Statistics
| Branch: | Revision:

root / qemu-options.hx @ 98b19252

History | View | Annotate | Download (67.7 kB)

1
HXCOMM Use DEFHEADING() to define headings in both help text and texi
2
HXCOMM Text between STEXI and ETEXI are copied to texi version and
3
HXCOMM discarded from C version
4
HXCOMM DEF(option, HAS_ARG/0, opt_enum, opt_help) is used to construct
5
HXCOMM option structures, enums and help message.
6
HXCOMM HXCOMM can be used for comments, discarded from both texi and C
7

    
8
DEFHEADING(Standard options:)
9
STEXI
10
@table @option
11
ETEXI
12

    
13
DEF("help", 0, QEMU_OPTION_h,
14
    "-h or -help     display this help and exit\n")
15
STEXI
16
@item -h
17
Display help and exit
18
ETEXI
19

    
20
DEF("version", 0, QEMU_OPTION_version,
21
    "-version        display version information and exit\n")
22
STEXI
23
@item -version
24
Display version information and exit
25
ETEXI
26

    
27
DEF("M", HAS_ARG, QEMU_OPTION_M,
28
    "-M machine      select emulated machine (-M ? for list)\n")
29
STEXI
30
@item -M @var{machine}
31
Select the emulated @var{machine} (@code{-M ?} for list)
32
ETEXI
33

    
34
DEF("cpu", HAS_ARG, QEMU_OPTION_cpu,
35
    "-cpu cpu        select CPU (-cpu ? for list)\n")
36
STEXI
37
@item -cpu @var{model}
38
Select CPU model (-cpu ? for list and additional feature selection)
39
ETEXI
40

    
41
DEF("smp", HAS_ARG, QEMU_OPTION_smp,
42
    "-smp n[,maxcpus=cpus][,cores=cores][,threads=threads][,sockets=sockets]\n"
43
    "                set the number of CPUs to 'n' [default=1]\n"
44
    "                maxcpus= maximum number of total cpus, including\n"
45
    "                offline CPUs for hotplug, etc\n"
46
    "                cores= number of CPU cores on one socket\n"
47
    "                threads= number of threads on one CPU core\n"
48
    "                sockets= number of discrete sockets in the system\n")
49
STEXI
50
@item -smp @var{n}[,cores=@var{cores}][,threads=@var{threads}][,sockets=@var{sockets}][,maxcpus=@var{maxcpus}]
51
Simulate an SMP system with @var{n} CPUs. On the PC target, up to 255
52
CPUs are supported. On Sparc32 target, Linux limits the number of usable CPUs
53
to 4.
54
For the PC target, the number of @var{cores} per socket, the number
55
of @var{threads} per cores and the total number of @var{sockets} can be
56
specified. Missing values will be computed. If any on the three values is
57
given, the total number of CPUs @var{n} can be omitted. @var{maxcpus}
58
specifies the maximum number of hotpluggable CPUs.
59
ETEXI
60

    
61
DEF("numa", HAS_ARG, QEMU_OPTION_numa,
62
    "-numa node[,mem=size][,cpus=cpu[-cpu]][,nodeid=node]\n")
63
STEXI
64
@item -numa @var{opts}
65
Simulate a multi node NUMA system. If mem and cpus are omitted, resources
66
are split equally.
67
ETEXI
68

    
69
DEF("fda", HAS_ARG, QEMU_OPTION_fda,
70
    "-fda/-fdb file  use 'file' as floppy disk 0/1 image\n")
71
DEF("fdb", HAS_ARG, QEMU_OPTION_fdb, "")
72
STEXI
73
@item -fda @var{file}
74
@item -fdb @var{file}
75
Use @var{file} as floppy disk 0/1 image (@pxref{disk_images}). You can
76
use the host floppy by using @file{/dev/fd0} as filename (@pxref{host_drives}).
77
ETEXI
78

    
79
DEF("hda", HAS_ARG, QEMU_OPTION_hda,
80
    "-hda/-hdb file  use 'file' as IDE hard disk 0/1 image\n")
81
DEF("hdb", HAS_ARG, QEMU_OPTION_hdb, "")
82
DEF("hdc", HAS_ARG, QEMU_OPTION_hdc,
83
    "-hdc/-hdd file  use 'file' as IDE hard disk 2/3 image\n")
84
DEF("hdd", HAS_ARG, QEMU_OPTION_hdd, "")
85
STEXI
86
@item -hda @var{file}
87
@item -hdb @var{file}
88
@item -hdc @var{file}
89
@item -hdd @var{file}
90
Use @var{file} as hard disk 0, 1, 2 or 3 image (@pxref{disk_images}).
91
ETEXI
92

    
93
DEF("cdrom", HAS_ARG, QEMU_OPTION_cdrom,
94
    "-cdrom file     use 'file' as IDE cdrom image (cdrom is ide1 master)\n")
95
STEXI
96
@item -cdrom @var{file}
97
Use @var{file} as CD-ROM image (you cannot use @option{-hdc} and
98
@option{-cdrom} at the same time). You can use the host CD-ROM by
99
using @file{/dev/cdrom} as filename (@pxref{host_drives}).
100
ETEXI
101

    
102
DEF("drive", HAS_ARG, QEMU_OPTION_drive,
103
    "-drive [file=file][,if=type][,bus=n][,unit=m][,media=d][,index=i]\n"
104
    "       [,cyls=c,heads=h,secs=s[,trans=t]][,snapshot=on|off]\n"
105
    "       [,cache=writethrough|writeback|none][,format=f][,serial=s]\n"
106
    "       [,addr=A][,id=name][,aio=threads|native][,readonly=on|off]\n"
107
    "                use 'file' as a drive image\n")
108
DEF("set", HAS_ARG, QEMU_OPTION_set,
109
    "-set group.id.arg=value\n"
110
    "                set <arg> parameter for item <id> of type <group>\n"
111
    "                i.e. -set drive.$id.file=/path/to/image\n")
112
DEF("global", HAS_ARG, QEMU_OPTION_global,
113
    "-global driver.property=value\n"
114
    "                set a global default for a driver property\n")
115
STEXI
116
@item -drive @var{option}[,@var{option}[,@var{option}[,...]]]
117

    
118
Define a new drive. Valid options are:
119

    
120
@table @option
121
@item file=@var{file}
122
This option defines which disk image (@pxref{disk_images}) to use with
123
this drive. If the filename contains comma, you must double it
124
(for instance, "file=my,,file" to use file "my,file").
125
@item if=@var{interface}
126
This option defines on which type on interface the drive is connected.
127
Available types are: ide, scsi, sd, mtd, floppy, pflash, virtio.
128
@item bus=@var{bus},unit=@var{unit}
129
These options define where is connected the drive by defining the bus number and
130
the unit id.
131
@item index=@var{index}
132
This option defines where is connected the drive by using an index in the list
133
of available connectors of a given interface type.
134
@item media=@var{media}
135
This option defines the type of the media: disk or cdrom.
136
@item cyls=@var{c},heads=@var{h},secs=@var{s}[,trans=@var{t}]
137
These options have the same definition as they have in @option{-hdachs}.
138
@item snapshot=@var{snapshot}
139
@var{snapshot} is "on" or "off" and allows to enable snapshot for given drive (see @option{-snapshot}).
140
@item cache=@var{cache}
141
@var{cache} is "none", "writeback", or "writethrough" and controls how the host cache is used to access block data.
142
@item aio=@var{aio}
143
@var{aio} is "threads", or "native" and selects between pthread based disk I/O and native Linux AIO.
144
@item format=@var{format}
145
Specify which disk @var{format} will be used rather than detecting
146
the format.  Can be used to specifiy format=raw to avoid interpreting
147
an untrusted format header.
148
@item serial=@var{serial}
149
This option specifies the serial number to assign to the device.
150
@item addr=@var{addr}
151
Specify the controller's PCI address (if=virtio only).
152
@end table
153

    
154
By default, writethrough caching is used for all block device.  This means that
155
the host page cache will be used to read and write data but write notification
156
will be sent to the guest only when the data has been reported as written by
157
the storage subsystem.
158

    
159
Writeback caching will report data writes as completed as soon as the data is
160
present in the host page cache.  This is safe as long as you trust your host.
161
If your host crashes or loses power, then the guest may experience data
162
corruption.  When using the @option{-snapshot} option, writeback caching is
163
used by default.
164

    
165
The host page cache can be avoided entirely with @option{cache=none}.  This will
166
attempt to do disk IO directly to the guests memory.  QEMU may still perform
167
an internal copy of the data.
168

    
169
Some block drivers perform badly with @option{cache=writethrough}, most notably,
170
qcow2.  If performance is more important than correctness,
171
@option{cache=writeback} should be used with qcow2.
172

    
173
Instead of @option{-cdrom} you can use:
174
@example
175
qemu -drive file=file,index=2,media=cdrom
176
@end example
177

    
178
Instead of @option{-hda}, @option{-hdb}, @option{-hdc}, @option{-hdd}, you can
179
use:
180
@example
181
qemu -drive file=file,index=0,media=disk
182
qemu -drive file=file,index=1,media=disk
183
qemu -drive file=file,index=2,media=disk
184
qemu -drive file=file,index=3,media=disk
185
@end example
186

    
187
You can connect a CDROM to the slave of ide0:
188
@example
189
qemu -drive file=file,if=ide,index=1,media=cdrom
190
@end example
191

    
192
If you don't specify the "file=" argument, you define an empty drive:
193
@example
194
qemu -drive if=ide,index=1,media=cdrom
195
@end example
196

    
197
You can connect a SCSI disk with unit ID 6 on the bus #0:
198
@example
199
qemu -drive file=file,if=scsi,bus=0,unit=6
200
@end example
201

    
202
Instead of @option{-fda}, @option{-fdb}, you can use:
203
@example
204
qemu -drive file=file,index=0,if=floppy
205
qemu -drive file=file,index=1,if=floppy
206
@end example
207

    
208
By default, @var{interface} is "ide" and @var{index} is automatically
209
incremented:
210
@example
211
qemu -drive file=a -drive file=b"
212
@end example
213
is interpreted like:
214
@example
215
qemu -hda a -hdb b
216
@end example
217
ETEXI
218

    
219
DEF("mtdblock", HAS_ARG, QEMU_OPTION_mtdblock,
220
    "-mtdblock file  use 'file' as on-board Flash memory image\n")
221
STEXI
222

    
223
@item -mtdblock @var{file}
224
Use @var{file} as on-board Flash memory image.
225
ETEXI
226

    
227
DEF("sd", HAS_ARG, QEMU_OPTION_sd,
228
    "-sd file        use 'file' as SecureDigital card image\n")
229
STEXI
230
@item -sd @var{file}
231
Use @var{file} as SecureDigital card image.
232
ETEXI
233

    
234
DEF("pflash", HAS_ARG, QEMU_OPTION_pflash,
235
    "-pflash file    use 'file' as a parallel flash image\n")
236
STEXI
237
@item -pflash @var{file}
238
Use @var{file} as a parallel flash image.
239
ETEXI
240

