
6229
    ret = qemu_loadvm_state(f);
6230
    qemu_fclose(f);
6231
    if (ret < 0) {
6232
        term_printf("Error %d while loading VM state\n", ret);
6233
    }
6234
 the_end:
6235
    if (saved_vm_running)
6236
        vm_start();
6237
}
6238

    
6239
void do_delvm(const char *name)
6240
{
6241
    BlockDriverState *bs, *bs1;
6242
    int i, ret;
6243

    
6244
    bs = get_bs_snapshots();
6245
    if (!bs) {
6246
        term_printf("No block device supports snapshots\n");
6247
        return;
6248
    }
6249

    
6250
    for(i = 0; i <= nb_drives; i++) {
6251
        bs1 = drives_table[i].bdrv;
6252
        if (bdrv_has_snapshot(bs1)) {
6253
            ret = bdrv_snapshot_delete(bs1, name);
6254
            if (ret < 0) {
6255
                if (ret == -ENOTSUP)
6256
                    term_printf("Snapshots not supported on device '%s'\n",
6257
                                bdrv_get_device_name(bs1));
6258
                else
6259
                    term_printf("Error %d while deleting snapshot on '%s'\n",
6260
                                ret, bdrv_get_device_name(bs1));
6261
            }
6262
        }
6263
    }
6264
}
6265

    
6266
void do_info_snapshots(void)
6267
{
6268
    BlockDriverState *bs, *bs1;
6269
    QEMUSnapshotInfo *sn_tab, *sn;
6270
    int nb_sns, i;
6271
    char buf[256];
6272

    
6273
    bs = get_bs_snapshots();
6274
    if (!bs) {
6275
        term_printf("No available block device supports snapshots\n");
6276
        return;
6277
    }
6278
    term_printf("Snapshot devices:");
6279
    for(i = 0; i <= nb_drives; i++) {
6280
        bs1 = drives_table[i].bdrv;
6281
        if (bdrv_has_snapshot(bs1)) {
6282
            if (bs == bs1)
6283
                term_printf(" %s", bdrv_get_device_name(bs1));
6284
        }
6285
    }
6286
    term_printf("\n");
6287

    
6288
    nb_sns = bdrv_snapshot_list(bs, &sn_tab);
6289
    if (nb_sns < 0) {
6290
        term_printf("bdrv_snapshot_list: error %d\n", nb_sns);
6291
        return;
6292
    }
6293
    term_printf("Snapshot list (from %s):\n", bdrv_get_device_name(bs));
6294
    term_printf("%s\n", bdrv_snapshot_dump(buf, sizeof(buf), NULL));
6295
    for(i = 0; i < nb_sns; i++) {
6296
        sn = &sn_tab[i];
6297
        term_printf("%s\n", bdrv_snapshot_dump(buf, sizeof(buf), sn));
6298
    }
6299
    qemu_free(sn_tab);
6300
}
6301

    
6302
/***********************************************************/
6303
/* cpu save/restore */
6304

    
6305
#if defined(TARGET_I386)
6306

    
6307
static void cpu_put_seg(QEMUFile *f, SegmentCache *dt)
6308
{
6309
    qemu_put_be32(f, dt->selector);
6310
    qemu_put_betl(f, dt->base);
6311
    qemu_put_be32(f, dt->limit);
6312
    qemu_put_be32(f, dt->flags);
6313
}
6314

    
6315
static void cpu_get_seg(QEMUFile *f, SegmentCache *dt)
6316
{
6317
    dt->selector = qemu_get_be32(f);
6318
    dt->base = qemu_get_betl(f);
6319
    dt->limit = qemu_get_be32(f);
6320
    dt->flags = qemu_get_be32(f);
6321
}
6322

    
6323
void cpu_save(QEMUFile *f, void *opaque)
6324
{
6325
    CPUState *env = opaque;
6326
    uint16_t fptag, fpus, fpuc, fpregs_format;
6327
    uint32_t hflags;
6328
    int i;
6329

    
6330
    for(i = 0; i < CPU_NB_REGS; i++)
6331
        qemu_put_betls(f, &env->regs[i]);
6332
    qemu_put_betls(f, &env->eip);
6333
    qemu_put_betls(f, &env->eflags);
6334
    hflags = env->hflags; /* XXX: suppress most of the redundant hflags */
6335
    qemu_put_be32s(f, &hflags);
6336

    
6337
    /* FPU */
6338
    fpuc = env->fpuc;
6339
    fpus = (env->fpus & ~0x3800) | (env->fpstt & 0x7) << 11;
6340
    fptag = 0;
6341
    for(i = 0; i < 8; i++) {
6342
        fptag |= ((!env->fptags[i]) << i);
6343
    }
6344

    
6345
    qemu_put_be16s(f, &fpuc);
6346
    qemu_put_be16s(f, &fpus);
6347
    qemu_put_be16s(f, &fptag);
6348

    
6349
#ifdef USE_X86LDOUBLE
6350
    fpregs_format = 0;
6351
#else
6352
    fpregs_format = 1;
6353
#endif
6354
    qemu_put_be16s(f, &fpregs_format);
6355

    
6356
    for(i = 0; i < 8; i++) {
6357
#ifdef USE_X86LDOUBLE
6358
        {
6359
            uint64_t mant;
6360
            uint16_t exp;
6361
            /* we save the real CPU data (in case of MMX usage only 'mant'
6362
               contains the MMX register */
6363
            cpu_get_fp80(&mant, &exp, env->fpregs[i].d);
6364
            qemu_put_be64(f, mant);
6365
            qemu_put_be16(f, exp);
6366
        }
6367
#else
6368
        /* if we use doubles for float emulation, we save the doubles to
6369
           avoid losing information in case of MMX usage. It can give
6370
           problems if the image is restored on a CPU where long
6371
           doubles are used instead. */
6372
        qemu_put_be64(f, env->fpregs[i].mmx.MMX_Q(0));
6373
#endif
6374
    }
6375

    
6376
    for(i = 0; i < 6; i++)
6377
        cpu_put_seg(f, &env->segs[i]);
6378
    cpu_put_seg(f, &env->ldt);
6379
    cpu_put_seg(f, &env->tr);
6380
    cpu_put_seg(f, &env->gdt);
6381
    cpu_put_seg(f, &env->idt);
6382

    
6383
    qemu_put_be32s(f, &env->sysenter_cs);
6384
    qemu_put_be32s(f, &env->sysenter_esp);
6385
    qemu_put_be32s(f, &env->sysenter_eip);
6386

    
6387
    qemu_put_betls(f, &env->cr[0]);
6388
    qemu_put_betls(f, &env->cr[2]);
6389
    qemu_put_betls(f, &env->cr[3]);
6390
    qemu_put_betls(f, &env->cr[4]);
6391

    
6392
    for(i = 0; i < 8; i++)
6393
        qemu_put_betls(f, &env->dr[i]);
6394

    
6395
    /* MMU */
6396
    qemu_put_be32s(f, &env->a20_mask);
6397

    
6398
    /* XMM */
6399
    qemu_put_be32s(f, &env->mxcsr);
6400
    for(i = 0; i < CPU_NB_REGS; i++) {
6401
        qemu_put_be64s(f, &env->xmm_regs[i].XMM_Q(0));
6402
        qemu_put_be64s(f, &env->xmm_regs[i].XMM_Q(1));
6403
    }
6404

    
6405
#ifdef TARGET_X86_64
6406
    qemu_put_be64s(f, &env->efer);
6407
    qemu_put_be64s(f, &env->star);
6408
    qemu_put_be64s(f, &env->lstar);
6409
    qemu_put_be64s(f, &env->cstar);
6410
    qemu_put_be64s(f, &env->fmask);
6411
    qemu_put_be64s(f, &env->kernelgsbase);
6412
#endif
6413
    qemu_put_be32s(f, &env->smbase);
6414
}
6415

    
6416
#ifdef USE_X86LDOUBLE
6417
/* XXX: add that in a FPU generic layer */
6418
union x86_longdouble {
6419
    uint64_t mant;
6420
    uint16_t exp;
6421
};
6422

    
6423
#define MANTD1(fp)        (fp & ((1LL << 52) - 1))
6424
#define EXPBIAS1 1023
6425
#define EXPD1(fp)        ((fp >> 52) & 0x7FF)
6426
#define SIGND1(fp)        ((fp >> 32) & 0x80000000)
6427

    
6428
static void fp64_to_fp80(union x86_longdouble *p, uint64_t temp)
6429
{
6430
    int e;
6431
    /* mantissa */
6432
    p->mant = (MANTD1(temp) << 11) | (1LL << 63);
6433
    /* exponent + sign */
6434
    e = EXPD1(temp) - EXPBIAS1 + 16383;
6435
    e |= SIGND1(temp) >> 16;
6436
    p->exp = e;
6437
}
6438
#endif
6439

    
6440
int cpu_load(QEMUFile *f, void *opaque, int version_id)
6441
{
6442
    CPUState *env = opaque;
6443
    int i, guess_mmx;
6444
    uint32_t hflags;
6445
    uint16_t fpus, fpuc, fptag, fpregs_format;
6446

    
6447
    if (version_id != 3 && version_id != 4)
6448
        return -EINVAL;
6449
    for(i = 0; i < CPU_NB_REGS; i++)
6450
        qemu_get_betls(f, &env->regs[i]);
6451
    qemu_get_betls(f, &env->eip);
6452
    qemu_get_betls(f, &env->eflags);
6453
    qemu_get_be32s(f, &hflags);
6454

    
6455
    qemu_get_be16s(f, &fpuc);
6456
    qemu_get_be16s(f, &fpus);
6457
    qemu_get_be16s(f, &fptag);
6458
    qemu_get_be16s(f, &fpregs_format);
6459

    
6460
    /* NOTE: we cannot always restore the FPU state if the image come
6461
       from a host with a different 'USE_X86LDOUBLE' define. We guess
6462
       if we are in an MMX state to restore correctly in that case. */
6463
    guess_mmx = ((fptag == 0xff) && (fpus & 0x3800) == 0);
6464
    for(i = 0; i < 8; i++) {
6465
        uint64_t mant;
6466
        uint16_t exp;
6467

    
6468
        switch(fpregs_format) {
6469
        case 0:
6470
            mant = qemu_get_be64(f);
6471
            exp = qemu_get_be16(f);
6472
#ifdef USE_X86LDOUBLE
6473
            env->fpregs[i].d = cpu_set_fp80(mant, exp);
6474
#else
6475
            /* difficult case */
6476
            if (guess_mmx)
6477
                env->fpregs[i].mmx.MMX_Q(0) = mant;
6478
            else
6479
                env->fpregs[i].d = cpu_set_fp80(mant, exp);
6480
#endif
6481
            break;
6482
        case 1:
6483
            mant = qemu_get_be64(f);
6484
#ifdef USE_X86LDOUBLE
6485
            {
6486
                union x86_longdouble *p;
6487
                /* difficult case */
6488
                p = (void *)&env->fpregs[i];
6489
                if (guess_mmx) {
6490
                    p->mant = mant;
6491
                    p->exp = 0xffff;
6492
                } else {
6493
                    fp64_to_fp80(p, mant);
6494
                }
6495
            }
6496
#else
6497
            env->fpregs[i].mmx.MMX_Q(0) = mant;
6498
#endif
6499
            break;
6500
        default:
6501
            return -EINVAL;
6502
        }
6503
    }
6504

    
6505
    env->fpuc = fpuc;
6506
    /* XXX: restore FPU round state */
6507
    env->fpstt = (fpus >> 11) & 7;
6508
    env->fpus = fpus & ~0x3800;
6509
    fptag ^= 0xff;
6510
    for(i = 0; i < 8; i++) {
6511
        env->fptags[i] = (fptag >> i) & 1;
6512
    }
6513

    
6514
    for(i = 0; i < 6; i++)
6515
        cpu_get_seg(f, &env->segs[i]);
6516
    cpu_get_seg(f, &env->ldt);
6517
    cpu_get_seg(f, &env->tr);
6518
    cpu_get_seg(f, &env->gdt);
6519
    cpu_get_seg(f, &env->idt);
6520

    
6521
    qemu_get_be32s(f, &env->sysenter_cs);
6522
    qemu_get_be32s(f, &env->sysenter_esp);
6523
    qemu_get_be32s(f, &env->sysenter_eip);
6524

    
6525
    qemu_get_betls(f, &env->cr[0]);
6526
    qemu_get_betls(f, &env->cr[2]);
6527
    qemu_get_betls(f, &env->cr[3]);
6528
    qemu_get_betls(f, &env->cr[4]);
6529

    
6530
    for(i = 0; i < 8; i++)
6531
        qemu_get_betls(f, &env->dr[i]);
6532

    
6533
    /* MMU */
6534
    qemu_get_be32s(f, &env->a20_mask);
6535

    
6536
    qemu_get_be32s(f, &env->mxcsr);
6537
    for(i = 0; i < CPU_NB_REGS; i++) {
6538
        qemu_get_be64s(f, &env->xmm_regs[i].XMM_Q(0));
6539
        qemu_get_be64s(f, &env->xmm_regs[i].XMM_Q(1));
6540
    }
6541

    
6542
#ifdef TARGET_X86_64
6543
    qemu_get_be64s(f, &env->efer);
6544
    qemu_get_be64s(f, &env->star);
6545
    qemu_get_be64s(f, &env->lstar);
6546
    qemu_get_be64s(f, &env->cstar);
6547
    qemu_get_be64s(f, &env->fmask);
6548
    qemu_get_be64s(f, &env->kernelgsbase);
6549
#endif
6550
    if (version_id >= 4)
6551
        qemu_get_be32s(f, &env->smbase);
6552

    
6553
    /* XXX: compute hflags from scratch, except for CPL and IIF */
6554
    env->hflags = hflags;
6555
    tlb_flush(env, 1);
6556
    return 0;
6557
}
6558

    
6559
#elif defined(TARGET_PPC)
6560
void cpu_save(QEMUFile *f, void *opaque)
6561
{
6562
}
6563

    
6564
int cpu_load(QEMUFile *f, void *opaque, int version_id)
6565
{
6566
    return 0;
6567
}
6568

    
6569
#elif defined(TARGET_MIPS)
6570
void cpu_save(QEMUFile *f, void *opaque)
6571
{
6572
}
6573

    
6574
int cpu_load(QEMUFile *f, void *opaque, int version_id)
6575
{
6576
    return 0;
6577
}
6578

    
6579
#elif defined(TARGET_SPARC)
6580
void cpu_save(QEMUFile *f, void *opaque)
6581
{
6582
    CPUState *env = opaque;
6583
    int i;
6584
    uint32_t tmp;
6585

    
6586
    for(i = 0; i < 8; i++)
6587
        qemu_put_betls(f, &env->gregs[i]);
6588
    for(i = 0; i < NWINDOWS * 16; i++)
6589
        qemu_put_betls(f, &env->regbase[i]);
6590

