Statistics
| Branch: | Revision:

root / hw / sun4u.c @ 99a0949b

History | View | Annotate | Download (22.1 kB)

1
/*
2
 * QEMU Sun4u/Sun4v System Emulator
3
 *
4
 * Copyright (c) 2005 Fabrice Bellard
5
 *
6
 * Permission is hereby granted, free of charge, to any person obtaining a copy
7
 * of this software and associated documentation files (the "Software"), to deal
8
 * in the Software without restriction, including without limitation the rights
9
 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10
 * copies of the Software, and to permit persons to whom the Software is
11
 * furnished to do so, subject to the following conditions:
12
 *
13
 * The above copyright notice and this permission notice shall be included in
14
 * all copies or substantial portions of the Software.
15
 *
16
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21
 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22
 * THE SOFTWARE.
23
 */
24
#include "hw.h"
25
#include "pci.h"
26
#include "pc.h"
27
#include "nvram.h"
28
#include "fdc.h"
29
#include "net.h"
30
#include "qemu-timer.h"
31
#include "sysemu.h"
32
#include "boards.h"
33
#include "firmware_abi.h"
34
#include "fw_cfg.h"
35
#include "sysbus.h"
36
#include "ide.h"
37
#include "loader.h"
38
#include "elf.h"
39

    
40
//#define DEBUG_IRQ
41

    
42
#ifdef DEBUG_IRQ
43
#define DPRINTF(fmt, ...)                                       \
44
    do { printf("CPUIRQ: " fmt , ## __VA_ARGS__); } while (0)
45
#else
46
#define DPRINTF(fmt, ...)
47
#endif
48

    
49
#define KERNEL_LOAD_ADDR     0x00404000
50
#define CMDLINE_ADDR         0x003ff000
51
#define INITRD_LOAD_ADDR     0x00300000
52
#define PROM_SIZE_MAX        (4 * 1024 * 1024)
53
#define PROM_VADDR           0x000ffd00000ULL
54
#define APB_SPECIAL_BASE     0x1fe00000000ULL
55
#define APB_MEM_BASE         0x1ff00000000ULL
56
#define VGA_BASE             (APB_MEM_BASE + 0x400000ULL)
57
#define PROM_FILENAME        "openbios-sparc64"
58
#define NVRAM_SIZE           0x2000
59
#define MAX_IDE_BUS          2
60
#define BIOS_CFG_IOPORT      0x510
61
#define FW_CFG_SPARC64_WIDTH (FW_CFG_ARCH_LOCAL + 0x00)
62
#define FW_CFG_SPARC64_HEIGHT (FW_CFG_ARCH_LOCAL + 0x01)
63
#define FW_CFG_SPARC64_DEPTH (FW_CFG_ARCH_LOCAL + 0x02)
64

    
65
#define MAX_PILS 16
66

    
67
#define TICK_INT_DIS         0x8000000000000000ULL
68
#define TICK_MAX             0x7fffffffffffffffULL
69

    
70
struct hwdef {
71
    const char * const default_cpu_model;
72
    uint16_t machine_id;
73
    uint64_t prom_addr;
74
    uint64_t console_serial_base;
75
};
76

    
77
int DMA_get_channel_mode (int nchan)
78
{
79
    return 0;
80
}
81
int DMA_read_memory (int nchan, void *buf, int pos, int size)
82
{
83
    return 0;
84
}
85
int DMA_write_memory (int nchan, void *buf, int pos, int size)
86
{
87
    return 0;
88
}
89
void DMA_hold_DREQ (int nchan) {}
90
void DMA_release_DREQ (int nchan) {}
91
void DMA_schedule(int nchan) {}
92
void DMA_init (int high_page_enable) {}
93
void DMA_register_channel (int nchan,
94
                           DMA_transfer_handler transfer_handler,
95
                           void *opaque)
96
{
97
}
98

    
99
static int fw_cfg_boot_set(void *opaque, const char *boot_device)
100
{
101
    fw_cfg_add_i16(opaque, FW_CFG_BOOT_DEVICE, boot_device[0]);
102
    return 0;
103
}
104

