Statistics
| Branch: | Revision:

root / qemu-doc.texi @ 997641a8

History | View | Annotate | Download (98.5 kB)

1
\input texinfo @c -*- texinfo -*-
2
@c %**start of header
3
@setfilename qemu-doc.info
4
@settitle QEMU Emulator User Documentation
5
@exampleindent 0
6
@paragraphindent 0
7
@c %**end of header
8

    
9
@iftex
10
@titlepage
11
@sp 7
12
@center @titlefont{QEMU Emulator}
13
@sp 1
14
@center @titlefont{User Documentation}
15
@sp 3
16
@end titlepage
17
@end iftex
18

    
19
@ifnottex
20
@node Top
21
@top
22

    
23
@menu
24
* Introduction::
25
* Installation::
26
* QEMU PC System emulator::
27
* QEMU System emulator for non PC targets::
28
* QEMU User space emulator::
29
* compilation:: Compilation from the sources
30
* Index::
31
@end menu
32
@end ifnottex
33

    
34
@contents
35

    
36
@node Introduction
37
@chapter Introduction
38

    
39
@menu
40
* intro_features:: Features
41
@end menu
42

    
43
@node intro_features
44
@section Features
45

    
46
QEMU is a FAST! processor emulator using dynamic translation to
47
achieve good emulation speed.
48

    
49
QEMU has two operating modes:
50

    
51
@itemize @minus
52

    
53
@item
54
Full system emulation. In this mode, QEMU emulates a full system (for
55
example a PC), including one or several processors and various
56
peripherals. It can be used to launch different Operating Systems
57
without rebooting the PC or to debug system code.
58

    
59
@item
60
User mode emulation. In this mode, QEMU can launch
61
processes compiled for one CPU on another CPU. It can be used to
62
launch the Wine Windows API emulator (@url{http://www.winehq.org}) or
63
to ease cross-compilation and cross-debugging.
64

    
65
@end itemize
66

    
67
QEMU can run without an host kernel driver and yet gives acceptable
68
performance.
69

    
70
For system emulation, the following hardware targets are supported:
71
@itemize
72
@item PC (x86 or x86_64 processor)
73
@item ISA PC (old style PC without PCI bus)
74
@item PREP (PowerPC processor)
75
@item G3 BW PowerMac (PowerPC processor)
76
@item Mac99 PowerMac (PowerPC processor, in progress)
77
@item Sun4m/Sun4c/Sun4d (32-bit Sparc processor)
78
@item Sun4u/Sun4v (64-bit Sparc processor, in progress)
79
@item Malta board (32-bit and 64-bit MIPS processors)
80
@item MIPS Magnum (64-bit MIPS processor)
81
@item ARM Integrator/CP (ARM)
82
@item ARM Versatile baseboard (ARM)
83
@item ARM RealView Emulation baseboard (ARM)
84
@item Spitz, Akita, Borzoi and Terrier PDAs (PXA270 processor)
85
@item Luminary Micro LM3S811EVB (ARM Cortex-M3)
86
@item Luminary Micro LM3S6965EVB (ARM Cortex-M3)
87
@item Freescale MCF5208EVB (ColdFire V2).
88
@item Arnewsh MCF5206 evaluation board (ColdFire V2).
89
@item Palm Tungsten|E PDA (OMAP310 processor)
90
@item N800 and N810 tablets (OMAP2420 processor)
91
@item MusicPal (MV88W8618 ARM processor)
92
@end itemize
93

    
94
For user emulation, x86, PowerPC, ARM, 32-bit MIPS, Sparc32/64 and ColdFire(m68k) CPUs are supported.
95

    
96
@node Installation
97
@chapter Installation
98

    
99
If you want to compile QEMU yourself, see @ref{compilation}.
100

    
101
@menu
102
* install_linux::   Linux
103
* install_windows:: Windows
104
* install_mac::     Macintosh
105
@end menu
106

    
107
@node install_linux
108
@section Linux
109

    
110
If a precompiled package is available for your distribution - you just
111
have to install it. Otherwise, see @ref{compilation}.
112

    
113
@node install_windows
114
@section Windows
115

    
116
Download the experimental binary installer at
117
@url{http://www.free.oszoo.org/@/download.html}.
118

    
119
@node install_mac
120
@section Mac OS X
121

    
122
Download the experimental binary installer at
123
@url{http://www.free.oszoo.org/@/download.html}.
124

    
125
@node QEMU PC System emulator
126
@chapter QEMU PC System emulator
127

    
128
@menu
129
* pcsys_introduction:: Introduction
130
* pcsys_quickstart::   Quick Start
131
* sec_invocation::     Invocation
132
* pcsys_keys::         Keys
133
* pcsys_monitor::      QEMU Monitor
134
* disk_images::        Disk Images
135
* pcsys_network::      Network emulation
136
* direct_linux_boot::  Direct Linux Boot
137
* pcsys_usb::          USB emulation
138
* vnc_security::       VNC security
139
* gdb_usage::          GDB usage
140
* pcsys_os_specific::  Target OS specific information
141
@end menu
142

    
143
@node pcsys_introduction
144
@section Introduction
145

    
146
@c man begin DESCRIPTION
147

    
148
The QEMU PC System emulator simulates the
149
following peripherals:
150

    
151
@itemize @minus
152
@item
153
i440FX host PCI bridge and PIIX3 PCI to ISA bridge
154
@item
155
Cirrus CLGD 5446 PCI VGA card or dummy VGA card with Bochs VESA
156
extensions (hardware level, including all non standard modes).
157
@item
158
PS/2 mouse and keyboard
159
@item
160
2 PCI IDE interfaces with hard disk and CD-ROM support
161
@item
162
Floppy disk
163
@item
164
PCI/ISA PCI network adapters
165
@item
166
Serial ports
167
@item
168
Creative SoundBlaster 16 sound card
169
@item
170
ENSONIQ AudioPCI ES1370 sound card
171
@item
172
Intel 82801AA AC97 Audio compatible sound card
173
@item
174
Adlib(OPL2) - Yamaha YM3812 compatible chip
175
@item
176
Gravis Ultrasound GF1 sound card
177
@item
178
CS4231A compatible sound card
179
@item
180
PCI UHCI USB controller and a virtual USB hub.
181
@end itemize
182

    
183
SMP is supported with up to 255 CPUs.
184

    
185
Note that adlib, ac97, gus and cs4231a are only available when QEMU
186
was configured with --audio-card-list option containing the name(s) of
187
required card(s).
188

    
189
QEMU uses the PC BIOS from the Bochs project and the Plex86/Bochs LGPL
190
VGA BIOS.
191

    
192
QEMU uses YM3812 emulation by Tatsuyuki Satoh.
193

    
194
QEMU uses GUS emulation(GUSEMU32 @url{http://www.deinmeister.de/gusemu/})
195
by Tibor "TS" Sch?tz.
196

    
197
CS4231A is the chip used in Windows Sound System and GUSMAX products
198

    
199
@c man end
200

    
201
@node pcsys_quickstart
202
@section Quick Start
203

    
204
Download and uncompress the linux image (@file{linux.img}) and type:
205

    
206
@example
207
qemu linux.img
208
@end example
209

    
210
Linux should boot and give you a prompt.
211

    
212
@node sec_invocation
213
@section Invocation
214

    
215
@example
216
@c man begin SYNOPSIS
217
usage: qemu [options] [@var{disk_image}]
218
@c man end
219
@end example
220

    
221
@c man begin OPTIONS
222
@var{disk_image} is a raw hard disk image for IDE hard disk 0.
223

    
224
General options:
225
@table @option
226
@item -M @var{machine}
227
Select the emulated @var{machine} (@code{-M ?} for list)
228

    
229
@item -fda @var{file}
230
@item -fdb @var{file}
231
Use @var{file} as floppy disk 0/1 image (@pxref{disk_images}). You can
232
use the host floppy by using @file{/dev/fd0} as filename (@pxref{host_drives}).
233

    
234
@item -hda @var{file}
235
@item -hdb @var{file}
236
@item -hdc @var{file}
237
@item -hdd @var{file}
238
Use @var{file} as hard disk 0, 1, 2 or 3 image (@pxref{disk_images}).
239

    
240
@item -cdrom @var{file}
241
Use @var{file} as CD-ROM image (you cannot use @option{-hdc} and
242
@option{-cdrom} at the same time). You can use the host CD-ROM by
243
using @file{/dev/cdrom} as filename (@pxref{host_drives}).
244

    
245
@item -drive @var{option}[,@var{option}[,@var{option}[,...]]]
246

    
247
Define a new drive. Valid options are:
248

    
249
@table @code
250
@item file=@var{file}
251
This option defines which disk image (@pxref{disk_images}) to use with
252
this drive. If the filename contains comma, you must double it
253
(for instance, "file=my,,file" to use file "my,file").
254
@item if=@var{interface}
255
This option defines on which type on interface the drive is connected.
256
Available types are: ide, scsi, sd, mtd, floppy, pflash, virtio.
257
@item bus=@var{bus},unit=@var{unit}
258
These options define where is connected the drive by defining the bus number and
259
the unit id.
260
@item index=@var{index}
261
This option defines where is connected the drive by using an index in the list
262
of available connectors of a given interface type.
263
@item media=@var{media}
264
This option defines the type of the media: disk or cdrom.
265
@item cyls=@var{c},heads=@var{h},secs=@var{s}[,trans=@var{t}]
266
These options have the same definition as they have in @option{-hdachs}.
267
@item snapshot=@var{snapshot}
268
@var{snapshot} is "on" or "off" and allows to enable snapshot for given drive (see @option{-snapshot}).
269
@item cache=@var{cache}
270
@var{cache} is "none", "writeback", or "writethrough" and controls how the host cache is used to access block data.
271
@item format=@var{format}
272
Specify which disk @var{format} will be used rather than detecting
273
the format.  Can be used to specifiy format=raw to avoid interpreting
274
an untrusted format header.
275
@end table
276

    
277
By default, writethrough caching is used for all block device.  This means that
278
the host page cache will be used to read and write data but write notification
279
will be sent to the guest only when the data has been reported as written by
280
the storage subsystem.
281

    
282
Writeback caching will report data writes as completed as soon as the data is
283
present in the host page cache.  This is safe as long as you trust your host.
284
If your host crashes or loses power, then the guest may experience data
285
corruption.  When using the @option{-snapshot} option, writeback caching is
286
used by default.
287

    
288
The host page can be avoided entirely with @option{cache=none}.  This will
289
attempt to do disk IO directly to the guests memory.  QEMU may still perform
290
an internal copy of the data.
291

    
292
Some block drivers perform badly with @option{cache=writethrough}, most notably,
293
qcow2.  If performance is more important than correctness,
294
@option{cache=writeback} should be used with qcow2.  By default, if no explicit
295
caching is specified for a qcow2 disk image, @option{cache=writeback} will be
296
used.  For all other disk types, @option{cache=writethrough} is the default.
297

    
298
Instead of @option{-cdrom} you can use:
299
@example
300
qemu -drive file=file,index=2,media=cdrom
301
@end example
302

    
303
Instead of @option{-hda}, @option{-hdb}, @option{-hdc}, @option{-hdd}, you can
304
use:
305
@example
306
qemu -drive file=file,index=0,media=disk
307
qemu -drive file=file,index=1,media=disk
308
qemu -drive file=file,index=2,media=disk
309
qemu -drive file=file,index=3,media=disk
310
@end example
311

    
312
You can connect a CDROM to the slave of ide0:
313
@example
314
qemu -drive file=file,if=ide,index=1,media=cdrom
315
@end example
316

    
317
If you don't specify the "file=" argument, you define an empty drive:
318
@example
319
qemu -drive if=ide,index=1,media=cdrom
320
@end example
321

    
322
You can connect a SCSI disk with unit ID 6 on the bus #0:
323
@example
324
qemu -drive file=file,if=scsi,bus=0,unit=6
325
@end example
326

    
327
Instead of @option{-fda}, @option{-fdb}, you can use:
328
@example
329
qemu -drive file=file,index=0,if=floppy
330
qemu -drive file=file,index=1,if=floppy
331
@end example
332

    
333
By default, @var{interface} is "ide" and @var{index} is automatically
334
incremented:
335
@example
336
qemu -drive file=a -drive file=b"
337
@end example
338
is interpreted like:
339
@example
340
qemu -hda a -hdb b
341
@end example
342

    
343
@item -boot [a|c|d|n]
344
Boot on floppy (a), hard disk (c), CD-ROM (d), or Etherboot (n). Hard disk boot
345
is the default.
346

    
347
@item -snapshot
348
Write to temporary files instead of disk image files. In this case,
349
the raw disk image you use is not written back. You can however force
350
the write back by pressing @key{C-a s} (@pxref{disk_images}).
351

    
352
@item -no-fd-bootchk
353
Disable boot signature checking for floppy disks in Bochs BIOS. It may
354
be needed to boot from old floppy disks.
355

    
356
@item -m @var{megs}
357
Set virtual RAM size to @var{megs} megabytes. Default is 128 MiB.  Optionally,
358
a suffix of ``M'' or ``G'' can be used to signify a value in megabytes or
359
gigabytes respectively.
360

    
361
@item -cpu @var{model}
362
Select CPU model (-cpu ? for list and additional feature selection)
363

    
364
@item -smp @var{n}
365
Simulate an SMP system with @var{n} CPUs. On the PC target, up to 255
366
CPUs are supported. On Sparc32 target, Linux limits the number of usable CPUs
367
to 4.
368

    
369
@item -audio-help
370

    
371
Will show the audio subsystem help: list of drivers, tunable
372
parameters.
373

    
374
@item -soundhw @var{card1}[,@var{card2},...] or -soundhw all
375

    
376
Enable audio and selected sound hardware. Use ? to print all
377
available sound hardware.
378

    
379
@example
380
qemu -soundhw sb16,adlib disk.img
381
qemu -soundhw es1370 disk.img
382
qemu -soundhw ac97 disk.img
383
qemu -soundhw all disk.img
384
qemu -soundhw ?
385
@end example
386

    
387
Note that Linux's i810_audio OSS kernel (for AC97) module might
388
require manually specifying clocking.
389

    
390
@example
391
modprobe i810_audio clocking=48000
392
@end example
393

    
394
@item -localtime
395
Set the real time clock to local time (the default is to UTC
396
time). This option is needed to have correct date in MS-DOS or
397
Windows.
398

    
399
@item -startdate @var{date}
400
Set the initial date of the real time clock. Valid formats for
401
@var{date} are: @code{now} or @code{2006-06-17T16:01:21} or
402
@code{2006-06-17}. The default value is @code{now}.
403

    
404
@item -pidfile @var{file}
405
Store the QEMU process PID in @var{file}. It is useful if you launch QEMU
406
from a script.
407

    
408
@item -daemonize
409
Daemonize the QEMU process after initialization.  QEMU will not detach from
410
standard IO until it is ready to receive connections on any of its devices.
411
This option is a useful way for external programs to launch QEMU without having
412
to cope with initialization race conditions.
413

    
414
@item -win2k-hack
415
Use it when installing Windows 2000 to avoid a disk full bug. After
416
Windows 2000 is installed, you no longer need this option (this option
417
slows down the IDE transfers).
418

    
419
@item -option-rom @var{file}
420
Load the contents of @var{file} as an option ROM.
421
This option is useful to load things like EtherBoot.
422

    
423
@item -name @var{name}
424
Sets the @var{name} of the guest.
425
This name will be displayed in the SDL window caption.
426
The @var{name} will also be used for the VNC server.
427