    
6591
    /* FPU */
6592
    for(i = 0; i < TARGET_FPREGS; i++) {
6593
        union {
6594
            float32 f;
6595
            uint32_t i;
6596
        } u;
6597
        u.f = env->fpr[i];
6598
        qemu_put_be32(f, u.i);
6599
    }
6600

    
6601
    qemu_put_betls(f, &env->pc);
6602
    qemu_put_betls(f, &env->npc);
6603
    qemu_put_betls(f, &env->y);
6604
    tmp = GET_PSR(env);
6605
    qemu_put_be32(f, tmp);
6606
    qemu_put_betls(f, &env->fsr);
6607
    qemu_put_betls(f, &env->tbr);
6608
#ifndef TARGET_SPARC64
6609
    qemu_put_be32s(f, &env->wim);
6610
    /* MMU */
6611
    for(i = 0; i < 16; i++)
6612
        qemu_put_be32s(f, &env->mmuregs[i]);
6613
#endif
6614
}
6615

    
6616
int cpu_load(QEMUFile *f, void *opaque, int version_id)
6617
{
6618
    CPUState *env = opaque;
6619
    int i;
6620
    uint32_t tmp;
6621

    
6622
    for(i = 0; i < 8; i++)
6623
        qemu_get_betls(f, &env->gregs[i]);
6624
    for(i = 0; i < NWINDOWS * 16; i++)
6625
        qemu_get_betls(f, &env->regbase[i]);
6626

    
6627
    /* FPU */
6628
    for(i = 0; i < TARGET_FPREGS; i++) {
6629
        union {
6630
            float32 f;
6631
            uint32_t i;
6632
        } u;
6633
        u.i = qemu_get_be32(f);
6634
        env->fpr[i] = u.f;
6635
    }
6636

    
6637
    qemu_get_betls(f, &env->pc);
6638
    qemu_get_betls(f, &env->npc);
6639
    qemu_get_betls(f, &env->y);
6640
    tmp = qemu_get_be32(f);
6641
    env->cwp = 0; /* needed to ensure that the wrapping registers are
6642
                     correctly updated */
6643
    PUT_PSR(env, tmp);
6644
    qemu_get_betls(f, &env->fsr);
6645
    qemu_get_betls(f, &env->tbr);
6646
#ifndef TARGET_SPARC64
6647
    qemu_get_be32s(f, &env->wim);
6648
    /* MMU */
6649
    for(i = 0; i < 16; i++)
6650
        qemu_get_be32s(f, &env->mmuregs[i]);
6651
#endif
6652
    tlb_flush(env, 1);
6653
    return 0;
6654
}
6655

    
6656
#elif defined(TARGET_ARM)
6657

    
6658
void cpu_save(QEMUFile *f, void *opaque)
6659
{
6660
    int i;
6661
    CPUARMState *env = (CPUARMState *)opaque;
6662

    
6663
    for (i = 0; i < 16; i++) {
6664
        qemu_put_be32(f, env->regs[i]);
6665
    }
6666
    qemu_put_be32(f, cpsr_read(env));
6667
    qemu_put_be32(f, env->spsr);
6668
    for (i = 0; i < 6; i++) {
6669
        qemu_put_be32(f, env->banked_spsr[i]);
6670
        qemu_put_be32(f, env->banked_r13[i]);
6671
        qemu_put_be32(f, env->banked_r14[i]);
6672
    }
6673
    for (i = 0; i < 5; i++) {
6674
        qemu_put_be32(f, env->usr_regs[i]);
6675
        qemu_put_be32(f, env->fiq_regs[i]);
6676
    }
6677
    qemu_put_be32(f, env->cp15.c0_cpuid);
6678
    qemu_put_be32(f, env->cp15.c0_cachetype);
6679
    qemu_put_be32(f, env->cp15.c1_sys);
6680
    qemu_put_be32(f, env->cp15.c1_coproc);
6681
    qemu_put_be32(f, env->cp15.c1_xscaleauxcr);
6682
    qemu_put_be32(f, env->cp15.c2_base0);
6683
    qemu_put_be32(f, env->cp15.c2_base1);
6684
    qemu_put_be32(f, env->cp15.c2_mask);
6685
    qemu_put_be32(f, env->cp15.c2_data);
6686
    qemu_put_be32(f, env->cp15.c2_insn);
6687
    qemu_put_be32(f, env->cp15.c3);
6688
    qemu_put_be32(f, env->cp15.c5_insn);
6689
    qemu_put_be32(f, env->cp15.c5_data);
6690
    for (i = 0; i < 8; i++) {
6691
        qemu_put_be32(f, env->cp15.c6_region[i]);
6692
    }
6693
    qemu_put_be32(f, env->cp15.c6_insn);
6694
    qemu_put_be32(f, env->cp15.c6_data);
6695
    qemu_put_be32(f, env->cp15.c9_insn);
6696
    qemu_put_be32(f, env->cp15.c9_data);
6697
    qemu_put_be32(f, env->cp15.c13_fcse);
6698
    qemu_put_be32(f, env->cp15.c13_context);
6699
    qemu_put_be32(f, env->cp15.c13_tls1);
6700
    qemu_put_be32(f, env->cp15.c13_tls2);
6701
    qemu_put_be32(f, env->cp15.c13_tls3);
6702
    qemu_put_be32(f, env->cp15.c15_cpar);
6703

    
6704
    qemu_put_be32(f, env->features);
6705

    
6706
    if (arm_feature(env, ARM_FEATURE_VFP)) {
6707
        for (i = 0;  i < 16; i++) {
6708
            CPU_DoubleU u;
6709
            u.d = env->vfp.regs[i];
6710
            qemu_put_be32(f, u.l.upper);
6711
            qemu_put_be32(f, u.l.lower);
6712
        }
6713
        for (i = 0; i < 16; i++) {
6714
            qemu_put_be32(f, env->vfp.xregs[i]);
6715
        }
6716

    
6717
        /* TODO: Should use proper FPSCR access functions.  */
6718
        qemu_put_be32(f, env->vfp.vec_len);
6719
        qemu_put_be32(f, env->vfp.vec_stride);
6720

    
6721
        if (arm_feature(env, ARM_FEATURE_VFP3)) {
6722
            for (i = 16;  i < 32; i++) {
6723
                CPU_DoubleU u;
6724
                u.d = env->vfp.regs[i];
6725
                qemu_put_be32(f, u.l.upper);
6726
                qemu_put_be32(f, u.l.lower);
6727
            }
6728
        }
6729
    }
6730

    
6731
    if (arm_feature(env, ARM_FEATURE_IWMMXT)) {
6732
        for (i = 0; i < 16; i++) {
6733
            qemu_put_be64(f, env->iwmmxt.regs[i]);
6734
        }
6735
        for (i = 0; i < 16; i++) {
6736
            qemu_put_be32(f, env->iwmmxt.cregs[i]);
6737
        }
6738
    }
6739

    
6740
    if (arm_feature(env, ARM_FEATURE_M)) {
6741
        qemu_put_be32(f, env->v7m.other_sp);
6742
        qemu_put_be32(f, env->v7m.vecbase);
6743
        qemu_put_be32(f, env->v7m.basepri);
6744
        qemu_put_be32(f, env->v7m.control);
6745
        qemu_put_be32(f, env->v7m.current_sp);
6746
        qemu_put_be32(f, env->v7m.exception);
6747
    }
6748
}
6749

    
6750
int cpu_load(QEMUFile *f, void *opaque, int version_id)
6751
{
6752
    CPUARMState *env = (CPUARMState *)opaque;
6753
    int i;
6754

    
6755
    if (version_id != ARM_CPU_SAVE_VERSION)
6756
        return -EINVAL;
6757

    
6758
    for (i = 0; i < 16; i++) {
6759
        env->regs[i] = qemu_get_be32(f);
6760
    }
6761
    cpsr_write(env, qemu_get_be32(f), 0xffffffff);
6762
    env->spsr = qemu_get_be32(f);
6763
    for (i = 0; i < 6; i++) {
6764
        env->banked_spsr[i] = qemu_get_be32(f);
6765
        env->banked_r13[i] = qemu_get_be32(f);
6766
        env->banked_r14[i] = qemu_get_be32(f);
6767
    }
6768
    for (i = 0; i < 5; i++) {
6769
        env->usr_regs[i] = qemu_get_be32(f);
6770
        env->fiq_regs[i] = qemu_get_be32(f);
6771
    }
6772
    env->cp15.c0_cpuid = qemu_get_be32(f);
6773
    env->cp15.c0_cachetype = qemu_get_be32(f);
6774
    env->cp15.c1_sys = qemu_get_be32(f);
6775
    env->cp15.c1_coproc = qemu_get_be32(f);
6776
    env->cp15.c1_xscaleauxcr = qemu_get_be32(f);
6777
    env->cp15.c2_base0 = qemu_get_be32(f);
6778
    env->cp15.c2_base1 = qemu_get_be32(f);
6779
    env->cp15.c2_mask = qemu_get_be32(f);
6780
    env->cp15.c2_data = qemu_get_be32(f);
6781
    env->cp15.c2_insn = qemu_get_be32(f);
6782
    env->cp15.c3 = qemu_get_be32(f);
6783
    env->cp15.c5_insn = qemu_get_be32(f);
6784
    env->cp15.c5_data = qemu_get_be32(f);
6785
    for (i = 0; i < 8; i++) {
6786
        env->cp15.c6_region[i] = qemu_get_be32(f);
6787
    }
6788
    env->cp15.c6_insn = qemu_get_be32(f);
6789
    env->cp15.c6_data = qemu_get_be32(f);
6790
    env->cp15.c9_insn = qemu_get_be32(f);
6791
    env->cp15.c9_data = qemu_get_be32(f);
6792
    env->cp15.c13_fcse = qemu_get_be32(f);
6793
    env->cp15.c13_context = qemu_get_be32(f);
6794
    env->cp15.c13_tls1 = qemu_get_be32(f);
6795
    env->cp15.c13_tls2 = qemu_get_be32(f);
6796
    env->cp15.c13_tls3 = qemu_get_be32(f);
6797
    env->cp15.c15_cpar = qemu_get_be32(f);
6798

    
6799
    env->features = qemu_get_be32(f);
6800

    
6801
    if (arm_feature(env, ARM_FEATURE_VFP)) {
6802
        for (i = 0;  i < 16; i++) {
6803
            CPU_DoubleU u;
6804
            u.l.upper = qemu_get_be32(f);
6805
            u.l.lower = qemu_get_be32(f);
6806
            env->vfp.regs[i] = u.d;
6807
        }
6808
        for (i = 0; i < 16; i++) {
6809
            env->vfp.xregs[i] = qemu_get_be32(f);
6810
        }
6811

    
6812
        /* TODO: Should use proper FPSCR access functions.  */
6813
        env->vfp.vec_len = qemu_get_be32(f);
6814
        env->vfp.vec_stride = qemu_get_be32(f);
6815

    
6816
        if (arm_feature(env, ARM_FEATURE_VFP3)) {
6817
            for (i = 0;  i < 16; i++) {
6818
                CPU_DoubleU u;
6819
                u.l.upper = qemu_get_be32(f);
6820
                u.l.lower = qemu_get_be32(f);
6821
                env->vfp.regs[i] = u.d;
6822
            }
6823
        }
6824
    }
6825

    
6826
    if (arm_feature(env, ARM_FEATURE_IWMMXT)) {
6827
        for (i = 0; i < 16; i++) {
6828
            env->iwmmxt.regs[i] = qemu_get_be64(f);
6829
        }
6830
        for (i = 0; i < 16; i++) {
6831
            env->iwmmxt.cregs[i] = qemu_get_be32(f);
6832
        }
6833
    }
6834

    
6835
    if (arm_feature(env, ARM_FEATURE_M)) {
6836
        env->v7m.other_sp = qemu_get_be32(f);
6837
        env->v7m.vecbase = qemu_get_be32(f);
6838
        env->v7m.basepri = qemu_get_be32(f);
6839
        env->v7m.control = qemu_get_be32(f);
6840
        env->v7m.current_sp = qemu_get_be32(f);
6841
        env->v7m.exception = qemu_get_be32(f);
6842
    }
6843

    
6844
    return 0;
6845
}
6846

    
6847
#else
6848

    
6849
//#warning No CPU save/restore functions
6850

    
6851
#endif
6852

    
6853
/***********************************************************/
6854
/* ram save/restore */
6855

    
6856
static int ram_get_page(QEMUFile *f, uint8_t *buf, int len)
6857
{
6858
    int v;
6859

    
6860
    v = qemu_get_byte(f);
6861
    switch(v) {
6862
    case 0:
6863
        if (qemu_get_buffer(f, buf, len) != len)
6864
            return -EIO;
6865
        break;
6866
    case 1:
6867
        v = qemu_get_byte(f);
6868
        memset(buf, v, len);
6869
        break;
6870
    default:
6871
        return -EINVAL;
6872
    }
6873
    return 0;
6874
}
6875

    
6876
static int ram_load_v1(QEMUFile *f, void *opaque)
6877
{
6878
    int ret;
6879
    ram_addr_t i;
6880

    
6881
    if (qemu_get_be32(f) != phys_ram_size)
6882
        return -EINVAL;
6883
    for(i = 0; i < phys_ram_size; i+= TARGET_PAGE_SIZE) {
6884
        ret = ram_get_page(f, phys_ram_base + i, TARGET_PAGE_SIZE);
6885
        if (ret)
6886
            return ret;
6887
    }
6888
    return 0;
6889
}
6890

    
6891
#define BDRV_HASH_BLOCK_SIZE 1024
6892
#define IOBUF_SIZE 4096
6893
#define RAM_CBLOCK_MAGIC 0xfabe
6894

    
6895
typedef struct RamCompressState {
6896
    z_stream zstream;
6897
    QEMUFile *f;
6898
    uint8_t buf[IOBUF_SIZE];
6899
} RamCompressState;
6900

    
6901
static int ram_compress_open(RamCompressState *s, QEMUFile *f)
6902
{
6903
    int ret;
6904
    memset(s, 0, sizeof(*s));
6905
    s->f = f;
6906
    ret = deflateInit2(&s->zstream, 1,
6907
                       Z_DEFLATED, 15,
6908
                       9, Z_DEFAULT_STRATEGY);
6909
    if (ret != Z_OK)
6910
        return -1;
6911
    s->zstream.avail_out = IOBUF_SIZE;
6912
    s->zstream.next_out = s->buf;
6913
    return 0;
6914
}
6915

    
6916
static void ram_put_cblock(RamCompressState *s, const uint8_t *buf, int len)
6917
{
6918
    qemu_put_be16(s->f, RAM_CBLOCK_MAGIC);
6919
    qemu_put_be16(s->f, len);
6920
    qemu_put_buffer(s->f, buf, len);
6921
}
6922

    
6923
static int ram_compress_buf(RamCompressState *s, const uint8_t *buf, int len)
6924
{
6925
    int ret;
6926