    
105
static int sun4u_NVRAM_set_params (a_m48t59 *nvram, uint16_t NVRAM_size,
106
                                   const char *arch,
107
                                   a_ram_addr RAM_size,
108
                                   const char *boot_devices,
109
                                   uint32_t kernel_image, uint32_t kernel_size,
110
                                   const char *cmdline,
111
                                   uint32_t initrd_image, uint32_t initrd_size,
112
                                   uint32_t NVRAM_image,
113
                                   int width, int height, int depth,
114
                                   const uint8_t *macaddr)
115
{
116
    unsigned int i;
117
    uint32_t start, end;
118
    uint8_t image[0x1ff0];
119
    struct OpenBIOS_nvpart_v1 *part_header;
120

    
121
    memset(image, '\0', sizeof(image));
122

    
123
    start = 0;
124

    
125
    // OpenBIOS nvram variables
126
    // Variable partition
127
    part_header = (struct OpenBIOS_nvpart_v1 *)&image[start];
128
    part_header->signature = OPENBIOS_PART_SYSTEM;
129
    pstrcpy(part_header->name, sizeof(part_header->name), "system");
130

    
131
    end = start + sizeof(struct OpenBIOS_nvpart_v1);
132
    for (i = 0; i < nb_prom_envs; i++)
133
        end = OpenBIOS_set_var(image, end, prom_envs[i]);
134

    
135
    // End marker
136
    image[end++] = '\0';
137

    
138
    end = start + ((end - start + 15) & ~15);
139
    OpenBIOS_finish_partition(part_header, end - start);
140

    
141
    // free partition
142
    start = end;
143
    part_header = (struct OpenBIOS_nvpart_v1 *)&image[start];
144
    part_header->signature = OPENBIOS_PART_FREE;
145
    pstrcpy(part_header->name, sizeof(part_header->name), "free");
146

    
147
    end = 0x1fd0;
148
    OpenBIOS_finish_partition(part_header, end - start);
149

    
150
    Sun_init_header((struct Sun_nvram *)&image[0x1fd8], macaddr, 0x80);
151

    
152
    for (i = 0; i < sizeof(image); i++)
153
        m48t59_write(nvram, i, image[i]);
154

    
155
    return 0;
156
}
157
static unsigned long sun4u_load_kernel(const char *kernel_filename,
158
                                       const char *initrd_filename,
159
                                       a_ram_addr RAM_size, long *initrd_size)
160
{
161
    int linux_boot;
162
    unsigned int i;
163
    long kernel_size;
164

    
165
    linux_boot = (kernel_filename != NULL);
166

    
167
    kernel_size = 0;
168
    if (linux_boot) {
169
        int bswap_needed;
170

    
171
#ifdef BSWAP_NEEDED
172
        bswap_needed = 1;
173
#else
174
        bswap_needed = 0;
175
#endif
176
        kernel_size = load_elf(kernel_filename, 0, NULL, NULL, NULL,
177
                               1, ELF_MACHINE, 0);
178
        if (kernel_size < 0)
179
            kernel_size = load_aout(kernel_filename, KERNEL_LOAD_ADDR,
180
                                    RAM_size - KERNEL_LOAD_ADDR, bswap_needed,
181
                                    TARGET_PAGE_SIZE);
182
        if (kernel_size < 0)
183
            kernel_size = load_image_targphys(kernel_filename,
184
                                              KERNEL_LOAD_ADDR,
185
                                              RAM_size - KERNEL_LOAD_ADDR);
186
        if (kernel_size < 0) {
187
            fprintf(stderr, "qemu: could not load kernel '%s'\n",
188
                    kernel_filename);
189
            exit(1);
190
        }
191