    
428
@end table
429

    
430
Display options:
431
@table @option
432

    
433
@item -nographic
434

    
435
Normally, QEMU uses SDL to display the VGA output. With this option,
436
you can totally disable graphical output so that QEMU is a simple
437
command line application. The emulated serial port is redirected on
438
the console. Therefore, you can still use QEMU to debug a Linux kernel
439
with a serial console.
440

    
441
@item -curses
442

    
443
Normally, QEMU uses SDL to display the VGA output.  With this option,
444
QEMU can display the VGA output when in text mode using a 
445
curses/ncurses interface.  Nothing is displayed in graphical mode.
446

    
447
@item -no-frame
448

    
449
Do not use decorations for SDL windows and start them using the whole
450
available screen space. This makes the using QEMU in a dedicated desktop
451
workspace more convenient.
452

    
453
@item -no-quit
454

    
455
Disable SDL window close capability.
456

    
457
@item -full-screen
458
Start in full screen.
459

    
460
@item -vnc @var{display}[,@var{option}[,@var{option}[,...]]]
461

    
462
Normally, QEMU uses SDL to display the VGA output.  With this option,
463
you can have QEMU listen on VNC display @var{display} and redirect the VGA
464
display over the VNC session.  It is very useful to enable the usb
465
tablet device when using this option (option @option{-usbdevice
466
tablet}). When using the VNC display, you must use the @option{-k}
467
parameter to set the keyboard layout if you are not using en-us. Valid
468
syntax for the @var{display} is
469

    
470
@table @code
471

    
472
@item @var{host}:@var{d}
473

    
474
TCP connections will only be allowed from @var{host} on display @var{d}.
475
By convention the TCP port is 5900+@var{d}. Optionally, @var{host} can
476
be omitted in which case the server will accept connections from any host.
477

    
478
@item @code{unix}:@var{path}
479

    
480
Connections will be allowed over UNIX domain sockets where @var{path} is the
481
location of a unix socket to listen for connections on.
482

    
483
@item none
484

    
485
VNC is initialized but not started. The monitor @code{change} command
486
can be used to later start the VNC server.
487

    
488
@end table
489

    
490
Following the @var{display} value there may be one or more @var{option} flags
491
separated by commas. Valid options are
492

    
493
@table @code
494

    
495
@item reverse
496

    
497
Connect to a listening VNC client via a ``reverse'' connection. The
498
client is specified by the @var{display}. For reverse network
499
connections (@var{host}:@var{d},@code{reverse}), the @var{d} argument
500
is a TCP port number, not a display number.
501

    
502
@item password
503

    
504
Require that password based authentication is used for client connections.
505
The password must be set separately using the @code{change} command in the
506
@ref{pcsys_monitor}
507

    
508
@item tls
509

    
510
Require that client use TLS when communicating with the VNC server. This
511
uses anonymous TLS credentials so is susceptible to a man-in-the-middle
512
attack. It is recommended that this option be combined with either the
513
@var{x509} or @var{x509verify} options.
514

    
515
@item x509=@var{/path/to/certificate/dir}
516

    
517
Valid if @option{tls} is specified. Require that x509 credentials are used
518
for negotiating the TLS session. The server will send its x509 certificate
519
to the client. It is recommended that a password be set on the VNC server
520
to provide authentication of the client when this is used. The path following
521
this option specifies where the x509 certificates are to be loaded from.
522
See the @ref{vnc_security} section for details on generating certificates.
523

    
524
@item x509verify=@var{/path/to/certificate/dir}
525

    
526
Valid if @option{tls} is specified. Require that x509 credentials are used
527
for negotiating the TLS session. The server will send its x509 certificate
528
to the client, and request that the client send its own x509 certificate.
529
The server will validate the client's certificate against the CA certificate,
530
and reject clients when validation fails. If the certificate authority is
531
trusted, this is a sufficient authentication mechanism. You may still wish
532
to set a password on the VNC server as a second authentication layer. The
533
path following this option specifies where the x509 certificates are to
534
be loaded from. See the @ref{vnc_security} section for details on generating
535
certificates.
536

    
537
@end table
538

    
539
@item -k @var{language}
540

    
541
Use keyboard layout @var{language} (for example @code{fr} for
542
French). This option is only needed where it is not easy to get raw PC
543
keycodes (e.g. on Macs, with some X11 servers or with a VNC
544
display). You don't normally need to use it on PC/Linux or PC/Windows
545
hosts.
546

    
547
The available layouts are:
548
@example
549
ar  de-ch  es  fo     fr-ca  hu  ja  mk     no  pt-br  sv
550
da  en-gb  et  fr     fr-ch  is  lt  nl     pl  ru     th
551
de  en-us  fi  fr-be  hr     it  lv  nl-be  pt  sl     tr
552
@end example
553

    
554
The default is @code{en-us}.
555

    
556
@end table
557

    
558
USB options:
559
@table @option
560

    
561
@item -usb
562
Enable the USB driver (will be the default soon)
563

    
564
@item -usbdevice @var{devname}
565
Add the USB device @var{devname}. @xref{usb_devices}.
566

    
567
@table @code
568

    
569
@item mouse
570
Virtual Mouse. This will override the PS/2 mouse emulation when activated.
571

    
572
@item tablet
573
Pointer device that uses absolute coordinates (like a touchscreen). This
574
means qemu is able to report the mouse position without having to grab the
575
mouse. Also overrides the PS/2 mouse emulation when activated.
576

    
577
@item disk:[format=@var{format}]:file
578
Mass storage device based on file. The optional @var{format} argument
579
will be used rather than detecting the format. Can be used to specifiy
580
format=raw to avoid interpreting an untrusted format header.
581

    
582
@item host:bus.addr
583
Pass through the host device identified by bus.addr (Linux only).
584

    
585
@item host:vendor_id:product_id
586
Pass through the host device identified by vendor_id:product_id (Linux only).
587

    
588
@item serial:[vendorid=@var{vendor_id}][,productid=@var{product_id}]:@var{dev}
589
Serial converter to host character device @var{dev}, see @code{-serial} for the
590
available devices.
591

    
592
@item braille
593
Braille device.  This will use BrlAPI to display the braille output on a real
594
or fake device.
595

    
596
@item net:options
597
Network adapter that supports CDC ethernet and RNDIS protocols.
598

    
599
@end table
600

    
601
@end table
602

    
603
Network options:
604

    
605
@table @option
606

    
607
@item -net nic[,vlan=@var{n}][,macaddr=@var{addr}][,model=@var{type}]
608
Create a new Network Interface Card and connect it to VLAN @var{n} (@var{n}
609
= 0 is the default). The NIC is an ne2k_pci by default on the PC
610
target. Optionally, the MAC address can be changed. If no
611
@option{-net} option is specified, a single NIC is created.
612
Qemu can emulate several different models of network card.
613
Valid values for @var{type} are
614
@code{i82551}, @code{i82557b}, @code{i82559er},
615
@code{ne2k_pci}, @code{ne2k_isa}, @code{pcnet}, @code{rtl8139},
616
@code{e1000}, @code{smc91c111}, @code{lance} and @code{mcf_fec}.
617
Not all devices are supported on all targets.  Use -net nic,model=?
618
for a list of available devices for your target.
619

    
620
@item -net user[,vlan=@var{n}][,hostname=@var{name}]
621
Use the user mode network stack which requires no administrator
622
privilege to run.  @option{hostname=name} can be used to specify the client
623
hostname reported by the builtin DHCP server.
624

    
625
@item -net tap[,vlan=@var{n}][,fd=@var{h}][,ifname=@var{name}][,script=@var{file}][,downscript=@var{dfile}]
626
Connect the host TAP network interface @var{name} to VLAN @var{n}, use
627
the network script @var{file} to configure it and the network script 
628
@var{dfile} to deconfigure it. If @var{name} is not provided, the OS 
629
automatically provides one. @option{fd}=@var{h} can be used to specify
630
the handle of an already opened host TAP interface. The default network 
631
configure script is @file{/etc/qemu-ifup} and the default network 
632
deconfigure script is @file{/etc/qemu-ifdown}. Use @option{script=no} 
633
or @option{downscript=no} to disable script execution. Example:
634

    
635
@example
636
qemu linux.img -net nic -net tap
637
@end example
638

    
639
More complicated example (two NICs, each one connected to a TAP device)
640
@example
641
qemu linux.img -net nic,vlan=0 -net tap,vlan=0,ifname=tap0 \
642
               -net nic,vlan=1 -net tap,vlan=1,ifname=tap1
643
@end example
644

    
645

    
646
@item -net socket[,vlan=@var{n}][,fd=@var{h}][,listen=[@var{host}]:@var{port}][,connect=@var{host}:@var{port}]
647

    
648
Connect the VLAN @var{n} to a remote VLAN in another QEMU virtual
649
machine using a TCP socket connection. If @option{listen} is
650
specified, QEMU waits for incoming connections on @var{port}
651
(@var{host} is optional). @option{connect} is used to connect to
652
another QEMU instance using the @option{listen} option. @option{fd}=@var{h}
653
specifies an already opened TCP socket.
654

    
655
Example:
656
@example
657
# launch a first QEMU instance
658
qemu linux.img -net nic,macaddr=52:54:00:12:34:56 \
659
               -net socket,listen=:1234
660
# connect the VLAN 0 of this instance to the VLAN 0
661
# of the first instance
662
qemu linux.img -net nic,macaddr=52:54:00:12:34:57 \
663
               -net socket,connect=127.0.0.1:1234
664
@end example
665

    
666
@item -net socket[,vlan=@var{n}][,fd=@var{h}][,mcast=@var{maddr}:@var{port}]
667

    
668
Create a VLAN @var{n} shared with another QEMU virtual
669
machines using a UDP multicast socket, effectively making a bus for
670
every QEMU with same multicast address @var{maddr} and @var{port}.
671
NOTES:
672
@enumerate
673
@item
674
Several QEMU can be running on different hosts and share same bus (assuming
675
correct multicast setup for these hosts).
676
@item
677
mcast support is compatible with User Mode Linux (argument @option{eth@var{N}=mcast}), see
678
@url{http://user-mode-linux.sf.net}.
679
@item
680
Use @option{fd=h} to specify an already opened UDP multicast socket.
681
@end enumerate
682

    
683
Example:
684
@example
685
# launch one QEMU instance
686
qemu linux.img -net nic,macaddr=52:54:00:12:34:56 \
687
               -net socket,mcast=230.0.0.1:1234
688
# launch another QEMU instance on same "bus"
689
qemu linux.img -net nic,macaddr=52:54:00:12:34:57 \
690
               -net socket,mcast=230.0.0.1:1234
691
# launch yet another QEMU instance on same "bus"
692
qemu linux.img -net nic,macaddr=52:54:00:12:34:58 \
693
               -net socket,mcast=230.0.0.1:1234
694
@end example
695

    
696
Example (User Mode Linux compat.):
697
@example
698
# launch QEMU instance (note mcast address selected
699
# is UML's default)
700
qemu linux.img -net nic,macaddr=52:54:00:12:34:56 \
701
               -net socket,mcast=239.192.168.1:1102
702
# launch UML
703
/path/to/linux ubd0=/path/to/root_fs eth0=mcast
704
@end example
705

    
706
@item -net vde[,vlan=@var{n}][,sock=@var{socketpath}][,port=@var{n}][,group=@var{groupname}][,mode=@var{octalmode}]
707
Connect VLAN @var{n} to PORT @var{n} of a vde switch running on host and
708
listening for incoming connections on @var{socketpath}. Use GROUP @var{groupname}
709
and MODE @var{octalmode} to change default ownership and permissions for
710
communication port. This option is available only if QEMU has been compiled
711
with vde support enabled.
712

    
713
Example:
714
@example
715
# launch vde switch
716
vde_switch -F -sock /tmp/myswitch
717
# launch QEMU instance
718
qemu linux.img -net nic -net vde,sock=/tmp/myswitch
719
@end example
720

    
721
@item -net none
722
Indicate that no network devices should be configured. It is used to
723
override the default configuration (@option{-net nic -net user}) which
724
is activated if no @option{-net} options are provided.
725

    
726
@item -tftp @var{dir}
727
When using the user mode network stack, activate a built-in TFTP
728
server. The files in @var{dir} will be exposed as the root of a TFTP server.
729
The TFTP client on the guest must be configured in binary mode (use the command
730
@code{bin} of the Unix TFTP client). The host IP address on the guest is as
731
usual 10.0.2.2.
732

    
733
@item -bootp @var{file}
734
When using the user mode network stack, broadcast @var{file} as the BOOTP
735
filename.  In conjunction with @option{-tftp}, this can be used to network boot
736
a guest from a local directory.
737

    
738
Example (using pxelinux):
739
@example
740
qemu -hda linux.img -boot n -tftp /path/to/tftp/files -bootp /pxelinux.0
741
@end example
742

    
743
@item -smb @var{dir}
744
When using the user mode network stack, activate a built-in SMB
745
server so that Windows OSes can access to the host files in @file{@var{dir}}
746
transparently.
747

    
748
In the guest Windows OS, the line:
749
@example
750
10.0.2.4 smbserver
751
@end example
752
must be added in the file @file{C:\WINDOWS\LMHOSTS} (for windows 9x/Me)
753
or @file{C:\WINNT\SYSTEM32\DRIVERS\ETC\LMHOSTS} (Windows NT/2000).
754

    
755
Then @file{@var{dir}} can be accessed in @file{\\smbserver\qemu}.
756

    
757
Note that a SAMBA server must be installed on the host OS in
758
@file{/usr/sbin/smbd}. QEMU was tested successfully with smbd version
759
2.2.7a from the Red Hat 9 and version 3.0.10-1.fc3 from Fedora Core 3.
760

    
761
@item -redir [tcp|udp]:@var{host-port}:[@var{guest-host}]:@var{guest-port}
762

    
763
When using the user mode network stack, redirect incoming TCP or UDP
764
connections to the host port @var{host-port} to the guest
765
@var{guest-host} on guest port @var{guest-port}. If @var{guest-host}
766
is not specified, its value is 10.0.2.15 (default address given by the
767
built-in DHCP server).
768

    
769
For example, to redirect host X11 connection from screen 1 to guest
770
screen 0, use the following:
771

    
772
@example
773
# on the host
774
qemu -redir tcp:6001::6000 [...]
775
# this host xterm should open in the guest X11 server
776
xterm -display :1
777
@end example
778

    
779
To redirect telnet connections from host port 5555 to telnet port on
780
the guest, use the following:
781

    
782
@example
783
# on the host
784
qemu -redir tcp:5555::23 [...]
785
telnet localhost 5555
786
@end example
787

    
788
Then when you use on the host @code{telnet localhost 5555}, you
789
connect to the guest telnet server.
790

    
791
@end table
792

    
793
Bluetooth(R) options:
794
@table @option
795

    
796
@item -bt hci[...]
797
Defines the function of the corresponding Bluetooth HCI.  -bt options
798
are matched with the HCIs present in the chosen machine type.  For
799
example when emulating a machine with only one HCI built into it, only
800
the first @code{-bt hci[...]} option is valid and defines the HCI's
801
logic.  The Transport Layer is decided by the machine type.  Currently
802
the machines @code{n800} and @code{n810} have one HCI and all other
803
machines have none.
804

    
805
@anchor{bt-hcis}
806
The following three types are recognized:
807

    
808
@table @code
809
@item -bt hci,null
810
(default) The corresponding Bluetooth HCI assumes no internal logic
811
and will not respond to any HCI commands or emit events.
812