    
6927
    s->zstream.avail_in = len;
6928
    s->zstream.next_in = (uint8_t *)buf;
6929
    while (s->zstream.avail_in > 0) {
6930
        ret = deflate(&s->zstream, Z_NO_FLUSH);
6931
        if (ret != Z_OK)
6932
            return -1;
6933
        if (s->zstream.avail_out == 0) {
6934
            ram_put_cblock(s, s->buf, IOBUF_SIZE);
6935
            s->zstream.avail_out = IOBUF_SIZE;
6936
            s->zstream.next_out = s->buf;
6937
        }
6938
    }
6939
    return 0;
6940
}
6941

    
6942
static void ram_compress_close(RamCompressState *s)
6943
{
6944
    int len, ret;
6945

    
6946
    /* compress last bytes */
6947
    for(;;) {
6948
        ret = deflate(&s->zstream, Z_FINISH);
6949
        if (ret == Z_OK || ret == Z_STREAM_END) {
6950
            len = IOBUF_SIZE - s->zstream.avail_out;
6951
            if (len > 0) {
6952
                ram_put_cblock(s, s->buf, len);
6953
            }
6954
            s->zstream.avail_out = IOBUF_SIZE;
6955
            s->zstream.next_out = s->buf;
6956
            if (ret == Z_STREAM_END)
6957
                break;
6958
        } else {
6959
            goto fail;
6960
        }
6961
    }
6962
fail:
6963
    deflateEnd(&s->zstream);
6964
}
6965

    
6966
typedef struct RamDecompressState {
6967
    z_stream zstream;
6968
    QEMUFile *f;
6969
    uint8_t buf[IOBUF_SIZE];
6970
} RamDecompressState;
6971

    
6972
static int ram_decompress_open(RamDecompressState *s, QEMUFile *f)
6973
{
6974
    int ret;
6975
    memset(s, 0, sizeof(*s));
6976
    s->f = f;
6977
    ret = inflateInit(&s->zstream);
6978
    if (ret != Z_OK)
6979
        return -1;
6980
    return 0;
6981
}
6982

    
6983
static int ram_decompress_buf(RamDecompressState *s, uint8_t *buf, int len)
6984
{
6985
    int ret, clen;
6986

    
6987
    s->zstream.avail_out = len;
6988
    s->zstream.next_out = buf;
6989
    while (s->zstream.avail_out > 0) {
6990
        if (s->zstream.avail_in == 0) {
6991
            if (qemu_get_be16(s->f) != RAM_CBLOCK_MAGIC)
6992
                return -1;
6993
            clen = qemu_get_be16(s->f);
6994
            if (clen > IOBUF_SIZE)
6995
                return -1;
6996
            qemu_get_buffer(s->f, s->buf, clen);
6997
            s->zstream.avail_in = clen;
6998
            s->zstream.next_in = s->buf;
6999
        }
7000
        ret = inflate(&s->zstream, Z_PARTIAL_FLUSH);
7001
        if (ret != Z_OK && ret != Z_STREAM_END) {
7002
            return -1;
7003
        }
7004
    }
7005
    return 0;
7006
}
7007

    
7008
static void ram_decompress_close(RamDecompressState *s)
7009
{
7010
    inflateEnd(&s->zstream);
7011
}
7012

    
7013
static void ram_save(QEMUFile *f, void *opaque)
7014
{
7015
    ram_addr_t i;
7016
    RamCompressState s1, *s = &s1;
7017
    uint8_t buf[10];
7018

    
7019
    qemu_put_be32(f, phys_ram_size);
7020
    if (ram_compress_open(s, f) < 0)
7021
        return;
7022
    for(i = 0; i < phys_ram_size; i+= BDRV_HASH_BLOCK_SIZE) {
7023
#if 0
7024
        if (tight_savevm_enabled) {
7025
            int64_t sector_num;
7026
            int j;
7027

7028
            /* find if the memory block is available on a virtual
7029
               block device */
7030
            sector_num = -1;
7031
            for(j = 0; j < nb_drives; j++) {
7032
                sector_num = bdrv_hash_find(drives_table[j].bdrv,
7033
                                            phys_ram_base + i,
7034
                                            BDRV_HASH_BLOCK_SIZE);
7035
                if (sector_num >= 0)
7036
                    break;
7037
            }
7038
            if (j == nb_drives)
7039
                goto normal_compress;
7040
            buf[0] = 1;
7041
            buf[1] = j;
7042
            cpu_to_be64wu((uint64_t *)(buf + 2), sector_num);
7043
            ram_compress_buf(s, buf, 10);
7044
        } else
7045
#endif
7046
        {
7047
            //        normal_compress:
7048
            buf[0] = 0;
7049
            ram_compress_buf(s, buf, 1);
7050
            ram_compress_buf(s, phys_ram_base + i, BDRV_HASH_BLOCK_SIZE);
7051
        }
7052
    }
7053
    ram_compress_close(s);
7054
}
7055

    
7056
static int ram_load(QEMUFile *f, void *opaque, int version_id)
7057
{
7058
    RamDecompressState s1, *s = &s1;
7059
    uint8_t buf[10];
7060
    ram_addr_t i;
7061

    
7062
    if (version_id == 1)
7063
        return ram_load_v1(f, opaque);
7064
    if (version_id != 2)
7065
        return -EINVAL;
7066
    if (qemu_get_be32(f) != phys_ram_size)
7067
        return -EINVAL;
7068
    if (ram_decompress_open(s, f) < 0)
7069
        return -EINVAL;
7070
    for(i = 0; i < phys_ram_size; i+= BDRV_HASH_BLOCK_SIZE) {
7071
        if (ram_decompress_buf(s, buf, 1) < 0) {
7072
            fprintf(stderr, "Error while reading ram block header\n");
7073
            goto error;
7074
        }
7075
        if (buf[0] == 0) {
7076
            if (ram_decompress_buf(s, phys_ram_base + i, BDRV_HASH_BLOCK_SIZE) < 0) {
7077
                fprintf(stderr, "Error while reading ram block address=0x%08" PRIx64, (uint64_t)i);
7078
                goto error;
7079
            }
7080
        } else
7081
#if 0
7082
        if (buf[0] == 1) {
7083
            int bs_index;
7084
            int64_t sector_num;
7085

7086
            ram_decompress_buf(s, buf + 1, 9);
7087
            bs_index = buf[1];
7088
            sector_num = be64_to_cpupu((const uint64_t *)(buf + 2));
7089
            if (bs_index >= nb_drives) {
7090
                fprintf(stderr, "Invalid block device index %d\n", bs_index);
7091
                goto error;
7092
            }
7093
            if (bdrv_read(drives_table[bs_index].bdrv, sector_num,
7094
                          phys_ram_base + i,
7095
                          BDRV_HASH_BLOCK_SIZE / 512) < 0) {
7096
                fprintf(stderr, "Error while reading sector %d:%" PRId64 "\n",
7097
                        bs_index, sector_num);
7098
                goto error;
7099
            }
7100
        } else
7101
#endif
7102
        {
7103
        error:
7104
            printf("Error block header\n");
7105
            return -EINVAL;
7106
        }
7107
    }
7108
    ram_decompress_close(s);
7109
    return 0;
7110
}
7111

    
7112
/***********************************************************/
7113
/* bottom halves (can be seen as timers which expire ASAP) */
7114

    
7115
struct QEMUBH {
7116
    QEMUBHFunc *cb;
7117
    void *opaque;
7118
    int scheduled;
7119
    QEMUBH *next;
7120
};
7121

    
7122
static QEMUBH *first_bh = NULL;
7123

    
7124
QEMUBH *qemu_bh_new(QEMUBHFunc *cb, void *opaque)
7125
{
7126
    QEMUBH *bh;
7127
    bh = qemu_mallocz(sizeof(QEMUBH));
7128
    if (!bh)
7129
        return NULL;
7130
    bh->cb = cb;
7131
    bh->opaque = opaque;
7132
    return bh;
7133
}
7134

    
7135
int qemu_bh_poll(void)
7136
{
7137
    QEMUBH *bh, **pbh;
7138
    int ret;
7139

    
7140
    ret = 0;
7141
    for(;;) {
7142
        pbh = &first_bh;
7143
        bh = *pbh;
7144
        if (!bh)
7145
            break;
7146
        ret = 1;
7147
        *pbh = bh->next;
7148
        bh->scheduled = 0;
7149
        bh->cb(bh->opaque);
7150
    }
7151
    return ret;
7152
}
7153

    
7154
void qemu_bh_schedule(QEMUBH *bh)
7155
{
7156
    CPUState *env = cpu_single_env;
7157
    if (bh->scheduled)
7158
        return;
7159
    bh->scheduled = 1;
7160
    bh->next = first_bh;
7161
    first_bh = bh;
7162

    
7163
    /* stop the currently executing CPU to execute the BH ASAP */
7164
    if (env) {
7165
        cpu_interrupt(env, CPU_INTERRUPT_EXIT);
7166
    }
7167
}
7168

    
7169
void qemu_bh_cancel(QEMUBH *bh)
7170
{
7171
    QEMUBH **pbh;
7172
    if (bh->scheduled) {
7173
        pbh = &first_bh;
7174
        while (*pbh != bh)
7175
            pbh = &(*pbh)->next;
7176
        *pbh = bh->next;
7177
        bh->scheduled = 0;
7178
    }
7179
}
7180

    
7181
void qemu_bh_delete(QEMUBH *bh)
7182
{
7183
    qemu_bh_cancel(bh);
7184
    qemu_free(bh);
7185
}
7186

    
7187
/***********************************************************/
7188
/* machine registration */
7189

    
7190
QEMUMachine *first_machine = NULL;
7191

    
7192
int qemu_register_machine(QEMUMachine *m)
7193
{
7194
    QEMUMachine **pm;
7195
    pm = &first_machine;
7196
    while (*pm != NULL)
7197
        pm = &(*pm)->next;
7198
    m->next = NULL;
7199
    *pm = m;
7200
    return 0;
7201
}
7202

    
7203
static QEMUMachine *find_machine(const char *name)
7204
{
7205
    QEMUMachine *m;
7206

    
7207
    for(m = first_machine; m != NULL; m = m->next) {
7208
        if (!strcmp(m->name, name))
7209
            return m;
7210
    }
7211
    return NULL;
7212
}
7213

    
7214
/***********************************************************/
7215
/* main execution loop */
7216

    
7217
static void gui_update(void *opaque)
7218
{
7219
    DisplayState *ds = opaque;
7220
    ds->dpy_refresh(ds);
7221
    qemu_mod_timer(ds->gui_timer,
7222
        (ds->gui_timer_interval ?
7223
            ds->gui_timer_interval :
7224
            GUI_REFRESH_INTERVAL)
7225
        + qemu_get_clock(rt_clock));
7226
}
7227

    
7228
struct vm_change_state_entry {
7229
    VMChangeStateHandler *cb;
7230
    void *opaque;
7231
    LIST_ENTRY (vm_change_state_entry) entries;
7232
};
7233

    
7234
static LIST_HEAD(vm_change_state_head, vm_change_state_entry) vm_change_state_head;
7235

    
7236
VMChangeStateEntry *qemu_add_vm_change_state_handler(VMChangeStateHandler *cb,
7237
                                                     void *opaque)
7238
{
7239
    VMChangeStateEntry *e;
7240

    
7241
    e = qemu_mallocz(sizeof (*e));
7242
    if (!e)
7243
        return NULL;
7244

    
7245
    e->cb = cb;
7246
    e->opaque = opaque;
7247
    LIST_INSERT_HEAD(&vm_change_state_head, e, entries);
7248
    return e;
7249
}
7250

    
7251
void qemu_del_vm_change_state_handler(VMChangeStateEntry *e)
7252
{
7253
    LIST_REMOVE (e, entries);
7254
    qemu_free (e);
7255
}
7256

    
7257
static void vm_state_notify(int running)
7258
{
7259
    VMChangeStateEntry *e;
7260

    
7261
    for (e = vm_change_state_head.lh_first; e; e = e->entries.le_next) {
7262
        e->cb(e->opaque, running);
7263
    }
7264
}
7265

    
7266
/* XXX: support several handlers */
7267
static VMStopHandler *vm_stop_cb;
7268
static void *vm_stop_opaque;
7269

    
7270
int qemu_add_vm_stop_handler(VMStopHandler *cb, void *opaque)
7271
{
7272
    vm_stop_cb = cb;
7273
    vm_stop_opaque = opaque;
7274
    return 0;
7275
}
7276

    
7277
void qemu_del_vm_stop_handler(VMStopHandler *cb, void *opaque)
7278
{
7279
    vm_stop_cb = NULL;
7280
}
7281

    
7282
void vm_start(void)
7283
{
7284
    if (!vm_running) {
7285
        cpu_enable_ticks();
7286
        vm_running = 1;
7287
        vm_state_notify(1);
7288
        qemu_rearm_alarm_timer(alarm_timer);
7289
    }
7290
}
7291

    
7292
void vm_stop(int reason)
7293
{
7294
    if (vm_running) {
7295
        cpu_disable_ticks();
7296
        vm_running = 0;
7297
        if (reason != 0) {
7298
            if (vm_stop_cb) {
7299
                vm_stop_cb(vm_stop_opaque, reason);
7300
            }
7301
        }
7302
        vm_state_notify(0);
7303
    }
7304
}
7305

    
7306
/* reset/shutdown handler */
7307

    
7308
typedef struct QEMUResetEntry {
7309
    QEMUResetHandler *func;
7310
    void *opaque;
7311
    struct QEMUResetEntry *next;
7312
} QEMUResetEntry;
7313

    
7314
static QEMUResetEntry *first_reset_entry;
7315
static int reset_requested;
7316
static int shutdown_requested;
7317
static int powerdown_requested;
7318

    
7319
int qemu_shutdown_requested(void)
7320
{
7321
    int r = shutdown_requested;
7322
    shutdown_requested = 0;
7323
    return r;
7324
}
7325

    
7326
int qemu_reset_requested(void)
7327
{
7328
    int r = reset_requested;
7329
    reset_requested = 0;
7330
    return r;
7331
}
7332

    
7333
int qemu_powerdown_requested(void)
7334
{
7335
    int r = powerdown_requested;
7336
    powerdown_requested = 0;
7337
    return r;
7338
}
7339

    
7340
void qemu_register_reset(QEMUResetHandler *func, void *opaque)
7341
{
7342
    QEMUResetEntry **pre, *re;
7343

    
7344
    pre = &first_reset_entry;
7345
    while (*pre != NULL)
7346
        pre = &(*pre)->next;
7347
    re = qemu_mallocz(sizeof(QEMUResetEntry));
7348
    re->func = func;
7349
    re->opaque = opaque;
7350
    re->next = NULL;
7351
    *pre = re;
7352
}
7353

    
7354
void qemu_system_reset(void)
7355
{
7356
    QEMUResetEntry *re;
7357

    
7358
    /* reset all devices */
7359
    for(re = first_reset_entry; re != NULL; re = re->next) {
7360
        re->func(re->opaque);
7361
    }
7362
}
7363