    
241
DEF("boot", HAS_ARG, QEMU_OPTION_boot,
242
    "-boot [order=drives][,once=drives][,menu=on|off]\n"
243
    "                'drives': floppy (a), hard disk (c), CD-ROM (d), network (n)\n")
244
STEXI
245
@item -boot [order=@var{drives}][,once=@var{drives}][,menu=on|off]
246

    
247
Specify boot order @var{drives} as a string of drive letters. Valid
248
drive letters depend on the target achitecture. The x86 PC uses: a, b
249
(floppy 1 and 2), c (first hard disk), d (first CD-ROM), n-p (Etherboot
250
from network adapter 1-4), hard disk boot is the default. To apply a
251
particular boot order only on the first startup, specify it via
252
@option{once}.
253

    
254
Interactive boot menus/prompts can be enabled via @option{menu=on} as far
255
as firmware/BIOS supports them. The default is non-interactive boot.
256

    
257
@example
258
# try to boot from network first, then from hard disk
259
qemu -boot order=nc
260
# boot from CD-ROM first, switch back to default order after reboot
261
qemu -boot once=d
262
@end example
263

    
264
Note: The legacy format '-boot @var{drives}' is still supported but its
265
use is discouraged as it may be removed from future versions.
266
ETEXI
267

    
268
DEF("snapshot", 0, QEMU_OPTION_snapshot,
269
    "-snapshot       write to temporary files instead of disk image files\n")
270
STEXI
271
@item -snapshot
272
Write to temporary files instead of disk image files. In this case,
273
the raw disk image you use is not written back. You can however force
274
the write back by pressing @key{C-a s} (@pxref{disk_images}).
275
ETEXI
276

    
277
DEF("m", HAS_ARG, QEMU_OPTION_m,
278
    "-m megs         set virtual RAM size to megs MB [default=%d]\n")
279
STEXI
280
@item -m @var{megs}
281
Set virtual RAM size to @var{megs} megabytes. Default is 128 MiB.  Optionally,
282
a suffix of ``M'' or ``G'' can be used to signify a value in megabytes or
283
gigabytes respectively.
284
ETEXI
285

    
286
DEF("k", HAS_ARG, QEMU_OPTION_k,
287
    "-k language     use keyboard layout (for example 'fr' for French)\n")
288
STEXI
289
@item -k @var{language}
290

    
291
Use keyboard layout @var{language} (for example @code{fr} for
292
French). This option is only needed where it is not easy to get raw PC
293
keycodes (e.g. on Macs, with some X11 servers or with a VNC
294
display). You don't normally need to use it on PC/Linux or PC/Windows
295
hosts.
296

    
297
The available layouts are:
298
@example
299
ar  de-ch  es  fo     fr-ca  hu  ja  mk     no  pt-br  sv
300
da  en-gb  et  fr     fr-ch  is  lt  nl     pl  ru     th
301
de  en-us  fi  fr-be  hr     it  lv  nl-be  pt  sl     tr
302
@end example
303

    
304
The default is @code{en-us}.
305
ETEXI
306

    
307

    
308
#ifdef HAS_AUDIO
309
DEF("audio-help", 0, QEMU_OPTION_audio_help,
310
    "-audio-help     print list of audio drivers and their options\n")
311
#endif
312
STEXI
313
@item -audio-help
314

    
315
Will show the audio subsystem help: list of drivers, tunable
316
parameters.
317
ETEXI
318

    
319
#ifdef HAS_AUDIO
320
DEF("soundhw", HAS_ARG, QEMU_OPTION_soundhw,
321
    "-soundhw c1,... enable audio support\n"
322
    "                and only specified sound cards (comma separated list)\n"
323
    "                use -soundhw ? to get the list of supported cards\n"
324
    "                use -soundhw all to enable all of them\n")
325
#endif
326
STEXI
327
@item -soundhw @var{card1}[,@var{card2},...] or -soundhw all
328

    
329
Enable audio and selected sound hardware. Use ? to print all
330
available sound hardware.
331

    
332
@example
333
qemu -soundhw sb16,adlib disk.img
334
qemu -soundhw es1370 disk.img
335
qemu -soundhw ac97 disk.img
336
qemu -soundhw all disk.img
337
qemu -soundhw ?
338
@end example
339

    
340
Note that Linux's i810_audio OSS kernel (for AC97) module might
341
require manually specifying clocking.
342

    
343
@example
344
modprobe i810_audio clocking=48000
345
@end example
346
ETEXI
347

    
348
STEXI
349
@end table
350
ETEXI
351

    
352
DEF("usb", 0, QEMU_OPTION_usb,
353
    "-usb            enable the USB driver (will be the default soon)\n")
354
STEXI
355
USB options:
356
@table @option
357

    
358
@item -usb
359
Enable the USB driver (will be the default soon)
360
ETEXI
361

    
362
DEF("usbdevice", HAS_ARG, QEMU_OPTION_usbdevice,
363
    "-usbdevice name add the host or guest USB device 'name'\n")
364
STEXI
365

    
366
@item -usbdevice @var{devname}
367
Add the USB device @var{devname}. @xref{usb_devices}.
368

    
369
@table @option
370

    
371
@item mouse
372
Virtual Mouse. This will override the PS/2 mouse emulation when activated.
373

    
374
@item tablet
375
Pointer device that uses absolute coordinates (like a touchscreen). This
376
means qemu is able to report the mouse position without having to grab the
377
mouse. Also overrides the PS/2 mouse emulation when activated.
378

    
379
@item disk:[format=@var{format}]:@var{file}
380
Mass storage device based on file. The optional @var{format} argument
381
will be used rather than detecting the format. Can be used to specifiy
382
@code{format=raw} to avoid interpreting an untrusted format header.
383

    
384
@item host:@var{bus}.@var{addr}
385
Pass through the host device identified by @var{bus}.@var{addr} (Linux only).
386

    
387
@item host:@var{vendor_id}:@var{product_id}
388
Pass through the host device identified by @var{vendor_id}:@var{product_id}
389
(Linux only).
390

    
391
@item serial:[vendorid=@var{vendor_id}][,productid=@var{product_id}]:@var{dev}
392
Serial converter to host character device @var{dev}, see @code{-serial} for the
393
available devices.
394

    
395
@item braille
396
Braille device.  This will use BrlAPI to display the braille output on a real
397
or fake device.
398

    
399
@item net:@var{options}
400
Network adapter that supports CDC ethernet and RNDIS protocols.
401

    
402
@end table
403
ETEXI
404

    
405
DEF("device", HAS_ARG, QEMU_OPTION_device,
406
    "-device driver[,options]  add device\n")
407
STEXI
408
@item -device @var{driver}[,@var{option}[,...]]
409
Add device @var{driver}. Depending on the device type,
410
@var{option} (typically @var{key}=@var{value}) may be useful.
411
ETEXI
412

    
413
DEF("name", HAS_ARG, QEMU_OPTION_name,
414
    "-name string1[,process=string2]\n"
415
    "                set the name of the guest\n"
416
    "                string1 sets the window title and string2 the process name (on Linux)\n")
417
STEXI
418
@item -name @var{name}
419
Sets the @var{name} of the guest.
420
This name will be displayed in the SDL window caption.
421
The @var{name} will also be used for the VNC server.
422
Also optionally set the top visible process name in Linux.
423
ETEXI
424

    
425
DEF("uuid", HAS_ARG, QEMU_OPTION_uuid,
426
    "-uuid %%08x-%%04x-%%04x-%%04x-%%012x\n"
427
    "                specify machine UUID\n")
428
STEXI
429
@item -uuid @var{uuid}
430
Set system UUID.
431
ETEXI
432

    
433
STEXI
434
@end table
435
ETEXI
436

    
437
DEFHEADING()
438

    
439
DEFHEADING(Display options:)
440

    
441
STEXI
442
@table @option
443
ETEXI
444

    
445
DEF("nographic", 0, QEMU_OPTION_nographic,
446
    "-nographic      disable graphical output and redirect serial I/Os to console\n")
447
STEXI
448
@item -nographic
449

    
450
Normally, QEMU uses SDL to display the VGA output. With this option,
451
you can totally disable graphical output so that QEMU is a simple
452
command line application. The emulated serial port is redirected on
453
the console. Therefore, you can still use QEMU to debug a Linux kernel
454
with a serial console.
455
ETEXI
456

    
457
#ifdef CONFIG_CURSES
458
DEF("curses", 0, QEMU_OPTION_curses,
459
    "-curses         use a curses/ncurses interface instead of SDL\n")
460
#endif
461
STEXI
462
@item -curses
463

    
464
Normally, QEMU uses SDL to display the VGA output.  With this option,
465
QEMU can display the VGA output when in text mode using a
466
curses/ncurses interface.  Nothing is displayed in graphical mode.
467
ETEXI
468

    
469
#ifdef CONFIG_SDL
470
DEF("no-frame", 0, QEMU_OPTION_no_frame,
471
    "-no-frame       open SDL window without a frame and window decorations\n")
472
#endif
473
STEXI
474
@item -no-frame
475

    
476
Do not use decorations for SDL windows and start them using the whole
477
available screen space. This makes the using QEMU in a dedicated desktop
478
workspace more convenient.
479
ETEXI
480

    
481
#ifdef CONFIG_SDL
482
DEF("alt-grab", 0, QEMU_OPTION_alt_grab,
483
    "-alt-grab       use Ctrl-Alt-Shift to grab mouse (instead of Ctrl-Alt)\n")
484
#endif
485
STEXI
486
@item -alt-grab
487

    
488
Use Ctrl-Alt-Shift to grab mouse (instead of Ctrl-Alt).
489
ETEXI
490

    
491
#ifdef CONFIG_SDL
492
DEF("ctrl-grab", 0, QEMU_OPTION_ctrl_grab,
493
    "-ctrl-grab      use Right-Ctrl to grab mouse (instead of Ctrl-Alt)\n")
494
#endif
495
STEXI
496
@item -ctrl-grab
497

    
498
Use Right-Ctrl to grab mouse (instead of Ctrl-Alt).
499
ETEXI
500

    
501
#ifdef CONFIG_SDL
502
DEF("no-quit", 0, QEMU_OPTION_no_quit,
503
    "-no-quit        disable SDL window close capability\n")
504
#endif
505
STEXI
506
@item -no-quit
507

    
508
Disable SDL window close capability.
509
ETEXI
510

    
511
#ifdef CONFIG_SDL
512
DEF("sdl", 0, QEMU_OPTION_sdl,
513
    "-sdl            enable SDL\n")
514
#endif
515
STEXI
516
@item -sdl
517

    
518
Enable SDL.
519
ETEXI
520

    
521
DEF("portrait", 0, QEMU_OPTION_portrait,
522
    "-portrait       rotate graphical output 90 deg left (only PXA LCD)\n")
523
STEXI
524
@item -portrait
525