    
813
@item -bt hci,host[:@var{id}]
814
(@code{bluez} only) The corresponding HCI passes commands / events
815
to / from the physical HCI identified by the name @var{id} (default:
816
@code{hci0}) on the computer running QEMU.  Only available on @code{bluez}
817
capable systems like Linux.
818

    
819
@item -bt hci[,vlan=@var{n}]
820
Add a virtual, standard HCI that will participate in the Bluetooth
821
scatternet @var{n} (default @code{0}).  Similarly to @option{-net}
822
VLANs, devices inside a bluetooth network @var{n} can only communicate
823
with other devices in the same network (scatternet).
824
@end table
825

    
826
@item -bt vhci[,vlan=@var{n}]
827
(Linux-host only) Create a HCI in scatternet @var{n} (default 0) attached
828
to the host bluetooth stack instead of to the emulated target.  This
829
allows the host and target machines to participate in a common scatternet
830
and communicate.  Requires the Linux @code{vhci} driver installed.  Can
831
be used as following:
832

    
833
@example
834
qemu [...OPTIONS...] -bt hci,vlan=5 -bt vhci,vlan=5
835
@end example
836

    
837
@item -bt device:@var{dev}[,vlan=@var{n}]
838
Emulate a bluetooth device @var{dev} and place it in network @var{n}
839
(default @code{0}).  QEMU can only emulate one type of bluetooth devices
840
currently:
841

    
842
@table @code
843
@item keyboard
844
Virtual wireless keyboard implementing the HIDP bluetooth profile.
845
@end table
846

    
847
@end table
848

    
849
Linux boot specific: When using these options, you can use a given
850
Linux kernel without installing it in the disk image. It can be useful
851
for easier testing of various kernels.
852

    
853
@table @option
854

    
855
@item -kernel @var{bzImage}
856
Use @var{bzImage} as kernel image.
857

    
858
@item -append @var{cmdline}
859
Use @var{cmdline} as kernel command line
860

    
861
@item -initrd @var{file}
862
Use @var{file} as initial ram disk.
863

    
864
@end table
865

    
866
Debug/Expert options:
867
@table @option
868

    
869
@item -serial @var{dev}
870
Redirect the virtual serial port to host character device
871
@var{dev}. The default device is @code{vc} in graphical mode and
872
@code{stdio} in non graphical mode.
873

    
874
This option can be used several times to simulate up to 4 serials
875
ports.
876

    
877
Use @code{-serial none} to disable all serial ports.
878

    
879
Available character devices are:
880
@table @code
881
@item vc[:WxH]
882
Virtual console. Optionally, a width and height can be given in pixel with
883
@example
884
vc:800x600
885
@end example
886
It is also possible to specify width or height in characters:
887
@example
888
vc:80Cx24C
889
@end example
890
@item pty
891
[Linux only] Pseudo TTY (a new PTY is automatically allocated)
892
@item none
893
No device is allocated.
894
@item null
895
void device
896
@item /dev/XXX
897
[Linux only] Use host tty, e.g. @file{/dev/ttyS0}. The host serial port
898
parameters are set according to the emulated ones.
899
@item /dev/parport@var{N}
900
[Linux only, parallel port only] Use host parallel port
901
@var{N}. Currently SPP and EPP parallel port features can be used.
902
@item file:@var{filename}
903
Write output to @var{filename}. No character can be read.
904
@item stdio
905
[Unix only] standard input/output
906
@item pipe:@var{filename}
907
name pipe @var{filename}
908
@item COM@var{n}
909
[Windows only] Use host serial port @var{n}
910
@item udp:[@var{remote_host}]:@var{remote_port}[@@[@var{src_ip}]:@var{src_port}]
911
This implements UDP Net Console.
912
When @var{remote_host} or @var{src_ip} are not specified
913
they default to @code{0.0.0.0}.
914
When not using a specified @var{src_port} a random port is automatically chosen.
915

    
916
If you just want a simple readonly console you can use @code{netcat} or
917
@code{nc}, by starting qemu with: @code{-serial udp::4555} and nc as:
918
@code{nc -u -l -p 4555}. Any time qemu writes something to that port it
919
will appear in the netconsole session.
920

    
921
If you plan to send characters back via netconsole or you want to stop
922
and start qemu a lot of times, you should have qemu use the same
923
source port each time by using something like @code{-serial
924
udp::4555@@:4556} to qemu. Another approach is to use a patched
925
version of netcat which can listen to a TCP port and send and receive
926
characters via udp.  If you have a patched version of netcat which
927
activates telnet remote echo and single char transfer, then you can
928
use the following options to step up a netcat redirector to allow
929
telnet on port 5555 to access the qemu port.
930
@table @code
931
@item Qemu Options:
932
-serial udp::4555@@:4556
933
@item netcat options:
934
-u -P 4555 -L 0.0.0.0:4556 -t -p 5555 -I -T
935
@item telnet options:
936
localhost 5555
937
@end table
938

    
939

    
940
@item tcp:[@var{host}]:@var{port}[,@var{server}][,nowait][,nodelay]
941
The TCP Net Console has two modes of operation.  It can send the serial
942
I/O to a location or wait for a connection from a location.  By default
943
the TCP Net Console is sent to @var{host} at the @var{port}.  If you use
944
the @var{server} option QEMU will wait for a client socket application
945
to connect to the port before continuing, unless the @code{nowait}
946
option was specified.  The @code{nodelay} option disables the Nagle buffering
947
algorithm.  If @var{host} is omitted, 0.0.0.0 is assumed. Only
948
one TCP connection at a time is accepted. You can use @code{telnet} to
949
connect to the corresponding character device.
950
@table @code
951
@item Example to send tcp console to 192.168.0.2 port 4444
952
-serial tcp:192.168.0.2:4444
953
@item Example to listen and wait on port 4444 for connection
954
-serial tcp::4444,server
955
@item Example to not wait and listen on ip 192.168.0.100 port 4444
956
-serial tcp:192.168.0.100:4444,server,nowait
957
@end table
958

    
959
@item telnet:@var{host}:@var{port}[,server][,nowait][,nodelay]
960
The telnet protocol is used instead of raw tcp sockets.  The options
961
work the same as if you had specified @code{-serial tcp}.  The
962
difference is that the port acts like a telnet server or client using
963
telnet option negotiation.  This will also allow you to send the
964
MAGIC_SYSRQ sequence if you use a telnet that supports sending the break
965
sequence.  Typically in unix telnet you do it with Control-] and then
966
type "send break" followed by pressing the enter key.
967

    
968
@item unix:@var{path}[,server][,nowait]
969
A unix domain socket is used instead of a tcp socket.  The option works the
970
same as if you had specified @code{-serial tcp} except the unix domain socket
971
@var{path} is used for connections.
972

    
973
@item mon:@var{dev_string}
974
This is a special option to allow the monitor to be multiplexed onto
975
another serial port.  The monitor is accessed with key sequence of
976
@key{Control-a} and then pressing @key{c}. See monitor access
977
@ref{pcsys_keys} in the -nographic section for more keys.
978
@var{dev_string} should be any one of the serial devices specified
979
above.  An example to multiplex the monitor onto a telnet server
980
listening on port 4444 would be:
981
@table @code
982
@item -serial mon:telnet::4444,server,nowait
983
@end table
984

    
985
@item braille
986
Braille device.  This will use BrlAPI to display the braille output on a real
987
or fake device.
988

    
989
@end table
990

    
991
@item -parallel @var{dev}
992
Redirect the virtual parallel port to host device @var{dev} (same
993
devices as the serial port). On Linux hosts, @file{/dev/parportN} can
994
be used to use hardware devices connected on the corresponding host
995
parallel port.
996

    
997
This option can be used several times to simulate up to 3 parallel
998
ports.
999

    
1000
Use @code{-parallel none} to disable all parallel ports.
1001

    
1002
@item -monitor @var{dev}
1003
Redirect the monitor to host device @var{dev} (same devices as the
1004
serial port).
1005
The default device is @code{vc} in graphical mode and @code{stdio} in
1006
non graphical mode.
1007

    
1008
@item -echr numeric_ascii_value
1009
Change the escape character used for switching to the monitor when using
1010
monitor and serial sharing.  The default is @code{0x01} when using the
1011
@code{-nographic} option.  @code{0x01} is equal to pressing
1012
@code{Control-a}.  You can select a different character from the ascii
1013
control keys where 1 through 26 map to Control-a through Control-z.  For
1014
instance you could use the either of the following to change the escape
1015
character to Control-t.
1016
@table @code
1017
@item -echr 0x14
1018
@item -echr 20
1019
@end table
1020

    
1021
@item -s
1022
Wait gdb connection to port 1234 (@pxref{gdb_usage}).
1023
@item -p @var{port}
1024
Change gdb connection port.  @var{port} can be either a decimal number
1025
to specify a TCP port, or a host device (same devices as the serial port).
1026
@item -S
1027
Do not start CPU at startup (you must type 'c' in the monitor).
1028
@item -d
1029
Output log in /tmp/qemu.log
1030
@item -hdachs @var{c},@var{h},@var{s},[,@var{t}]
1031
Force hard disk 0 physical geometry (1 <= @var{c} <= 16383, 1 <=
1032
@var{h} <= 16, 1 <= @var{s} <= 63) and optionally force the BIOS
1033
translation mode (@var{t}=none, lba or auto). Usually QEMU can guess
1034
all those parameters. This option is useful for old MS-DOS disk
1035
images.
1036

    
1037
@item -L path
1038
Set the directory for the BIOS, VGA BIOS and keymaps.
1039

    
1040
@item -vga @var{type}
1041
Select type of VGA card to emulate. Valid values for @var{type} are
1042
@table @code
1043
@item cirrus
1044
Cirrus Logic GD5446 Video card. All Windows versions starting from
1045
Windows 95 should recognize and use this graphic card. For optimal
1046
performances, use 16 bit color depth in the guest and the host OS.
1047
(This one is the default)
1048
@item std
1049
Standard VGA card with Bochs VBE extensions.  If your guest OS
1050
supports the VESA 2.0 VBE extensions (e.g. Windows XP) and if you want
1051
to use high resolution modes (>= 1280x1024x16) then you should use
1052
this option.
1053
@item vmware
1054
VMWare SVGA-II compatible adapter. Use it if you have sufficiently
1055
recent XFree86/XOrg server or Windows guest with a driver for this
1056
card.
1057
@end table
1058

    
1059
@item -no-acpi
1060
Disable ACPI (Advanced Configuration and Power Interface) support. Use
1061
it if your guest OS complains about ACPI problems (PC target machine
1062
only).
1063

    
1064
@item -no-reboot
1065
Exit instead of rebooting.
1066

    
1067
@item -no-shutdown
1068
Don't exit QEMU on guest shutdown, but instead only stop the emulation.
1069
This allows for instance switching to monitor to commit changes to the
1070
disk image.
1071

    
1072
@item -loadvm file
1073
Start right away with a saved state (@code{loadvm} in monitor)
1074

    
1075
@item -semihosting
1076
Enable semihosting syscall emulation (ARM and M68K target machines only).
1077

    
1078
On ARM this implements the "Angel" interface.
1079
On M68K this implements the "ColdFire GDB" interface used by libgloss.
1080

    
1081
Note that this allows guest direct access to the host filesystem,
1082
so should only be used with trusted guest OS.
1083

    
1084
@item -icount [N|auto]
1085
Enable virtual instruction counter.  The virtual cpu will execute one
1086
instruction every 2^N ns of virtual time.  If @code{auto} is specified
1087
then the virtual cpu speed will be automatically adjusted to keep virtual
1088
time within a few seconds of real time.
1089

    
1090
Note that while this option can give deterministic behavior, it does not
1091
provide cycle accurate emulation.  Modern CPUs contain superscalar out of
1092
order cores with complex cache hierarchies.  The number of instructions
1093
executed often has little or no correlation with actual performance.
1094
@end table
1095

    
1096
@c man end
1097

    
1098
@node pcsys_keys
1099
@section Keys
1100

    
1101
@c man begin OPTIONS
1102

    
1103
During the graphical emulation, you can use the following keys:
1104
@table @key
1105
@item Ctrl-Alt-f
1106
Toggle full screen
1107

    
1108
@item Ctrl-Alt-n
1109
Switch to virtual console 'n'. Standard console mappings are:
1110
@table @emph
1111
@item 1
1112
Target system display
1113
@item 2
1114
Monitor
1115
@item 3
1116
Serial port
1117
@end table
1118

    
1119
@item Ctrl-Alt
1120
Toggle mouse and keyboard grab.
1121
@end table
1122

    
1123
In the virtual consoles, you can use @key{Ctrl-Up}, @key{Ctrl-Down},
1124
@key{Ctrl-PageUp} and @key{Ctrl-PageDown} to move in the back log.
1125

    
1126
During emulation, if you are using the @option{-nographic} option, use
1127
@key{Ctrl-a h} to get terminal commands:
1128

    
1129
@table @key
1130
@item Ctrl-a h
1131
Print this help
1132
@item Ctrl-a x
1133
Exit emulator
1134
@item Ctrl-a s
1135
Save disk data back to file (if -snapshot)
1136
@item Ctrl-a t
1137
toggle console timestamps
1138
@item Ctrl-a b
1139
Send break (magic sysrq in Linux)
1140
@item Ctrl-a c
1141
Switch between console and monitor
1142
@item Ctrl-a Ctrl-a
1143
Send Ctrl-a
1144
@end table
1145
@c man end
1146

    
1147
@ignore
1148

    
1149
@c man begin SEEALSO
1150
The HTML documentation of QEMU for more precise information and Linux
1151
user mode emulator invocation.
1152
@c man end
1153

    
1154
@c man begin AUTHOR
1155
Fabrice Bellard
1156
@c man end
1157

    
1158
@end ignore
1159

    
1160
@node pcsys_monitor
1161
@section QEMU Monitor
1162

    
1163
The QEMU monitor is used to give complex commands to the QEMU
1164
emulator. You can use it to:
1165

    
1166
@itemize @minus
1167

    
1168
@item
1169
Remove or insert removable media images
1170
(such as CD-ROM or floppies).
1171

    
1172
@item
1173
Freeze/unfreeze the Virtual Machine (VM) and save or restore its state
1174
from a disk file.
1175

    
1176
@item Inspect the VM state without an external debugger.
1177

    
1178
@end itemize
1179

    
1180
@subsection Commands
1181

    
1182
The following commands are available:
1183

    
1184
@table @option
1185

    
1186
@item help or ? [@var{cmd}]
1187
Show the help for all commands or just for command @var{cmd}.
1188

    
1189
@item commit
1190
Commit changes to the disk images (if -snapshot is used).
1191

    
1192
@item info @var{subcommand}
1193
Show various information about the system state.
1194

    
1195
@table @option
1196
@item info network
1197
show the various VLANs and the associated devices
1198
@item info block
1199
show the block devices
1200
@item info registers
1201
show the cpu registers
1202
@item info history
1203
show the command line history
1204
@item info pci
1205
show emulated PCI device
1206
@item info usb
1207
show USB devices plugged on the virtual USB hub
1208
@item info usbhost
1209
show all USB host devices
1210
@item info capture
1211
show information about active capturing
1212
@item info snapshots
1213
show list of VM snapshots
1214
@item info mice
1215
show which guest mouse is receiving events
1216
@end table
1217

    
1218
@item q or quit
1219
Quit the emulator.
1220

    
1221
@item eject [-f] @var{device}
1222
Eject a removable medium (use -f to force it).
1223