    
7364
void qemu_system_reset_request(void)
7365
{
7366
    if (no_reboot) {
7367
        shutdown_requested = 1;
7368
    } else {
7369
        reset_requested = 1;
7370
    }
7371
    if (cpu_single_env)
7372
        cpu_interrupt(cpu_single_env, CPU_INTERRUPT_EXIT);
7373
}
7374

    
7375
void qemu_system_shutdown_request(void)
7376
{
7377
    shutdown_requested = 1;
7378
    if (cpu_single_env)
7379
        cpu_interrupt(cpu_single_env, CPU_INTERRUPT_EXIT);
7380
}
7381

    
7382
void qemu_system_powerdown_request(void)
7383
{
7384
    powerdown_requested = 1;
7385
    if (cpu_single_env)
7386
        cpu_interrupt(cpu_single_env, CPU_INTERRUPT_EXIT);
7387
}
7388

    
7389
void main_loop_wait(int timeout)
7390
{
7391
    IOHandlerRecord *ioh;
7392
    fd_set rfds, wfds, xfds;
7393
    int ret, nfds;
7394
#ifdef _WIN32
7395
    int ret2, i;
7396
#endif
7397
    struct timeval tv;
7398
    PollingEntry *pe;
7399

    
7400

    
7401
    /* XXX: need to suppress polling by better using win32 events */
7402
    ret = 0;
7403
    for(pe = first_polling_entry; pe != NULL; pe = pe->next) {
7404
        ret |= pe->func(pe->opaque);
7405
    }
7406
#ifdef _WIN32
7407
    if (ret == 0) {
7408
        int err;
7409
        WaitObjects *w = &wait_objects;
7410

    
7411
        ret = WaitForMultipleObjects(w->num, w->events, FALSE, timeout);
7412
        if (WAIT_OBJECT_0 + 0 <= ret && ret <= WAIT_OBJECT_0 + w->num - 1) {
7413
            if (w->func[ret - WAIT_OBJECT_0])
7414
                w->func[ret - WAIT_OBJECT_0](w->opaque[ret - WAIT_OBJECT_0]);
7415

    
7416
            /* Check for additional signaled events */
7417
            for(i = (ret - WAIT_OBJECT_0 + 1); i < w->num; i++) {
7418

    
7419
                /* Check if event is signaled */
7420
                ret2 = WaitForSingleObject(w->events[i], 0);
7421
                if(ret2 == WAIT_OBJECT_0) {
7422
                    if (w->func[i])
7423
                        w->func[i](w->opaque[i]);
7424
                } else if (ret2 == WAIT_TIMEOUT) {
7425
                } else {
7426
                    err = GetLastError();
7427
                    fprintf(stderr, "WaitForSingleObject error %d %d\n", i, err);
7428
                }
7429
            }
7430
        } else if (ret == WAIT_TIMEOUT) {
7431
        } else {
7432
            err = GetLastError();
7433
            fprintf(stderr, "WaitForMultipleObjects error %d %d\n", ret, err);
7434
        }
7435
    }
7436
#endif
7437
    /* poll any events */
7438
    /* XXX: separate device handlers from system ones */
7439
    nfds = -1;
7440
    FD_ZERO(&rfds);
7441
    FD_ZERO(&wfds);
7442
    FD_ZERO(&xfds);
7443
    for(ioh = first_io_handler; ioh != NULL; ioh = ioh->next) {
7444
        if (ioh->deleted)
7445
            continue;
7446
        if (ioh->fd_read &&
7447
            (!ioh->fd_read_poll ||
7448
             ioh->fd_read_poll(ioh->opaque) != 0)) {
7449
            FD_SET(ioh->fd, &rfds);
7450
            if (ioh->fd > nfds)
7451
                nfds = ioh->fd;
7452
        }
7453
        if (ioh->fd_write) {
7454
            FD_SET(ioh->fd, &wfds);
7455
            if (ioh->fd > nfds)
7456
                nfds = ioh->fd;
7457
        }
7458
    }
7459

    
7460
    tv.tv_sec = 0;
7461
#ifdef _WIN32
7462
    tv.tv_usec = 0;
7463
#else
7464
    tv.tv_usec = timeout * 1000;
7465
#endif
7466
#if defined(CONFIG_SLIRP)
7467
    if (slirp_inited) {
7468
        slirp_select_fill(&nfds, &rfds, &wfds, &xfds);
7469
    }
7470
#endif
7471
    ret = select(nfds + 1, &rfds, &wfds, &xfds, &tv);
7472
    if (ret > 0) {
7473
        IOHandlerRecord **pioh;
7474

    
7475
        for(ioh = first_io_handler; ioh != NULL; ioh = ioh->next) {
7476
            if (!ioh->deleted && ioh->fd_read && FD_ISSET(ioh->fd, &rfds)) {
7477
                ioh->fd_read(ioh->opaque);
7478
            }
7479
            if (!ioh->deleted && ioh->fd_write && FD_ISSET(ioh->fd, &wfds)) {
7480
                ioh->fd_write(ioh->opaque);
7481
            }
7482
        }
7483

    
7484
        /* remove deleted IO handlers */
7485
        pioh = &first_io_handler;
7486
        while (*pioh) {
7487
            ioh = *pioh;
7488
            if (ioh->deleted) {
7489
                *pioh = ioh->next;
7490
                qemu_free(ioh);
7491
            } else
7492
                pioh = &ioh->next;
7493
        }
7494
    }
7495
#if defined(CONFIG_SLIRP)
7496
    if (slirp_inited) {
7497
        if (ret < 0) {
7498
            FD_ZERO(&rfds);
7499
            FD_ZERO(&wfds);
7500
            FD_ZERO(&xfds);
7501
        }
7502
        slirp_select_poll(&rfds, &wfds, &xfds);
7503
    }
7504
#endif
7505
    qemu_aio_poll();
7506

    
7507
    if (vm_running) {
7508
        qemu_run_timers(&active_timers[QEMU_TIMER_VIRTUAL],
7509
                        qemu_get_clock(vm_clock));
7510
        /* run dma transfers, if any */
7511
        DMA_run();
7512
    }
7513

    
7514
    /* real time timers */
7515
    qemu_run_timers(&active_timers[QEMU_TIMER_REALTIME],
7516
                    qemu_get_clock(rt_clock));
7517

    
7518
    if (alarm_timer->flags & ALARM_FLAG_EXPIRED) {
7519
        alarm_timer->flags &= ~(ALARM_FLAG_EXPIRED);
7520
        qemu_rearm_alarm_timer(alarm_timer);
7521
    }
7522

    
7523
    /* Check bottom-halves last in case any of the earlier events triggered
7524
       them.  */
7525
    qemu_bh_poll();
7526

    
7527
}
7528

    
7529
static int main_loop(void)
7530
{
7531
    int ret, timeout;
7532
#ifdef CONFIG_PROFILER
7533
    int64_t ti;
7534
#endif
7535
    CPUState *env;
7536

    
7537
    cur_cpu = first_cpu;
7538
    next_cpu = cur_cpu->next_cpu ?: first_cpu;
7539
    for(;;) {
7540
        if (vm_running) {
7541

    
7542
            for(;;) {
7543
                /* get next cpu */
7544
                env = next_cpu;
7545
#ifdef CONFIG_PROFILER
7546
                ti = profile_getclock();
7547
#endif
7548
                ret = cpu_exec(env);
7549
#ifdef CONFIG_PROFILER
7550
                qemu_time += profile_getclock() - ti;
7551
#endif
7552
                next_cpu = env->next_cpu ?: first_cpu;
7553
                if (event_pending && likely(ret != EXCP_DEBUG)) {
7554
                    ret = EXCP_INTERRUPT;
7555
                    event_pending = 0;
7556
                    break;
7557
                }
7558
                if (ret == EXCP_HLT) {
7559
                    /* Give the next CPU a chance to run.  */
7560
                    cur_cpu = env;
7561
                    continue;
7562
                }
7563
                if (ret != EXCP_HALTED)
7564
                    break;
7565
                /* all CPUs are halted ? */
7566
                if (env == cur_cpu)
7567
                    break;
7568
            }
7569
            cur_cpu = env;
7570

    
7571
            if (shutdown_requested) {
7572
                ret = EXCP_INTERRUPT;
7573
                if (no_shutdown) {
7574
                    vm_stop(0);
7575
                    no_shutdown = 0;
7576
                }
7577
                else
7578
                    break;
7579
            }
7580
            if (reset_requested) {
7581
                reset_requested = 0;
7582
                qemu_system_reset();
7583
                ret = EXCP_INTERRUPT;
7584
            }
7585
            if (powerdown_requested) {
7586
                powerdown_requested = 0;
7587
                qemu_system_powerdown();
7588
                ret = EXCP_INTERRUPT;
7589
            }
7590
            if (unlikely(ret == EXCP_DEBUG)) {
7591
                vm_stop(EXCP_DEBUG);
7592
            }
7593
            /* If all cpus are halted then wait until the next IRQ */
7594
            /* XXX: use timeout computed from timers */
7595
            if (ret == EXCP_HALTED)
7596
                timeout = 10;
7597
            else
7598
                timeout = 0;
7599
        } else {
7600
            timeout = 10;
7601
        }
7602
#ifdef CONFIG_PROFILER
7603
        ti = profile_getclock();
7604
#endif
7605
        main_loop_wait(timeout);
7606
#ifdef CONFIG_PROFILER
7607
        dev_time += profile_getclock() - ti;
7608
#endif
7609
    }
7610
    cpu_disable_ticks();
7611
    return ret;
7612
}
7613

    
7614
static void help(int exitcode)
7615
{
7616
    printf("QEMU PC emulator version " QEMU_VERSION ", Copyright (c) 2003-2008 Fabrice Bellard\n"
7617
           "usage: %s [options] [disk_image]\n"
7618
           "\n"
7619
           "'disk_image' is a raw hard image image for IDE hard disk 0\n"
7620
           "\n"
7621
           "Standard options:\n"
7622
           "-M machine      select emulated machine (-M ? for list)\n"
7623
           "-cpu cpu        select CPU (-cpu ? for list)\n"
7624
           "-fda/-fdb file  use 'file' as floppy disk 0/1 image\n"
7625
           "-hda/-hdb file  use 'file' as IDE hard disk 0/1 image\n"
7626
           "-hdc/-hdd file  use 'file' as IDE hard disk 2/3 image\n"
7627
           "-cdrom file     use 'file' as IDE cdrom image (cdrom is ide1 master)\n"
7628
           "-drive [file=file][,if=type][,bus=n][,unit=m][,media=d][index=i]\n"
7629
           "       [,cyls=c,heads=h,secs=s[,trans=t]][snapshot=on|off]"
7630
           "       [,cache=on|off]\n"
7631
           "                use 'file' as a drive image\n"
7632
           "-mtdblock file  use 'file' as on-board Flash memory image\n"
7633
           "-sd file        use 'file' as SecureDigital card image\n"
7634
           "-pflash file    use 'file' as a parallel flash image\n"
7635
           "-boot [a|c|d|n] boot on floppy (a), hard disk (c), CD-ROM (d), or network (n)\n"
7636
           "-snapshot       write to temporary files instead of disk image files\n"
7637
#ifdef CONFIG_SDL
7638
           "-no-frame       open SDL window without a frame and window decorations\n"
7639
           "-alt-grab       use Ctrl-Alt-Shift to grab mouse (instead of Ctrl-Alt)\n"
7640
           "-no-quit        disable SDL window close capability\n"
7641
#endif
7642
#ifdef TARGET_I386
7643
           "-no-fd-bootchk  disable boot signature checking for floppy disks\n"
7644
#endif
7645
           "-m megs         set virtual RAM size to megs MB [default=%d]\n"
7646
           "-smp n          set the number of CPUs to 'n' [default=1]\n"
7647
           "-nographic      disable graphical output and redirect serial I/Os to console\n"
7648
           "-portrait       rotate graphical output 90 deg left (only PXA LCD)\n"
7649
#ifndef _WIN32
7650
           "-k language     use keyboard layout (for example \"fr\" for French)\n"
7651
#endif
7652
#ifdef HAS_AUDIO
7653
           "-audio-help     print list of audio drivers and their options\n"
7654
           "-soundhw c1,... enable audio support\n"
7655
           "                and only specified sound cards (comma separated list)\n"
7656
           "                use -soundhw ? to get the list of supported cards\n"
7657
           "                use -soundhw all to enable all of them\n"
7658
#endif
7659
           "-localtime      set the real time clock to local time [default=utc]\n"
7660
           "-full-screen    start in full screen\n"
7661
#ifdef TARGET_I386
7662
           "-win2k-hack     use it when installing Windows 2000 to avoid a disk full bug\n"
7663
#endif
7664
           "-usb            enable the USB driver (will be the default soon)\n"
7665
           "-usbdevice name add the host or guest USB device 'name'\n"
7666
#if defined(TARGET_PPC) || defined(TARGET_SPARC)
7667
           "-g WxH[xDEPTH]  Set the initial graphical resolution and depth\n"
7668
#endif
7669
           "-name string    set the name of the guest\n"
7670
           "\n"
7671
           "Network options:\n"
7672
           "-net nic[,vlan=n][,macaddr=addr][,model=type]\n"
7673
           "                create a new Network Interface Card and connect it to VLAN 'n'\n"
7674
#ifdef CONFIG_SLIRP
7675
           "-net user[,vlan=n][,hostname=host]\n"
7676
           "                connect the user mode network stack to VLAN 'n' and send\n"
7677
           "                hostname 'host' to DHCP clients\n"
7678
#endif
7679
#ifdef _WIN32
7680
           "-net tap[,vlan=n],ifname=name\n"
7681
           "                connect the host TAP network interface to VLAN 'n'\n"
7682
#else
7683
           "-net tap[,vlan=n][,fd=h][,ifname=name][,script=file][,downscript=dfile]\n"
7684
           "                connect the host TAP network interface to VLAN 'n' and use the\n"
7685
           "                network scripts 'file' (default=%s)\n"
7686
           "                and 'dfile' (default=%s);\n"
7687
           "                use '[down]script=no' to disable script execution;\n"
7688
           "                use 'fd=h' to connect to an already opened TAP interface\n"
7689
#endif
7690
           "-net socket[,vlan=n][,fd=h][,listen=[host]:port][,connect=host:port]\n"
7691
           "                connect the vlan 'n' to another VLAN using a socket connection\n"
7692
           "-net socket[,vlan=n][,fd=h][,mcast=maddr:port]\n"
7693
           "                connect the vlan 'n' to multicast maddr and port\n"
7694
           "-net none       use it alone to have zero network devices; if no -net option\n"
7695
           "                is provided, the default is '-net nic -net user'\n"
7696
           "\n"
7697
#ifdef CONFIG_SLIRP
7698
           "-tftp dir       allow tftp access to files in dir [-net user]\n"
7699
           "-bootp file     advertise file in BOOTP replies\n"
7700
#ifndef _WIN32
7701
           "-smb dir        allow SMB access to files in 'dir' [-net user]\n"
7702
#endif
7703
           "-redir [tcp|udp]:host-port:[guest-host]:guest-port\n"
7704
           "                redirect TCP or UDP connections from host to guest [-net user]\n"
7705
#endif
7706
           "\n"
7707
           "Linux boot specific:\n"
7708
           "-kernel bzImage use 'bzImage' as kernel image\n"
7709
           "-append cmdline use 'cmdline' as kernel command line\n"
7710
           "-initrd file    use 'file' as initial ram disk\n"
7711
           "\n"
7712
           "Debug/Expert options:\n"
7713
           "-monitor dev    redirect the monitor to char device 'dev'\n"
7714
           "-serial dev     redirect the serial port to char device 'dev'\n"
7715
           "-parallel dev   redirect the parallel port to char device 'dev'\n"
7716
           "-pidfile file   Write PID to 'file'\n"
7717
           "-S              freeze CPU at startup (use 'c' to start execution)\n"
7718
           "-s              wait gdb connection to port\n"
7719
           "-p port         set gdb connection port [default=%s]\n"
7720
           "-d item1,...    output log to %s (use -d ? for a list of log items)\n"
7721
           "-hdachs c,h,s[,t]  force hard disk 0 physical geometry and the optional BIOS\n"
7722
           "                translation (t=none or lba) (usually qemu can guess them)\n"
7723
           "-L path         set the directory for the BIOS, VGA BIOS and keymaps\n"
7724
#ifdef USE_KQEMU
7725
           "-kernel-kqemu   enable KQEMU full virtualization (default is user mode only)\n"
7726
           "-no-kqemu       disable KQEMU kernel module usage\n"
7727
#endif
7728
#ifdef TARGET_I386
7729
           "-std-vga        simulate a standard VGA card with VESA Bochs Extensions\n"
7730
           "                (default is CL-GD5446 PCI VGA)\n"
7731
           "-no-acpi        disable ACPI\n"
7732
#endif
7733
#ifdef CONFIG_CURSES
7734
           "-curses         use a curses/ncurses interface instead of SDL\n"
7735
#endif
7736
           "-no-reboot      exit instead of rebooting\n"
7737
           "-no-shutdown    stop before shutdown\n"
7738
           "-loadvm file    start right away with a saved state (loadvm in monitor)\n"
7739
           "-vnc display    start a VNC server on display\n"
7740
#ifndef _WIN32
7741
           "-daemonize      daemonize QEMU after initializing\n"
7742
#endif
7743
           "-option-rom rom load a file, rom, into the option ROM space\n"
7744
#ifdef TARGET_SPARC
7745
           "-prom-env variable=value  set OpenBIOS nvram variables\n"
7746
#endif
7747
           "-clock          force the use of the given methods for timer alarm.\n"
7748
           "                To see what timers are available use -clock ?\n"
7749
           "-startdate      select initial date of the clock\n"
7750
           "\n"
7751
           "During emulation, the following keys are useful:\n"
7752
           "ctrl-alt-f      toggle full screen\n"
7753
           "ctrl-alt-n      switch to virtual console 'n'\n"
7754
           "ctrl-alt        toggle mouse and keyboard grab\n"
7755
           "\n"
7756
           "When using -nographic, press 'ctrl-a h' to get some help.\n"
7757
           ,
7758
           "qemu",
7759
           DEFAULT_RAM_SIZE,
7760
#ifndef _WIN32
7761
           DEFAULT_NETWORK_SCRIPT,
7762
           DEFAULT_NETWORK_DOWN_SCRIPT,
7763
#endif
7764
           DEFAULT_GDBSTUB_PORT,
7765
           "/tmp/qemu.log");
7766
    exit(exitcode);
7767
}
7768

