Statistics
| Branch: | Revision:

root / hw / fw_cfg.c @ 99a0949b

History | View | Annotate | Download (7.5 kB)

1
/*
2
 * QEMU Firmware configuration device emulation
3
 *
4
 * Copyright (c) 2008 Gleb Natapov
5
 *
6
 * Permission is hereby granted, free of charge, to any person obtaining a copy
7
 * of this software and associated documentation files (the "Software"), to deal
8
 * in the Software without restriction, including without limitation the rights
9
 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10
 * copies of the Software, and to permit persons to whom the Software is
11
 * furnished to do so, subject to the following conditions:
12
 *
13
 * The above copyright notice and this permission notice shall be included in
14
 * all copies or substantial portions of the Software.
15
 *
16
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21
 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22
 * THE SOFTWARE.
23
 */
24
#include "hw.h"
25
#include "sysemu.h"
26
#include "isa.h"
27
#include "fw_cfg.h"
28

    
29
/* debug firmware config */
30
//#define DEBUG_FW_CFG
31

    
32
#ifdef DEBUG_FW_CFG
33
#define FW_CFG_DPRINTF(fmt, ...)                        \
34
    do { printf("FW_CFG: " fmt , ## __VA_ARGS__); } while (0)
35
#else
36
#define FW_CFG_DPRINTF(fmt, ...)
37
#endif
38

    
39
#define FW_CFG_SIZE 2
40

    
41
typedef struct _FWCfgEntry {
42
    uint16_t len;
43
    uint8_t *data;
44
    void *callback_opaque;
45
    FWCfgCallback callback;
46
} FWCfgEntry;
47

    
48
typedef struct _FWCfgState {
49
    FWCfgEntry entries[2][FW_CFG_MAX_ENTRY];
50
    uint16_t cur_entry;
51
    uint16_t cur_offset;
52
} FWCfgState;
53

    
54
static void fw_cfg_write(FWCfgState *s, uint8_t value)
55
{
56
    int arch = !!(s->cur_entry & FW_CFG_ARCH_LOCAL);
57
    FWCfgEntry *e = &s->entries[arch][s->cur_entry & FW_CFG_ENTRY_MASK];
58

    
59
    FW_CFG_DPRINTF("write %d\n", value);
60

    
61
    if (s->cur_entry & FW_CFG_WRITE_CHANNEL && s->cur_offset < e->len) {
62
        e->data[s->cur_offset++] = value;
63
        if (s->cur_offset == e->len) {
64
            e->callback(e->callback_opaque, e->data);
65
            s->cur_offset = 0;
66
        }
67
    }
68
}
69

    
70
static int fw_cfg_select(FWCfgState *s, uint16_t key)
71
{
72
    int ret;
73

    
74
    s->cur_offset = 0;
75
    if ((key & FW_CFG_ENTRY_MASK) >= FW_CFG_MAX_ENTRY) {
76
        s->cur_entry = FW_CFG_INVALID;
77
        ret = 0;
78
    } else {
79
        s->cur_entry = key;
80
        ret = 1;
81
    }
82

    
83
    FW_CFG_DPRINTF("select key %d (%sfound)\n", key, ret ? "" : "not ");
84

    
85
    return ret;
86
}
87

    
88
static uint8_t fw_cfg_read(FWCfgState *s)
89
{
90
    int arch = !!(s->cur_entry & FW_CFG_ARCH_LOCAL);
91
    FWCfgEntry *e = &s->entries[arch][s->cur_entry & FW_CFG_ENTRY_MASK];
92
    uint8_t ret;
93

    
94
    if (s->cur_entry == FW_CFG_INVALID || !e->data || s->cur_offset >= e->len)
95
        ret = 0;
96
    else
97
        ret = e->data[s->cur_offset++];
98

    
99
    FW_CFG_DPRINTF("read %d\n", ret);
100

    
101
    return ret;
102
}
103

    
104
static uint32_t fw_cfg_io_readb(void *opaque, uint32_t addr)
105
{
106
    return fw_cfg_read(opaque);
107
}
108

    
109
static void fw_cfg_io_writeb(void *opaque, uint32_t addr, uint32_t value)
110
{
111
    fw_cfg_write(opaque, (uint8_t)value);
112
}
113

    
114
static void fw_cfg_io_writew(void *opaque, uint32_t addr, uint32_t value)
115
{
116
    fw_cfg_select(opaque, (uint16_t)value);
117
}
118

    
119
static uint32_t fw_cfg_mem_readb(void *opaque, a_target_phys_addr addr)
120
{
121
    return fw_cfg_read(opaque);
122
}
123

    
124
static void fw_cfg_mem_writeb(void *opaque, a_target_phys_addr addr,
125
                              uint32_t value)
126
{
127
    fw_cfg_write(opaque, (uint8_t)value);
128
}
129

    
130
static void fw_cfg_mem_writew(void *opaque, a_target_phys_addr addr,
131
                              uint32_t value)
132
{
133
    fw_cfg_select(opaque, (uint16_t)value);
134
}
135

    
136
static CPUReadMemoryFunc * const fw_cfg_ctl_mem_read[3] = {
137
    NULL,
138
    NULL,
139
    NULL,
140
};
141

    
142
static CPUWriteMemoryFunc * const fw_cfg_ctl_mem_write[3] = {
143
    NULL,
144
    fw_cfg_mem_writew,
145
    NULL,
146
};
147

    
148
static CPUReadMemoryFunc * const fw_cfg_data_mem_read[3] = {
149
    fw_cfg_mem_readb,
150
    NULL,
151
    NULL,
152
};
153