    
526
Rotate graphical output 90 deg left (only PXA LCD).
527
ETEXI
528

    
529
DEF("vga", HAS_ARG, QEMU_OPTION_vga,
530
    "-vga [std|cirrus|vmware|xenfb|none]\n"
531
    "                select video card type\n")
532
STEXI
533
@item -vga @var{type}
534
Select type of VGA card to emulate. Valid values for @var{type} are
535
@table @option
536
@item cirrus
537
Cirrus Logic GD5446 Video card. All Windows versions starting from
538
Windows 95 should recognize and use this graphic card. For optimal
539
performances, use 16 bit color depth in the guest and the host OS.
540
(This one is the default)
541
@item std
542
Standard VGA card with Bochs VBE extensions.  If your guest OS
543
supports the VESA 2.0 VBE extensions (e.g. Windows XP) and if you want
544
to use high resolution modes (>= 1280x1024x16) then you should use
545
this option.
546
@item vmware
547
VMWare SVGA-II compatible adapter. Use it if you have sufficiently
548
recent XFree86/XOrg server or Windows guest with a driver for this
549
card.
550
@item none
551
Disable VGA card.
552
@end table
553
ETEXI
554

    
555
DEF("full-screen", 0, QEMU_OPTION_full_screen,
556
    "-full-screen    start in full screen\n")
557
STEXI
558
@item -full-screen
559
Start in full screen.
560
ETEXI
561

    
562
#if defined(TARGET_PPC) || defined(TARGET_SPARC)
563
DEF("g", 1, QEMU_OPTION_g ,
564
    "-g WxH[xDEPTH]  Set the initial graphical resolution and depth\n")
565
#endif
566
STEXI
567
ETEXI
568

    
569
DEF("vnc", HAS_ARG, QEMU_OPTION_vnc ,
570
    "-vnc display    start a VNC server on display\n")
571
STEXI
572
@item -vnc @var{display}[,@var{option}[,@var{option}[,...]]]
573

    
574
Normally, QEMU uses SDL to display the VGA output.  With this option,
575
you can have QEMU listen on VNC display @var{display} and redirect the VGA
576
display over the VNC session.  It is very useful to enable the usb
577
tablet device when using this option (option @option{-usbdevice
578
tablet}). When using the VNC display, you must use the @option{-k}
579
parameter to set the keyboard layout if you are not using en-us. Valid
580
syntax for the @var{display} is
581

    
582
@table @option
583

    
584
@item @var{host}:@var{d}
585

    
586
TCP connections will only be allowed from @var{host} on display @var{d}.
587
By convention the TCP port is 5900+@var{d}. Optionally, @var{host} can
588
be omitted in which case the server will accept connections from any host.
589

    
590
@item unix:@var{path}
591

    
592
Connections will be allowed over UNIX domain sockets where @var{path} is the
593
location of a unix socket to listen for connections on.
594

    
595
@item none
596

    
597
VNC is initialized but not started. The monitor @code{change} command
598
can be used to later start the VNC server.
599

    
600
@end table
601

    
602
Following the @var{display} value there may be one or more @var{option} flags
603
separated by commas. Valid options are
604

    
605
@table @option
606

    
607
@item reverse
608

    
609
Connect to a listening VNC client via a ``reverse'' connection. The
610
client is specified by the @var{display}. For reverse network
611
connections (@var{host}:@var{d},@code{reverse}), the @var{d} argument
612
is a TCP port number, not a display number.
613

    
614
@item password
615

    
616
Require that password based authentication is used for client connections.
617
The password must be set separately using the @code{change} command in the
618
@ref{pcsys_monitor}
619

    
620
@item tls
621

    
622
Require that client use TLS when communicating with the VNC server. This
623
uses anonymous TLS credentials so is susceptible to a man-in-the-middle
624
attack. It is recommended that this option be combined with either the
625
@option{x509} or @option{x509verify} options.
626

    
627
@item x509=@var{/path/to/certificate/dir}
628

    
629
Valid if @option{tls} is specified. Require that x509 credentials are used
630
for negotiating the TLS session. The server will send its x509 certificate
631
to the client. It is recommended that a password be set on the VNC server
632
to provide authentication of the client when this is used. The path following
633
this option specifies where the x509 certificates are to be loaded from.
634
See the @ref{vnc_security} section for details on generating certificates.
635

    
636
@item x509verify=@var{/path/to/certificate/dir}
637

    
638
Valid if @option{tls} is specified. Require that x509 credentials are used
639
for negotiating the TLS session. The server will send its x509 certificate
640
to the client, and request that the client send its own x509 certificate.
641
The server will validate the client's certificate against the CA certificate,
642
and reject clients when validation fails. If the certificate authority is
643
trusted, this is a sufficient authentication mechanism. You may still wish
644
to set a password on the VNC server as a second authentication layer. The
645
path following this option specifies where the x509 certificates are to
646
be loaded from. See the @ref{vnc_security} section for details on generating
647
certificates.
648

    
649
@item sasl
650

    
651
Require that the client use SASL to authenticate with the VNC server.
652
The exact choice of authentication method used is controlled from the
653
system / user's SASL configuration file for the 'qemu' service. This
654
is typically found in /etc/sasl2/qemu.conf. If running QEMU as an
655
unprivileged user, an environment variable SASL_CONF_PATH can be used
656
to make it search alternate locations for the service config.
657
While some SASL auth methods can also provide data encryption (eg GSSAPI),
658
it is recommended that SASL always be combined with the 'tls' and
659
'x509' settings to enable use of SSL and server certificates. This
660
ensures a data encryption preventing compromise of authentication
661
credentials. See the @ref{vnc_security} section for details on using
662
SASL authentication.
663

    
664
@item acl
665

    
666
Turn on access control lists for checking of the x509 client certificate
667
and SASL party. For x509 certs, the ACL check is made against the
668
certificate's distinguished name. This is something that looks like
669
@code{C=GB,O=ACME,L=Boston,CN=bob}. For SASL party, the ACL check is
670
made against the username, which depending on the SASL plugin, may
671
include a realm component, eg @code{bob} or @code{bob@@EXAMPLE.COM}.
672
When the @option{acl} flag is set, the initial access list will be
673
empty, with a @code{deny} policy. Thus no one will be allowed to
674
use the VNC server until the ACLs have been loaded. This can be
675
achieved using the @code{acl} monitor command.
676

    
677
@end table
678
ETEXI
679

    
680
STEXI
681
@end table
682
ETEXI
683

    
684
DEFHEADING()
685

    
686
#ifdef TARGET_I386
687
DEFHEADING(i386 target only:)
688
#endif
689
STEXI
690
@table @option
691
ETEXI
692

    
693
#ifdef TARGET_I386
694
DEF("win2k-hack", 0, QEMU_OPTION_win2k_hack,
695
    "-win2k-hack     use it when installing Windows 2000 to avoid a disk full bug\n")
696
#endif
697
STEXI
698
@item -win2k-hack
699
Use it when installing Windows 2000 to avoid a disk full bug. After
700
Windows 2000 is installed, you no longer need this option (this option
701
slows down the IDE transfers).
702
ETEXI
703

    
704
#ifdef TARGET_I386
705
HXCOMM Deprecated by -rtc
706
DEF("rtc-td-hack", 0, QEMU_OPTION_rtc_td_hack, "")
707
#endif
708

    
709
#ifdef TARGET_I386
710
DEF("no-fd-bootchk", 0, QEMU_OPTION_no_fd_bootchk,
711
    "-no-fd-bootchk  disable boot signature checking for floppy disks\n")
712
#endif
713
STEXI
714
@item -no-fd-bootchk
715
Disable boot signature checking for floppy disks in Bochs BIOS. It may
716
be needed to boot from old floppy disks.
717
ETEXI
718

    
719
#ifdef TARGET_I386
720
DEF("no-acpi", 0, QEMU_OPTION_no_acpi,
721
           "-no-acpi        disable ACPI\n")
722
#endif
723
STEXI
724
@item -no-acpi
725
Disable ACPI (Advanced Configuration and Power Interface) support. Use
726
it if your guest OS complains about ACPI problems (PC target machine
727
only).
728
ETEXI
729

    
730
#ifdef TARGET_I386
731
DEF("no-hpet", 0, QEMU_OPTION_no_hpet,
732
    "-no-hpet        disable HPET\n")
733
#endif
734
STEXI
735
@item -no-hpet
736
Disable HPET support.
737
ETEXI
738

    
739
#ifdef TARGET_I386
740
DEF("balloon", HAS_ARG, QEMU_OPTION_balloon,
741
    "-balloon none   disable balloon device\n"
742
    "-balloon virtio[,addr=str]\n"
743
    "                enable virtio balloon device (default)\n")
744
#endif
745
STEXI
746
@item -balloon none
747
Disable balloon device.
748
@item -balloon virtio[,addr=@var{addr}]
749
Enable virtio balloon device (default), optionally with PCI address
750
@var{addr}.
751
ETEXI
752

    
753
#ifdef TARGET_I386
754
DEF("acpitable", HAS_ARG, QEMU_OPTION_acpitable,
755
    "-acpitable [sig=str][,rev=n][,oem_id=str][,oem_table_id=str][,oem_rev=n][,asl_compiler_id=str][,asl_compiler_rev=n][,data=file1[:file2]...]\n"
756
    "                ACPI table description\n")
757
#endif
758
STEXI
759
@item -acpitable [sig=@var{str}][,rev=@var{n}][,oem_id=@var{str}][,oem_table_id=@var{str}][,oem_rev=@var{n}] [,asl_compiler_id=@var{str}][,asl_compiler_rev=@var{n}][,data=@var{file1}[:@var{file2}]...]
760
Add ACPI table with specified header fields and context from specified files.
761
ETEXI
762

    
763
#ifdef TARGET_I386
764
DEF("smbios", HAS_ARG, QEMU_OPTION_smbios,
765
    "-smbios file=binary\n"
766
    "                load SMBIOS entry from binary file\n"
767
    "-smbios type=0[,vendor=str][,version=str][,date=str][,release=%%d.%%d]\n"
768
    "                specify SMBIOS type 0 fields\n"
769
    "-smbios type=1[,manufacturer=str][,product=str][,version=str][,serial=str]\n"
770
    "              [,uuid=uuid][,sku=str][,family=str]\n"
771
    "                specify SMBIOS type 1 fields\n")
772
#endif
773
STEXI
774
@item -smbios file=@var{binary}
775
Load SMBIOS entry from binary file.
776

    
777
@item -smbios type=0[,vendor=@var{str}][,version=@var{str}][,date=@var{str}][,release=@var{%d.%d}]
778
Specify SMBIOS type 0 fields
779

    
780
@item -smbios type=1[,manufacturer=@var{str}][,product=@var{str}][,version=@var{str}][,serial=@var{str}][,uuid=@var{uuid}][,sku=@var{str}][,family=@var{str}]
781
Specify SMBIOS type 1 fields
782
ETEXI
783