    
1224
@item change @var{device} @var{setting}
1225

    
1226
Change the configuration of a device.
1227

    
1228
@table @option
1229
@item change @var{diskdevice} @var{filename}
1230
Change the medium for a removable disk device to point to @var{filename}. eg
1231

    
1232
@example
1233
(qemu) change ide1-cd0 /path/to/some.iso
1234
@end example
1235

    
1236
@item change vnc @var{display},@var{options}
1237
Change the configuration of the VNC server. The valid syntax for @var{display}
1238
and @var{options} are described at @ref{sec_invocation}. eg
1239

    
1240
@example
1241
(qemu) change vnc localhost:1
1242
@end example
1243

    
1244
@item change vnc password [@var{password}]
1245

    
1246
Change the password associated with the VNC server. If the new password is not
1247
supplied, the monitor will prompt for it to be entered. VNC passwords are only
1248
significant up to 8 letters. eg
1249

    
1250
@example
1251
(qemu) change vnc password
1252
Password: ********
1253
@end example
1254

    
1255
@end table
1256

    
1257
@item screendump @var{filename}
1258
Save screen into PPM image @var{filename}.
1259

    
1260
@item mouse_move @var{dx} @var{dy} [@var{dz}]
1261
Move the active mouse to the specified coordinates @var{dx} @var{dy}
1262
with optional scroll axis @var{dz}.
1263

    
1264
@item mouse_button @var{val}
1265
Change the active mouse button state @var{val} (1=L, 2=M, 4=R).
1266

    
1267
@item mouse_set @var{index}
1268
Set which mouse device receives events at given @var{index}, index
1269
can be obtained with
1270
@example
1271
info mice
1272
@end example
1273

    
1274
@item wavcapture @var{filename} [@var{frequency} [@var{bits} [@var{channels}]]]
1275
Capture audio into @var{filename}. Using sample rate @var{frequency}
1276
bits per sample @var{bits} and number of channels @var{channels}.
1277

    
1278
Defaults:
1279
@itemize @minus
1280
@item Sample rate = 44100 Hz - CD quality
1281
@item Bits = 16
1282
@item Number of channels = 2 - Stereo
1283
@end itemize
1284

    
1285
@item stopcapture @var{index}
1286
Stop capture with a given @var{index}, index can be obtained with
1287
@example
1288
info capture
1289
@end example
1290

    
1291
@item log @var{item1}[,...]
1292
Activate logging of the specified items to @file{/tmp/qemu.log}.
1293

    
1294
@item savevm [@var{tag}|@var{id}]
1295
Create a snapshot of the whole virtual machine. If @var{tag} is
1296
provided, it is used as human readable identifier. If there is already
1297
a snapshot with the same tag or ID, it is replaced. More info at
1298
@ref{vm_snapshots}.
1299

    
1300
@item loadvm @var{tag}|@var{id}
1301
Set the whole virtual machine to the snapshot identified by the tag
1302
@var{tag} or the unique snapshot ID @var{id}.
1303

    
1304
@item delvm @var{tag}|@var{id}
1305
Delete the snapshot identified by @var{tag} or @var{id}.
1306

    
1307
@item stop
1308
Stop emulation.
1309

    
1310
@item c or cont
1311
Resume emulation.
1312

    
1313
@item gdbserver [@var{port}]
1314
Start gdbserver session (default @var{port}=1234)
1315

    
1316
@item x/fmt @var{addr}
1317
Virtual memory dump starting at @var{addr}.
1318

    
1319
@item xp /@var{fmt} @var{addr}
1320
Physical memory dump starting at @var{addr}.
1321

    
1322
@var{fmt} is a format which tells the command how to format the
1323
data. Its syntax is: @option{/@{count@}@{format@}@{size@}}
1324

    
1325
@table @var
1326
@item count
1327
is the number of items to be dumped.
1328

    
1329
@item format
1330
can be x (hex), d (signed decimal), u (unsigned decimal), o (octal),
1331
c (char) or i (asm instruction).
1332

    
1333
@item size
1334
can be b (8 bits), h (16 bits), w (32 bits) or g (64 bits). On x86,
1335
@code{h} or @code{w} can be specified with the @code{i} format to
1336
respectively select 16 or 32 bit code instruction size.
1337

    
1338
@end table
1339

    
1340
Examples:
1341
@itemize
1342
@item
1343
Dump 10 instructions at the current instruction pointer:
1344
@example
1345
(qemu) x/10i $eip
1346
0x90107063:  ret
1347
0x90107064:  sti
1348
0x90107065:  lea    0x0(%esi,1),%esi
1349
0x90107069:  lea    0x0(%edi,1),%edi
1350
0x90107070:  ret
1351
0x90107071:  jmp    0x90107080
1352
0x90107073:  nop
1353
0x90107074:  nop
1354
0x90107075:  nop
1355
0x90107076:  nop
1356
@end example
1357

    
1358
@item
1359
Dump 80 16 bit values at the start of the video memory.
1360
@smallexample
1361
(qemu) xp/80hx 0xb8000
1362
0x000b8000: 0x0b50 0x0b6c 0x0b65 0x0b78 0x0b38 0x0b36 0x0b2f 0x0b42
1363
0x000b8010: 0x0b6f 0x0b63 0x0b68 0x0b73 0x0b20 0x0b56 0x0b47 0x0b41
1364
0x000b8020: 0x0b42 0x0b69 0x0b6f 0x0b73 0x0b20 0x0b63 0x0b75 0x0b72
1365
0x000b8030: 0x0b72 0x0b65 0x0b6e 0x0b74 0x0b2d 0x0b63 0x0b76 0x0b73
1366
0x000b8040: 0x0b20 0x0b30 0x0b35 0x0b20 0x0b4e 0x0b6f 0x0b76 0x0b20
1367
0x000b8050: 0x0b32 0x0b30 0x0b30 0x0b33 0x0720 0x0720 0x0720 0x0720
1368
0x000b8060: 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720
1369
0x000b8070: 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720
1370
0x000b8080: 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720
1371
0x000b8090: 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720
1372
@end smallexample
1373
@end itemize
1374

    
1375
@item p or print/@var{fmt} @var{expr}
1376

    
1377
Print expression value. Only the @var{format} part of @var{fmt} is
1378
used.
1379

    
1380
@item sendkey @var{keys}
1381

    
1382
Send @var{keys} to the emulator. @var{keys} could be the name of the
1383
key or @code{#} followed by the raw value in either decimal or hexadecimal
1384
format. Use @code{-} to press several keys simultaneously. Example:
1385
@example
1386
sendkey ctrl-alt-f1
1387
@end example
1388

    
1389
This command is useful to send keys that your graphical user interface
1390
intercepts at low level, such as @code{ctrl-alt-f1} in X Window.
1391

    
1392
@item system_reset
1393

    
1394
Reset the system.
1395

    
1396
@item boot_set @var{bootdevicelist}
1397

    
1398
Define new values for the boot device list. Those values will override
1399
the values specified on the command line through the @code{-boot} option.
1400

    
1401
The values that can be specified here depend on the machine type, but are
1402
the same that can be specified in the @code{-boot} command line option.
1403

    
1404
@item usb_add @var{devname}
1405

    
1406
Add the USB device @var{devname}.  For details of available devices see
1407
@ref{usb_devices}
1408

    
1409
@item usb_del @var{devname}
1410

    
1411
Remove the USB device @var{devname} from the QEMU virtual USB
1412
hub. @var{devname} has the syntax @code{bus.addr}. Use the monitor
1413
command @code{info usb} to see the devices you can remove.
1414

    
1415
@end table
1416

    
1417
@subsection Integer expressions
1418

    
1419
The monitor understands integers expressions for every integer
1420
argument. You can use register names to get the value of specifics
1421
CPU registers by prefixing them with @emph{$}.
1422

    
1423
@node disk_images
1424
@section Disk Images
1425

    
1426
Since version 0.6.1, QEMU supports many disk image formats, including
1427
growable disk images (their size increase as non empty sectors are
1428
written), compressed and encrypted disk images. Version 0.8.3 added
1429
the new qcow2 disk image format which is essential to support VM
1430
snapshots.
1431

    
1432
@menu
1433
* disk_images_quickstart::    Quick start for disk image creation
1434
* disk_images_snapshot_mode:: Snapshot mode
1435
* vm_snapshots::              VM snapshots
1436
* qemu_img_invocation::       qemu-img Invocation
1437
* qemu_nbd_invocation::       qemu-nbd Invocation
1438
* host_drives::               Using host drives
1439
* disk_images_fat_images::    Virtual FAT disk images
1440
* disk_images_nbd::           NBD access
1441
@end menu
1442

    
1443
@node disk_images_quickstart
1444
@subsection Quick start for disk image creation
1445

    
1446
You can create a disk image with the command:
1447
@example
1448
qemu-img create myimage.img mysize
1449
@end example
1450
where @var{myimage.img} is the disk image filename and @var{mysize} is its
1451
size in kilobytes. You can add an @code{M} suffix to give the size in
1452
megabytes and a @code{G} suffix for gigabytes.
1453

    
1454
See @ref{qemu_img_invocation} for more information.
1455

    
1456
@node disk_images_snapshot_mode
1457
@subsection Snapshot mode
1458

    
1459
If you use the option @option{-snapshot}, all disk images are
1460
considered as read only. When sectors in written, they are written in
1461
a temporary file created in @file{/tmp}. You can however force the
1462
write back to the raw disk images by using the @code{commit} monitor
1463
command (or @key{C-a s} in the serial console).
1464

    
1465
@node vm_snapshots
1466
@subsection VM snapshots
1467

    
1468
VM snapshots are snapshots of the complete virtual machine including
1469
CPU state, RAM, device state and the content of all the writable
1470
disks. In order to use VM snapshots, you must have at least one non
1471
removable and writable block device using the @code{qcow2} disk image
1472
format. Normally this device is the first virtual hard drive.
1473

    
1474
Use the monitor command @code{savevm} to create a new VM snapshot or
1475
replace an existing one. A human readable name can be assigned to each
1476
snapshot in addition to its numerical ID.
1477

    
1478
Use @code{loadvm} to restore a VM snapshot and @code{delvm} to remove
1479
a VM snapshot. @code{info snapshots} lists the available snapshots
1480
with their associated information:
1481

    
1482
@example
1483
(qemu) info snapshots
1484
Snapshot devices: hda
1485
Snapshot list (from hda):
1486
ID        TAG                 VM SIZE                DATE       VM CLOCK
1487
1         start                   41M 2006-08-06 12:38:02   00:00:14.954
1488
2                                 40M 2006-08-06 12:43:29   00:00:18.633
1489
3         msys                    40M 2006-08-06 12:44:04   00:00:23.514
1490
@end example
1491

    
1492
A VM snapshot is made of a VM state info (its size is shown in
1493
@code{info snapshots}) and a snapshot of every writable disk image.
1494
The VM state info is stored in the first @code{qcow2} non removable
1495
and writable block device. The disk image snapshots are stored in
1496
every disk image. The size of a snapshot in a disk image is difficult
1497
to evaluate and is not shown by @code{info snapshots} because the
1498
associated disk sectors are shared among all the snapshots to save
1499
disk space (otherwise each snapshot would need a full copy of all the
1500
disk images).
1501

    
1502
When using the (unrelated) @code{-snapshot} option
1503
(@ref{disk_images_snapshot_mode}), you can always make VM snapshots,
1504
but they are deleted as soon as you exit QEMU.
1505

    
1506
VM snapshots currently have the following known limitations:
1507
@itemize
1508
@item
1509
They cannot cope with removable devices if they are removed or
1510
inserted after a snapshot is done.
1511
@item
1512
A few device drivers still have incomplete snapshot support so their
1513
state is not saved or restored properly (in particular USB).
1514
@end itemize
1515

    
1516
@node qemu_img_invocation
1517
@subsection @code{qemu-img} Invocation
1518

    
1519
@include qemu-img.texi
1520

    
1521
@node qemu_nbd_invocation
1522
@subsection @code{qemu-nbd} Invocation
1523

    
1524
@include qemu-nbd.texi
1525

    
1526
@node host_drives
1527
@subsection Using host drives
1528

    
1529
In addition to disk image files, QEMU can directly access host
1530
devices. We describe here the usage for QEMU version >= 0.8.3.
1531

    
1532
@subsubsection Linux
1533

    
1534
On Linux, you can directly use the host device filename instead of a
1535
disk image filename provided you have enough privileges to access
1536
it. For example, use @file{/dev/cdrom} to access to the CDROM or
1537
@file{/dev/fd0} for the floppy.
1538

    
1539
@table @code
1540
@item CD
1541
You can specify a CDROM device even if no CDROM is loaded. QEMU has
1542
specific code to detect CDROM insertion or removal. CDROM ejection by
1543
the guest OS is supported. Currently only data CDs are supported.
1544
@item Floppy
1545
You can specify a floppy device even if no floppy is loaded. Floppy
1546
removal is currently not detected accurately (if you change floppy
1547
without doing floppy access while the floppy is not loaded, the guest
1548
OS will think that the same floppy is loaded).
1549
@item Hard disks
1550
Hard disks can be used. Normally you must specify the whole disk
1551
(@file{/dev/hdb} instead of @file{/dev/hdb1}) so that the guest OS can
1552
see it as a partitioned disk. WARNING: unless you know what you do, it
1553
is better to only make READ-ONLY accesses to the hard disk otherwise
1554
you may corrupt your host data (use the @option{-snapshot} command
1555
line option or modify the device permissions accordingly).
1556
@end table
1557

    
1558
@subsubsection Windows
1559

    
1560
@table @code
1561
@item CD
1562
The preferred syntax is the drive letter (e.g. @file{d:}). The
1563
alternate syntax @file{\\.\d:} is supported. @file{/dev/cdrom} is
1564
supported as an alias to the first CDROM drive.
1565

    
1566
Currently there is no specific code to handle removable media, so it
1567
is better to use the @code{change} or @code{eject} monitor commands to
1568
change or eject media.
1569
@item Hard disks
1570
Hard disks can be used with the syntax: @file{\\.\PhysicalDrive@var{N}}
1571
where @var{N} is the drive number (0 is the first hard disk).
1572

    
1573
WARNING: unless you know what you do, it is better to only make
1574
READ-ONLY accesses to the hard disk otherwise you may corrupt your
1575
host data (use the @option{-snapshot} command line so that the
1576
modifications are written in a temporary file).
1577
@end table
1578

    
1579

    
1580
@subsubsection Mac OS X
1581

    
1582
@file{/dev/cdrom} is an alias to the first CDROM.
1583

    
1584
Currently there is no specific code to handle removable media, so it
1585
is better to use the @code{change} or @code{eject} monitor commands to
1586
change or eject media.
1587

    
1588
@node disk_images_fat_images
1589
@subsection Virtual FAT disk images
1590

    
1591
QEMU can automatically create a virtual FAT disk image from a
1592
directory tree. In order to use it, just type:
1593

    
1594
@example
1595
qemu linux.img -hdb fat:/my_directory
1596
@end example
1597

    
1598
Then you access access to all the files in the @file{/my_directory}
1599
directory without having to copy them in a disk image or to export
1600
them via SAMBA or NFS. The default access is @emph{read-only}.
1601

    
1602
Floppies can be emulated with the @code{:floppy:} option:
1603

    
1604
@example
1605
qemu linux.img -fda fat:floppy:/my_directory
1606
@end example
1607

    
1608
A read/write support is available for testing (beta stage) with the
1609
@code{:rw:} option:
1610

    
1611
@example
1612
qemu linux.img -fda fat:floppy:rw:/my_directory
1613
@end example
1614