    
7769
#define HAS_ARG 0x0001
7770

    
7771
enum {
7772
    QEMU_OPTION_h,
7773

    
7774
    QEMU_OPTION_M,
7775
    QEMU_OPTION_cpu,
7776
    QEMU_OPTION_fda,
7777
    QEMU_OPTION_fdb,
7778
    QEMU_OPTION_hda,
7779
    QEMU_OPTION_hdb,
7780
    QEMU_OPTION_hdc,
7781
    QEMU_OPTION_hdd,
7782
    QEMU_OPTION_drive,
7783
    QEMU_OPTION_cdrom,
7784
    QEMU_OPTION_mtdblock,
7785
    QEMU_OPTION_sd,
7786
    QEMU_OPTION_pflash,
7787
    QEMU_OPTION_boot,
7788
    QEMU_OPTION_snapshot,
7789
#ifdef TARGET_I386
7790
    QEMU_OPTION_no_fd_bootchk,
7791
#endif
7792
    QEMU_OPTION_m,
7793
    QEMU_OPTION_nographic,
7794
    QEMU_OPTION_portrait,
7795
#ifdef HAS_AUDIO
7796
    QEMU_OPTION_audio_help,
7797
    QEMU_OPTION_soundhw,
7798
#endif
7799

    
7800
    QEMU_OPTION_net,
7801
    QEMU_OPTION_tftp,
7802
    QEMU_OPTION_bootp,
7803
    QEMU_OPTION_smb,
7804
    QEMU_OPTION_redir,
7805

    
7806
    QEMU_OPTION_kernel,
7807
    QEMU_OPTION_append,
7808
    QEMU_OPTION_initrd,
7809

    
7810
    QEMU_OPTION_S,
7811
    QEMU_OPTION_s,
7812
    QEMU_OPTION_p,
7813
    QEMU_OPTION_d,
7814
    QEMU_OPTION_hdachs,
7815
    QEMU_OPTION_L,
7816
    QEMU_OPTION_bios,
7817
    QEMU_OPTION_no_code_copy,
7818
    QEMU_OPTION_k,
7819
    QEMU_OPTION_localtime,
7820
    QEMU_OPTION_cirrusvga,
7821
    QEMU_OPTION_vmsvga,
7822
    QEMU_OPTION_g,
7823
    QEMU_OPTION_std_vga,
7824
    QEMU_OPTION_echr,
7825
    QEMU_OPTION_monitor,
7826
    QEMU_OPTION_serial,
7827
    QEMU_OPTION_parallel,
7828
    QEMU_OPTION_loadvm,
7829
    QEMU_OPTION_full_screen,
7830
    QEMU_OPTION_no_frame,
7831
    QEMU_OPTION_alt_grab,
7832
    QEMU_OPTION_no_quit,
7833
    QEMU_OPTION_pidfile,
7834
    QEMU_OPTION_no_kqemu,
7835
    QEMU_OPTION_kernel_kqemu,
7836
    QEMU_OPTION_win2k_hack,
7837
    QEMU_OPTION_usb,
7838
    QEMU_OPTION_usbdevice,
7839
    QEMU_OPTION_smp,
7840
    QEMU_OPTION_vnc,
7841
    QEMU_OPTION_no_acpi,
7842
    QEMU_OPTION_curses,
7843
    QEMU_OPTION_no_reboot,
7844
    QEMU_OPTION_no_shutdown,
7845
    QEMU_OPTION_show_cursor,
7846
    QEMU_OPTION_daemonize,
7847
    QEMU_OPTION_option_rom,
7848
    QEMU_OPTION_semihosting,
7849
    QEMU_OPTION_name,
7850
    QEMU_OPTION_prom_env,
7851
    QEMU_OPTION_old_param,
7852
    QEMU_OPTION_clock,
7853
    QEMU_OPTION_startdate,
7854
};
7855

    
7856
typedef struct QEMUOption {
7857
    const char *name;
7858
    int flags;
7859
    int index;
7860
} QEMUOption;
7861

    
7862
const QEMUOption qemu_options[] = {
7863
    { "h", 0, QEMU_OPTION_h },
7864
    { "help", 0, QEMU_OPTION_h },
7865

    
7866
    { "M", HAS_ARG, QEMU_OPTION_M },
7867
    { "cpu", HAS_ARG, QEMU_OPTION_cpu },
7868
    { "fda", HAS_ARG, QEMU_OPTION_fda },
7869
    { "fdb", HAS_ARG, QEMU_OPTION_fdb },
7870
    { "hda", HAS_ARG, QEMU_OPTION_hda },
7871
    { "hdb", HAS_ARG, QEMU_OPTION_hdb },
7872
    { "hdc", HAS_ARG, QEMU_OPTION_hdc },
7873
    { "hdd", HAS_ARG, QEMU_OPTION_hdd },
7874
    { "drive", HAS_ARG, QEMU_OPTION_drive },
7875
    { "cdrom", HAS_ARG, QEMU_OPTION_cdrom },
7876
    { "mtdblock", HAS_ARG, QEMU_OPTION_mtdblock },
7877
    { "sd", HAS_ARG, QEMU_OPTION_sd },
7878
    { "pflash", HAS_ARG, QEMU_OPTION_pflash },
7879
    { "boot", HAS_ARG, QEMU_OPTION_boot },
7880
    { "snapshot", 0, QEMU_OPTION_snapshot },
7881
#ifdef TARGET_I386
7882
    { "no-fd-bootchk", 0, QEMU_OPTION_no_fd_bootchk },
7883
#endif
7884
    { "m", HAS_ARG, QEMU_OPTION_m },
7885
    { "nographic", 0, QEMU_OPTION_nographic },
7886
    { "portrait", 0, QEMU_OPTION_portrait },
7887
    { "k", HAS_ARG, QEMU_OPTION_k },
7888
#ifdef HAS_AUDIO
7889
    { "audio-help", 0, QEMU_OPTION_audio_help },
7890
    { "soundhw", HAS_ARG, QEMU_OPTION_soundhw },
7891
#endif
7892

    
7893
    { "net", HAS_ARG, QEMU_OPTION_net},
7894
#ifdef CONFIG_SLIRP
7895
    { "tftp", HAS_ARG, QEMU_OPTION_tftp },
7896
    { "bootp", HAS_ARG, QEMU_OPTION_bootp },
7897
#ifndef _WIN32
7898
    { "smb", HAS_ARG, QEMU_OPTION_smb },
7899
#endif
7900
    { "redir", HAS_ARG, QEMU_OPTION_redir },
7901
#endif
7902

    
7903
    { "kernel", HAS_ARG, QEMU_OPTION_kernel },
7904
    { "append", HAS_ARG, QEMU_OPTION_append },
7905
    { "initrd", HAS_ARG, QEMU_OPTION_initrd },
7906

    
7907
    { "S", 0, QEMU_OPTION_S },
7908
    { "s", 0, QEMU_OPTION_s },
7909
    { "p", HAS_ARG, QEMU_OPTION_p },
7910
    { "d", HAS_ARG, QEMU_OPTION_d },
7911
    { "hdachs", HAS_ARG, QEMU_OPTION_hdachs },
7912
    { "L", HAS_ARG, QEMU_OPTION_L },
7913
    { "bios", HAS_ARG, QEMU_OPTION_bios },
7914
    { "no-code-copy", 0, QEMU_OPTION_no_code_copy },
7915
#ifdef USE_KQEMU
7916
    { "no-kqemu", 0, QEMU_OPTION_no_kqemu },
7917
    { "kernel-kqemu", 0, QEMU_OPTION_kernel_kqemu },
7918
#endif
7919
#if defined(TARGET_PPC) || defined(TARGET_SPARC)
7920
    { "g", 1, QEMU_OPTION_g },
7921
#endif
7922
    { "localtime", 0, QEMU_OPTION_localtime },
7923
    { "std-vga", 0, QEMU_OPTION_std_vga },
7924
    { "echr", HAS_ARG, QEMU_OPTION_echr },
7925
    { "monitor", HAS_ARG, QEMU_OPTION_monitor },
7926
    { "serial", HAS_ARG, QEMU_OPTION_serial },
7927
    { "parallel", HAS_ARG, QEMU_OPTION_parallel },
7928
    { "loadvm", HAS_ARG, QEMU_OPTION_loadvm },
7929
    { "full-screen", 0, QEMU_OPTION_full_screen },
7930
#ifdef CONFIG_SDL
7931
    { "no-frame", 0, QEMU_OPTION_no_frame },
7932
    { "alt-grab", 0, QEMU_OPTION_alt_grab },
7933
    { "no-quit", 0, QEMU_OPTION_no_quit },
7934
#endif
7935
    { "pidfile", HAS_ARG, QEMU_OPTION_pidfile },
7936
    { "win2k-hack", 0, QEMU_OPTION_win2k_hack },
7937
    { "usbdevice", HAS_ARG, QEMU_OPTION_usbdevice },
7938
    { "smp", HAS_ARG, QEMU_OPTION_smp },
7939
    { "vnc", HAS_ARG, QEMU_OPTION_vnc },
7940
#ifdef CONFIG_CURSES
7941
    { "curses", 0, QEMU_OPTION_curses },
7942
#endif
7943

    
7944
    /* temporary options */
7945
    { "usb", 0, QEMU_OPTION_usb },
7946
    { "cirrusvga", 0, QEMU_OPTION_cirrusvga },
7947
    { "vmwarevga", 0, QEMU_OPTION_vmsvga },
7948
    { "no-acpi", 0, QEMU_OPTION_no_acpi },
7949
    { "no-reboot", 0, QEMU_OPTION_no_reboot },
7950
    { "no-shutdown", 0, QEMU_OPTION_no_shutdown },
7951
    { "show-cursor", 0, QEMU_OPTION_show_cursor },
7952
    { "daemonize", 0, QEMU_OPTION_daemonize },
7953
    { "option-rom", HAS_ARG, QEMU_OPTION_option_rom },
7954
#if defined(TARGET_ARM) || defined(TARGET_M68K)
7955
    { "semihosting", 0, QEMU_OPTION_semihosting },
7956
#endif
7957
    { "name", HAS_ARG, QEMU_OPTION_name },
7958
#if defined(TARGET_SPARC)
7959
    { "prom-env", HAS_ARG, QEMU_OPTION_prom_env },
7960
#endif
7961
#if defined(TARGET_ARM)
7962
    { "old-param", 0, QEMU_OPTION_old_param },
7963
#endif
7964
    { "clock", HAS_ARG, QEMU_OPTION_clock },
7965
    { "startdate", HAS_ARG, QEMU_OPTION_startdate },
7966
    { NULL },
7967
};
7968

    
7969
/* password input */
7970

    
7971
int qemu_key_check(BlockDriverState *bs, const char *name)
7972
{
7973
    char password[256];
7974
    int i;
7975

    
7976
    if (!bdrv_is_encrypted(bs))
7977
        return 0;
7978

    
7979
    term_printf("%s is encrypted.\n", name);
7980
    for(i = 0; i < 3; i++) {
7981
        monitor_readline("Password: ", 1, password, sizeof(password));
7982
        if (bdrv_set_key(bs, password) == 0)
7983
            return 0;
7984
        term_printf("invalid password\n");
7985
    }
7986
    return -EPERM;
7987
}
7988