    
192
        /* load initrd */
193
        *initrd_size = 0;
194
        if (initrd_filename) {
195
            *initrd_size = load_image_targphys(initrd_filename,
196
                                               INITRD_LOAD_ADDR,
197
                                               RAM_size - INITRD_LOAD_ADDR);
198
            if (*initrd_size < 0) {
199
                fprintf(stderr, "qemu: could not load initial ram disk '%s'\n",
200
                        initrd_filename);
201
                exit(1);
202
            }
203
        }
204
        if (*initrd_size > 0) {
205
            for (i = 0; i < 64 * TARGET_PAGE_SIZE; i += TARGET_PAGE_SIZE) {
206
                if (ldl_phys(KERNEL_LOAD_ADDR + i) == 0x48647253) { // HdrS
207
                    stl_phys(KERNEL_LOAD_ADDR + i + 16, INITRD_LOAD_ADDR);
208
                    stl_phys(KERNEL_LOAD_ADDR + i + 20, *initrd_size);
209
                    break;
210
                }
211
            }
212
        }
213
    }
214
    return kernel_size;
215
}
216

    
217
void pic_info(Monitor *mon)
218
{
219
}
220

    
221
void irq_info(Monitor *mon)
222
{
223
}
224

    
225
void cpu_check_irqs(CPUState *env)
226
{
227
    uint32_t pil = env->pil_in | (env->softint & ~SOFTINT_TIMER) |
228
        ((env->softint & SOFTINT_TIMER) << 14);
229

    
230
    if (pil && (env->interrupt_index == 0 ||
231
                (env->interrupt_index & ~15) == TT_EXTINT)) {
232
        unsigned int i;
233

    
234
        for (i = 15; i > 0; i--) {
235
            if (pil & (1 << i)) {
236
                int old_interrupt = env->interrupt_index;
237

    
238
                env->interrupt_index = TT_EXTINT | i;
239
                if (old_interrupt != env->interrupt_index) {
240
                    DPRINTF("Set CPU IRQ %d\n", i);
241
                    cpu_interrupt(env, CPU_INTERRUPT_HARD);
242
                }
243
                break;
244
            }
245
        }
246
    } else if (!pil && (env->interrupt_index & ~15) == TT_EXTINT) {
247
        DPRINTF("Reset CPU IRQ %d\n", env->interrupt_index & 15);
248
        env->interrupt_index = 0;
249
        cpu_reset_interrupt(env, CPU_INTERRUPT_HARD);
250
    }
251
}
252

    
253
static void cpu_set_irq(void *opaque, int irq, int level)
254
{
255
    CPUState *env = opaque;
256

    
257
    if (level) {
258
        DPRINTF("Raise CPU IRQ %d\n", irq);
259
        env->halted = 0;
260
        env->pil_in |= 1 << irq;
261
        cpu_check_irqs(env);
262
    } else {
263
        DPRINTF("Lower CPU IRQ %d\n", irq);
264
        env->pil_in &= ~(1 << irq);
265
        cpu_check_irqs(env);
266
    }
267
}
268

    
269
typedef struct ResetData {
270
    CPUState *env;
271
    uint64_t reset_addr;
272
} ResetData;
273

    
274
static void main_cpu_reset(void *opaque)
275
{
276
    ResetData *s = (ResetData *)opaque;
277
    CPUState *env = s->env;
278

    
279
    cpu_reset(env);
280
    env->tick_cmpr = TICK_INT_DIS | 0;
281
    ptimer_set_limit(env->tick, TICK_MAX, 1);
282
    ptimer_run(env->tick, 1);
283
    env->stick_cmpr = TICK_INT_DIS | 0;
284
    ptimer_set_limit(env->stick, TICK_MAX, 1);
285
    ptimer_run(env->stick, 1);
286
    env->hstick_cmpr = TICK_INT_DIS | 0;
287
    ptimer_set_limit(env->hstick, TICK_MAX, 1);
288
    ptimer_run(env->hstick, 1);
289
    env->gregs[1] = 0; // Memory start
290
    env->gregs[2] = ram_size; // Memory size
291
    env->gregs[3] = 0; // Machine description XXX
292
    env->pc = s->reset_addr;
293
    env->npc = env->pc + 4;
294
}
295

    
296
static void tick_irq(void *opaque)
297
{
298
    CPUState *env = opaque;
299

    
300
    if (!(env->tick_cmpr & TICK_INT_DIS)) {
301
        env->softint |= SOFTINT_TIMER;
302
        cpu_interrupt(env, CPU_INTERRUPT_TIMER);
303
    }
304
}
305