    
1615
What you should @emph{never} do:
1616
@itemize
1617
@item use non-ASCII filenames ;
1618
@item use "-snapshot" together with ":rw:" ;
1619
@item expect it to work when loadvm'ing ;
1620
@item write to the FAT directory on the host system while accessing it with the guest system.
1621
@end itemize
1622

    
1623
@node disk_images_nbd
1624
@subsection NBD access
1625

    
1626
QEMU can access directly to block device exported using the Network Block Device
1627
protocol.
1628

    
1629
@example
1630
qemu linux.img -hdb nbd:my_nbd_server.mydomain.org:1024
1631
@end example
1632

    
1633
If the NBD server is located on the same host, you can use an unix socket instead
1634
of an inet socket:
1635

    
1636
@example
1637
qemu linux.img -hdb nbd:unix:/tmp/my_socket
1638
@end example
1639

    
1640
In this case, the block device must be exported using qemu-nbd:
1641

    
1642
@example
1643
qemu-nbd --socket=/tmp/my_socket my_disk.qcow2
1644
@end example
1645

    
1646
The use of qemu-nbd allows to share a disk between several guests:
1647
@example
1648
qemu-nbd --socket=/tmp/my_socket --share=2 my_disk.qcow2
1649
@end example
1650

    
1651
and then you can use it with two guests:
1652
@example
1653
qemu linux1.img -hdb nbd:unix:/tmp/my_socket
1654
qemu linux2.img -hdb nbd:unix:/tmp/my_socket
1655
@end example
1656

    
1657
@node pcsys_network
1658
@section Network emulation
1659

    
1660
QEMU can simulate several network cards (PCI or ISA cards on the PC
1661
target) and can connect them to an arbitrary number of Virtual Local
1662
Area Networks (VLANs). Host TAP devices can be connected to any QEMU
1663
VLAN. VLAN can be connected between separate instances of QEMU to
1664
simulate large networks. For simpler usage, a non privileged user mode
1665
network stack can replace the TAP device to have a basic network
1666
connection.
1667

    
1668
@subsection VLANs
1669

    
1670
QEMU simulates several VLANs. A VLAN can be symbolised as a virtual
1671
connection between several network devices. These devices can be for
1672
example QEMU virtual Ethernet cards or virtual Host ethernet devices
1673
(TAP devices).
1674

    
1675
@subsection Using TAP network interfaces
1676

    
1677
This is the standard way to connect QEMU to a real network. QEMU adds
1678
a virtual network device on your host (called @code{tapN}), and you
1679
can then configure it as if it was a real ethernet card.
1680

    
1681
@subsubsection Linux host
1682

    
1683
As an example, you can download the @file{linux-test-xxx.tar.gz}
1684
archive and copy the script @file{qemu-ifup} in @file{/etc} and
1685
configure properly @code{sudo} so that the command @code{ifconfig}
1686
contained in @file{qemu-ifup} can be executed as root. You must verify
1687
that your host kernel supports the TAP network interfaces: the
1688
device @file{/dev/net/tun} must be present.
1689

    
1690
See @ref{sec_invocation} to have examples of command lines using the
1691
TAP network interfaces.
1692

    
1693
@subsubsection Windows host
1694

    
1695
There is a virtual ethernet driver for Windows 2000/XP systems, called
1696
TAP-Win32. But it is not included in standard QEMU for Windows,
1697
so you will need to get it separately. It is part of OpenVPN package,
1698
so download OpenVPN from : @url{http://openvpn.net/}.
1699

    
1700
@subsection Using the user mode network stack
1701

    
1702
By using the option @option{-net user} (default configuration if no
1703
@option{-net} option is specified), QEMU uses a completely user mode
1704
network stack (you don't need root privilege to use the virtual
1705
network). The virtual network configuration is the following:
1706

    
1707
@example
1708

    
1709
         QEMU VLAN      <------>  Firewall/DHCP server <-----> Internet
1710
                           |          (10.0.2.2)
1711
                           |
1712
                           ---->  DNS server (10.0.2.3)
1713
                           |
1714
                           ---->  SMB server (10.0.2.4)
1715
@end example
1716

    
1717
The QEMU VM behaves as if it was behind a firewall which blocks all
1718
incoming connections. You can use a DHCP client to automatically
1719
configure the network in the QEMU VM. The DHCP server assign addresses
1720
to the hosts starting from 10.0.2.15.
1721

    
1722
In order to check that the user mode network is working, you can ping
1723
the address 10.0.2.2 and verify that you got an address in the range
1724
10.0.2.x from the QEMU virtual DHCP server.
1725

    
1726
Note that @code{ping} is not supported reliably to the internet as it
1727
would require root privileges. It means you can only ping the local
1728
router (10.0.2.2).
1729

    
1730
When using the built-in TFTP server, the router is also the TFTP
1731
server.
1732

    
1733
When using the @option{-redir} option, TCP or UDP connections can be
1734
redirected from the host to the guest. It allows for example to
1735
redirect X11, telnet or SSH connections.
1736

    
1737
@subsection Connecting VLANs between QEMU instances
1738

    
1739
Using the @option{-net socket} option, it is possible to make VLANs
1740
that span several QEMU instances. See @ref{sec_invocation} to have a
1741
basic example.
1742

    
1743
@node direct_linux_boot
1744
@section Direct Linux Boot
1745

    
1746
This section explains how to launch a Linux kernel inside QEMU without
1747
having to make a full bootable image. It is very useful for fast Linux
1748
kernel testing.
1749

    
1750
The syntax is:
1751
@example
1752
qemu -kernel arch/i386/boot/bzImage -hda root-2.4.20.img -append "root=/dev/hda"
1753
@end example
1754

    
1755
Use @option{-kernel} to provide the Linux kernel image and
1756
@option{-append} to give the kernel command line arguments. The
1757
@option{-initrd} option can be used to provide an INITRD image.
1758

    
1759
When using the direct Linux boot, a disk image for the first hard disk
1760
@file{hda} is required because its boot sector is used to launch the
1761
Linux kernel.
1762

    
1763
If you do not need graphical output, you can disable it and redirect
1764
the virtual serial port and the QEMU monitor to the console with the
1765
@option{-nographic} option. The typical command line is:
1766
@example
1767
qemu -kernel arch/i386/boot/bzImage -hda root-2.4.20.img \
1768
     -append "root=/dev/hda console=ttyS0" -nographic
1769
@end example
1770

    
1771
Use @key{Ctrl-a c} to switch between the serial console and the
1772
monitor (@pxref{pcsys_keys}).
1773

    
1774
@node pcsys_usb
1775
@section USB emulation
1776

    
1777
QEMU emulates a PCI UHCI USB controller. You can virtually plug
1778
virtual USB devices or real host USB devices (experimental, works only
1779
on Linux hosts).  Qemu will automatically create and connect virtual USB hubs
1780
as necessary to connect multiple USB devices.
1781

    
1782
@menu
1783
* usb_devices::
1784
* host_usb_devices::
1785
@end menu
1786
@node usb_devices
1787
@subsection Connecting USB devices
1788

    
1789
USB devices can be connected with the @option{-usbdevice} commandline option
1790
or the @code{usb_add} monitor command.  Available devices are:
1791

    
1792
@table @code
1793
@item mouse
1794
Virtual Mouse.  This will override the PS/2 mouse emulation when activated.
1795
@item tablet
1796
Pointer device that uses absolute coordinates (like a touchscreen).
1797
This means qemu is able to report the mouse position without having
1798
to grab the mouse.  Also overrides the PS/2 mouse emulation when activated.
1799
@item disk:@var{file}
1800
Mass storage device based on @var{file} (@pxref{disk_images})
1801
@item host:@var{bus.addr}
1802
Pass through the host device identified by @var{bus.addr}
1803
(Linux only)
1804
@item host:@var{vendor_id:product_id}
1805
Pass through the host device identified by @var{vendor_id:product_id}
1806
(Linux only)
1807
@item wacom-tablet
1808
Virtual Wacom PenPartner tablet.  This device is similar to the @code{tablet}
1809
above but it can be used with the tslib library because in addition to touch
1810
coordinates it reports touch pressure.
1811
@item keyboard
1812
Standard USB keyboard.  Will override the PS/2 keyboard (if present).
1813
@item serial:[vendorid=@var{vendor_id}][,product_id=@var{product_id}]:@var{dev}
1814
Serial converter. This emulates an FTDI FT232BM chip connected to host character
1815
device @var{dev}. The available character devices are the same as for the
1816
@code{-serial} option. The @code{vendorid} and @code{productid} options can be
1817
used to override the default 0403:6001. For instance, 
1818
@example
1819
usb_add serial:productid=FA00:tcp:192.168.0.2:4444
1820
@end example
1821
will connect to tcp port 4444 of ip 192.168.0.2, and plug that to the virtual
1822
serial converter, faking a Matrix Orbital LCD Display (USB ID 0403:FA00).
1823
@item braille
1824
Braille device.  This will use BrlAPI to display the braille output on a real
1825
or fake device.
1826
@item net:@var{options}
1827
Network adapter that supports CDC ethernet and RNDIS protocols.  @var{options}
1828
specifies NIC options as with @code{-net nic,}@var{options} (see description).
1829
For instance, user-mode networking can be used with
1830
@example
1831
qemu [...OPTIONS...] -net user,vlan=0 -usbdevice net:vlan=0
1832
@end example
1833
Currently this cannot be used in machines that support PCI NICs.
1834
@item bt[:@var{hci-type}]
1835
Bluetooth dongle whose type is specified in the same format as with
1836
the @option{-bt hci} option, @pxref{bt-hcis,,allowed HCI types}.  If
1837
no type is given, the HCI logic corresponds to @code{-bt hci,vlan=0}.
1838
This USB device implements the USB Transport Layer of HCI.  Example
1839
usage:
1840
@example
1841
qemu [...OPTIONS...] -usbdevice bt:hci,vlan=3 -bt device:keyboard,vlan=3
1842
@end example
1843
@end table
1844

    
1845
@node host_usb_devices
1846
@subsection Using host USB devices on a Linux host
1847

    
1848
WARNING: this is an experimental feature. QEMU will slow down when
1849
using it. USB devices requiring real time streaming (i.e. USB Video
1850
Cameras) are not supported yet.
1851

    
1852
@enumerate
1853
@item If you use an early Linux 2.4 kernel, verify that no Linux driver
1854
is actually using the USB device. A simple way to do that is simply to
1855
disable the corresponding kernel module by renaming it from @file{mydriver.o}
1856
to @file{mydriver.o.disabled}.
1857

    
1858
@item Verify that @file{/proc/bus/usb} is working (most Linux distributions should enable it by default). You should see something like that:
1859
@example
1860
ls /proc/bus/usb
1861
001  devices  drivers
1862
@end example
1863

    
1864
@item Since only root can access to the USB devices directly, you can either launch QEMU as root or change the permissions of the USB devices you want to use. For testing, the following suffices:
1865
@example
1866
chown -R myuid /proc/bus/usb
1867
@end example
1868

    
1869
@item Launch QEMU and do in the monitor:
1870
@example
1871
info usbhost
1872
  Device 1.2, speed 480 Mb/s
1873
    Class 00: USB device 1234:5678, USB DISK
1874
@end example
1875
You should see the list of the devices you can use (Never try to use
1876
hubs, it won't work).
1877

    
1878
@item Add the device in QEMU by using:
1879
@example
1880
usb_add host:1234:5678
1881
@end example
1882

    
1883
Normally the guest OS should report that a new USB device is
1884
plugged. You can use the option @option{-usbdevice} to do the same.
1885

    
1886
@item Now you can try to use the host USB device in QEMU.
1887

    
1888
@end enumerate
1889

    
1890
When relaunching QEMU, you may have to unplug and plug again the USB
1891
device to make it work again (this is a bug).
1892

    
1893
@node vnc_security
1894
@section VNC security
1895

    
1896
The VNC server capability provides access to the graphical console
1897
of the guest VM across the network. This has a number of security
1898
considerations depending on the deployment scenarios.
1899

    
1900
@menu
1901
* vnc_sec_none::
1902
* vnc_sec_password::
1903
* vnc_sec_certificate::
1904
* vnc_sec_certificate_verify::
1905
* vnc_sec_certificate_pw::
1906
* vnc_generate_cert::
1907
@end menu
1908
@node vnc_sec_none
1909
@subsection Without passwords
1910

    
1911
The simplest VNC server setup does not include any form of authentication.
1912
For this setup it is recommended to restrict it to listen on a UNIX domain
1913
socket only. For example
1914

    
1915
@example
1916
qemu [...OPTIONS...] -vnc unix:/home/joebloggs/.qemu-myvm-vnc
1917
@end example
1918

    
1919
This ensures that only users on local box with read/write access to that
1920
path can access the VNC server. To securely access the VNC server from a
1921
remote machine, a combination of netcat+ssh can be used to provide a secure
1922
tunnel.
1923

    
1924
@node vnc_sec_password
1925
@subsection With passwords
1926

    
1927
The VNC protocol has limited support for password based authentication. Since
1928
the protocol limits passwords to 8 characters it should not be considered
1929
to provide high security. The password can be fairly easily brute-forced by
1930
a client making repeat connections. For this reason, a VNC server using password
1931
authentication should be restricted to only listen on the loopback interface
1932
or UNIX domain sockets. Password authentication is requested with the @code{password}
1933
option, and then once QEMU is running the password is set with the monitor. Until
1934
the monitor is used to set the password all clients will be rejected.
1935

    
1936
@example
1937
qemu [...OPTIONS...] -vnc :1,password -monitor stdio
1938
(qemu) change vnc password
1939
Password: ********
1940
(qemu)
1941
@end example
1942

    
1943
@node vnc_sec_certificate
1944
@subsection With x509 certificates
1945

    
1946
The QEMU VNC server also implements the VeNCrypt extension allowing use of
1947
TLS for encryption of the session, and x509 certificates for authentication.
1948
The use of x509 certificates is strongly recommended, because TLS on its
1949
own is susceptible to man-in-the-middle attacks. Basic x509 certificate
1950
support provides a secure session, but no authentication. This allows any
1951
client to connect, and provides an encrypted session.
1952

    
1953
@example
1954
qemu [...OPTIONS...] -vnc :1,tls,x509=/etc/pki/qemu -monitor stdio
1955
@end example
1956

    
1957
In the above example @code{/etc/pki/qemu} should contain at least three files,
1958
@code{ca-cert.pem}, @code{server-cert.pem} and @code{server-key.pem}. Unprivileged
1959
users will want to use a private directory, for example @code{$HOME/.pki/qemu}.
1960
NB the @code{server-key.pem} file should be protected with file mode 0600 to
1961
only be readable by the user owning it.
1962

    
1963
@node vnc_sec_certificate_verify
1964
@subsection With x509 certificates and client verification
1965

    
1966
Certificates can also provide a means to authenticate the client connecting.
1967
The server will request that the client provide a certificate, which it will
1968
then validate against the CA certificate. This is a good choice if deploying
1969
in an environment with a private internal certificate authority.
1970

    
1971
@example
1972
qemu [...OPTIONS...] -vnc :1,tls,x509verify=/etc/pki/qemu -monitor stdio
1973
@end example
1974

    
1975

    
1976
@node vnc_sec_certificate_pw
1977
@subsection With x509 certificates, client verification and passwords
1978

    
1979
Finally, the previous method can be combined with VNC password authentication
1980
to provide two layers of authentication for clients.
1981

