Statistics
| Branch: | Revision:

root / hw / slavio_timer.c @ 97bf4851

History | View | Annotate | Download (13.6 kB)

1
/*
2
 * QEMU Sparc SLAVIO timer controller emulation
3
 *
4
 * Copyright (c) 2003-2005 Fabrice Bellard
5
 *
6
 * Permission is hereby granted, free of charge, to any person obtaining a copy
7
 * of this software and associated documentation files (the "Software"), to deal
8
 * in the Software without restriction, including without limitation the rights
9
 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10
 * copies of the Software, and to permit persons to whom the Software is
11
 * furnished to do so, subject to the following conditions:
12
 *
13
 * The above copyright notice and this permission notice shall be included in
14
 * all copies or substantial portions of the Software.
15
 *
16
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21
 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22
 * THE SOFTWARE.
23
 */
24

    
25
#include "sun4m.h"
26
#include "qemu-timer.h"
27
#include "sysbus.h"
28
#include "trace.h"
29

    
30
/*
31
 * Registers of hardware timer in sun4m.
32
 *
33
 * This is the timer/counter part of chip STP2001 (Slave I/O), also
34
 * produced as NCR89C105. See
35
 * http://www.ibiblio.org/pub/historic-linux/early-ports/Sparc/NCR/NCR89C105.txt
36
 *
37
 * The 31-bit counter is incremented every 500ns by bit 9. Bits 8..0
38
 * are zero. Bit 31 is 1 when count has been reached.
39
 *
40
 * Per-CPU timers interrupt local CPU, system timer uses normal
41
 * interrupt routing.
42
 *
43
 */
44

    
45
#define MAX_CPUS 16
46

    
47
typedef struct CPUTimerState {
48
    qemu_irq irq;
49
    ptimer_state *timer;
50
    uint32_t count, counthigh, reached;
51
    uint64_t limit;
52
    // processor only
53
    uint32_t running;
54
} CPUTimerState;
55

    
56
typedef struct SLAVIO_TIMERState {
57
    SysBusDevice busdev;
58
    uint32_t num_cpus;
59
    CPUTimerState cputimer[MAX_CPUS + 1];
60
    uint32_t cputimer_mode;
61
} SLAVIO_TIMERState;
62

    
63
typedef struct TimerContext {
64
    SLAVIO_TIMERState *s;
65
    unsigned int timer_index; /* 0 for system, 1 ... MAX_CPUS for CPU timers */
66
} TimerContext;
67

    
68
#define SYS_TIMER_SIZE 0x14
69
#define CPU_TIMER_SIZE 0x10
70

    
71
#define TIMER_LIMIT         0
72
#define TIMER_COUNTER       1
73
#define TIMER_COUNTER_NORST 2
74
#define TIMER_STATUS        3
75
#define TIMER_MODE          4
76

    
77
#define TIMER_COUNT_MASK32 0xfffffe00
78
#define TIMER_LIMIT_MASK32 0x7fffffff
79
#define TIMER_MAX_COUNT64  0x7ffffffffffffe00ULL
80
#define TIMER_MAX_COUNT32  0x7ffffe00ULL
81
#define TIMER_REACHED      0x80000000
82
#define TIMER_PERIOD       500ULL // 500ns
83
#define LIMIT_TO_PERIODS(l) (((l) >> 9) - 1)
84
#define PERIODS_TO_LIMIT(l) (((l) + 1) << 9)
85

    
86
static int slavio_timer_is_user(TimerContext *tc)
87
{
88
    SLAVIO_TIMERState *s = tc->s;
89
    unsigned int timer_index = tc->timer_index;
90

    
91
    return timer_index != 0 && (s->cputimer_mode & (1 << (timer_index - 1)));
92
}
93

    
94
// Update count, set irq, update expire_time
95
// Convert from ptimer countdown units
96
static void slavio_timer_get_out(CPUTimerState *t)
97
{
98
    uint64_t count, limit;
99

    
100
    if (t->limit == 0) { /* free-run system or processor counter */
101
        limit = TIMER_MAX_COUNT32;
102
    } else {
103
        limit = t->limit;
104
    }
105
    count = limit - PERIODS_TO_LIMIT(ptimer_get_count(t->timer));
106