    
784
#ifdef TARGET_I386
785
DEFHEADING()
786
#endif
787
STEXI
788
@end table
789
ETEXI
790

    
791
DEFHEADING(Network options:)
792
STEXI
793
@table @option
794
ETEXI
795

    
796
HXCOMM Legacy slirp options (now moved to -net user):
797
#ifdef CONFIG_SLIRP
798
DEF("tftp", HAS_ARG, QEMU_OPTION_tftp, "")
799
DEF("bootp", HAS_ARG, QEMU_OPTION_bootp, "")
800
DEF("redir", HAS_ARG, QEMU_OPTION_redir, "")
801
#ifndef _WIN32
802
DEF("smb", HAS_ARG, QEMU_OPTION_smb, "")
803
#endif
804
#endif
805

    
806
DEF("net", HAS_ARG, QEMU_OPTION_net,
807
    "-net nic[,vlan=n][,macaddr=mac][,model=type][,name=str][,addr=str][,vectors=v]\n"
808
    "                create a new Network Interface Card and connect it to VLAN 'n'\n"
809
#ifdef CONFIG_SLIRP
810
    "-net user[,vlan=n][,name=str][,net=addr[/mask]][,host=addr][,restrict=y|n]\n"
811
    "         [,hostname=host][,dhcpstart=addr][,dns=addr][,tftp=dir][,bootfile=f]\n"
812
    "         [,hostfwd=rule][,guestfwd=rule]"
813
#ifndef _WIN32
814
                                             "[,smb=dir[,smbserver=addr]]\n"
815
#endif
816
    "                connect the user mode network stack to VLAN 'n', configure its\n"
817
    "                DHCP server and enabled optional services\n"
818
#endif
819
#ifdef _WIN32
820
    "-net tap[,vlan=n][,name=str],ifname=name\n"
821
    "                connect the host TAP network interface to VLAN 'n'\n"
822
#else
823
    "-net tap[,vlan=n][,name=str][,fd=h][,ifname=name][,script=file][,downscript=dfile][,sndbuf=nbytes][,vnet_hdr=on|off]\n"
824
    "                connect the host TAP network interface to VLAN 'n' and use the\n"
825
    "                network scripts 'file' (default=%s)\n"
826
    "                and 'dfile' (default=%s)\n"
827
    "                use '[down]script=no' to disable script execution\n"
828
    "                use 'fd=h' to connect to an already opened TAP interface\n"
829
    "                use 'sndbuf=nbytes' to limit the size of the send buffer (the\n"
830
    "                default of 'sndbuf=1048576' can be disabled using 'sndbuf=0')\n"
831
    "                use vnet_hdr=off to avoid enabling the IFF_VNET_HDR tap flag\n"
832
    "                use vnet_hdr=on to make the lack of IFF_VNET_HDR support an error condition\n"
833
#endif
834
    "-net socket[,vlan=n][,name=str][,fd=h][,listen=[host]:port][,connect=host:port]\n"
835
    "                connect the vlan 'n' to another VLAN using a socket connection\n"
836
    "-net socket[,vlan=n][,name=str][,fd=h][,mcast=maddr:port]\n"
837
    "                connect the vlan 'n' to multicast maddr and port\n"
838
#ifdef CONFIG_VDE
839
    "-net vde[,vlan=n][,name=str][,sock=socketpath][,port=n][,group=groupname][,mode=octalmode]\n"
840
    "                connect the vlan 'n' to port 'n' of a vde switch running\n"
841
    "                on host and listening for incoming connections on 'socketpath'.\n"
842
    "                Use group 'groupname' and mode 'octalmode' to change default\n"
843
    "                ownership and permissions for communication port.\n"
844
#endif
845
    "-net dump[,vlan=n][,file=f][,len=n]\n"
846
    "                dump traffic on vlan 'n' to file 'f' (max n bytes per packet)\n"
847
    "-net none       use it alone to have zero network devices. If no -net option\n"
848
    "                is provided, the default is '-net nic -net user'\n")
849
DEF("netdev", HAS_ARG, QEMU_OPTION_netdev,
850
    "-netdev ["
851
#ifdef CONFIG_SLIRP
852
    "user|"
853
#endif
854
    "tap|"
855
#ifdef CONFIG_VDE
856
    "vde|"
857
#endif
858
    "socket],id=str[,option][,option][,...]\n")
859
STEXI
860
@item -net nic[,vlan=@var{n}][,macaddr=@var{mac}][,model=@var{type}][,name=@var{name}][,addr=@var{addr}][,vectors=@var{v}]
861
Create a new Network Interface Card and connect it to VLAN @var{n} (@var{n}
862
= 0 is the default). The NIC is an e1000 by default on the PC
863
target. Optionally, the MAC address can be changed to @var{mac}, the
864
device address set to @var{addr} (PCI cards only),
865
and a @var{name} can be assigned for use in monitor commands.
866
Optionally, for PCI cards, you can specify the number @var{v} of MSI-X vectors
867
that the card should have; this option currently only affects virtio cards; set
868
@var{v} = 0 to disable MSI-X. If no @option{-net} option is specified, a single
869
NIC is created.  Qemu can emulate several different models of network card.
870
Valid values for @var{type} are
871
@code{virtio}, @code{i82551}, @code{i82557b}, @code{i82559er},
872
@code{ne2k_pci}, @code{ne2k_isa}, @code{pcnet}, @code{rtl8139},
873
@code{e1000}, @code{smc91c111}, @code{lance} and @code{mcf_fec}.
874
Not all devices are supported on all targets.  Use -net nic,model=?
875
for a list of available devices for your target.
876

    
877
@item -net user[,@var{option}][,@var{option}][,...]
878
Use the user mode network stack which requires no administrator
879
privilege to run. Valid options are:
880

    
881
@table @option
882
@item vlan=@var{n}
883
Connect user mode stack to VLAN @var{n} (@var{n} = 0 is the default).
884

    
885
@item name=@var{name}
886
Assign symbolic name for use in monitor commands.
887

    
888
@item net=@var{addr}[/@var{mask}]
889
Set IP network address the guest will see. Optionally specify the netmask,
890
either in the form a.b.c.d or as number of valid top-most bits. Default is
891
10.0.2.0/8.
892

    
893
@item host=@var{addr}
894
Specify the guest-visible address of the host. Default is the 2nd IP in the
895
guest network, i.e. x.x.x.2.
896

    
897
@item restrict=y|yes|n|no
898
If this options is enabled, the guest will be isolated, i.e. it will not be
899
able to contact the host and no guest IP packets will be routed over the host
900
to the outside. This option does not affect explicitly set forwarding rule.
901

    
902
@item hostname=@var{name}
903
Specifies the client hostname reported by the builtin DHCP server.
904

    
905
@item dhcpstart=@var{addr}
906
Specify the first of the 16 IPs the built-in DHCP server can assign. Default
907
is the 16th to 31st IP in the guest network, i.e. x.x.x.16 to x.x.x.31.
908

    
909
@item dns=@var{addr}
910
Specify the guest-visible address of the virtual nameserver. The address must
911
be different from the host address. Default is the 3rd IP in the guest network,
912
i.e. x.x.x.3.
913

    
914
@item tftp=@var{dir}
915
When using the user mode network stack, activate a built-in TFTP
916
server. The files in @var{dir} will be exposed as the root of a TFTP server.
917
The TFTP client on the guest must be configured in binary mode (use the command
918
@code{bin} of the Unix TFTP client).
919

    
920
@item bootfile=@var{file}
921
When using the user mode network stack, broadcast @var{file} as the BOOTP
922
filename. In conjunction with @option{tftp}, this can be used to network boot
923
a guest from a local directory.
924

    
925
Example (using pxelinux):
926
@example
927
qemu -hda linux.img -boot n -net user,tftp=/path/to/tftp/files,bootfile=/pxelinux.0
928
@end example
929

    
930
@item smb=@var{dir}[,smbserver=@var{addr}]
931
When using the user mode network stack, activate a built-in SMB
932
server so that Windows OSes can access to the host files in @file{@var{dir}}
933
transparently. The IP address of the SMB server can be set to @var{addr}. By
934
default the 4th IP in the guest network is used, i.e. x.x.x.4.
935

    
936
In the guest Windows OS, the line:
937
@example
938
10.0.2.4 smbserver
939
@end example
940
must be added in the file @file{C:\WINDOWS\LMHOSTS} (for windows 9x/Me)
941
or @file{C:\WINNT\SYSTEM32\DRIVERS\ETC\LMHOSTS} (Windows NT/2000).
942

    
943
Then @file{@var{dir}} can be accessed in @file{\\smbserver\qemu}.
944

    
945
Note that a SAMBA server must be installed on the host OS in
946
@file{/usr/sbin/smbd}. QEMU was tested successfully with smbd versions from
947
Red Hat 9, Fedora Core 3 and OpenSUSE 11.x.
948

    
949
@item hostfwd=[tcp|udp]:[@var{hostaddr}]:@var{hostport}-[@var{guestaddr}]:@var{guestport}
950
Redirect incoming TCP or UDP connections to the host port @var{hostport} to
951
the guest IP address @var{guestaddr} on guest port @var{guestport}. If
952
@var{guestaddr} is not specified, its value is x.x.x.15 (default first address
953
given by the built-in DHCP server). By specifying @var{hostaddr}, the rule can
954
be bound to a specific host interface. If no connection type is set, TCP is
955
used. This option can be given multiple times.
956

    
957
For example, to redirect host X11 connection from screen 1 to guest
958
screen 0, use the following:
959

    
960
@example
961
# on the host
962
qemu -net user,hostfwd=tcp:127.0.0.1:6001-:6000 [...]
963
# this host xterm should open in the guest X11 server
964
xterm -display :1
965
@end example
966

    
967
To redirect telnet connections from host port 5555 to telnet port on
968
the guest, use the following:
969

    
970
@example
971
# on the host
972
qemu -net user,hostfwd=tcp:5555::23 [...]
973
telnet localhost 5555
974
@end example
975

    
976
Then when you use on the host @code{telnet localhost 5555}, you
977
connect to the guest telnet server.
978

    
979
@item guestfwd=[tcp]:@var{server}:@var{port}-@var{dev}
980
Forward guest TCP connections to the IP address @var{server} on port @var{port}
981
to the character device @var{dev}. This option can be given multiple times.
982

    
983
@end table
984

    
985
Note: Legacy stand-alone options -tftp, -bootp, -smb and -redir are still
986
processed and applied to -net user. Mixing them with the new configuration
987
syntax gives undefined results. Their use for new applications is discouraged
988
as they will be removed from future versions.
989