    
1982
@example
1983
qemu [...OPTIONS...] -vnc :1,password,tls,x509verify=/etc/pki/qemu -monitor stdio
1984
(qemu) change vnc password
1985
Password: ********
1986
(qemu)
1987
@end example
1988

    
1989
@node vnc_generate_cert
1990
@subsection Generating certificates for VNC
1991

    
1992
The GNU TLS packages provides a command called @code{certtool} which can
1993
be used to generate certificates and keys in PEM format. At a minimum it
1994
is neccessary to setup a certificate authority, and issue certificates to
1995
each server. If using certificates for authentication, then each client
1996
will also need to be issued a certificate. The recommendation is for the
1997
server to keep its certificates in either @code{/etc/pki/qemu} or for
1998
unprivileged users in @code{$HOME/.pki/qemu}.
1999

    
2000
@menu
2001
* vnc_generate_ca::
2002
* vnc_generate_server::
2003
* vnc_generate_client::
2004
@end menu
2005
@node vnc_generate_ca
2006
@subsubsection Setup the Certificate Authority
2007

    
2008
This step only needs to be performed once per organization / organizational
2009
unit. First the CA needs a private key. This key must be kept VERY secret
2010
and secure. If this key is compromised the entire trust chain of the certificates
2011
issued with it is lost.
2012

    
2013
@example
2014
# certtool --generate-privkey > ca-key.pem
2015
@end example
2016

    
2017
A CA needs to have a public certificate. For simplicity it can be a self-signed
2018
certificate, or one issue by a commercial certificate issuing authority. To
2019
generate a self-signed certificate requires one core piece of information, the
2020
name of the organization.
2021

    
2022
@example
2023
# cat > ca.info <<EOF
2024
cn = Name of your organization
2025
ca
2026
cert_signing_key
2027
EOF
2028
# certtool --generate-self-signed \
2029
           --load-privkey ca-key.pem
2030
           --template ca.info \
2031
           --outfile ca-cert.pem
2032
@end example
2033

    
2034
The @code{ca-cert.pem} file should be copied to all servers and clients wishing to utilize
2035
TLS support in the VNC server. The @code{ca-key.pem} must not be disclosed/copied at all.
2036

    
2037
@node vnc_generate_server
2038
@subsubsection Issuing server certificates
2039

    
2040
Each server (or host) needs to be issued with a key and certificate. When connecting
2041
the certificate is sent to the client which validates it against the CA certificate.
2042
The core piece of information for a server certificate is the hostname. This should
2043
be the fully qualified hostname that the client will connect with, since the client
2044
will typically also verify the hostname in the certificate. On the host holding the
2045
secure CA private key:
2046

    
2047
@example
2048
# cat > server.info <<EOF
2049
organization = Name  of your organization
2050
cn = server.foo.example.com
2051
tls_www_server
2052
encryption_key
2053
signing_key
2054
EOF
2055
# certtool --generate-privkey > server-key.pem
2056
# certtool --generate-certificate \
2057
           --load-ca-certificate ca-cert.pem \
2058
           --load-ca-privkey ca-key.pem \
2059
           --load-privkey server server-key.pem \
2060
           --template server.info \
2061
           --outfile server-cert.pem
2062
@end example
2063

    
2064
The @code{server-key.pem} and @code{server-cert.pem} files should now be securely copied
2065
to the server for which they were generated. The @code{server-key.pem} is security
2066
sensitive and should be kept protected with file mode 0600 to prevent disclosure.
2067

    
2068
@node vnc_generate_client
2069
@subsubsection Issuing client certificates
2070

    
2071
If the QEMU VNC server is to use the @code{x509verify} option to validate client
2072
certificates as its authentication mechanism, each client also needs to be issued
2073
a certificate. The client certificate contains enough metadata to uniquely identify
2074
the client, typically organization, state, city, building, etc. On the host holding
2075
the secure CA private key:
2076

    
2077
@example
2078
# cat > client.info <<EOF
2079
country = GB
2080
state = London
2081
locality = London
2082
organiazation = Name of your organization
2083
cn = client.foo.example.com
2084
tls_www_client
2085
encryption_key
2086
signing_key
2087
EOF
2088
# certtool --generate-privkey > client-key.pem
2089
# certtool --generate-certificate \
2090
           --load-ca-certificate ca-cert.pem \
2091
           --load-ca-privkey ca-key.pem \
2092
           --load-privkey client-key.pem \
2093
           --template client.info \
2094
           --outfile client-cert.pem
2095
@end example
2096

    
2097
The @code{client-key.pem} and @code{client-cert.pem} files should now be securely
2098
copied to the client for which they were generated.
2099

    
2100
@node gdb_usage
2101
@section GDB usage
2102

    
2103
QEMU has a primitive support to work with gdb, so that you can do
2104
'Ctrl-C' while the virtual machine is running and inspect its state.
2105

    
2106
In order to use gdb, launch qemu with the '-s' option. It will wait for a
2107
gdb connection:
2108
@example
2109
> qemu -s -kernel arch/i386/boot/bzImage -hda root-2.4.20.img \
2110
       -append "root=/dev/hda"
2111
Connected to host network interface: tun0
2112
Waiting gdb connection on port 1234
2113
@end example
2114

    
2115
Then launch gdb on the 'vmlinux' executable:
2116
@example
2117
> gdb vmlinux
2118
@end example
2119

    
2120
In gdb, connect to QEMU:
2121
@example
2122
(gdb) target remote localhost:1234
2123
@end example
2124

    
2125
Then you can use gdb normally. For example, type 'c' to launch the kernel:
2126
@example
2127
(gdb) c
2128
@end example
2129

    
2130
Here are some useful tips in order to use gdb on system code:
2131

    
2132
@enumerate
2133
@item
2134
Use @code{info reg} to display all the CPU registers.
2135
@item
2136
Use @code{x/10i $eip} to display the code at the PC position.
2137
@item
2138
Use @code{set architecture i8086} to dump 16 bit code. Then use
2139
@code{x/10i $cs*16+$eip} to dump the code at the PC position.
2140
@end enumerate
2141

    
2142
Advanced debugging options:
2143

    
2144
The default single stepping behavior is step with the IRQs and timer service routines off.  It is set this way because when gdb executes a single step it expects to advance beyond the current instruction.  With the IRQs and and timer service routines on, a single step might jump into the one of the interrupt or exception vectors instead of executing the current instruction. This means you may hit the same breakpoint a number of times before executing the instruction gdb wants to have executed.  Because there are rare circumstances where you want to single step into an interrupt vector the behavior can be controlled from GDB.  There are three commands you can query and set the single step behavior:
2145
@table @code
2146
@item maintenance packet qqemu.sstepbits
2147

    
2148
This will display the MASK bits used to control the single stepping IE:
2149
@example
2150
(gdb) maintenance packet qqemu.sstepbits
2151
sending: "qqemu.sstepbits"
2152
received: "ENABLE=1,NOIRQ=2,NOTIMER=4"
2153
@end example
2154
@item maintenance packet qqemu.sstep
2155

    
2156
This will display the current value of the mask used when single stepping IE:
2157
@example
2158
(gdb) maintenance packet qqemu.sstep
2159
sending: "qqemu.sstep"
2160
received: "0x7"
2161
@end example
2162
@item maintenance packet Qqemu.sstep=HEX_VALUE
2163

    
2164
This will change the single step mask, so if wanted to enable IRQs on the single step, but not timers, you would use:
2165
@example
2166
(gdb) maintenance packet Qqemu.sstep=0x5
2167
sending: "qemu.sstep=0x5"
2168
received: "OK"
2169
@end example
2170
@end table
2171

    
2172
@node pcsys_os_specific
2173
@section Target OS specific information
2174

    
2175
@subsection Linux
2176

    
2177
To have access to SVGA graphic modes under X11, use the @code{vesa} or
2178
the @code{cirrus} X11 driver. For optimal performances, use 16 bit
2179
color depth in the guest and the host OS.
2180

    
2181
When using a 2.6 guest Linux kernel, you should add the option
2182
@code{clock=pit} on the kernel command line because the 2.6 Linux
2183
kernels make very strict real time clock checks by default that QEMU
2184
cannot simulate exactly.
2185

    
2186
When using a 2.6 guest Linux kernel, verify that the 4G/4G patch is
2187
not activated because QEMU is slower with this patch. The QEMU
2188
Accelerator Module is also much slower in this case. Earlier Fedora
2189
Core 3 Linux kernel (< 2.6.9-1.724_FC3) were known to incorporate this
2190
patch by default. Newer kernels don't have it.
2191

    
2192
@subsection Windows
2193

    
2194
If you have a slow host, using Windows 95 is better as it gives the
2195
best speed. Windows 2000 is also a good choice.
2196

    
2197
@subsubsection SVGA graphic modes support
2198

    
2199
QEMU emulates a Cirrus Logic GD5446 Video
2200
card. All Windows versions starting from Windows 95 should recognize
2201
and use this graphic card. For optimal performances, use 16 bit color
2202
depth in the guest and the host OS.
2203

    
2204
If you are using Windows XP as guest OS and if you want to use high
2205
resolution modes which the Cirrus Logic BIOS does not support (i.e. >=
2206
1280x1024x16), then you should use the VESA VBE virtual graphic card
2207
(option @option{-std-vga}).
2208

    
2209
@subsubsection CPU usage reduction
2210

    
2211
Windows 9x does not correctly use the CPU HLT
2212
instruction. The result is that it takes host CPU cycles even when
2213
idle. You can install the utility from
2214
@url{http://www.user.cityline.ru/~maxamn/amnhltm.zip} to solve this
2215
problem. Note that no such tool is needed for NT, 2000 or XP.
2216

    
2217
@subsubsection Windows 2000 disk full problem
2218

    
2219
Windows 2000 has a bug which gives a disk full problem during its
2220
installation. When installing it, use the @option{-win2k-hack} QEMU
2221
option to enable a specific workaround. After Windows 2000 is
2222
installed, you no longer need this option (this option slows down the
2223
IDE transfers).
2224

    
2225
@subsubsection Windows 2000 shutdown
2226

    
2227
Windows 2000 cannot automatically shutdown in QEMU although Windows 98
2228
can. It comes from the fact that Windows 2000 does not automatically
2229
use the APM driver provided by the BIOS.
2230

    
2231
In order to correct that, do the following (thanks to Struan
2232
Bartlett): go to the Control Panel => Add/Remove Hardware & Next =>
2233
Add/Troubleshoot a device => Add a new device & Next => No, select the
2234
hardware from a list & Next => NT Apm/Legacy Support & Next => Next
2235
(again) a few times. Now the driver is installed and Windows 2000 now
2236
correctly instructs QEMU to shutdown at the appropriate moment.
2237

    
2238
@subsubsection Share a directory between Unix and Windows
2239

    
2240
See @ref{sec_invocation} about the help of the option @option{-smb}.
2241

    
2242
@subsubsection Windows XP security problem
2243

    
2244
Some releases of Windows XP install correctly but give a security
2245
error when booting:
2246
@example
2247
A problem is preventing Windows from accurately checking the
2248
license for this computer. Error code: 0x800703e6.
2249
@end example
2250

    
2251
The workaround is to install a service pack for XP after a boot in safe
2252
mode. Then reboot, and the problem should go away. Since there is no
2253
network while in safe mode, its recommended to download the full
2254
installation of SP1 or SP2 and transfer that via an ISO or using the
2255
vvfat block device ("-hdb fat:directory_which_holds_the_SP").
2256

    
2257
@subsection MS-DOS and FreeDOS
2258

    
2259
@subsubsection CPU usage reduction
2260

    
2261
DOS does not correctly use the CPU HLT instruction. The result is that
2262
it takes host CPU cycles even when idle. You can install the utility
2263
from @url{http://www.vmware.com/software/dosidle210.zip} to solve this
2264
problem.
2265

    
2266
@node QEMU System emulator for non PC targets
2267
@chapter QEMU System emulator for non PC targets
2268

    
2269
QEMU is a generic emulator and it emulates many non PC
2270
machines. Most of the options are similar to the PC emulator. The
2271
differences are mentioned in the following sections.
2272

    
2273
@menu
2274
* QEMU PowerPC System emulator::
2275
* Sparc32 System emulator::
2276
* Sparc64 System emulator::
2277
* MIPS System emulator::
2278
* ARM System emulator::
2279
* ColdFire System emulator::
2280
@end menu
2281

    
2282
@node QEMU PowerPC System emulator
2283
@section QEMU PowerPC System emulator
2284

    
2285
Use the executable @file{qemu-system-ppc} to simulate a complete PREP
2286
or PowerMac PowerPC system.
2287

    
2288
QEMU emulates the following PowerMac peripherals:
2289

    
2290
@itemize @minus
2291
@item
2292
UniNorth PCI Bridge
2293
@item
2294
PCI VGA compatible card with VESA Bochs Extensions
2295
@item
2296
2 PMAC IDE interfaces with hard disk and CD-ROM support
2297
@item
2298
NE2000 PCI adapters
2299
@item
2300
Non Volatile RAM
2301
@item
2302
VIA-CUDA with ADB keyboard and mouse.
2303
@end itemize
2304

    
2305
QEMU emulates the following PREP peripherals:
2306

    
2307
@itemize @minus
2308
@item
2309
PCI Bridge
2310
@item
2311
PCI VGA compatible card with VESA Bochs Extensions
2312
@item
2313
2 IDE interfaces with hard disk and CD-ROM support
2314
@item
2315
Floppy disk
2316
@item
2317
NE2000 network adapters
2318
@item
2319
Serial port
2320
@item
2321
PREP Non Volatile RAM
2322
@item
2323
PC compatible keyboard and mouse.
2324
@end itemize
2325

    
2326
QEMU uses the Open Hack'Ware Open Firmware Compatible BIOS available at
2327
@url{http://perso.magic.fr/l_indien/OpenHackWare/index.htm}.
2328

    
2329
@c man begin OPTIONS
2330

    
2331
The following options are specific to the PowerPC emulation:
2332

    
2333
@table @option
2334

    
2335
@item -g WxH[xDEPTH]
2336

    
2337
Set the initial VGA graphic mode. The default is 800x600x15.
2338

    
2339
@end table
2340

    
2341
@c man end
2342

    
2343

    
2344
More information is available at
2345
@url{http://perso.magic.fr/l_indien/qemu-ppc/}.
2346

    
2347
@node Sparc32 System emulator
2348
@section Sparc32 System emulator
2349

    
2350
Use the executable @file{qemu-system-sparc} to simulate the following
2351
Sun4m architecture machines:
2352
@itemize @minus
2353
@item
2354
SPARCstation 4
2355
@item
2356
SPARCstation 5
2357
@item
2358
SPARCstation 10
2359
@item
2360
SPARCstation 20
2361
@item
2362
SPARCserver 600MP
2363
@item
2364
SPARCstation LX
2365
@item
2366
SPARCstation Voyager
2367
@item
2368
SPARCclassic
2369
@item
2370
SPARCbook
2371
@end itemize
2372

    
2373
The emulation is somewhat complete. SMP up to 16 CPUs is supported,
2374
but Linux limits the number of usable CPUs to 4.
2375

    
2376
It's also possible to simulate a SPARCstation 2 (sun4c architecture),
2377
SPARCserver 1000, or SPARCcenter 2000 (sun4d architecture), but these
2378
emulators are not usable yet.
2379