    
7989
static BlockDriverState *get_bdrv(int index)
7990
{
7991
    if (index > nb_drives)
7992
        return NULL;
7993
    return drives_table[index].bdrv;
7994
}
7995

    
7996
static void read_passwords(void)
7997
{
7998
    BlockDriverState *bs;
7999
    int i;
8000

    
8001
    for(i = 0; i < 6; i++) {
8002
        bs = get_bdrv(i);
8003
        if (bs)
8004
            qemu_key_check(bs, bdrv_get_device_name(bs));
8005
    }
8006
}
8007

    
8008
/* XXX: currently we cannot use simultaneously different CPUs */
8009
static void register_machines(void)
8010
{
8011
#if defined(TARGET_I386)
8012
    qemu_register_machine(&pc_machine);
8013
    qemu_register_machine(&isapc_machine);
8014
#elif defined(TARGET_PPC)
8015
    qemu_register_machine(&heathrow_machine);
8016
    qemu_register_machine(&core99_machine);
8017
    qemu_register_machine(&prep_machine);
8018
    qemu_register_machine(&ref405ep_machine);
8019
    qemu_register_machine(&taihu_machine);
8020
#elif defined(TARGET_MIPS)
8021
    qemu_register_machine(&mips_machine);
8022
    qemu_register_machine(&mips_magnum_machine);
8023
    qemu_register_machine(&mips_malta_machine);
8024
    qemu_register_machine(&mips_pica61_machine);
8025
    qemu_register_machine(&mips_mipssim_machine);
8026
#elif defined(TARGET_SPARC)
8027
#ifdef TARGET_SPARC64
8028
    qemu_register_machine(&sun4u_machine);
8029
#else
8030
    qemu_register_machine(&ss5_machine);
8031
    qemu_register_machine(&ss10_machine);
8032
    qemu_register_machine(&ss600mp_machine);
8033
    qemu_register_machine(&ss20_machine);
8034
    qemu_register_machine(&ss2_machine);
8035
    qemu_register_machine(&voyager_machine);
8036
    qemu_register_machine(&ss_lx_machine);
8037
    qemu_register_machine(&ss4_machine);
8038
    qemu_register_machine(&scls_machine);
8039
    qemu_register_machine(&sbook_machine);
8040
    qemu_register_machine(&ss1000_machine);
8041
    qemu_register_machine(&ss2000_machine);
8042
#endif
8043
#elif defined(TARGET_ARM)
8044
    qemu_register_machine(&integratorcp_machine);
8045
    qemu_register_machine(&versatilepb_machine);
8046
    qemu_register_machine(&versatileab_machine);
8047
    qemu_register_machine(&realview_machine);
8048
    qemu_register_machine(&akitapda_machine);
8049
    qemu_register_machine(&spitzpda_machine);
8050
    qemu_register_machine(&borzoipda_machine);
8051
    qemu_register_machine(&terrierpda_machine);
8052
    qemu_register_machine(&palmte_machine);
8053
    qemu_register_machine(&n800_machine);
8054
    qemu_register_machine(&lm3s811evb_machine);
8055
    qemu_register_machine(&lm3s6965evb_machine);
8056
    qemu_register_machine(&connex_machine);
8057
    qemu_register_machine(&verdex_machine);
8058
    qemu_register_machine(&mainstone2_machine);
8059
#elif defined(TARGET_SH4)
8060
    qemu_register_machine(&shix_machine);
8061
    qemu_register_machine(&r2d_machine);
8062
#elif defined(TARGET_ALPHA)
8063
    /* XXX: TODO */
8064
#elif defined(TARGET_M68K)
8065
    qemu_register_machine(&mcf5208evb_machine);
8066
    qemu_register_machine(&an5206_machine);
8067
    qemu_register_machine(&dummy_m68k_machine);
8068
#elif defined(TARGET_CRIS)
8069
    qemu_register_machine(&bareetraxfs_machine);
8070
#else
8071
#error unsupported CPU
8072
#endif
8073
}
8074

    
8075
#ifdef HAS_AUDIO
8076
struct soundhw soundhw[] = {
8077
#ifdef HAS_AUDIO_CHOICE
8078
#if defined(TARGET_I386) || defined(TARGET_MIPS)
8079
    {
8080
        "pcspk",
8081
        "PC speaker",
8082
        0,
8083
        1,
8084
        { .init_isa = pcspk_audio_init }
8085
    },
8086
#endif
8087
    {
8088
        "sb16",
8089
        "Creative Sound Blaster 16",
8090
        0,
8091
        1,
8092
        { .init_isa = SB16_init }
8093
    },
8094

    
8095
#ifdef CONFIG_ADLIB
8096
    {
8097
        "adlib",
8098
#ifdef HAS_YMF262
8099
        "Yamaha YMF262 (OPL3)",
8100
#else
8101
        "Yamaha YM3812 (OPL2)",
8102
#endif
8103
        0,
8104
        1,
8105
        { .init_isa = Adlib_init }
8106
    },
8107
#endif
8108

    
8109
#ifdef CONFIG_GUS
8110
    {
8111
        "gus",
8112
        "Gravis Ultrasound GF1",
8113
        0,
8114
        1,
8115
        { .init_isa = GUS_init }
8116
    },
8117
#endif
8118

    
8119
#ifdef CONFIG_AC97
8120
    {
8121
        "ac97",
8122
        "Intel 82801AA AC97 Audio",
8123
        0,
8124
        0,
8125
        { .init_pci = ac97_init }
8126
    },
8127
#endif
8128

    
8129
    {
8130
        "es1370",
8131
        "ENSONIQ AudioPCI ES1370",
8132
        0,
8133
        0,
8134
        { .init_pci = es1370_init }
8135
    },
8136
#endif
8137

    
8138
    { NULL, NULL, 0, 0, { NULL } }
8139
};
8140

    
8141
static void select_soundhw (const char *optarg)
8142
{
8143
    struct soundhw *c;
8144

    
8145
    if (*optarg == '?') {
8146
    show_valid_cards:
8147

    
8148
        printf ("Valid sound card names (comma separated):\n");
8149
        for (c = soundhw; c->name; ++c) {
8150
            printf ("%-11s %s\n", c->name, c->descr);
8151
        }
8152
        printf ("\n-soundhw all will enable all of the above\n");
8153
        exit (*optarg != '?');
8154
    }
8155
    else {
8156
        size_t l;
8157
        const char *p;
8158
        char *e;
8159
        int bad_card = 0;
8160

    
8161
        if (!strcmp (optarg, "all")) {
8162
            for (c = soundhw; c->name; ++c) {
8163
                c->enabled = 1;
8164
            }
8165
            return;
8166
        }
8167

    
8168
        p = optarg;
8169
        while (*p) {
8170
            e = strchr (p, ',');
8171
            l = !e ? strlen (p) : (size_t) (e - p);
8172

    
8173
            for (c = soundhw; c->name; ++c) {
8174
                if (!strncmp (c->name, p, l)) {
8175
                    c->enabled = 1;
8176
                    break;
8177
                }
8178
            }
8179

    
8180
            if (!c->name) {
8181
                if (l > 80) {
8182
                    fprintf (stderr,
8183
                             "Unknown sound card name (too big to show)\n");
8184
                }
8185
                else {
8186
                    fprintf (stderr, "Unknown sound card name `%.*s'\n",
8187
                             (int) l, p);
8188
                }
8189
                bad_card = 1;
8190
            }
8191
            p += l + (e != NULL);
8192
        }
8193

    
8194
        if (bad_card)
8195
            goto show_valid_cards;
8196
    }
8197
}
8198
#endif
8199

    
8200
#ifdef _WIN32
8201
static BOOL WINAPI qemu_ctrl_handler(DWORD type)
8202
{
8203
    exit(STATUS_CONTROL_C_EXIT);
8204
    return TRUE;
8205
}
8206
#endif
8207

    
8208
#define MAX_NET_CLIENTS 32
8209

    
8210
int main(int argc, char **argv)
8211
{
8212
#ifdef CONFIG_GDBSTUB
8213
    int use_gdbstub;
8214
    const char *gdbstub_port;
8215
#endif
8216
    uint32_t boot_devices_bitmap = 0;
8217
    int i;
8218
    int snapshot, linux_boot, net_boot;
8219
    const char *initrd_filename;
8220
    const char *kernel_filename, *kernel_cmdline;
8221
    const char *boot_devices = "";
8222
    DisplayState *ds = &display_state;
8223
    int cyls, heads, secs, translation;
8224
    const char *net_clients[MAX_NET_CLIENTS];
8225
    int nb_net_clients;
8226
    int hda_index;
8227
    int optind;
8228
    const char *r, *optarg;
8229
    CharDriverState *monitor_hd;
8230
    const char *monitor_device;
8231
    const char *serial_devices[MAX_SERIAL_PORTS];
8232
    int serial_device_index;
8233
    const char *parallel_devices[MAX_PARALLEL_PORTS];
8234
    int parallel_device_index;
8235
    const char *loadvm = NULL;
8236
    QEMUMachine *machine;
8237
    const char *cpu_model;
8238
    const char *usb_devices[MAX_USB_CMDLINE];
8239
    int usb_devices_index;
8240
    int fds[2];
8241
    const char *pid_file = NULL;
8242
    VLANState *vlan;
8243

    
8244
    LIST_INIT (&vm_change_state_head);
8245
#ifndef _WIN32
8246
    {
8247
        struct sigaction act;
8248
        sigfillset(&act.sa_mask);
8249
        act.sa_flags = 0;
8250
        act.sa_handler = SIG_IGN;
8251
        sigaction(SIGPIPE, &act, NULL);
8252
    }
8253
#else
8254
    SetConsoleCtrlHandler(qemu_ctrl_handler, TRUE);
8255
    /* Note: cpu_interrupt() is currently not SMP safe, so we force
8256
       QEMU to run on a single CPU */
8257
    {
8258
        HANDLE h;
8259
        DWORD mask, smask;
8260
        int i;
8261
        h = GetCurrentProcess();
8262
        if (GetProcessAffinityMask(h, &mask, &smask)) {
8263
            for(i = 0; i < 32; i++) {
8264
                if (mask & (1 << i))
8265
                    break;
8266
            }
8267
            if (i != 32) {
8268
                mask = 1 << i;
8269
                SetProcessAffinityMask(h, mask);
8270
            }
8271
        }
8272
    }
8273
#endif
8274

    
8275
    register_machines();
8276
    machine = first_machine;
8277
    cpu_model = NULL;
8278
    initrd_filename = NULL;
8279
    ram_size = DEFAULT_RAM_SIZE * 1024 * 1024;
8280
    vga_ram_size = VGA_RAM_SIZE;
8281
#ifdef CONFIG_GDBSTUB
8282
    use_gdbstub = 0;
8283
    gdbstub_port = DEFAULT_GDBSTUB_PORT;
8284
#endif
8285
    snapshot = 0;
8286
    nographic = 0;
8287
    curses = 0;
8288
    kernel_filename = NULL;
8289
    kernel_cmdline = "";
8290
    cyls = heads = secs = 0;
8291
    translation = BIOS_ATA_TRANSLATION_AUTO;
8292
    monitor_device = "vc";
8293

    
8294
    serial_devices[0] = "vc";
8295
    for(i = 1; i < MAX_SERIAL_PORTS; i++)
8296
        serial_devices[i] = NULL;
8297
    serial_device_index = 0;
8298

    
8299
    parallel_devices[0] = "vc";
8300
    for(i = 1; i < MAX_PARALLEL_PORTS; i++)
8301
        parallel_devices[i] = NULL;
8302
    parallel_device_index = 0;
8303

    
8304
    usb_devices_index = 0;
8305

    
8306
    nb_net_clients = 0;
8307
    nb_drives = 0;
8308
    nb_drives_opt = 0;
8309
    hda_index = -1;
8310

    
8311
    nb_nics = 0;
8312
    /* default mac address of the first network interface */
8313

    
8314
    optind = 1;
8315
    for(;;) {
8316
        if (optind >= argc)
8317
            break;
8318
        r = argv[optind];
8319
        if (r[0] != '-') {
8320
            hda_index = drive_add(argv[optind++], HD_ALIAS, 0);
8321
        } else {
8322
            const QEMUOption *popt;
8323

    
8324
            optind++;
8325
            /* Treat --foo the same as -foo.  */
8326
            if (r[1] == '-')
8327
                r++;
8328
            popt = qemu_options;
8329
            for(;;) {
8330
                if (!popt->name) {
8331
                    fprintf(stderr, "%s: invalid option -- '%s'\n",
8332
                            argv[0], r);
8333
                    exit(1);
8334
                }
8335
                if (!strcmp(popt->name, r + 1))
8336
                    break;
8337
                popt++;
8338
            }
8339
            if (popt->flags & HAS_ARG) {
8340
                if (optind >= argc) {
8341
                    fprintf(stderr, "%s: option '%s' requires an argument\n",
8342
                            argv[0], r);
8343
                    exit(1);
8344
                }
8345
                optarg = argv[optind++];
8346
            } else {
8347
                optarg = NULL;
8348
            }
8349