    
107
    trace_slavio_timer_get_out(t->limit, t->counthigh, t->count);
108
    t->count = count & TIMER_COUNT_MASK32;
109
    t->counthigh = count >> 32;
110
}
111

    
112
// timer callback
113
static void slavio_timer_irq(void *opaque)
114
{
115
    TimerContext *tc = opaque;
116
    SLAVIO_TIMERState *s = tc->s;
117
    CPUTimerState *t = &s->cputimer[tc->timer_index];
118

    
119
    slavio_timer_get_out(t);
120
    trace_slavio_timer_irq(t->counthigh, t->count);
121
    /* if limit is 0 (free-run), there will be no match */
122
    if (t->limit != 0) {
123
        t->reached = TIMER_REACHED;
124
    }
125
    /* there is no interrupt if user timer or free-run */
126
    if (!slavio_timer_is_user(tc) && t->limit != 0) {
127
        qemu_irq_raise(t->irq);
128
    }
129
}
130

    
131
static uint32_t slavio_timer_mem_readl(void *opaque, target_phys_addr_t addr)
132
{
133
    TimerContext *tc = opaque;
134
    SLAVIO_TIMERState *s = tc->s;
135
    uint32_t saddr, ret;
136
    unsigned int timer_index = tc->timer_index;
137
    CPUTimerState *t = &s->cputimer[timer_index];
138

    
139
    saddr = addr >> 2;
140
    switch (saddr) {
141
    case TIMER_LIMIT:
142
        // read limit (system counter mode) or read most signifying
143
        // part of counter (user mode)
144
        if (slavio_timer_is_user(tc)) {
145
            // read user timer MSW
146
            slavio_timer_get_out(t);
147
            ret = t->counthigh | t->reached;
148
        } else {
149
            // read limit
150
            // clear irq
151
            qemu_irq_lower(t->irq);
152
            t->reached = 0;
153
            ret = t->limit & TIMER_LIMIT_MASK32;
154
        }
155
        break;
156
    case TIMER_COUNTER:
157
        // read counter and reached bit (system mode) or read lsbits
158
        // of counter (user mode)
159
        slavio_timer_get_out(t);
160
        if (slavio_timer_is_user(tc)) { // read user timer LSW
161
            ret = t->count & TIMER_MAX_COUNT64;
162
        } else { // read limit
163
            ret = (t->count & TIMER_MAX_COUNT32) |
164
                t->reached;
165
        }
166
        break;
167
    case TIMER_STATUS:
168
        // only available in processor counter/timer
169
        // read start/stop status
170
        if (timer_index > 0) {
171
            ret = t->running;
172
        } else {
173
            ret = 0;
174
        }
175
        break;
176
    case TIMER_MODE:
177
        // only available in system counter
178
        // read user/system mode
179
        ret = s->cputimer_mode;
180
        break;
181
    default:
182
        trace_slavio_timer_mem_readl_invalid(addr);
183
        ret = 0;
184
        break;
185
    }
186
    trace_slavio_timer_mem_readl(addr, ret);
187
    return ret;
188
}
189

    
190
static void slavio_timer_mem_writel(void *opaque, target_phys_addr_t addr,
191
                                    uint32_t val)
192
{
193
    TimerContext *tc = opaque;
194
    SLAVIO_TIMERState *s = tc->s;
195
    uint32_t saddr;
196
    unsigned int timer_index = tc->timer_index;
197
    CPUTimerState *t = &s->cputimer[timer_index];
198

    
199
    trace_slavio_timer_mem_writel(addr, val);
200
    saddr = addr >> 2;
201
    switch (saddr) {
202
    case TIMER_LIMIT:
203
        if (slavio_timer_is_user(tc)) {
204
            uint64_t count;
205

    
206
            // set user counter MSW, reset counter
207
            t->limit = TIMER_MAX_COUNT64;
208
            t->counthigh = val & (TIMER_MAX_COUNT64 >> 32);
209
            t->reached = 0;
210
            count = ((uint64_t)t->counthigh << 32) | t->count;
211
            trace_slavio_timer_mem_writel_limit(timer_index, count);
212
            ptimer_set_count(t->timer, LIMIT_TO_PERIODS(t->limit - count));
213
        } else {
214
            // set limit, reset counter
215
            qemu_irq_lower(t->irq);
216
            t->limit = val & TIMER_MAX_COUNT32;
217
            if (t->timer) {
218
                if (t->limit == 0) { /* free-run */
219
                    ptimer_set_limit(t->timer,
220
                                     LIMIT_TO_PERIODS(TIMER_MAX_COUNT32), 1);
221
                } else {
222
                    ptimer_set_limit(t->timer, LIMIT_TO_PERIODS(t->limit), 1);
223
                }
224
            }
225
        }
226
        break;
227
    case TIMER_COUNTER:
228
        if (slavio_timer_is_user(tc)) {
229
            uint64_t count;
230