    
990
@item -net tap[,vlan=@var{n}][,name=@var{name}][,fd=@var{h}][,ifname=@var{name}][,script=@var{file}][,downscript=@var{dfile}]
991
Connect the host TAP network interface @var{name} to VLAN @var{n}, use
992
the network script @var{file} to configure it and the network script
993
@var{dfile} to deconfigure it. If @var{name} is not provided, the OS
994
automatically provides one. @option{fd}=@var{h} can be used to specify
995
the handle of an already opened host TAP interface. The default network
996
configure script is @file{/etc/qemu-ifup} and the default network
997
deconfigure script is @file{/etc/qemu-ifdown}. Use @option{script=no}
998
or @option{downscript=no} to disable script execution. Example:
999

    
1000
@example
1001
qemu linux.img -net nic -net tap
1002
@end example
1003

    
1004
More complicated example (two NICs, each one connected to a TAP device)
1005
@example
1006
qemu linux.img -net nic,vlan=0 -net tap,vlan=0,ifname=tap0 \
1007
               -net nic,vlan=1 -net tap,vlan=1,ifname=tap1
1008
@end example
1009

    
1010
@item -net socket[,vlan=@var{n}][,name=@var{name}][,fd=@var{h}][,listen=[@var{host}]:@var{port}][,connect=@var{host}:@var{port}]
1011

    
1012
Connect the VLAN @var{n} to a remote VLAN in another QEMU virtual
1013
machine using a TCP socket connection. If @option{listen} is
1014
specified, QEMU waits for incoming connections on @var{port}
1015
(@var{host} is optional). @option{connect} is used to connect to
1016
another QEMU instance using the @option{listen} option. @option{fd}=@var{h}
1017
specifies an already opened TCP socket.
1018

    
1019
Example:
1020
@example
1021
# launch a first QEMU instance
1022
qemu linux.img -net nic,macaddr=52:54:00:12:34:56 \
1023
               -net socket,listen=:1234
1024
# connect the VLAN 0 of this instance to the VLAN 0
1025
# of the first instance
1026
qemu linux.img -net nic,macaddr=52:54:00:12:34:57 \
1027
               -net socket,connect=127.0.0.1:1234
1028
@end example
1029

    
1030
@item -net socket[,vlan=@var{n}][,name=@var{name}][,fd=@var{h}][,mcast=@var{maddr}:@var{port}]
1031

    
1032
Create a VLAN @var{n} shared with another QEMU virtual
1033
machines using a UDP multicast socket, effectively making a bus for
1034
every QEMU with same multicast address @var{maddr} and @var{port}.
1035
NOTES:
1036
@enumerate
1037
@item
1038
Several QEMU can be running on different hosts and share same bus (assuming
1039
correct multicast setup for these hosts).
1040
@item
1041
mcast support is compatible with User Mode Linux (argument @option{eth@var{N}=mcast}), see
1042
@url{http://user-mode-linux.sf.net}.
1043
@item
1044
Use @option{fd=h} to specify an already opened UDP multicast socket.
1045
@end enumerate
1046

    
1047
Example:
1048
@example
1049
# launch one QEMU instance
1050
qemu linux.img -net nic,macaddr=52:54:00:12:34:56 \
1051
               -net socket,mcast=230.0.0.1:1234
1052
# launch another QEMU instance on same "bus"
1053
qemu linux.img -net nic,macaddr=52:54:00:12:34:57 \
1054
               -net socket,mcast=230.0.0.1:1234
1055
# launch yet another QEMU instance on same "bus"
1056
qemu linux.img -net nic,macaddr=52:54:00:12:34:58 \
1057
               -net socket,mcast=230.0.0.1:1234
1058
@end example
1059

    
1060
Example (User Mode Linux compat.):
1061
@example
1062
# launch QEMU instance (note mcast address selected
1063
# is UML's default)
1064
qemu linux.img -net nic,macaddr=52:54:00:12:34:56 \
1065
               -net socket,mcast=239.192.168.1:1102
1066
# launch UML
1067
/path/to/linux ubd0=/path/to/root_fs eth0=mcast
1068
@end example
1069

    
1070
@item -net vde[,vlan=@var{n}][,name=@var{name}][,sock=@var{socketpath}][,port=@var{n}][,group=@var{groupname}][,mode=@var{octalmode}]
1071
Connect VLAN @var{n} to PORT @var{n} of a vde switch running on host and
1072
listening for incoming connections on @var{socketpath}. Use GROUP @var{groupname}
1073
and MODE @var{octalmode} to change default ownership and permissions for
1074
communication port. This option is available only if QEMU has been compiled
1075
with vde support enabled.
1076

    
1077
Example:
1078
@example
1079
# launch vde switch
1080
vde_switch -F -sock /tmp/myswitch
1081
# launch QEMU instance
1082
qemu linux.img -net nic -net vde,sock=/tmp/myswitch
1083
@end example
1084

    
1085
@item -net dump[,vlan=@var{n}][,file=@var{file}][,len=@var{len}]
1086
Dump network traffic on VLAN @var{n} to file @var{file} (@file{qemu-vlan0.pcap} by default).
1087
At most @var{len} bytes (64k by default) per packet are stored. The file format is
1088
libpcap, so it can be analyzed with tools such as tcpdump or Wireshark.
1089

    
1090
@item -net none
1091
Indicate that no network devices should be configured. It is used to
1092
override the default configuration (@option{-net nic -net user}) which
1093
is activated if no @option{-net} options are provided.
1094

    
1095
@end table
1096
ETEXI
1097

    
1098
DEFHEADING()
1099

    
1100
DEFHEADING(Character device options:)
1101

    
1102
DEF("chardev", HAS_ARG, QEMU_OPTION_chardev,
1103
    "-chardev null,id=id\n"
1104
    "-chardev socket,id=id[,host=host],port=host[,to=to][,ipv4][,ipv6][,nodelay]\n"
1105
    "         [,server][,nowait][,telnet] (tcp)\n"
1106
    "-chardev socket,id=id,path=path[,server][,nowait][,telnet] (unix)\n"
1107
    "-chardev udp,id=id[,host=host],port=port[,localaddr=localaddr]\n"
1108
    "         [,localport=localport][,ipv4][,ipv6]\n"
1109
    "-chardev msmouse,id=id\n"
1110
    "-chardev vc,id=id[[,width=width][,height=height]][[,cols=cols][,rows=rows]]\n"
1111
    "-chardev file,id=id,path=path\n"
1112
    "-chardev pipe,id=id,path=path\n"
1113
#ifdef _WIN32
1114
    "-chardev console,id=id\n"
1115
    "-chardev serial,id=id,path=path\n"
1116
#else
1117
    "-chardev pty,id=id\n"
1118
    "-chardev stdio,id=id\n"
1119
#endif
1120
#ifdef CONFIG_BRLAPI
1121
    "-chardev braille,id=id\n"
1122
#endif
1123
#if defined(__linux__) || defined(__sun__) || defined(__FreeBSD__) \
1124
        || defined(__NetBSD__) || defined(__OpenBSD__) || defined(__DragonFly__)
1125
    "-chardev tty,id=id,path=path\n"
1126
#endif
1127
#if defined(__linux__) || defined(__FreeBSD__) || defined(__DragonFly__)
1128
    "-chardev parport,id=id,path=path\n"
1129
#endif
1130
)
1131

    
1132
STEXI
1133

    
1134
The general form of a character device option is:
1135
@table @option
1136

    
1137
@item -chardev @var{backend} ,id=@var{id} [,@var{options}]
1138

    
1139
Backend is one of:
1140
@option{null},
1141
@option{socket},
1142
@option{udp},
1143
@option{msmouse},
1144
@option{vc},
1145
@option{file},
1146
@option{pipe},
1147
@option{console},
1148
@option{serial},
1149
@option{pty},
1150
@option{stdio},
1151
@option{braille},
1152
@option{tty},
1153
@option{parport}.
1154
The specific backend will determine the applicable options.
1155

    
1156
All devices must have an id, which can be any string up to 127 characters long.
1157
It is used to uniquely identify this device in other command line directives.
1158

    
1159
Options to each backend are described below.
1160

    
1161
@item -chardev null ,id=@var{id}
1162
A void device. This device will not emit any data, and will drop any data it
1163
receives. The null backend does not take any options.
1164

    
1165
@item -chardev socket ,id=@var{id} [@var{TCP options} or @var{unix options}] [,server] [,nowait] [,telnet]
1166

    
1167
Create a two-way stream socket, which can be either a TCP or a unix socket. A
1168
unix socket will be created if @option{path} is specified. Behaviour is
1169
undefined if TCP options are specified for a unix socket.
1170

    
1171
@option{server} specifies that the socket shall be a listening socket.
1172

    
1173
@option{nowait} specifies that QEMU should not block waiting for a client to
1174
connect to a listening socket.
1175

    
1176
@option{telnet} specifies that traffic on the socket should interpret telnet
1177
escape sequences.
1178

    
1179
TCP and unix socket options are given below:
1180

    
1181
@table @option
1182

    
1183
@item TCP options: port=@var{host} [,host=@var{host}] [,to=@var{to}] [,ipv4] [,ipv6] [,nodelay]
1184

    
1185
@option{host} for a listening socket specifies the local address to be bound.
1186
For a connecting socket species the remote host to connect to. @option{host} is
1187
optional for listening sockets. If not specified it defaults to @code{0.0.0.0}.
1188

    
1189
@option{port} for a listening socket specifies the local port to be bound. For a
1190
connecting socket specifies the port on the remote host to connect to.
1191
@option{port} can be given as either a port number or a service name.
1192
@option{port} is required.
1193

    
1194
@option{to} is only relevant to listening sockets. If it is specified, and
1195
@option{port} cannot be bound, QEMU will attempt to bind to subsequent ports up
1196
to and including @option{to} until it succeeds. @option{to} must be specified
1197
as a port number.
1198

    
1199
@option{ipv4} and @option{ipv6} specify that either IPv4 or IPv6 must be used.
1200
If neither is specified the socket may use either protocol.
1201

    
1202
@option{nodelay} disables the Nagle algorithm.
1203

    
1204
@item unix options: path=@var{path}
1205

    
1206
@option{path} specifies the local path of the unix socket. @option{path} is
1207
required.
1208

    
1209
@end table
1210

    
1211
@item -chardev udp ,id=@var{id} [,host=@var{host}] ,port=@var{port} [,localaddr=@var{localaddr}] [,localport=@var{localport}] [,ipv4] [,ipv6]
1212

    
1213
Sends all traffic from the guest to a remote host over UDP.
1214

    
1215
@option{host} specifies the remote host to connect to. If not specified it
1216
defaults to @code{localhost}.
1217

    
1218
@option{port} specifies the port on the remote host to connect to. @option{port}
1219
is required.
1220

    
1221
@option{localaddr} specifies the local address to bind to. If not specified it
1222
defaults to @code{0.0.0.0}.
1223

    
1224
@option{localport} specifies the local port to bind to. If not specified any
1225
available local port will be used.
1226

    
1227
@option{ipv4} and @option{ipv6} specify that either IPv4 or IPv6 must be used.
1228
If neither is specified the device may use either protocol.
1229