    
2380
QEMU emulates the following sun4m/sun4c/sun4d peripherals:
2381

    
2382
@itemize @minus
2383
@item
2384
IOMMU or IO-UNITs
2385
@item
2386
TCX Frame buffer
2387
@item
2388
Lance (Am7990) Ethernet
2389
@item
2390
Non Volatile RAM M48T02/M48T08
2391
@item
2392
Slave I/O: timers, interrupt controllers, Zilog serial ports, keyboard
2393
and power/reset logic
2394
@item
2395
ESP SCSI controller with hard disk and CD-ROM support
2396
@item
2397
Floppy drive (not on SS-600MP)
2398
@item
2399
CS4231 sound device (only on SS-5, not working yet)
2400
@end itemize
2401

    
2402
The number of peripherals is fixed in the architecture.  Maximum
2403
memory size depends on the machine type, for SS-5 it is 256MB and for
2404
others 2047MB.
2405

    
2406
Since version 0.8.2, QEMU uses OpenBIOS
2407
@url{http://www.openbios.org/}. OpenBIOS is a free (GPL v2) portable
2408
firmware implementation. The goal is to implement a 100% IEEE
2409
1275-1994 (referred to as Open Firmware) compliant firmware.
2410

    
2411
A sample Linux 2.6 series kernel and ram disk image are available on
2412
the QEMU web site. There are still issues with NetBSD and OpenBSD, but
2413
some kernel versions work. Please note that currently Solaris kernels
2414
don't work probably due to interface issues between OpenBIOS and
2415
Solaris.
2416

    
2417
@c man begin OPTIONS
2418

    
2419
The following options are specific to the Sparc32 emulation:
2420

    
2421
@table @option
2422

    
2423
@item -g WxHx[xDEPTH]
2424

    
2425
Set the initial TCX graphic mode. The default is 1024x768x8, currently
2426
the only other possible mode is 1024x768x24.
2427

    
2428
@item -prom-env string
2429

    
2430
Set OpenBIOS variables in NVRAM, for example:
2431

    
2432
@example
2433
qemu-system-sparc -prom-env 'auto-boot?=false' \
2434
 -prom-env 'boot-device=sd(0,2,0):d' -prom-env 'boot-args=linux single'
2435
@end example
2436

    
2437
@item -M [SS-4|SS-5|SS-10|SS-20|SS-600MP|LX|Voyager|SPARCClassic|SPARCbook|SS-2|SS-1000|SS-2000]
2438

    
2439
Set the emulated machine type. Default is SS-5.
2440

    
2441
@end table
2442

    
2443
@c man end
2444

    
2445
@node Sparc64 System emulator
2446
@section Sparc64 System emulator
2447

    
2448
Use the executable @file{qemu-system-sparc64} to simulate a Sun4u
2449
(UltraSPARC PC-like machine), Sun4v (T1 PC-like machine), or generic
2450
Niagara (T1) machine. The emulator is not usable for anything yet, but
2451
it can launch some kernels.
2452

    
2453
QEMU emulates the following peripherals:
2454

    
2455
@itemize @minus
2456
@item
2457
UltraSparc IIi APB PCI Bridge
2458
@item
2459
PCI VGA compatible card with VESA Bochs Extensions
2460
@item
2461
PS/2 mouse and keyboard
2462
@item
2463
Non Volatile RAM M48T59
2464
@item
2465
PC-compatible serial ports
2466
@item
2467
2 PCI IDE interfaces with hard disk and CD-ROM support
2468
@item
2469
Floppy disk
2470
@end itemize
2471

    
2472
@c man begin OPTIONS
2473

    
2474
The following options are specific to the Sparc64 emulation:
2475

    
2476
@table @option
2477

    
2478
@item -prom-env string
2479

    
2480
Set OpenBIOS variables in NVRAM, for example:
2481

    
2482
@example
2483
qemu-system-sparc64 -prom-env 'auto-boot?=false'
2484
@end example
2485

    
2486
@item -M [sun4u|sun4v|Niagara]
2487

    
2488
Set the emulated machine type. The default is sun4u.
2489

    
2490
@end table
2491

    
2492
@c man end
2493

    
2494
@node MIPS System emulator
2495
@section MIPS System emulator
2496

    
2497
Four executables cover simulation of 32 and 64-bit MIPS systems in
2498
both endian options, @file{qemu-system-mips}, @file{qemu-system-mipsel}
2499
@file{qemu-system-mips64} and @file{qemu-system-mips64el}.
2500
Five different machine types are emulated:
2501

    
2502
@itemize @minus
2503
@item
2504
A generic ISA PC-like machine "mips"
2505
@item
2506
The MIPS Malta prototype board "malta"
2507
@item
2508
An ACER Pica "pica61". This machine needs the 64-bit emulator.
2509
@item
2510
MIPS emulator pseudo board "mipssim"
2511
@item
2512
A MIPS Magnum R4000 machine "magnum". This machine needs the 64-bit emulator.
2513
@end itemize
2514

    
2515
The generic emulation is supported by Debian 'Etch' and is able to
2516
install Debian into a virtual disk image. The following devices are
2517
emulated:
2518

    
2519
@itemize @minus
2520
@item
2521
A range of MIPS CPUs, default is the 24Kf
2522
@item
2523
PC style serial port
2524
@item
2525
PC style IDE disk
2526
@item
2527
NE2000 network card
2528
@end itemize
2529

    
2530
The Malta emulation supports the following devices:
2531

    
2532
@itemize @minus
2533
@item
2534
Core board with MIPS 24Kf CPU and Galileo system controller
2535
@item
2536
PIIX4 PCI/USB/SMbus controller
2537
@item
2538
The Multi-I/O chip's serial device
2539
@item
2540
PCnet32 PCI network card
2541
@item
2542
Malta FPGA serial device
2543
@item
2544
Cirrus VGA graphics card
2545
@end itemize
2546

    
2547
The ACER Pica emulation supports:
2548

    
2549
@itemize @minus
2550
@item
2551
MIPS R4000 CPU
2552
@item
2553
PC-style IRQ and DMA controllers
2554
@item
2555
PC Keyboard
2556
@item
2557
IDE controller
2558
@end itemize
2559

    
2560
The mipssim pseudo board emulation provides an environment similiar
2561
to what the proprietary MIPS emulator uses for running Linux.
2562
It supports:
2563

    
2564
@itemize @minus
2565
@item
2566
A range of MIPS CPUs, default is the 24Kf
2567
@item
2568
PC style serial port
2569
@item
2570
MIPSnet network emulation
2571
@end itemize
2572

    
2573
The MIPS Magnum R4000 emulation supports:
2574

    
2575
@itemize @minus
2576
@item
2577
MIPS R4000 CPU
2578
@item
2579
PC-style IRQ controller
2580
@item
2581
PC Keyboard
2582
@item
2583
SCSI controller
2584
@item
2585
G364 framebuffer
2586
@end itemize
2587

    
2588

    
2589
@node ARM System emulator
2590
@section ARM System emulator
2591

    
2592
Use the executable @file{qemu-system-arm} to simulate a ARM
2593
machine. The ARM Integrator/CP board is emulated with the following
2594
devices:
2595

    
2596
@itemize @minus
2597
@item
2598
ARM926E, ARM1026E, ARM946E, ARM1136 or Cortex-A8 CPU
2599
@item
2600
Two PL011 UARTs
2601
@item
2602
SMC 91c111 Ethernet adapter
2603
@item
2604
PL110 LCD controller
2605
@item
2606
PL050 KMI with PS/2 keyboard and mouse.
2607
@item
2608
PL181 MultiMedia Card Interface with SD card.
2609
@end itemize
2610

    
2611
The ARM Versatile baseboard is emulated with the following devices:
2612

    
2613
@itemize @minus
2614
@item
2615
ARM926E, ARM1136 or Cortex-A8 CPU
2616
@item
2617
PL190 Vectored Interrupt Controller
2618
@item
2619
Four PL011 UARTs
2620
@item
2621
SMC 91c111 Ethernet adapter
2622
@item
2623
PL110 LCD controller
2624
@item
2625
PL050 KMI with PS/2 keyboard and mouse.
2626
@item
2627
PCI host bridge.  Note the emulated PCI bridge only provides access to
2628
PCI memory space.  It does not provide access to PCI IO space.
2629
This means some devices (eg. ne2k_pci NIC) are not usable, and others
2630
(eg. rtl8139 NIC) are only usable when the guest drivers use the memory
2631
mapped control registers.
2632
@item
2633
PCI OHCI USB controller.
2634
@item
2635
LSI53C895A PCI SCSI Host Bus Adapter with hard disk and CD-ROM devices.
2636
@item
2637
PL181 MultiMedia Card Interface with SD card.
2638
@end itemize
2639

    
2640
The ARM RealView Emulation baseboard is emulated with the following devices:
2641

    
2642
@itemize @minus
2643
@item
2644
ARM926E, ARM1136, ARM11MPCORE(x4) or Cortex-A8 CPU
2645
@item
2646
ARM AMBA Generic/Distributed Interrupt Controller
2647
@item
2648
Four PL011 UARTs
2649
@item
2650
SMC 91c111 Ethernet adapter
2651
@item
2652
PL110 LCD controller
2653
@item
2654
PL050 KMI with PS/2 keyboard and mouse
2655
@item
2656
PCI host bridge
2657
@item
2658
PCI OHCI USB controller
2659
@item
2660
LSI53C895A PCI SCSI Host Bus Adapter with hard disk and CD-ROM devices
2661
@item
2662
PL181 MultiMedia Card Interface with SD card.
2663
@end itemize
2664

    
2665
The XScale-based clamshell PDA models ("Spitz", "Akita", "Borzoi"
2666
and "Terrier") emulation includes the following peripherals:
2667

    
2668
@itemize @minus
2669
@item
2670
Intel PXA270 System-on-chip (ARM V5TE core)
2671
@item
2672
NAND Flash memory
2673
@item
2674
IBM/Hitachi DSCM microdrive in a PXA PCMCIA slot - not in "Akita"
2675
@item
2676
On-chip OHCI USB controller
2677
@item
2678
On-chip LCD controller
2679
@item
2680
On-chip Real Time Clock
2681
@item
2682
TI ADS7846 touchscreen controller on SSP bus
2683
@item
2684
Maxim MAX1111 analog-digital converter on I@math{^2}C bus
2685
@item
2686
GPIO-connected keyboard controller and LEDs
2687
@item
2688
Secure Digital card connected to PXA MMC/SD host
2689
@item
2690
Three on-chip UARTs
2691
@item
2692
WM8750 audio CODEC on I@math{^2}C and I@math{^2}S busses
2693
@end itemize
2694

    
2695
The Palm Tungsten|E PDA (codename "Cheetah") emulation includes the
2696
following elements:
2697

    
2698
@itemize @minus
2699
@item
2700
Texas Instruments OMAP310 System-on-chip (ARM 925T core)
2701
@item
2702
ROM and RAM memories (ROM firmware image can be loaded with -option-rom)
2703
@item
2704
On-chip LCD controller
2705
@item
2706
On-chip Real Time Clock
2707
@item
2708
TI TSC2102i touchscreen controller / analog-digital converter / Audio
2709
CODEC, connected through MicroWire and I@math{^2}S busses
2710
@item
2711
GPIO-connected matrix keypad
2712
@item
2713
Secure Digital card connected to OMAP MMC/SD host
2714
@item
2715
Three on-chip UARTs
2716
@end itemize
2717

    
2718
Nokia N800 and N810 internet tablets (known also as RX-34 and RX-44 / 48)
2719
emulation supports the following elements:
2720

    
2721
@itemize @minus
2722
@item
2723
Texas Instruments OMAP2420 System-on-chip (ARM 1136 core)
2724
@item
2725
RAM and non-volatile OneNAND Flash memories
2726
@item
2727
Display connected to EPSON remote framebuffer chip and OMAP on-chip
2728
display controller and a LS041y3 MIPI DBI-C controller
2729
@item
2730
TI TSC2301 (in N800) and TI TSC2005 (in N810) touchscreen controllers
2731
driven through SPI bus
2732
@item
2733
National Semiconductor LM8323-controlled qwerty keyboard driven
2734
through I@math{^2}C bus
2735
@item
2736
Secure Digital card connected to OMAP MMC/SD host
2737
@item
2738
Three OMAP on-chip UARTs and on-chip STI debugging console
2739
@item
2740
A Bluetooth(R) transciever and HCI connected to an UART
2741
@item
2742
Mentor Graphics "Inventra" dual-role USB controller embedded in a TI
2743
TUSB6010 chip - only USB host mode is supported
2744
@item
2745
TI TMP105 temperature sensor driven through I@math{^2}C bus
2746
@item
2747
TI TWL92230C power management companion with an RTC on I@math{^2}C bus
2748
@item
2749
Nokia RETU and TAHVO multi-purpose chips with an RTC, connected
2750
through CBUS
2751
@end itemize
2752

    
2753
The Luminary Micro Stellaris LM3S811EVB emulation includes the following
2754
devices:
2755

    
2756
@itemize @minus
2757
@item
2758
Cortex-M3 CPU core.
2759
@item
2760
64k Flash and 8k SRAM.
2761
@item
2762
Timers, UARTs, ADC and I@math{^2}C interface.
2763
@item
2764
OSRAM Pictiva 96x16 OLED with SSD0303 controller on I@math{^2}C bus.
2765
@end itemize
2766

    
2767
The Luminary Micro Stellaris LM3S6965EVB emulation includes the following
2768
devices:
2769

    
2770
@itemize @minus
2771
@item
2772
Cortex-M3 CPU core.
2773
@item
2774
256k Flash and 64k SRAM.
2775
@item
2776
Timers, UARTs, ADC, I@math{^2}C and SSI interfaces.
2777
@item
2778
OSRAM Pictiva 128x64 OLED with SSD0323 controller connected via SSI.
2779
@end itemize
2780

    
2781
The Freecom MusicPal internet radio emulation includes the following
2782
elements:
2783

    
2784
@itemize @minus
2785
@item
2786
Marvell MV88W8618 ARM core.
2787
@item
2788
32 MB RAM, 256 KB SRAM, 8 MB flash.
2789
@item
2790
Up to 2 16550 UARTs
2791
@item
2792
MV88W8xx8 Ethernet controller
2793
@item
2794
MV88W8618 audio controller, WM8750 CODEC and mixer
2795
@item
2796
128?64 display with brightness control
2797
@item
2798
2 buttons, 2 navigation wheels with button function
2799
@end itemize
2800

    
2801
The Siemens SX1 models v1 and v2 (default) basic emulation.
2802
The emulaton includes the following elements:
2803

    
2804
@itemize @minus
2805
@item
2806
Texas Instruments OMAP310 System-on-chip (ARM 925T core)
2807
@item
2808
ROM and RAM memories (ROM firmware image can be loaded with -pflash)
2809
V1
2810
1 Flash of 16MB and 1 Flash of 8MB
2811
V2
2812
1 Flash of 32MB
2813
@item
2814
On-chip LCD controller
2815
@item
2816
On-chip Real Time Clock
2817
@item
2818
Secure Digital card connected to OMAP MMC/SD host
2819
@item
2820
Three on-chip UARTs
2821
@end itemize
2822

    
2823
A Linux 2.6 test image is available on the QEMU web site. More
2824
information is available in the QEMU mailing-list archive.
2825

    
2826
@node ColdFire System emulator
2827
@section ColdFire System emulator
2828

    
2829
Use the executable @file{qemu-system-m68k} to simulate a ColdFire machine.
2830
The emulator is able to boot a uClinux kernel.
2831

    
2832
The M5208EVB emulation includes the following devices:
2833

    
2834
@itemize @minus
2835
@item
2836
MCF5208 ColdFire V2 Microprocessor (ISA A+ with EMAC).
2837
@item
2838
Three Two on-chip UARTs.
2839
@item
2840
Fast Ethernet Controller (FEC)
2841
@end itemize
2842