    
154
static CPUWriteMemoryFunc * const fw_cfg_data_mem_write[3] = {
155
    fw_cfg_mem_writeb,
156
    NULL,
157
    NULL,
158
};
159

    
160
static void fw_cfg_reset(void *opaque)
161
{
162
    FWCfgState *s = opaque;
163

    
164
    fw_cfg_select(s, 0);
165
}
166

    
167
static const VMStateDescription vmstate_fw_cfg = {
168
    .name = "fw_cfg",
169
    .version_id = 1,
170
    .minimum_version_id = 1,
171
    .minimum_version_id_old = 1,
172
    .fields      = (VMStateField []) {
173
        VMSTATE_UINT16(cur_entry, FWCfgState),
174
        VMSTATE_UINT16(cur_offset, FWCfgState),
175
        VMSTATE_END_OF_LIST()
176
    }
177
};
178

    
179
int fw_cfg_add_bytes(void *opaque, uint16_t key, uint8_t *data, uint16_t len)
180
{
181
    FWCfgState *s = opaque;
182
    int arch = !!(key & FW_CFG_ARCH_LOCAL);
183

    
184
    key &= FW_CFG_ENTRY_MASK;
185

    
186
    if (key >= FW_CFG_MAX_ENTRY)
187
        return 0;
188

    
189
    s->entries[arch][key].data = data;
190
    s->entries[arch][key].len = len;
191

    
192
    return 1;
193
}
194

    
195
int fw_cfg_add_i16(void *opaque, uint16_t key, uint16_t value)
196
{
197
    uint16_t *copy;
198

    
199
    copy = qemu_malloc(sizeof(value));
200
    *copy = cpu_to_le16(value);
201
    return fw_cfg_add_bytes(opaque, key, (uint8_t *)copy, sizeof(value));
202
}
203

    
204
int fw_cfg_add_i32(void *opaque, uint16_t key, uint32_t value)
205
{
206
    uint32_t *copy;
207

    
208
    copy = qemu_malloc(sizeof(value));
209
    *copy = cpu_to_le32(value);
210
    return fw_cfg_add_bytes(opaque, key, (uint8_t *)copy, sizeof(value));
211
}
212

    
213
int fw_cfg_add_i64(void *opaque, uint16_t key, uint64_t value)
214
{
215
    uint64_t *copy;
216

    
217
    copy = qemu_malloc(sizeof(value));
218
    *copy = cpu_to_le64(value);
219
    return fw_cfg_add_bytes(opaque, key, (uint8_t *)copy, sizeof(value));
220
}
221

    
222
int fw_cfg_add_callback(void *opaque, uint16_t key, FWCfgCallback callback,
223
                        void *callback_opaque, uint8_t *data, size_t len)
224
{
225
    FWCfgState *s = opaque;
226
    int arch = !!(key & FW_CFG_ARCH_LOCAL);
227

    
228
    if (!(key & FW_CFG_WRITE_CHANNEL))
229
        return 0;
230

    
231
    key &= FW_CFG_ENTRY_MASK;
232

    
233
    if (key >= FW_CFG_MAX_ENTRY || len > 65535)
234
        return 0;
235

    
236
    s->entries[arch][key].data = data;
237
    s->entries[arch][key].len = len;
238
    s->entries[arch][key].callback_opaque = callback_opaque;
239
    s->entries[arch][key].callback = callback;
240

    
241
    return 1;
242
}
243

    
244
void *fw_cfg_init(uint32_t ctl_port, uint32_t data_port,
245
                a_target_phys_addr ctl_addr, a_target_phys_addr data_addr)
246
{
247
    FWCfgState *s;
248
    int io_ctl_memory, io_data_memory;
249

    
250
    s = qemu_mallocz(sizeof(FWCfgState));
251

    
252
    if (ctl_port) {
253
        register_ioport_write(ctl_port, 2, 2, fw_cfg_io_writew, s);
254
    }
255
    if (data_port) {
256
        register_ioport_read(data_port, 1, 1, fw_cfg_io_readb, s);
257
        register_ioport_write(data_port, 1, 1, fw_cfg_io_writeb, s);
258
    }
259
    if (ctl_addr) {
260
        io_ctl_memory = cpu_register_io_memory(fw_cfg_ctl_mem_read,
261
                                           fw_cfg_ctl_mem_write, s);
262
        cpu_register_physical_memory(ctl_addr, FW_CFG_SIZE, io_ctl_memory);
263
    }
264
    if (data_addr) {
265
        io_data_memory = cpu_register_io_memory(fw_cfg_data_mem_read,
266
                                           fw_cfg_data_mem_write, s);
267
        cpu_register_physical_memory(data_addr, FW_CFG_SIZE, io_data_memory);
268
    }
269
    fw_cfg_add_bytes(s, FW_CFG_SIGNATURE, (uint8_t *)"QEMU", 4);
270
    fw_cfg_add_bytes(s, FW_CFG_UUID, qemu_uuid, 16);
271
    fw_cfg_add_i16(s, FW_CFG_NOGRAPHIC, (uint16_t)(display_type == DT_NOGRAPHIC));
272
    fw_cfg_add_i16(s, FW_CFG_NB_CPUS, (uint16_t)smp_cpus);
273
    fw_cfg_add_i16(s, FW_CFG_MAX_CPUS, (uint16_t)max_cpus);
274
    fw_cfg_add_i16(s, FW_CFG_BOOT_MENU, (uint16_t)boot_menu);
275

    
276
    vmstate_register(-1, &vmstate_fw_cfg, s);
277
    qemu_register_reset(fw_cfg_reset, s);
278
    fw_cfg_reset(s);
279

    
280
    return s;
281
}