    
231
            // set user counter LSW, reset counter
232
            t->limit = TIMER_MAX_COUNT64;
233
            t->count = val & TIMER_MAX_COUNT64;
234
            t->reached = 0;
235
            count = ((uint64_t)t->counthigh) << 32 | t->count;
236
            trace_slavio_timer_mem_writel_limit(timer_index, count);
237
            ptimer_set_count(t->timer, LIMIT_TO_PERIODS(t->limit - count));
238
        } else {
239
            trace_slavio_timer_mem_writel_counter_invalid();
240
        }
241
        break;
242
    case TIMER_COUNTER_NORST:
243
        // set limit without resetting counter
244
        t->limit = val & TIMER_MAX_COUNT32;
245
        if (t->limit == 0) { /* free-run */
246
            ptimer_set_limit(t->timer, LIMIT_TO_PERIODS(TIMER_MAX_COUNT32), 0);
247
        } else {
248
            ptimer_set_limit(t->timer, LIMIT_TO_PERIODS(t->limit), 0);
249
        }
250
        break;
251
    case TIMER_STATUS:
252
        if (slavio_timer_is_user(tc)) {
253
            // start/stop user counter
254
            if ((val & 1) && !t->running) {
255
                trace_slavio_timer_mem_writel_status_start(timer_index);
256
                ptimer_run(t->timer, 0);
257
                t->running = 1;
258
            } else if (!(val & 1) && t->running) {
259
                trace_slavio_timer_mem_writel_status_stop(timer_index);
260
                ptimer_stop(t->timer);
261
                t->running = 0;
262
            }
263
        }
264
        break;
265
    case TIMER_MODE:
266
        if (timer_index == 0) {
267
            unsigned int i;
268

    
269
            for (i = 0; i < s->num_cpus; i++) {
270
                unsigned int processor = 1 << i;
271
                CPUTimerState *curr_timer = &s->cputimer[i + 1];
272

    
273
                // check for a change in timer mode for this processor
274
                if ((val & processor) != (s->cputimer_mode & processor)) {
275
                    if (val & processor) { // counter -> user timer
276
                        qemu_irq_lower(curr_timer->irq);
277
                        // counters are always running
278
                        ptimer_stop(curr_timer->timer);
279
                        curr_timer->running = 0;
280
                        // user timer limit is always the same
281
                        curr_timer->limit = TIMER_MAX_COUNT64;
282
                        ptimer_set_limit(curr_timer->timer,
283
                                         LIMIT_TO_PERIODS(curr_timer->limit),
284
                                         1);
285
                        // set this processors user timer bit in config
286
                        // register
287
                        s->cputimer_mode |= processor;
288
                        trace_slavio_timer_mem_writel_mode_user(timer_index);
289
                    } else { // user timer -> counter
290
                        // stop the user timer if it is running
291
                        if (curr_timer->running) {
292
                            ptimer_stop(curr_timer->timer);
293
                        }
294
                        // start the counter
295
                        ptimer_run(curr_timer->timer, 0);
296
                        curr_timer->running = 1;
297
                        // clear this processors user timer bit in config
298
                        // register
299
                        s->cputimer_mode &= ~processor;
300
                        trace_slavio_timer_mem_writel_mode_counter(timer_index);
301
                    }
302
                }
303
            }
304
        } else {
305
            trace_slavio_timer_mem_writel_mode_invalid();
306
        }
307
        break;
308
    default:
309
        trace_slavio_timer_mem_writel_invalid(addr);
310
        break;
311
    }
312
}
313

    
314
static CPUReadMemoryFunc * const slavio_timer_mem_read[3] = {
315
    NULL,
316
    NULL,
317
    slavio_timer_mem_readl,
318
};
319

    
320
static CPUWriteMemoryFunc * const slavio_timer_mem_write[3] = {
321
    NULL,
322
    NULL,
323
    slavio_timer_mem_writel,
324
};
325