    
8350
            switch(popt->index) {
8351
            case QEMU_OPTION_M:
8352
                machine = find_machine(optarg);
8353
                if (!machine) {
8354
                    QEMUMachine *m;
8355
                    printf("Supported machines are:\n");
8356
                    for(m = first_machine; m != NULL; m = m->next) {
8357
                        printf("%-10s %s%s\n",
8358
                               m->name, m->desc,
8359
                               m == first_machine ? " (default)" : "");
8360
                    }
8361
                    exit(*optarg != '?');
8362
                }
8363
                break;
8364
            case QEMU_OPTION_cpu:
8365
                /* hw initialization will check this */
8366
                if (*optarg == '?') {
8367
/* XXX: implement xxx_cpu_list for targets that still miss it */
8368
#if defined(cpu_list)
8369
                    cpu_list(stdout, &fprintf);
8370
#endif
8371
                    exit(0);
8372
                } else {
8373
                    cpu_model = optarg;
8374
                }
8375
                break;
8376
            case QEMU_OPTION_initrd:
8377
                initrd_filename = optarg;
8378
                break;
8379
            case QEMU_OPTION_hda:
8380
                if (cyls == 0)
8381
                    hda_index = drive_add(optarg, HD_ALIAS, 0);
8382
                else
8383
                    hda_index = drive_add(optarg, HD_ALIAS
8384
                             ",cyls=%d,heads=%d,secs=%d%s",
8385
                             0, cyls, heads, secs,
8386
                             translation == BIOS_ATA_TRANSLATION_LBA ?
8387
                                 ",trans=lba" :
8388
                             translation == BIOS_ATA_TRANSLATION_NONE ?
8389
                                 ",trans=none" : "");
8390
                 break;
8391
            case QEMU_OPTION_hdb:
8392
            case QEMU_OPTION_hdc:
8393
            case QEMU_OPTION_hdd:
8394
                drive_add(optarg, HD_ALIAS, popt->index - QEMU_OPTION_hda);
8395
                break;
8396
            case QEMU_OPTION_drive:
8397
                drive_add(NULL, "%s", optarg);
8398
                break;
8399
            case QEMU_OPTION_mtdblock:
8400
                drive_add(optarg, MTD_ALIAS);
8401
                break;
8402
            case QEMU_OPTION_sd:
8403
                drive_add(optarg, SD_ALIAS);
8404
                break;
8405
            case QEMU_OPTION_pflash:
8406
                drive_add(optarg, PFLASH_ALIAS);
8407
                break;
8408
            case QEMU_OPTION_snapshot:
8409
                snapshot = 1;
8410
                break;
8411
            case QEMU_OPTION_hdachs:
8412
                {
8413
                    const char *p;
8414
                    p = optarg;
8415
                    cyls = strtol(p, (char **)&p, 0);
8416
                    if (cyls < 1 || cyls > 16383)
8417
                        goto chs_fail;
8418
                    if (*p != ',')
8419
                        goto chs_fail;
8420
                    p++;
8421
                    heads = strtol(p, (char **)&p, 0);
8422
                    if (heads < 1 || heads > 16)
8423
                        goto chs_fail;
8424
                    if (*p != ',')
8425
                        goto chs_fail;
8426
                    p++;
8427
                    secs = strtol(p, (char **)&p, 0);
8428
                    if (secs < 1 || secs > 63)
8429
                        goto chs_fail;
8430
                    if (*p == ',') {
8431
                        p++;
8432
                        if (!strcmp(p, "none"))
8433
                            translation = BIOS_ATA_TRANSLATION_NONE;
8434
                        else if (!strcmp(p, "lba"))
8435
                            translation = BIOS_ATA_TRANSLATION_LBA;
8436
                        else if (!strcmp(p, "auto"))
8437
                            translation = BIOS_ATA_TRANSLATION_AUTO;
8438
                        else
8439
                            goto chs_fail;
8440
                    } else if (*p != '\0') {
8441
                    chs_fail:
8442
                        fprintf(stderr, "qemu: invalid physical CHS format\n");
8443
                        exit(1);
8444
                    }
8445
                    if (hda_index != -1)
8446
                        snprintf(drives_opt[hda_index].opt,
8447
                                 sizeof(drives_opt[hda_index].opt),
8448
                                 HD_ALIAS ",cyls=%d,heads=%d,secs=%d%s",
8449
                                 0, cyls, heads, secs,
8450
                                 translation == BIOS_ATA_TRANSLATION_LBA ?
8451
                                         ",trans=lba" :
8452
                                 translation == BIOS_ATA_TRANSLATION_NONE ?
8453
                                     ",trans=none" : "");
8454
                }
8455
                break;
8456
            case QEMU_OPTION_nographic:
8457
                serial_devices[0] = "stdio";
8458
                parallel_devices[0] = "null";
8459
                monitor_device = "stdio";
8460
                nographic = 1;
8461
                break;
8462
#ifdef CONFIG_CURSES
8463
            case QEMU_OPTION_curses:
8464
                curses = 1;
8465
                break;
8466
#endif
8467
            case QEMU_OPTION_portrait:
8468
                graphic_rotate = 1;
8469
                break;
8470
            case QEMU_OPTION_kernel:
8471
                kernel_filename = optarg;
8472
                break;
8473
            case QEMU_OPTION_append:
8474
                kernel_cmdline = optarg;
8475
                break;
8476
            case QEMU_OPTION_cdrom:
8477
                drive_add(optarg, CDROM_ALIAS);
8478
                break;
8479
            case QEMU_OPTION_boot:
8480
                boot_devices = optarg;
8481
                /* We just do some generic consistency checks */
8482
                {
8483
                    /* Could easily be extended to 64 devices if needed */
8484
                    const char *p;
8485
                    
8486
                    boot_devices_bitmap = 0;
8487
                    for (p = boot_devices; *p != '\0'; p++) {
8488
                        /* Allowed boot devices are:
8489
                         * a b     : floppy disk drives
8490
                         * c ... f : IDE disk drives
8491
                         * g ... m : machine implementation dependant drives
8492
                         * n ... p : network devices
8493
                         * It's up to each machine implementation to check
8494
                         * if the given boot devices match the actual hardware
8495
                         * implementation and firmware features.
8496
                         */
8497
                        if (*p < 'a' || *p > 'q') {
8498
                            fprintf(stderr, "Invalid boot device '%c'\n", *p);
8499
                            exit(1);
8500
                        }
8501
                        if (boot_devices_bitmap & (1 << (*p - 'a'))) {
8502
                            fprintf(stderr,
8503
                                    "Boot device '%c' was given twice\n",*p);
8504
                            exit(1);
8505
                        }
8506
                        boot_devices_bitmap |= 1 << (*p - 'a');
8507
                    }
8508
                }
8509
                break;
8510
            case QEMU_OPTION_fda:
8511
            case QEMU_OPTION_fdb:
8512
                drive_add(optarg, FD_ALIAS, popt->index - QEMU_OPTION_fda);
8513
                break;
8514
#ifdef TARGET_I386
8515
            case QEMU_OPTION_no_fd_bootchk:
8516
                fd_bootchk = 0;
8517
                break;
8518
#endif
8519
            case QEMU_OPTION_no_code_copy:
8520
                code_copy_enabled = 0;
8521
                break;
8522
            case QEMU_OPTION_net:
8523
                if (nb_net_clients >= MAX_NET_CLIENTS) {
8524
                    fprintf(stderr, "qemu: too many network clients\n");
8525
                    exit(1);
8526
                }
8527
                net_clients[nb_net_clients] = optarg;
8528
                nb_net_clients++;
8529
                break;
8530
#ifdef CONFIG_SLIRP
8531
            case QEMU_OPTION_tftp:
8532
                tftp_prefix = optarg;
8533
                break;
8534
            case QEMU_OPTION_bootp:
8535
                bootp_filename = optarg;
8536
                break;
8537
#ifndef _WIN32
8538
            case QEMU_OPTION_smb:
8539
                net_slirp_smb(optarg);
8540
                break;
8541
#endif
8542
            case QEMU_OPTION_redir:
8543
                net_slirp_redir(optarg);
8544
                break;
8545
#endif
8546
#ifdef HAS_AUDIO
8547
            case QEMU_OPTION_audio_help:
8548
                AUD_help ();
8549
                exit (0);
8550
                break;
8551
            case QEMU_OPTION_soundhw:
8552
                select_soundhw (optarg);
8553
                break;
8554
#endif
8555
            case QEMU_OPTION_h:
8556
                help(0);
8557
                break;
8558
            case QEMU_OPTION_m: {
8559
                uint64_t value;
8560
                char *ptr;
8561

    
8562
                value = strtoul(optarg, &ptr, 10);
8563
                switch (*ptr) {
8564
                case 0: case 'M': case 'm':
8565
                    value <<= 20;
8566
                    break;
8567
                case 'G': case 'g':
8568
                    value <<= 30;
8569
                    break;
8570
                default:
8571
                    fprintf(stderr, "qemu: invalid ram size: %s\n", optarg);
8572
                    exit(1);
8573
                }
8574

    
8575
                /* On 32-bit hosts, QEMU is limited by virtual address space */
8576
                if (value > (2047 << 20)
8577
#ifndef USE_KQEMU
8578
                    && HOST_LONG_BITS == 32
8579
#endif
8580
                    ) {
8581
                    fprintf(stderr, "qemu: at most 2047 MB RAM can be simulated\n");
8582
                    exit(1);
8583
                }
8584
                if (value != (uint64_t)(ram_addr_t)value) {
8585
                    fprintf(stderr, "qemu: ram size too large\n");
8586
                    exit(1);
8587
                }
8588
                ram_size = value;
8589
                break;
8590
            }
8591
            case QEMU_OPTION_d:
8592
                {
8593
                    int mask;
8594
                    CPULogItem *item;
8595

    
8596
                    mask = cpu_str_to_log_mask(optarg);
8597
                    if (!mask) {
8598
                        printf("Log items (comma separated):\n");
8599
                    for(item = cpu_log_items; item->mask != 0; item++) {
8600
                        printf("%-10s %s\n", item->name, item->help);
8601
                    }
8602
                    exit(1);
8603
                    }
8604
                    cpu_set_log(mask);
8605
                }
8606
                break;
8607
#ifdef CONFIG_GDBSTUB
8608
            case QEMU_OPTION_s:
8609
                use_gdbstub = 1;
8610
                break;
8611
            case QEMU_OPTION_p:
8612
                gdbstub_port = optarg;
8613
                break;
8614
#endif
8615
            case QEMU_OPTION_L:
8616
                bios_dir = optarg;
8617
                break;
8618
            case QEMU_OPTION_bios:
8619
                bios_name = optarg;
8620
                break;
8621
            case QEMU_OPTION_S:
8622
                autostart = 0;
8623
                break;
8624
            case QEMU_OPTION_k:
8625
                keyboard_layout = optarg;
8626
                break;
8627
            case QEMU_OPTION_localtime:
8628
                rtc_utc = 0;
8629
                break;
8630
            case QEMU_OPTION_cirrusvga:
8631
                cirrus_vga_enabled = 1;
8632
                vmsvga_enabled = 0;
8633
                break;
8634
            case QEMU_OPTION_vmsvga:
8635
                cirrus_vga_enabled = 0;
8636
                vmsvga_enabled = 1;
8637
                break;
8638
            case QEMU_OPTION_std_vga:
8639
                cirrus_vga_enabled = 0;
8640
                vmsvga_enabled = 0;
8641
                break;
8642
            case QEMU_OPTION_g:
8643
                {
8644
                    const char *p;
8645
                    int w, h, depth;
8646
                    p = optarg;
8647
                    w = strtol(p, (char **)&p, 10);
8648
                    if (w <= 0) {
8649
                    graphic_error:
8650
                        fprintf(stderr, "qemu: invalid resolution or depth\n");
8651
                        exit(1);
8652
                    }
8653
                    if (*p != 'x')
8654
                        goto graphic_error;
8655
                    p++;
8656
                    h = strtol(p, (char **)&p, 10);
8657
                    if (h <= 0)
8658
                        goto graphic_error;
8659
                    if (*p == 'x') {
8660
                        p++;
8661
                        depth = strtol(p, (char **)&p, 10);
8662
                        if (depth != 8 && depth != 15 && depth != 16 &&
8663
                            depth != 24 && depth != 32)
8664
                            goto graphic_error;
8665
                    } else if (*p == '\0') {
8666
                        depth = graphic_depth;
8667
                    } else {
8668
                        goto graphic_error;
8669
                    }
8670

    
8671
                    graphic_width = w;
8672
                    graphic_height = h;
8673
                    graphic_depth = depth;
8674
                }
8675
                break;
8676
            case QEMU_OPTION_echr:
8677
                {
8678
                    char *r;
8679
                    term_escape_char = strtol(optarg, &r, 0);
8680
                    if (r == optarg)
8681
                        printf("Bad argument to echr\n");
8682
                    break;
8683
                }
8684
            case QEMU_OPTION_monitor:
8685
                monitor_device = optarg;
8686
                break;
8687
            case QEMU_OPTION_serial:
8688
                if (serial_device_index >= MAX_SERIAL_PORTS) {
8689
                    fprintf(stderr, "qemu: too many serial ports\n");
8690
                    exit(1);
8691
                }
8692
                serial_devices[serial_device_index] = optarg;
8693
                serial_device_index++;
8694
                break;
8695
            case QEMU_OPTION_parallel:
8696
                if (parallel_device_index >= MAX_PARALLEL_PORTS) {
8697
                    fprintf(stderr, "qemu: too many parallel ports\n");
8698
                    exit(1);
8699
                }
8700
                parallel_devices[parallel_device_index] = optarg;
8701
                parallel_device_index++;
8702
                break;
8703
            case QEMU_OPTION_loadvm:
8704
                loadvm = optarg;
8705
                break;
8706
            case QEMU_OPTION_full_screen:
8707
                full_screen = 1;
8708
                break;
8709
#ifdef CONFIG_SDL
8710
            case QEMU_OPTION_no_frame:
8711
                no_frame = 1;
8712
                break;
8713
            case QEMU_OPTION_alt_grab:
8714
                alt_grab = 1;
8715
                break;
8716
            case QEMU_OPTION_no_quit:
8717
                no_quit = 1;
8718
                break;
8719
#endif
8720
            case QEMU_OPTION_pidfile:
8721
                pid_file = optarg;
8722
                break;
8723
#ifdef TARGET_I386
8724
            case QEMU_OPTION_win2k_hack:
8725
                win2k_install_hack = 1;
8726
                break;
8727
#endif
8728
#ifdef USE_KQEMU
8729
            case QEMU_OPTION_no_kqemu:
8730
                kqemu_allowed = 0;
8731
                break;
8732
            case QEMU_OPTION_kernel_kqemu:
8733
                kqemu_allowed = 2;
8734
                break;
8735
#endif
8736
            case QEMU_OPTION_usb:
8737
                usb_enabled = 1;
8738
                break;
8739
            case QEMU_OPTION_usbdevice:
8740
                usb_enabled = 1;
8741
                if (usb_devices_index >= MAX_USB_CMDLINE) {
8742
                    fprintf(stderr, "Too many USB devices\n");
8743
                    exit(1);
8744
                }
8745
                usb_devices[usb_devices_index] = optarg;
8746
                usb_devices_index++;
8747
                break;
8748
            case QEMU_OPTION_smp:
8749
                smp_cpus = atoi(optarg);
8750
                if (smp_cpus < 1 || smp_cpus > MAX_CPUS) {
8751
                    fprintf(stderr, "Invalid number of CPUs\n");
8752
                    exit(1);
8753
                }
8754
                break;
8755
            case QEMU_OPTION_vnc:
8756
                vnc_display = optarg;
8757
                break;
8758
            case QEMU_OPTION_no_acpi:
8759
                acpi_enabled = 0;
8760
                break;
8761
            case QEMU_OPTION_no_reboot:
8762
                no_reboot = 1;
8763
                break;
8764
            case QEMU_OPTION_no_shutdown:
8765
                no_shutdown = 1;
8766
                break;
8767
            case QEMU_OPTION_show_cursor:
8768
                cursor_hide = 0;
8769
                break;
8770
            case QEMU_OPTION_daemonize:
8771
                daemonize = 1;
8772
                break;
8773
            case QEMU_OPTION_option_rom:
8774
                if (nb_option_roms >= MAX_OPTION_ROMS) {
8775
                    fprintf(stderr, "Too many option ROMs\n");
8776
                    exit(1);
8777
                }
8778
                option_rom[nb_option_roms] = optarg;
8779
                nb_option_roms++;
8780
                break;
8781
            case QEMU_OPTION_semihosting:
8782
                semihosting_enabled = 1;
8783
                break;
8784
            case QEMU_OPTION_name:
8785
                qemu_name = optarg;
8786
                break;
8787
#ifdef TARGET_SPARC
8788
            case QEMU_OPTION_prom_env:
8789
                if (nb_prom_envs >= MAX_PROM_ENVS) {
8790
                    fprintf(stderr, "Too many prom variables\n");
8791
                    exit(1);
8792
                }
8793
                prom_envs[nb_prom_envs] = optarg;
8794
                nb_prom_envs++;
8795
                break;
8796
#endif
8797
#ifdef TARGET_ARM
8798
            case QEMU_OPTION_old_param:
8799
                old_param = 1;
8800
                break;
8801
#endif
8802
            case QEMU_OPTION_clock:
8803
                configure_alarms(optarg);
8804
                break;
8805
            case QEMU_OPTION_startdate:
8806
                {
8807
                    struct tm tm;
8808
                    time_t rtc_start_date;
8809
                    if (!strcmp(optarg, "now")) {
8810
                        rtc_date_offset = -1;
8811
                    } else {
8812
                        if (sscanf(optarg, "%d-%d-%dT%d:%d:%d",
8813
                               &tm.tm_year,
8814
                               &tm.tm_mon,
8815
                               &tm.tm_mday,
8816
                               &tm.tm_hour,
8817
                               &tm.tm_min,
8818
                               &tm.tm_sec) == 6) {
8819
                            /* OK */
8820
                        } else if (sscanf(optarg, "%d-%d-%d",
8821
                                          &tm.tm_year,
8822
                                          &tm.tm_mon,
8823
                                          &tm.tm_mday) == 3) {
8824
                            tm.tm_hour = 0;
8825
                            tm.tm_min = 0;
8826
                            tm.tm_sec = 0;
8827
                        } else {
8828
                            goto date_fail;
8829
                        }
8830
                        tm.tm_year -= 1900;
8831
                        tm.tm_mon--;
8832
                        rtc_start_date = mktimegm(&tm);
8833
                        if (rtc_start_date == -1) {
8834
                        date_fail:
8835
                            fprintf(stderr, "Invalid date format. Valid format are:\n"
8836
                                    "'now' or '2006-06-17T16:01:21' or '2006-06-17'\n");
8837
                            exit(1);
8838
                        }
8839
                        rtc_date_offset = time(NULL) - rtc_start_date;
8840
                    }
8841
                }
8842
                break;
8843
            }
8844
        }
8845
    }
8846