    
2843
The AN5206 emulation includes the following devices:
2844

    
2845
@itemize @minus
2846
@item
2847
MCF5206 ColdFire V2 Microprocessor.
2848
@item
2849
Two on-chip UARTs.
2850
@end itemize
2851

    
2852
@node QEMU User space emulator
2853
@chapter QEMU User space emulator
2854

    
2855
@menu
2856
* Supported Operating Systems ::
2857
* Linux User space emulator::
2858
* Mac OS X/Darwin User space emulator ::
2859
* BSD User space emulator ::
2860
@end menu
2861

    
2862
@node Supported Operating Systems
2863
@section Supported Operating Systems
2864

    
2865
The following OS are supported in user space emulation:
2866

    
2867
@itemize @minus
2868
@item
2869
Linux (referred as qemu-linux-user)
2870
@item
2871
Mac OS X/Darwin (referred as qemu-darwin-user)
2872
@item
2873
BSD (referred as qemu-bsd-user)
2874
@end itemize
2875

    
2876
@node Linux User space emulator
2877
@section Linux User space emulator
2878

    
2879
@menu
2880
* Quick Start::
2881
* Wine launch::
2882
* Command line options::
2883
* Other binaries::
2884
@end menu
2885

    
2886
@node Quick Start
2887
@subsection Quick Start
2888

    
2889
In order to launch a Linux process, QEMU needs the process executable
2890
itself and all the target (x86) dynamic libraries used by it.
2891

    
2892
@itemize
2893

    
2894
@item On x86, you can just try to launch any process by using the native
2895
libraries:
2896

    
2897
@example
2898
qemu-i386 -L / /bin/ls
2899
@end example
2900

    
2901
@code{-L /} tells that the x86 dynamic linker must be searched with a
2902
@file{/} prefix.
2903

    
2904
@item Since QEMU is also a linux process, you can launch qemu with
2905
qemu (NOTE: you can only do that if you compiled QEMU from the sources):
2906

    
2907
@example
2908
qemu-i386 -L / qemu-i386 -L / /bin/ls
2909
@end example
2910

    
2911
@item On non x86 CPUs, you need first to download at least an x86 glibc
2912
(@file{qemu-runtime-i386-XXX-.tar.gz} on the QEMU web page). Ensure that
2913
@code{LD_LIBRARY_PATH} is not set:
2914

    
2915
@example
2916
unset LD_LIBRARY_PATH
2917
@end example
2918

    
2919
Then you can launch the precompiled @file{ls} x86 executable:
2920

    
2921
@example
2922
qemu-i386 tests/i386/ls
2923
@end example
2924
You can look at @file{qemu-binfmt-conf.sh} so that
2925
QEMU is automatically launched by the Linux kernel when you try to
2926
launch x86 executables. It requires the @code{binfmt_misc} module in the
2927
Linux kernel.
2928

    
2929
@item The x86 version of QEMU is also included. You can try weird things such as:
2930
@example
2931
qemu-i386 /usr/local/qemu-i386/bin/qemu-i386 \
2932
          /usr/local/qemu-i386/bin/ls-i386
2933
@end example
2934

    
2935
@end itemize
2936

    
2937
@node Wine launch
2938
@subsection Wine launch
2939

    
2940
@itemize
2941

    
2942
@item Ensure that you have a working QEMU with the x86 glibc
2943
distribution (see previous section). In order to verify it, you must be
2944
able to do:
2945

    
2946
@example
2947
qemu-i386 /usr/local/qemu-i386/bin/ls-i386
2948
@end example
2949

    
2950
@item Download the binary x86 Wine install
2951
(@file{qemu-XXX-i386-wine.tar.gz} on the QEMU web page).
2952

    
2953
@item Configure Wine on your account. Look at the provided script
2954
@file{/usr/local/qemu-i386/@/bin/wine-conf.sh}. Your previous
2955
@code{$@{HOME@}/.wine} directory is saved to @code{$@{HOME@}/.wine.org}.
2956

    
2957
@item Then you can try the example @file{putty.exe}:
2958

    
2959
@example
2960
qemu-i386 /usr/local/qemu-i386/wine/bin/wine \
2961
          /usr/local/qemu-i386/wine/c/Program\ Files/putty.exe
2962
@end example
2963

    
2964
@end itemize
2965

    
2966
@node Command line options
2967
@subsection Command line options
2968

    
2969
@example
2970
usage: qemu-i386 [-h] [-d] [-L path] [-s size] [-cpu model] [-g port] program [arguments...]
2971
@end example
2972

    
2973
@table @option
2974
@item -h
2975
Print the help
2976
@item -L path
2977
Set the x86 elf interpreter prefix (default=/usr/local/qemu-i386)
2978
@item -s size
2979
Set the x86 stack size in bytes (default=524288)
2980
@item -cpu model
2981
Select CPU model (-cpu ? for list and additional feature selection)
2982
@end table
2983

    
2984
Debug options:
2985

    
2986
@table @option
2987
@item -d
2988
Activate log (logfile=/tmp/qemu.log)
2989
@item -p pagesize
2990
Act as if the host page size was 'pagesize' bytes
2991
@item -g port
2992
Wait gdb connection to port
2993
@end table
2994

    
2995
Environment variables:
2996

    
2997
@table @env
2998
@item QEMU_STRACE
2999
Print system calls and arguments similar to the 'strace' program
3000
(NOTE: the actual 'strace' program will not work because the user
3001
space emulator hasn't implemented ptrace).  At the moment this is
3002
incomplete.  All system calls that don't have a specific argument
3003
format are printed with information for six arguments.  Many
3004
flag-style arguments don't have decoders and will show up as numbers.
3005
@end table
3006

    
3007
@node Other binaries
3008
@subsection Other binaries
3009

    
3010
@command{qemu-arm} is also capable of running ARM "Angel" semihosted ELF
3011
binaries (as implemented by the arm-elf and arm-eabi Newlib/GDB
3012
configurations), and arm-uclinux bFLT format binaries.
3013

    
3014
@command{qemu-m68k} is capable of running semihosted binaries using the BDM
3015
(m5xxx-ram-hosted.ld) or m68k-sim (sim.ld) syscall interfaces, and
3016
coldfire uClinux bFLT format binaries.
3017

    
3018
The binary format is detected automatically.
3019

    
3020
@command{qemu-sparc} can execute Sparc32 binaries (Sparc32 CPU, 32 bit ABI).
3021

    
3022
@command{qemu-sparc32plus} can execute Sparc32 and SPARC32PLUS binaries
3023
(Sparc64 CPU, 32 bit ABI).
3024

    
3025
@command{qemu-sparc64} can execute some Sparc64 (Sparc64 CPU, 64 bit ABI) and
3026
SPARC32PLUS binaries (Sparc64 CPU, 32 bit ABI).
3027

    
3028
@node Mac OS X/Darwin User space emulator
3029
@section Mac OS X/Darwin User space emulator
3030

    
3031
@menu
3032
* Mac OS X/Darwin Status::
3033
* Mac OS X/Darwin Quick Start::
3034
* Mac OS X/Darwin Command line options::
3035
@end menu
3036

    
3037
@node Mac OS X/Darwin Status
3038
@subsection Mac OS X/Darwin Status
3039

    
3040
@itemize @minus
3041
@item
3042
target x86 on x86: Most apps (Cocoa and Carbon too) works. [1]
3043
@item
3044
target PowerPC on x86: Not working as the ppc commpage can't be mapped (yet!)
3045
@item
3046
target PowerPC on PowerPC: Most apps (Cocoa and Carbon too) works. [1]
3047
@item
3048
target x86 on PowerPC: most utilities work. Cocoa and Carbon apps are not yet supported.
3049
@end itemize
3050

    
3051
[1] If you're host commpage can be executed by qemu.
3052

    
3053
@node Mac OS X/Darwin Quick Start
3054
@subsection Quick Start
3055

    
3056
In order to launch a Mac OS X/Darwin process, QEMU needs the process executable
3057
itself and all the target dynamic libraries used by it. If you don't have the FAT
3058
libraries (you're running Mac OS X/ppc) you'll need to obtain it from a Mac OS X
3059
CD or compile them by hand.
3060

    
3061
@itemize
3062

    
3063
@item On x86, you can just try to launch any process by using the native
3064
libraries:
3065

    
3066
@example
3067
qemu-i386 /bin/ls
3068
@end example
3069

    
3070
or to run the ppc version of the executable:
3071

    
3072
@example
3073
qemu-ppc /bin/ls
3074
@end example
3075

    
3076
@item On ppc, you'll have to tell qemu where your x86 libraries (and dynamic linker)
3077
are installed:
3078

    
3079
@example
3080
qemu-i386 -L /opt/x86_root/ /bin/ls
3081
@end example
3082

    
3083
@code{-L /opt/x86_root/} tells that the dynamic linker (dyld) path is in
3084
@file{/opt/x86_root/usr/bin/dyld}.
3085

    
3086
@end itemize
3087

    
3088
@node Mac OS X/Darwin Command line options
3089
@subsection Command line options
3090

    
3091
@example
3092
usage: qemu-i386 [-h] [-d] [-L path] [-s size] program [arguments...]
3093
@end example
3094

    
3095
@table @option
3096
@item -h
3097
Print the help
3098
@item -L path
3099
Set the library root path (default=/)
3100
@item -s size
3101
Set the stack size in bytes (default=524288)
3102
@end table
3103

    
3104
Debug options:
3105

    
3106
@table @option
3107
@item -d
3108
Activate log (logfile=/tmp/qemu.log)
3109
@item -p pagesize
3110
Act as if the host page size was 'pagesize' bytes
3111
@end table
3112

    
3113
@node BSD User space emulator
3114
@section BSD User space emulator
3115

    
3116
@menu
3117
* BSD Status::
3118
* BSD Quick Start::
3119
* BSD Command line options::
3120
@end menu
3121

    
3122
@node BSD Status
3123
@subsection BSD Status
3124

    
3125
@itemize @minus
3126
@item
3127
target Sparc64 on Sparc64: Some trivial programs work.
3128
@end itemize
3129

    
3130
@node BSD Quick Start
3131
@subsection Quick Start
3132

    
3133
In order to launch a BSD process, QEMU needs the process executable
3134
itself and all the target dynamic libraries used by it.
3135

    
3136
@itemize
3137

    
3138
@item On Sparc64, you can just try to launch any process by using the native
3139
libraries:
3140

    
3141
@example
3142
qemu-sparc64 /bin/ls
3143
@end example
3144

    
3145
@end itemize
3146

    
3147
@node BSD Command line options
3148
@subsection Command line options
3149

    
3150
@example
3151
usage: qemu-sparc64 [-h] [-d] [-L path] [-s size] [-bsd type] program [arguments...]
3152
@end example
3153

    
3154
@table @option
3155
@item -h
3156
Print the help
3157
@item -L path
3158
Set the library root path (default=/)
3159
@item -s size
3160
Set the stack size in bytes (default=524288)
3161
@item -bsd type
3162
Set the type of the emulated BSD Operating system. Valid values are
3163
FreeBSD, NetBSD and OpenBSD (default).
3164
@end table
3165

    
3166
Debug options:
3167

    
3168
@table @option
3169
@item -d
3170
Activate log (logfile=/tmp/qemu.log)
3171
@item -p pagesize
3172
Act as if the host page size was 'pagesize' bytes
3173
@end table
3174

    
3175
@node compilation
3176
@chapter Compilation from the sources
3177

    
3178
@menu
3179
* Linux/Unix::
3180
* Windows::
3181
* Cross compilation for Windows with Linux::
3182
* Mac OS X::
3183
@end menu
3184

    
3185
@node Linux/Unix
3186
@section Linux/Unix
3187

    
3188
@subsection Compilation
3189

    
3190
First you must decompress the sources:
3191
@example
3192
cd /tmp
3193
tar zxvf qemu-x.y.z.tar.gz
3194
cd qemu-x.y.z
3195
@end example
3196

    
3197
Then you configure QEMU and build it (usually no options are needed):
3198
@example
3199
./configure
3200
make
3201
@end example
3202

    
3203
Then type as root user:
3204
@example
3205
make install
3206
@end example
3207
to install QEMU in @file{/usr/local}.
3208

    
3209
@subsection GCC version
3210

    
3211
In order to compile QEMU successfully, it is very important that you
3212
have the right tools. The most important one is gcc. On most hosts and
3213
in particular on x86 ones, @emph{gcc 4.x is not supported}. If your
3214
Linux distribution includes a gcc 4.x compiler, you can usually
3215
install an older version (it is invoked by @code{gcc32} or
3216
@code{gcc34}). The QEMU configure script automatically probes for
3217
these older versions so that usually you don't have to do anything.
3218

    
3219
@node Windows
3220
@section Windows
3221

    
3222
@itemize
3223
@item Install the current versions of MSYS and MinGW from
3224
@url{http://www.mingw.org/}. You can find detailed installation
3225
instructions in the download section and the FAQ.
3226

    
3227
@item Download
3228
the MinGW development library of SDL 1.2.x
3229
(@file{SDL-devel-1.2.x-@/mingw32.tar.gz}) from
3230
@url{http://www.libsdl.org}. Unpack it in a temporary place, and
3231
unpack the archive @file{i386-mingw32msvc.tar.gz} in the MinGW tool
3232
directory. Edit the @file{sdl-config} script so that it gives the
3233
correct SDL directory when invoked.
3234

    
3235
@item Extract the current version of QEMU.
3236

    
3237
@item Start the MSYS shell (file @file{msys.bat}).
3238

    
3239
@item Change to the QEMU directory. Launch @file{./configure} and
3240
@file{make}.  If you have problems using SDL, verify that
3241
@file{sdl-config} can be launched from the MSYS command line.
3242

    
3243
@item You can install QEMU in @file{Program Files/Qemu} by typing
3244
@file{make install}. Don't forget to copy @file{SDL.dll} in
3245
@file{Program Files/Qemu}.
3246

    
3247
@end itemize
3248

    
3249
@node Cross compilation for Windows with Linux
3250
@section Cross compilation for Windows with Linux
3251

    
3252
@itemize
3253
@item
3254
Install the MinGW cross compilation tools available at
3255
@url{http://www.mingw.org/}.
3256

    
3257
@item
3258
Install the Win32 version of SDL (@url{http://www.libsdl.org}) by
3259
unpacking @file{i386-mingw32msvc.tar.gz}. Set up the PATH environment
3260
variable so that @file{i386-mingw32msvc-sdl-config} can be launched by
3261
the QEMU configuration script.
3262

    
3263
@item
3264
Configure QEMU for Windows cross compilation:
3265
@example
3266
./configure --enable-mingw32
3267
@end example
3268
If necessary, you can change the cross-prefix according to the prefix
3269
chosen for the MinGW tools with --cross-prefix. You can also use
3270
--prefix to set the Win32 install path.
3271

    
3272
@item You can install QEMU in the installation directory by typing
3273
@file{make install}. Don't forget to copy @file{SDL.dll} in the
3274
installation directory.
3275

    
3276
@end itemize
3277

    
3278
Note: Currently, Wine does not seem able to launch
3279
QEMU for Win32.
3280

    
3281
@node Mac OS X
3282
@section Mac OS X
3283

    
3284
The Mac OS X patches are not fully merged in QEMU, so you should look
3285
at the QEMU mailing list archive to have all the necessary
3286
information.
3287

    
3288
@node Index
3289
@chapter Index
3290
@printindex cp
3291

    
3292
@bye