    
1230
@item -chardev msmouse ,id=@var{id}
1231

    
1232
Forward QEMU's emulated msmouse events to the guest. @option{msmouse} does not
1233
take any options.
1234

    
1235
@item -chardev vc ,id=@var{id} [[,width=@var{width}] [,height=@var{height}]] [[,cols=@var{cols}] [,rows=@var{rows}]]
1236

    
1237
Connect to a QEMU text console. @option{vc} may optionally be given a specific
1238
size.
1239

    
1240
@option{width} and @option{height} specify the width and height respectively of
1241
the console, in pixels.
1242

    
1243
@option{cols} and @option{rows} specify that the console be sized to fit a text
1244
console with the given dimensions.
1245

    
1246
@item -chardev file ,id=@var{id} ,path=@var{path}
1247

    
1248
Log all traffic received from the guest to a file.
1249

    
1250
@option{path} specifies the path of the file to be opened. This file will be
1251
created if it does not already exist, and overwritten if it does. @option{path}
1252
is required.
1253

    
1254
@item -chardev pipe ,id=@var{id} ,path=@var{path}
1255

    
1256
Create a two-way connection to the guest. The behaviour differs slightly between
1257
Windows hosts and other hosts:
1258

    
1259
On Windows, a single duplex pipe will be created at
1260
@file{\\.pipe\@option{path}}.
1261

    
1262
On other hosts, 2 pipes will be created called @file{@option{path}.in} and
1263
@file{@option{path}.out}. Data written to @file{@option{path}.in} will be
1264
received by the guest. Data written by the guest can be read from
1265
@file{@option{path}.out}. QEMU will not create these fifos, and requires them to
1266
be present.
1267

    
1268
@option{path} forms part of the pipe path as described above. @option{path} is
1269
required.
1270

    
1271
@item -chardev console ,id=@var{id}
1272

    
1273
Send traffic from the guest to QEMU's standard output. @option{console} does not
1274
take any options.
1275

    
1276
@option{console} is only available on Windows hosts.
1277

    
1278
@item -chardev serial ,id=@var{id} ,path=@option{path}
1279

    
1280
Send traffic from the guest to a serial device on the host.
1281

    
1282
@option{serial} is
1283
only available on Windows hosts.
1284

    
1285
@option{path} specifies the name of the serial device to open.
1286

    
1287
@item -chardev pty ,id=@var{id}
1288

    
1289
Create a new pseudo-terminal on the host and connect to it. @option{pty} does
1290
not take any options.
1291

    
1292
@option{pty} is not available on Windows hosts.
1293

    
1294
@item -chardev stdio ,id=@var{id}
1295
Connect to standard input and standard output of the qemu process.
1296
@option{stdio} does not take any options. @option{stdio} is not available on
1297
Windows hosts.
1298

    
1299
@item -chardev braille ,id=@var{id}
1300

    
1301
Connect to a local BrlAPI server. @option{braille} does not take any options.
1302

    
1303
@item -chardev tty ,id=@var{id} ,path=@var{path}
1304

    
1305
Connect to a local tty device.
1306

    
1307
@option{tty} is only available on Linux, Sun, FreeBSD, NetBSD, OpenBSD and
1308
DragonFlyBSD hosts.
1309

    
1310
@option{path} specifies the path to the tty. @option{path} is required.
1311

    
1312
@item -chardev parport ,id=@var{id} ,path=@var{path}
1313

    
1314
@option{parport} is only available on Linux, FreeBSD and DragonFlyBSD hosts.
1315

    
1316
Connect to a local parallel port.
1317

    
1318
@option{path} specifies the path to the parallel port device. @option{path} is
1319
required.
1320

    
1321
@end table
1322
ETEXI
1323

    
1324
DEFHEADING()
1325

    
1326
DEFHEADING(Bluetooth(R) options:)
1327

    
1328
DEF("bt", HAS_ARG, QEMU_OPTION_bt, \
1329
    "-bt hci,null    dumb bluetooth HCI - doesn't respond to commands\n" \
1330
    "-bt hci,host[:id]\n" \
1331
    "                use host's HCI with the given name\n" \
1332
    "-bt hci[,vlan=n]\n" \
1333
    "                emulate a standard HCI in virtual scatternet 'n'\n" \
1334
    "-bt vhci[,vlan=n]\n" \
1335
    "                add host computer to virtual scatternet 'n' using VHCI\n" \
1336
    "-bt device:dev[,vlan=n]\n" \
1337
    "                emulate a bluetooth device 'dev' in scatternet 'n'\n")
1338
STEXI
1339
@table @option
1340

    
1341
@item -bt hci[...]
1342
Defines the function of the corresponding Bluetooth HCI.  -bt options
1343
are matched with the HCIs present in the chosen machine type.  For
1344
example when emulating a machine with only one HCI built into it, only
1345
the first @code{-bt hci[...]} option is valid and defines the HCI's
1346
logic.  The Transport Layer is decided by the machine type.  Currently
1347
the machines @code{n800} and @code{n810} have one HCI and all other
1348
machines have none.
1349

    
1350
@anchor{bt-hcis}
1351
The following three types are recognized:
1352

    
1353
@table @option
1354
@item -bt hci,null
1355
(default) The corresponding Bluetooth HCI assumes no internal logic
1356
and will not respond to any HCI commands or emit events.
1357

    
1358
@item -bt hci,host[:@var{id}]
1359
(@code{bluez} only) The corresponding HCI passes commands / events
1360
to / from the physical HCI identified by the name @var{id} (default:
1361
@code{hci0}) on the computer running QEMU.  Only available on @code{bluez}
1362
capable systems like Linux.
1363

    
1364
@item -bt hci[,vlan=@var{n}]
1365
Add a virtual, standard HCI that will participate in the Bluetooth
1366
scatternet @var{n} (default @code{0}).  Similarly to @option{-net}
1367
VLANs, devices inside a bluetooth network @var{n} can only communicate
1368
with other devices in the same network (scatternet).
1369
@end table
1370

    
1371
@item -bt vhci[,vlan=@var{n}]
1372
(Linux-host only) Create a HCI in scatternet @var{n} (default 0) attached
1373
to the host bluetooth stack instead of to the emulated target.  This
1374
allows the host and target machines to participate in a common scatternet
1375
and communicate.  Requires the Linux @code{vhci} driver installed.  Can
1376
be used as following:
1377

    
1378
@example
1379
qemu [...OPTIONS...] -bt hci,vlan=5 -bt vhci,vlan=5
1380
@end example
1381

    
1382
@item -bt device:@var{dev}[,vlan=@var{n}]
1383
Emulate a bluetooth device @var{dev} and place it in network @var{n}
1384
(default @code{0}).  QEMU can only emulate one type of bluetooth devices
1385
currently:
1386

    
1387
@table @option
1388
@item keyboard
1389
Virtual wireless keyboard implementing the HIDP bluetooth profile.
1390
@end table
1391
@end table
1392
ETEXI
1393

    
1394
DEFHEADING()
1395

    
1396
DEFHEADING(Linux/Multiboot boot specific:)
1397
STEXI
1398

    
1399
When using these options, you can use a given Linux or Multiboot
1400
kernel without installing it in the disk image. It can be useful
1401
for easier testing of various kernels.
1402

    
1403
@table @option
1404
ETEXI
1405

    
1406
DEF("kernel", HAS_ARG, QEMU_OPTION_kernel, \
1407
    "-kernel bzImage use 'bzImage' as kernel image\n")
1408
STEXI
1409
@item -kernel @var{bzImage}
1410
Use @var{bzImage} as kernel image. The kernel can be either a Linux kernel
1411
or in multiboot format.
1412
ETEXI
1413

    
1414
DEF("append", HAS_ARG, QEMU_OPTION_append, \
1415
    "-append cmdline use 'cmdline' as kernel command line\n")
1416
STEXI
1417
@item -append @var{cmdline}
1418
Use @var{cmdline} as kernel command line
1419
ETEXI
1420

    
1421
DEF("initrd", HAS_ARG, QEMU_OPTION_initrd, \
1422
           "-initrd file    use 'file' as initial ram disk\n")
1423
STEXI
1424
@item -initrd @var{file}
1425
Use @var{file} as initial ram disk.
1426

    
1427
@item -initrd "@var{file1} arg=foo,@var{file2}"
1428

    
1429
This syntax is only available with multiboot.
1430

    
1431
Use @var{file1} and @var{file2} as modules and pass arg=foo as parameter to the
1432
first module.
1433
ETEXI
1434

    
1435
STEXI
1436
@end table
1437
ETEXI
1438

    
1439
DEFHEADING()
1440

    
1441
DEFHEADING(Debug/Expert options:)
1442

    
1443
STEXI
1444
@table @option
1445
ETEXI
1446

    
1447
DEF("serial", HAS_ARG, QEMU_OPTION_serial, \
1448
    "-serial dev     redirect the serial port to char device 'dev'\n")
1449
STEXI
1450
@item -serial @var{dev}
1451
Redirect the virtual serial port to host character device
1452
@var{dev}. The default device is @code{vc} in graphical mode and
1453
@code{stdio} in non graphical mode.
1454

    
1455
This option can be used several times to simulate up to 4 serial
1456
ports.
1457

    
1458
Use @code{-serial none} to disable all serial ports.
1459

    
1460
Available character devices are:
1461
@table @option
1462
@item vc[:@var{W}x@var{H}]
1463
Virtual console. Optionally, a width and height can be given in pixel with
1464
@example
1465
vc:800x600
1466
@end example
1467
It is also possible to specify width or height in characters:
1468
@example
1469
vc:80Cx24C
1470
@end example
1471
@item pty
1472
[Linux only] Pseudo TTY (a new PTY is automatically allocated)
1473
@item none
1474
No device is allocated.
1475
@item null
1476
void device
1477
@item /dev/XXX
1478
[Linux only] Use host tty, e.g. @file{/dev/ttyS0}. The host serial port
1479
parameters are set according to the emulated ones.
1480
@item /dev/parport@var{N}
1481
[Linux only, parallel port only] Use host parallel port
1482
@var{N}. Currently SPP and EPP parallel port features can be used.
1483
@item file:@var{filename}
1484
Write output to @var{filename}. No character can be read.
1485
@item stdio
1486
[Unix only] standard input/output
1487
@item pipe:@var{filename}
1488
name pipe @var{filename}
1489
@item COM@var{n}
1490
[Windows only] Use host serial port @var{n}
1491
@item udp:[@var{remote_host}]:@var{remote_port}[@@[@var{src_ip}]:@var{src_port}]
1492
This implements UDP Net Console.
1493
When @var{remote_host} or @var{src_ip} are not specified
1494
they default to @code{0.0.0.0}.
1495
When not using a specified @var{src_port} a random port is automatically chosen.
1496

    
1497
If you just want a simple readonly console you can use @code{netcat} or
1498
@code{nc}, by starting qemu with: @code{-serial udp::4555} and nc as:
1499
@code{nc -u -l -p 4555}. Any time qemu writes something to that port it
1500
will appear in the netconsole session.
1501