    
8847
#ifndef _WIN32
8848
    if (daemonize && !nographic && vnc_display == NULL) {
8849
        fprintf(stderr, "Can only daemonize if using -nographic or -vnc\n");
8850
        daemonize = 0;
8851
    }
8852

    
8853
    if (daemonize) {
8854
        pid_t pid;
8855

    
8856
        if (pipe(fds) == -1)
8857
            exit(1);
8858

    
8859
        pid = fork();
8860
        if (pid > 0) {
8861
            uint8_t status;
8862
            ssize_t len;
8863

    
8864
            close(fds[1]);
8865

    
8866
        again:
8867
            len = read(fds[0], &status, 1);
8868
            if (len == -1 && (errno == EINTR))
8869
                goto again;
8870

    
8871
            if (len != 1)
8872
                exit(1);
8873
            else if (status == 1) {
8874
                fprintf(stderr, "Could not acquire pidfile\n");
8875
                exit(1);
8876
            } else
8877
                exit(0);
8878
        } else if (pid < 0)
8879
            exit(1);
8880

    
8881
        setsid();
8882

    
8883
        pid = fork();
8884
        if (pid > 0)
8885
            exit(0);
8886
        else if (pid < 0)
8887
            exit(1);
8888

    
8889
        umask(027);
8890
        chdir("/");
8891

    
8892
        signal(SIGTSTP, SIG_IGN);
8893
        signal(SIGTTOU, SIG_IGN);
8894
        signal(SIGTTIN, SIG_IGN);
8895
    }
8896
#endif
8897

    
8898
    if (pid_file && qemu_create_pidfile(pid_file) != 0) {
8899
        if (daemonize) {
8900
            uint8_t status = 1;
8901
            write(fds[1], &status, 1);
8902
        } else
8903
            fprintf(stderr, "Could not acquire pid file\n");
8904
        exit(1);
8905
    }
8906

    
8907
#ifdef USE_KQEMU
8908
    if (smp_cpus > 1)
8909
        kqemu_allowed = 0;
8910
#endif
8911
    linux_boot = (kernel_filename != NULL);
8912
    net_boot = (boot_devices_bitmap >> ('n' - 'a')) & 0xF;
8913

    
8914
    /* XXX: this should not be: some embedded targets just have flash */
8915
    if (!linux_boot && net_boot == 0 &&
8916
        nb_drives_opt == 0)
8917
        help(1);
8918

    
8919
    /* boot to floppy or the default cd if no hard disk defined yet */
8920
    if (!boot_devices[0]) {
8921
        boot_devices = "cad";
8922
    }
8923
    setvbuf(stdout, NULL, _IOLBF, 0);
8924

    
8925
    init_timers();
8926
    init_timer_alarm();
8927
    qemu_aio_init();
8928

    
8929
#ifdef _WIN32
8930
    socket_init();
8931
#endif
8932

    
8933
    /* init network clients */
8934
    if (nb_net_clients == 0) {
8935
        /* if no clients, we use a default config */
8936
        net_clients[0] = "nic";
8937
        net_clients[1] = "user";
8938
        nb_net_clients = 2;
8939
    }
8940

    
8941
    for(i = 0;i < nb_net_clients; i++) {
8942
        if (net_client_init(net_clients[i]) < 0)
8943
            exit(1);
8944
    }
8945
    for(vlan = first_vlan; vlan != NULL; vlan = vlan->next) {
8946
        if (vlan->nb_guest_devs == 0 && vlan->nb_host_devs == 0)
8947
            continue;
8948
        if (vlan->nb_guest_devs == 0) {
8949
            fprintf(stderr, "Invalid vlan (%d) with no nics\n", vlan->id);
8950
            exit(1);
8951
        }
8952
        if (vlan->nb_host_devs == 0)
8953
            fprintf(stderr,
8954
                    "Warning: vlan %d is not connected to host network\n",
8955
                    vlan->id);
8956
    }
8957

    
8958
#ifdef TARGET_I386
8959
    /* XXX: this should be moved in the PC machine instantiation code */
8960
    if (net_boot != 0) {
8961
        int netroms = 0;
8962
        for (i = 0; i < nb_nics && i < 4; i++) {
8963
            const char *model = nd_table[i].model;
8964
            char buf[1024];
8965
            if (net_boot & (1 << i)) {
8966
                if (model == NULL)
8967
                    model = "ne2k_pci";
8968
                snprintf(buf, sizeof(buf), "%s/pxe-%s.bin", bios_dir, model);
8969
                if (get_image_size(buf) > 0) {
8970
                    if (nb_option_roms >= MAX_OPTION_ROMS) {
8971
                        fprintf(stderr, "Too many option ROMs\n");
8972
                        exit(1);
8973
                    }
8974
                    option_rom[nb_option_roms] = strdup(buf);
8975
                    nb_option_roms++;
8976
                    netroms++;
8977
                }
8978
            }
8979
        }
8980
        if (netroms == 0) {
8981
            fprintf(stderr, "No valid PXE rom found for network device\n");
8982
            exit(1);
8983
        }
8984
    }
8985
#endif
8986

    
8987
    /* init the memory */
8988
    phys_ram_size = ram_size + vga_ram_size + MAX_BIOS_SIZE;
8989

    
8990
    phys_ram_base = qemu_vmalloc(phys_ram_size);
8991
    if (!phys_ram_base) {
8992
        fprintf(stderr, "Could not allocate physical memory\n");
8993
        exit(1);
8994
    }
8995

    
8996
    bdrv_init();
8997

    
8998
    /* we always create the cdrom drive, even if no disk is there */
8999

    
9000
    if (nb_drives_opt < MAX_DRIVES)
9001
        drive_add(NULL, CDROM_ALIAS);
9002

    
9003
    /* we always create at least one floppy */
9004

    
9005
    if (nb_drives_opt < MAX_DRIVES)
9006
        drive_add(NULL, FD_ALIAS, 0);
9007

    
9008
    /* we always create one sd slot, even if no card is in it */
9009

    
9010
    if (nb_drives_opt < MAX_DRIVES)
9011
        drive_add(NULL, SD_ALIAS);
9012

    
9013
    /* open the virtual block devices */
9014

    
9015
    for(i = 0; i < nb_drives_opt; i++)
9016
        if (drive_init(&drives_opt[i], snapshot, machine) == -1)
9017
            exit(1);
9018

    
9019
    register_savevm("timer", 0, 2, timer_save, timer_load, NULL);
9020
    register_savevm("ram", 0, 2, ram_save, ram_load, NULL);
9021

    
9022
    init_ioports();
9023

    
9024
    /* terminal init */
9025
    memset(&display_state, 0, sizeof(display_state));
9026
    if (nographic) {
9027
        if (curses) {
9028
            fprintf(stderr, "fatal: -nographic can't be used with -curses\n");
9029
            exit(1);
9030
        }
9031
        /* nearly nothing to do */
9032
        dumb_display_init(ds);
9033
    } else if (vnc_display != NULL) {
9034
        vnc_display_init(ds);
9035
        if (vnc_display_open(ds, vnc_display) < 0)
9036
            exit(1);
9037
    } else
9038
#if defined(CONFIG_CURSES)
9039
    if (curses) {
9040
        curses_display_init(ds, full_screen);
9041
    } else
9042
#endif
9043
    {
9044
#if defined(CONFIG_SDL)
9045
        sdl_display_init(ds, full_screen, no_frame);
9046
#elif defined(CONFIG_COCOA)
9047
        cocoa_display_init(ds, full_screen);
9048
#else
9049
        dumb_display_init(ds);
9050
#endif
9051
    }
9052

    
9053
    /* Maintain compatibility with multiple stdio monitors */
9054
    if (!strcmp(monitor_device,"stdio")) {
9055
        for (i = 0; i < MAX_SERIAL_PORTS; i++) {
9056
            const char *devname = serial_devices[i];
9057
            if (devname && !strcmp(devname,"mon:stdio")) {
9058
                monitor_device = NULL;
9059
                break;
9060
            } else if (devname && !strcmp(devname,"stdio")) {
9061
                monitor_device = NULL;
9062
                serial_devices[i] = "mon:stdio";
9063
                break;
9064
            }
9065
        }
9066
    }
9067
    if (monitor_device) {
9068
        monitor_hd = qemu_chr_open(monitor_device);
9069
        if (!monitor_hd) {
9070
            fprintf(stderr, "qemu: could not open monitor device '%s'\n", monitor_device);
9071
            exit(1);
9072
        }
9073
        monitor_init(monitor_hd, !nographic);
9074
    }
9075

    
9076
    for(i = 0; i < MAX_SERIAL_PORTS; i++) {
9077
        const char *devname = serial_devices[i];
9078
        if (devname && strcmp(devname, "none")) {
9079
            serial_hds[i] = qemu_chr_open(devname);
9080
            if (!serial_hds[i]) {
9081
                fprintf(stderr, "qemu: could not open serial device '%s'\n",
9082
                        devname);
9083
                exit(1);
9084
            }
9085
            if (strstart(devname, "vc", 0))
9086
                qemu_chr_printf(serial_hds[i], "serial%d console\r\n", i);
9087
        }
9088
    }
9089

    
9090
    for(i = 0; i < MAX_PARALLEL_PORTS; i++) {
9091
        const char *devname = parallel_devices[i];
9092
        if (devname && strcmp(devname, "none")) {
9093
            parallel_hds[i] = qemu_chr_open(devname);
9094
            if (!parallel_hds[i]) {
9095
                fprintf(stderr, "qemu: could not open parallel device '%s'\n",
9096
                        devname);
9097
                exit(1);
9098
            }
9099
            if (strstart(devname, "vc", 0))
9100
                qemu_chr_printf(parallel_hds[i], "parallel%d console\r\n", i);
9101
        }
9102
    }
9103

    
9104
    machine->init(ram_size, vga_ram_size, boot_devices, ds,
9105
                  kernel_filename, kernel_cmdline, initrd_filename, cpu_model);
9106

    
9107
    /* init USB devices */
9108
    if (usb_enabled) {
9109
        for(i = 0; i < usb_devices_index; i++) {
9110
            if (usb_device_add(usb_devices[i]) < 0) {
9111
                fprintf(stderr, "Warning: could not add USB device %s\n",
9112
                        usb_devices[i]);
9113
            }
9114
        }
9115
    }
9116

    
9117
    if (display_state.dpy_refresh) {
9118
        display_state.gui_timer = qemu_new_timer(rt_clock, gui_update, &display_state);
9119
        qemu_mod_timer(display_state.gui_timer, qemu_get_clock(rt_clock));
9120
    }
9121

    
9122
#ifdef CONFIG_GDBSTUB
9123
    if (use_gdbstub) {
9124
        /* XXX: use standard host:port notation and modify options
9125
           accordingly. */
9126
        if (gdbserver_start(gdbstub_port) < 0) {
9127
            fprintf(stderr, "qemu: could not open gdbstub device on port '%s'\n",
9128
                    gdbstub_port);
9129
            exit(1);
9130
        }
9131
    }
9132
#endif
9133

    
9134
    if (loadvm)
9135
        do_loadvm(loadvm);
9136

    
9137
    {
9138
        /* XXX: simplify init */
9139
        read_passwords();
9140
        if (autostart) {
9141
            vm_start();
9142
        }
9143
    }
9144

    
9145
    if (daemonize) {
9146
        uint8_t status = 0;
9147
        ssize_t len;
9148
        int fd;
9149

    
9150
    again1:
9151
        len = write(fds[1], &status, 1);
9152
        if (len == -1 && (errno == EINTR))
9153
            goto again1;
9154

    
9155
        if (len != 1)
9156
            exit(1);
9157

    
9158
        TFR(fd = open("/dev/null", O_RDWR));
9159
        if (fd == -1)
9160
            exit(1);
9161

    
9162
        dup2(fd, 0);
9163
        dup2(fd, 1);
9164
        dup2(fd, 2);
9165

    
9166
        close(fd);
9167
    }
9168

    
9169
    main_loop();
9170
    quit_timers();
9171

    
9172
#if !defined(_WIN32)
9173
    /* close network clients */
9174
    for(vlan = first_vlan; vlan != NULL; vlan = vlan->next) {
9175
        VLANClientState *vc;
9176

    
9177
        for(vc = vlan->first_client; vc != NULL; vc = vc->next) {
9178
            if (vc->fd_read == tap_receive) {
9179
                char ifname[64];
9180
                TAPState *s = vc->opaque;
9181

    
9182
                if (sscanf(vc->info_str, "tap: ifname=%63s ", ifname) == 1 &&
9183
                    s->down_script[0])
9184
                    launch_script(s->down_script, ifname, s->fd);
9185
            }
9186
        }
9187
    }
9188
#endif
9189
    return 0;
9190
}