    
306
static void stick_irq(void *opaque)
307
{
308
    CPUState *env = opaque;
309

    
310
    if (!(env->stick_cmpr & TICK_INT_DIS)) {
311
        env->softint |= SOFTINT_STIMER;
312
        cpu_interrupt(env, CPU_INTERRUPT_TIMER);
313
    }
314
}
315

    
316
static void hstick_irq(void *opaque)
317
{
318
    CPUState *env = opaque;
319

    
320
    if (!(env->hstick_cmpr & TICK_INT_DIS)) {
321
        cpu_interrupt(env, CPU_INTERRUPT_TIMER);
322
    }
323
}
324

    
325
void cpu_tick_set_count(void *opaque, uint64_t count)
326
{
327
    ptimer_set_count(opaque, -count);
328
}
329

    
330
uint64_t cpu_tick_get_count(void *opaque)
331
{
332
    return -ptimer_get_count(opaque);
333
}
334

    
335
void cpu_tick_set_limit(void *opaque, uint64_t limit)
336
{
337
    ptimer_set_limit(opaque, -limit, 0);
338
}
339

    
340
static const int serial_io[MAX_SERIAL_PORTS] = { 0x3f8, 0x2f8, 0x3e8, 0x2e8 };
341
static const int serial_irq[MAX_SERIAL_PORTS] = { 4, 3, 4, 3 };
342

    
343
static const int parallel_io[MAX_PARALLEL_PORTS] = { 0x378, 0x278, 0x3bc };
344
static const int parallel_irq[MAX_PARALLEL_PORTS] = { 7, 7, 7 };
345

    
346
static void ebus_mmio_mapfunc(PCIDevice *pci_dev, int region_num,
347
                              uint32_t addr, uint32_t size, int type)
348
{
349
    DPRINTF("Mapping region %d registers at %08x\n", region_num, addr);
350
    switch (region_num) {
351
    case 0:
352
        isa_mmio_init(addr, 0x1000000);
353
        break;
354
    case 1:
355
        isa_mmio_init(addr, 0x800000);
356
        break;
357
    }
358
}
359

    
360
static void dummy_isa_irq_handler(void *opaque, int n, int level)
361
{
362
}
363

    
364
/* EBUS (Eight bit bus) bridge */
365
static void
366
pci_ebus_init(PCIBus *bus, int devfn)
367
{
368
    qemu_irq *isa_irq;
369

    
370
    pci_create_simple(bus, devfn, "ebus");
371
    isa_irq = qemu_allocate_irqs(dummy_isa_irq_handler, NULL, 16);
372
    isa_bus_irqs(isa_irq);
373
}
374

    
375
static int
376
pci_ebus_init1(PCIDevice *s)
377
{
378
    isa_bus_new(&s->qdev);
379

    
380
    pci_config_set_vendor_id(s->config, PCI_VENDOR_ID_SUN);
381
    pci_config_set_device_id(s->config, PCI_DEVICE_ID_SUN_EBUS);
382
    s->config[0x04] = 0x06; // command = bus master, pci mem
383
    s->config[0x05] = 0x00;
384
    s->config[0x06] = 0xa0; // status = fast back-to-back, 66MHz, no error
385
    s->config[0x07] = 0x03; // status = medium devsel
386
    s->config[0x08] = 0x01; // revision
387
    s->config[0x09] = 0x00; // programming i/f
388
    pci_config_set_class(s->config, PCI_CLASS_BRIDGE_OTHER);
389
    s->config[0x0D] = 0x0a; // latency_timer
390
    s->config[PCI_HEADER_TYPE] = PCI_HEADER_TYPE_NORMAL; // header_type
391

    
392
    pci_register_bar(s, 0, 0x1000000, PCI_ADDRESS_SPACE_MEM,
393
                           ebus_mmio_mapfunc);
394
    pci_register_bar(s, 1, 0x800000,  PCI_ADDRESS_SPACE_MEM,
395
                           ebus_mmio_mapfunc);
396
    return 0;
397
}
398