    
326
static const VMStateDescription vmstate_timer = {
327
    .name ="timer",
328
    .version_id = 3,
329
    .minimum_version_id = 3,
330
    .minimum_version_id_old = 3,
331
    .fields      = (VMStateField []) {
332
        VMSTATE_UINT64(limit, CPUTimerState),
333
        VMSTATE_UINT32(count, CPUTimerState),
334
        VMSTATE_UINT32(counthigh, CPUTimerState),
335
        VMSTATE_UINT32(reached, CPUTimerState),
336
        VMSTATE_UINT32(running, CPUTimerState),
337
        VMSTATE_PTIMER(timer, CPUTimerState),
338
        VMSTATE_END_OF_LIST()
339
    }
340
};
341

    
342
static const VMStateDescription vmstate_slavio_timer = {
343
    .name ="slavio_timer",
344
    .version_id = 3,
345
    .minimum_version_id = 3,
346
    .minimum_version_id_old = 3,
347
    .fields      = (VMStateField []) {
348
        VMSTATE_STRUCT_ARRAY(cputimer, SLAVIO_TIMERState, MAX_CPUS + 1, 3,
349
                             vmstate_timer, CPUTimerState),
350
        VMSTATE_END_OF_LIST()
351
    }
352
};
353

    
354
static void slavio_timer_reset(DeviceState *d)
355
{
356
    SLAVIO_TIMERState *s = container_of(d, SLAVIO_TIMERState, busdev.qdev);
357
    unsigned int i;
358
    CPUTimerState *curr_timer;
359

    
360
    for (i = 0; i <= MAX_CPUS; i++) {
361
        curr_timer = &s->cputimer[i];
362
        curr_timer->limit = 0;
363
        curr_timer->count = 0;
364
        curr_timer->reached = 0;
365
        if (i <= s->num_cpus) {
366
            ptimer_set_limit(curr_timer->timer,
367
                             LIMIT_TO_PERIODS(TIMER_MAX_COUNT32), 1);
368
            ptimer_run(curr_timer->timer, 0);
369
            curr_timer->running = 1;
370
        }
371
    }
372
    s->cputimer_mode = 0;
373
}
374

    
375
static int slavio_timer_init1(SysBusDevice *dev)
376
{
377
    int io;
378
    SLAVIO_TIMERState *s = FROM_SYSBUS(SLAVIO_TIMERState, dev);
379
    QEMUBH *bh;
380
    unsigned int i;
381
    TimerContext *tc;
382

    
383
    for (i = 0; i <= MAX_CPUS; i++) {
384
        tc = qemu_mallocz(sizeof(TimerContext));
385
        tc->s = s;
386
        tc->timer_index = i;
387

    
388
        bh = qemu_bh_new(slavio_timer_irq, tc);
389
        s->cputimer[i].timer = ptimer_init(bh);
390
        ptimer_set_period(s->cputimer[i].timer, TIMER_PERIOD);
391

    
392
        io = cpu_register_io_memory(slavio_timer_mem_read,
393
                                    slavio_timer_mem_write, tc);
394
        if (i == 0) {
395
            sysbus_init_mmio(dev, SYS_TIMER_SIZE, io);
396
        } else {
397
            sysbus_init_mmio(dev, CPU_TIMER_SIZE, io);
398
        }
399

    
400
        sysbus_init_irq(dev, &s->cputimer[i].irq);
401
    }
402

    
403
    return 0;
404
}
405

    
406
static SysBusDeviceInfo slavio_timer_info = {
407
    .init = slavio_timer_init1,
408
    .qdev.name  = "slavio_timer",
409
    .qdev.size  = sizeof(SLAVIO_TIMERState),
410
    .qdev.vmsd  = &vmstate_slavio_timer,
411
    .qdev.reset = slavio_timer_reset,
412
    .qdev.props = (Property[]) {
413
        DEFINE_PROP_UINT32("num_cpus",  SLAVIO_TIMERState, num_cpus,  0),
414
        DEFINE_PROP_END_OF_LIST(),
415
    }
416
};
417

    
418
static void slavio_timer_register_devices(void)
419
{
420
    sysbus_register_withprop(&slavio_timer_info);
421
}
422

    
423
device_init(slavio_timer_register_devices)