    
1502
If you plan to send characters back via netconsole or you want to stop
1503
and start qemu a lot of times, you should have qemu use the same
1504
source port each time by using something like @code{-serial
1505
udp::4555@@:4556} to qemu. Another approach is to use a patched
1506
version of netcat which can listen to a TCP port and send and receive
1507
characters via udp.  If you have a patched version of netcat which
1508
activates telnet remote echo and single char transfer, then you can
1509
use the following options to step up a netcat redirector to allow
1510
telnet on port 5555 to access the qemu port.
1511
@table @code
1512
@item Qemu Options:
1513
-serial udp::4555@@:4556
1514
@item netcat options:
1515
-u -P 4555 -L 0.0.0.0:4556 -t -p 5555 -I -T
1516
@item telnet options:
1517
localhost 5555
1518
@end table
1519

    
1520
@item tcp:[@var{host}]:@var{port}[,@var{server}][,nowait][,nodelay]
1521
The TCP Net Console has two modes of operation.  It can send the serial
1522
I/O to a location or wait for a connection from a location.  By default
1523
the TCP Net Console is sent to @var{host} at the @var{port}.  If you use
1524
the @var{server} option QEMU will wait for a client socket application
1525
to connect to the port before continuing, unless the @code{nowait}
1526
option was specified.  The @code{nodelay} option disables the Nagle buffering
1527
algorithm.  If @var{host} is omitted, 0.0.0.0 is assumed. Only
1528
one TCP connection at a time is accepted. You can use @code{telnet} to
1529
connect to the corresponding character device.
1530
@table @code
1531
@item Example to send tcp console to 192.168.0.2 port 4444
1532
-serial tcp:192.168.0.2:4444
1533
@item Example to listen and wait on port 4444 for connection
1534
-serial tcp::4444,server
1535
@item Example to not wait and listen on ip 192.168.0.100 port 4444
1536
-serial tcp:192.168.0.100:4444,server,nowait
1537
@end table
1538

    
1539
@item telnet:@var{host}:@var{port}[,server][,nowait][,nodelay]
1540
The telnet protocol is used instead of raw tcp sockets.  The options
1541
work the same as if you had specified @code{-serial tcp}.  The
1542
difference is that the port acts like a telnet server or client using
1543
telnet option negotiation.  This will also allow you to send the
1544
MAGIC_SYSRQ sequence if you use a telnet that supports sending the break
1545
sequence.  Typically in unix telnet you do it with Control-] and then
1546
type "send break" followed by pressing the enter key.
1547

    
1548
@item unix:@var{path}[,server][,nowait]
1549
A unix domain socket is used instead of a tcp socket.  The option works the
1550
same as if you had specified @code{-serial tcp} except the unix domain socket
1551
@var{path} is used for connections.
1552

    
1553
@item mon:@var{dev_string}
1554
This is a special option to allow the monitor to be multiplexed onto
1555
another serial port.  The monitor is accessed with key sequence of
1556
@key{Control-a} and then pressing @key{c}. See monitor access
1557
@ref{pcsys_keys} in the -nographic section for more keys.
1558
@var{dev_string} should be any one of the serial devices specified
1559
above.  An example to multiplex the monitor onto a telnet server
1560
listening on port 4444 would be:
1561
@table @code
1562
@item -serial mon:telnet::4444,server,nowait
1563
@end table
1564

    
1565
@item braille
1566
Braille device.  This will use BrlAPI to display the braille output on a real
1567
or fake device.
1568

    
1569
@item msmouse
1570
Three button serial mouse. Configure the guest to use Microsoft protocol.
1571
@end table
1572
ETEXI
1573

    
1574
DEF("parallel", HAS_ARG, QEMU_OPTION_parallel, \
1575
    "-parallel dev   redirect the parallel port to char device 'dev'\n")
1576
STEXI
1577
@item -parallel @var{dev}
1578
Redirect the virtual parallel port to host device @var{dev} (same
1579
devices as the serial port). On Linux hosts, @file{/dev/parportN} can
1580
be used to use hardware devices connected on the corresponding host
1581
parallel port.
1582

    
1583
This option can be used several times to simulate up to 3 parallel
1584
ports.
1585

    
1586
Use @code{-parallel none} to disable all parallel ports.
1587
ETEXI
1588

    
1589
DEF("monitor", HAS_ARG, QEMU_OPTION_monitor, \
1590
    "-monitor dev    redirect the monitor to char device 'dev'\n")
1591
STEXI
1592
@item -monitor @var{dev}
1593
Redirect the monitor to host device @var{dev} (same devices as the
1594
serial port).
1595
The default device is @code{vc} in graphical mode and @code{stdio} in
1596
non graphical mode.
1597
ETEXI
1598
DEF("qmp", HAS_ARG, QEMU_OPTION_qmp, \
1599
    "-qmp dev        like -monitor but opens in 'control' mode\n")
1600

    
1601
DEF("mon", HAS_ARG, QEMU_OPTION_mon, \
1602
    "-mon chardev=[name][,mode=readline|control][,default]\n")
1603
STEXI
1604
@item -mon chardev=[name][,mode=readline|control][,default]
1605
Setup monitor on chardev @var{name}.
1606
ETEXI
1607

    
1608
DEF("debugcon", HAS_ARG, QEMU_OPTION_debugcon, \
1609
    "-debugcon dev   redirect the debug console to char device 'dev'\n")
1610
STEXI
1611
@item -debugcon @var{dev}
1612
Redirect the debug console to host device @var{dev} (same devices as the
1613
serial port).  The debug console is an I/O port which is typically port
1614
0xe9; writing to that I/O port sends output to this device.
1615
The default device is @code{vc} in graphical mode and @code{stdio} in
1616
non graphical mode.
1617
ETEXI
1618

    
1619
DEF("pidfile", HAS_ARG, QEMU_OPTION_pidfile, \
1620
    "-pidfile file   write PID to 'file'\n")
1621
STEXI
1622
@item -pidfile @var{file}
1623
Store the QEMU process PID in @var{file}. It is useful if you launch QEMU
1624
from a script.
1625
ETEXI
1626

    
1627
DEF("singlestep", 0, QEMU_OPTION_singlestep, \
1628
    "-singlestep     always run in singlestep mode\n")
1629
STEXI
1630
@item -singlestep
1631
Run the emulation in single step mode.
1632
ETEXI
1633

    
1634
DEF("S", 0, QEMU_OPTION_S, \
1635
    "-S              freeze CPU at startup (use 'c' to start execution)\n")
1636
STEXI
1637
@item -S
1638
Do not start CPU at startup (you must type 'c' in the monitor).
1639
ETEXI
1640

    
1641
DEF("gdb", HAS_ARG, QEMU_OPTION_gdb, \
1642
    "-gdb dev        wait for gdb connection on 'dev'\n")
1643
STEXI
1644
@item -gdb @var{dev}
1645
Wait for gdb connection on device @var{dev} (@pxref{gdb_usage}). Typical
1646
connections will likely be TCP-based, but also UDP, pseudo TTY, or even
1647
stdio are reasonable use case. The latter is allowing to start qemu from
1648
within gdb and establish the connection via a pipe:
1649
@example
1650
(gdb) target remote | exec qemu -gdb stdio ...
1651
@end example
1652
ETEXI
1653

    
1654
DEF("s", 0, QEMU_OPTION_s, \
1655
    "-s              shorthand for -gdb tcp::%s\n")
1656
STEXI
1657
@item -s
1658
Shorthand for -gdb tcp::1234, i.e. open a gdbserver on TCP port 1234
1659
(@pxref{gdb_usage}).
1660
ETEXI
1661

    
1662
DEF("d", HAS_ARG, QEMU_OPTION_d, \
1663
    "-d item1,...    output log to %s (use -d ? for a list of log items)\n")
1664
STEXI
1665
@item -d
1666
Output log in /tmp/qemu.log
1667
ETEXI
1668

    
1669
DEF("hdachs", HAS_ARG, QEMU_OPTION_hdachs, \
1670
    "-hdachs c,h,s[,t]\n" \
1671
    "                force hard disk 0 physical geometry and the optional BIOS\n" \
1672
    "                translation (t=none or lba) (usually qemu can guess them)\n")
1673
STEXI
1674
@item -hdachs @var{c},@var{h},@var{s},[,@var{t}]
1675
Force hard disk 0 physical geometry (1 <= @var{c} <= 16383, 1 <=
1676
@var{h} <= 16, 1 <= @var{s} <= 63) and optionally force the BIOS
1677
translation mode (@var{t}=none, lba or auto). Usually QEMU can guess
1678
all those parameters. This option is useful for old MS-DOS disk
1679
images.
1680
ETEXI
1681

    
1682
DEF("L", HAS_ARG, QEMU_OPTION_L, \
1683
    "-L path         set the directory for the BIOS, VGA BIOS and keymaps\n")
1684
STEXI
1685
@item -L  @var{path}
1686
Set the directory for the BIOS, VGA BIOS and keymaps.
1687
ETEXI
1688

    
1689
DEF("bios", HAS_ARG, QEMU_OPTION_bios, \
1690
    "-bios file      set the filename for the BIOS\n")
1691
STEXI
1692
@item -bios @var{file}
1693
Set the filename for the BIOS.
1694
ETEXI
1695

    
1696
#ifdef CONFIG_KVM
1697
DEF("enable-kvm", 0, QEMU_OPTION_enable_kvm, \
1698
    "-enable-kvm     enable KVM full virtualization support\n")
1699
#endif
1700
STEXI
1701
@item -enable-kvm
1702
Enable KVM full virtualization support. This option is only available
1703
if KVM support is enabled when compiling.
1704
ETEXI
1705

    
1706
#ifdef CONFIG_XEN
1707
DEF("xen-domid", HAS_ARG, QEMU_OPTION_xen_domid,
1708
    "-xen-domid id   specify xen guest domain id\n")
1709
DEF("xen-create", 0, QEMU_OPTION_xen_create,
1710
    "-xen-create     create domain using xen hypercalls, bypassing xend\n"
1711
    "                warning: should not be used when xend is in use\n")
1712
DEF("xen-attach", 0, QEMU_OPTION_xen_attach,
1713
    "-xen-attach     attach to existing xen domain\n"
1714
    "                xend will use this when starting qemu\n")
1715
#endif
1716

    
1717
DEF("no-reboot", 0, QEMU_OPTION_no_reboot, \
1718
    "-no-reboot      exit instead of rebooting\n")
1719
STEXI
1720
@item -no-reboot
1721
Exit instead of rebooting.
1722
ETEXI
1723

    
1724
DEF("no-shutdown", 0, QEMU_OPTION_no_shutdown, \
1725
    "-no-shutdown    stop before shutdown\n")
1726
STEXI
1727
@item -no-shutdown
1728
Don't exit QEMU on guest shutdown, but instead only stop the emulation.
1729
This allows for instance switching to monitor to commit changes to the
1730
disk image.
1731
ETEXI
1732

    
1733
DEF("loadvm", HAS_ARG, QEMU_OPTION_loadvm, \
1734
    "-loadvm [tag|id]\n" \
1735
    "                start right away with a saved state (loadvm in monitor)\n")
1736
STEXI
1737
@item -loadvm @var{file}
1738
Start right away with a saved state (@code{loadvm} in monitor)
1739
ETEXI
1740

    
1741
#ifndef _WIN32
1742
DEF("daemonize", 0, QEMU_OPTION_daemonize, \
1743
    "-daemonize      daemonize QEMU after initializing\n")
1744
#endif
1745
STEXI
1746
@item -daemonize
1747
Daemonize the QEMU process after initialization.  QEMU will not detach from
1748
standard IO until it is ready to receive connections on any of its devices.
1749
This option is a useful way for external programs to launch QEMU without having
1750
to cope with initialization race conditions.
1751
ETEXI
1752

    
1753
DEF("option-rom", HAS_ARG, QEMU_OPTION_option_rom, \
1754
    "-option-rom rom load a file, rom, into the option ROM space\n")
1755
STEXI
1756
@item -option-rom @var{file}
1757
Load the contents of @var{file} as an option ROM.
1758
This option is useful to load things like EtherBoot.
1759
ETEXI
1760

    
1761
DEF("clock", HAS_ARG, QEMU_OPTION_clock, \
1762
    "-clock          force the use of the given methods for timer alarm.\n" \
1763
    "                To see what timers are available use -clock ?\n")
1764
STEXI
1765
@item -clock @var{method}
1766
Force the use of the given methods for timer alarm. To see what timers
1767
are available use -clock ?.
1768
ETEXI
1769

    
1770
HXCOMM Options deprecated by -rtc
1771
DEF("localtime", 0, QEMU_OPTION_localtime, "")
1772
DEF("startdate", HAS_ARG, QEMU_OPTION_startdate, "")
1773

    
1774
#ifdef TARGET_I386
1775
DEF("rtc", HAS_ARG, QEMU_OPTION_rtc, \
1776
    "-rtc [base=utc|localtime|date][,clock=host|vm][,driftfix=none|slew]\n" \
1777
    "                set the RTC base and clock, enable drift fix for clock ticks\n")
1778
#else
1779
DEF("rtc", HAS_ARG, QEMU_OPTION_rtc, \
1780
    "-rtc [base=utc|localtime|date][,clock=host|vm]\n" \
1781
    "                set the RTC base and clock\n")
1782
#endif
1783

    
1784
STEXI
1785

    
1786
@item -rtc [base=utc|localtime|@var{date}][,clock=host|vm][,driftfix=none|slew]
1787
Specify @option{base} as @code{utc} or @code{localtime} to let the RTC start at the current
1788
UTC or local time, respectively. @code{localtime} is required for correct date in
1789
MS-DOS or Windows. To start at a specific point in time, provide @var{date} in the
1790
format @code{2006-06-17T16:01:21} or @code{2006-06-17}. The default base is UTC.
1791

    
1792
By default the RTC is driven by the host system time. This allows to use the
1793
RTC as accurate reference clock inside the guest, specifically if the host
1794
time is smoothly following an accurate external reference clock, e.g. via NTP.
1795
If you want to isolate the guest time from the host, even prevent it from
1796
progressing during suspension, you can set @option{clock} to @code{vm} instead.
1797

    
1798
Enable @option{driftfix} (i386 targets only) if you experience time drift problems,
1799
specifically with Windows' ACPI HAL. This option will try to figure out how
1800
many timer interrupts were not processed by the Windows guest and will
1801
re-inject them.
1802
ETEXI
1803

    
1804
DEF("icount", HAS_ARG, QEMU_OPTION_icount, \
1805
    "-icount [N|auto]\n" \
1806
    "                enable virtual instruction counter with 2^N clock ticks per\n" \
1807
    "                instruction\n")
1808
STEXI
1809
@item -icount [@var{N}|auto]
1810
Enable virtual instruction counter.  The virtual cpu will execute one
1811
instruction every 2^@var{N} ns of virtual time.  If @code{auto} is specified
1812
then the virtual cpu speed will be automatically adjusted to keep virtual
1813
time within a few seconds of real time.
1814

    
1815
Note that while this option can give deterministic behavior, it does not
1816
provide cycle accurate emulation.  Modern CPUs contain superscalar out of
1817
order cores with complex cache hierarchies.  The number of instructions
1818
executed often has little or no correlation with actual performance.
1819
ETEXI
1820

    
1821
DEF("watchdog", HAS_ARG, QEMU_OPTION_watchdog, \
1822
    "-watchdog i6300esb|ib700\n" \
1823
    "                enable virtual hardware watchdog [default=none]\n")
1824
STEXI
1825
@item -watchdog @var{model}
1826
Create a virtual hardware watchdog device.  Once enabled (by a guest
1827
action), the watchdog must be periodically polled by an agent inside
1828
the guest or else the guest will be restarted.
1829

    
1830
The @var{model} is the model of hardware watchdog to emulate.  Choices
1831
for model are: @code{ib700} (iBASE 700) which is a very simple ISA
1832
watchdog with a single timer, or @code{i6300esb} (Intel 6300ESB I/O
1833
controller hub) which is a much more featureful PCI-based dual-timer
1834
watchdog.  Choose a model for which your guest has drivers.
1835

    
1836
Use @code{-watchdog ?} to list available hardware models.  Only one
1837
watchdog can be enabled for a guest.
1838
ETEXI
1839

    
1840
DEF("watchdog-action", HAS_ARG, QEMU_OPTION_watchdog_action, \
1841
    "-watchdog-action reset|shutdown|poweroff|pause|debug|none\n" \
1842
    "                action when watchdog fires [default=reset]\n")
1843
STEXI
1844
@item -watchdog-action @var{action}
1845

    
1846
The @var{action} controls what QEMU will do when the watchdog timer
1847
expires.
1848
The default is
1849
@code{reset} (forcefully reset the guest).
1850
Other possible actions are:
1851
@code{shutdown} (attempt to gracefully shutdown the guest),
1852
@code{poweroff} (forcefully poweroff the guest),
1853
@code{pause} (pause the guest),
1854
@code{debug} (print a debug message and continue), or
1855
@code{none} (do nothing).
1856

    
1857
Note that the @code{shutdown} action requires that the guest responds
1858
to ACPI signals, which it may not be able to do in the sort of
1859
situations where the watchdog would have expired, and thus
1860
@code{-watchdog-action shutdown} is not recommended for production use.
1861

    
1862
Examples:
1863

    
1864
@table @code
1865
@item -watchdog i6300esb -watchdog-action pause
1866
@item -watchdog ib700
1867
@end table
1868
ETEXI
1869

    
1870
DEF("echr", HAS_ARG, QEMU_OPTION_echr, \
1871
    "-echr chr       set terminal escape character instead of ctrl-a\n")
1872
STEXI
1873

    
1874
@item -echr @var{numeric_ascii_value}
1875
Change the escape character used for switching to the monitor when using
1876
monitor and serial sharing.  The default is @code{0x01} when using the
1877
@code{-nographic} option.  @code{0x01} is equal to pressing
1878
@code{Control-a}.  You can select a different character from the ascii
1879
control keys where 1 through 26 map to Control-a through Control-z.  For
1880
instance you could use the either of the following to change the escape
1881
character to Control-t.
1882
@table @code
1883
@item -echr 0x14
1884
@item -echr 20
1885
@end table
1886
ETEXI
1887

    
1888
DEF("virtioconsole", HAS_ARG, QEMU_OPTION_virtiocon, \
1889
    "-virtioconsole c\n" \
1890
    "                set virtio console\n")
1891
STEXI
1892
@item -virtioconsole @var{c}
1893
Set virtio console.
1894

    
1895
This option is maintained for backward compatibility.
1896

    
1897
Please use @code{-device virtconsole} for the new way of invocation.
1898
ETEXI
1899

    
1900
DEF("show-cursor", 0, QEMU_OPTION_show_cursor, \
1901
    "-show-cursor    show cursor\n")
1902
STEXI
1903
ETEXI
1904

    
1905
DEF("tb-size", HAS_ARG, QEMU_OPTION_tb_size, \
1906
    "-tb-size n      set TB size\n")
1907
STEXI
1908
ETEXI
1909

    
1910
DEF("incoming", HAS_ARG, QEMU_OPTION_incoming, \
1911
    "-incoming p     prepare for incoming migration, listen on port p\n")
1912
STEXI
1913
ETEXI
1914

    
1915
DEF("nodefaults", 0, QEMU_OPTION_nodefaults, \
1916
    "-nodefaults     don't create default devices\n")
1917
STEXI
1918
@item -nodefaults
1919
Don't create default devices.
1920
ETEXI
1921

    
1922
#ifndef _WIN32
1923
DEF("chroot", HAS_ARG, QEMU_OPTION_chroot, \
1924
    "-chroot dir     chroot to dir just before starting the VM\n")
1925
#endif
1926
STEXI
1927
@item -chroot @var{dir}
1928
Immediately before starting guest execution, chroot to the specified
1929
directory.  Especially useful in combination with -runas.
1930
ETEXI
1931

    
1932
#ifndef _WIN32
1933
DEF("runas", HAS_ARG, QEMU_OPTION_runas, \
1934
    "-runas user     change to user id user just before starting the VM\n")
1935
#endif
1936
STEXI
1937
@item -runas @var{user}
1938
Immediately before starting guest execution, drop root privileges, switching
1939
to the specified user.
1940
ETEXI
1941

    
1942
#if defined(TARGET_SPARC) || defined(TARGET_PPC)
1943
DEF("prom-env", HAS_ARG, QEMU_OPTION_prom_env,
1944
    "-prom-env variable=value\n"
1945
    "                set OpenBIOS nvram variables\n")
1946
#endif
1947
#if defined(TARGET_ARM) || defined(TARGET_M68K)
1948
DEF("semihosting", 0, QEMU_OPTION_semihosting,
1949
    "-semihosting    semihosting mode\n")
1950
#endif
1951
#if defined(TARGET_ARM)
1952
DEF("old-param", 0, QEMU_OPTION_old_param,
1953
    "-old-param      old param mode\n")
1954
#endif
1955
DEF("readconfig", HAS_ARG, QEMU_OPTION_readconfig,
1956
    "-readconfig <file>\n")
1957
STEXI
1958
@item -readconfig @var{file}
1959
Read device configuration from @var{file}.
1960
ETEXI
1961
DEF("writeconfig", HAS_ARG, QEMU_OPTION_writeconfig,
1962
    "-writeconfig <file>\n"
1963
    "                read/write config file\n")
1964
STEXI
1965
@item -writeconfig @var{file}
1966
Write device configuration to @var{file}.
1967
ETEXI
1968

    
1969
HXCOMM This is the last statement. Insert new options before this line!
1970
STEXI
1971
@end table
1972
ETEXI