    
399
static PCIDeviceInfo ebus_info = {
400
    .qdev.name = "ebus",
401
    .qdev.size = sizeof(PCIDevice),
402
    .init = pci_ebus_init1,
403
};
404

    
405
static void pci_ebus_register(void)
406
{
407
    pci_qdev_register(&ebus_info);
408
}
409

    
410
device_init(pci_ebus_register);
411

    
412
/* Boot PROM (OpenBIOS) */
413
static void prom_init(a_target_phys_addr addr, const char *bios_name)
414
{
415
    DeviceState *dev;
416
    SysBusDevice *s;
417
    char *filename;
418
    int ret;
419

    
420
    dev = qdev_create(NULL, "openprom");
421
    qdev_init(dev);
422
    s = sysbus_from_qdev(dev);
423

    
424
    sysbus_mmio_map(s, 0, addr);
425

    
426
    /* load boot prom */
427
    if (bios_name == NULL) {
428
        bios_name = PROM_FILENAME;
429
    }
430
    filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, bios_name);
431
    if (filename) {
432
        ret = load_elf(filename, addr - PROM_VADDR, NULL, NULL, NULL,
433
                       1, ELF_MACHINE, 0);
434
        if (ret < 0 || ret > PROM_SIZE_MAX) {
435
            ret = load_image_targphys(filename, addr, PROM_SIZE_MAX);
436
        }
437
        qemu_free(filename);
438
    } else {
439
        ret = -1;
440
    }
441
    if (ret < 0 || ret > PROM_SIZE_MAX) {
442
        fprintf(stderr, "qemu: could not load prom '%s'\n", bios_name);
443
        exit(1);
444
    }
445
}
446

    
447
static int prom_init1(SysBusDevice *dev)
448
{
449
    a_ram_addr prom_offset;
450

    
451
    prom_offset = qemu_ram_alloc(PROM_SIZE_MAX);
452
    sysbus_init_mmio(dev, PROM_SIZE_MAX, prom_offset | IO_MEM_ROM);
453
    return 0;
454
}
455

    
456
static SysBusDeviceInfo prom_info = {
457
    .init = prom_init1,
458
    .qdev.name  = "openprom",
459
    .qdev.size  = sizeof(SysBusDevice),
460
    .qdev.props = (Property[]) {
461
        {/* end of property list */}
462
    }
463
};
464

    
465
static void prom_register_devices(void)
466
{
467
    sysbus_register_withprop(&prom_info);
468
}
469

    
470
device_init(prom_register_devices);
471

    
472

    
473
typedef struct RamDevice
474
{
475
    SysBusDevice busdev;
476
    uint64_t size;
477
} RamDevice;
478

    
479
/* System RAM */
480
static int ram_init1(SysBusDevice *dev)
481
{
482
    a_ram_addr RAM_size, ram_offset;
483
    RamDevice *d = FROM_SYSBUS(RamDevice, dev);
484

    
485
    RAM_size = d->size;
486

    
487
    ram_offset = qemu_ram_alloc(RAM_size);
488
    sysbus_init_mmio(dev, RAM_size, ram_offset);
489
    return 0;
490
}
491

    
492
static void ram_init(a_target_phys_addr addr, a_ram_addr RAM_size)
493
{
494
    DeviceState *dev;
495
    SysBusDevice *s;
496
    RamDevice *d;
497

    
498
    /* allocate RAM */
499
    dev = qdev_create(NULL, "memory");
500
    s = sysbus_from_qdev(dev);
501

    
502
    d = FROM_SYSBUS(RamDevice, s);
503
    d->size = RAM_size;
504
    qdev_init(dev);
505

    
506
    sysbus_mmio_map(s, 0, addr);
507
}
508

    
509
static SysBusDeviceInfo ram_info = {
510
    .init = ram_init1,
511
    .qdev.name  = "memory",
512
    .qdev.size  = sizeof(RamDevice),
513
    .qdev.props = (Property[]) {
514
        DEFINE_PROP_UINT64("size", RamDevice, size, 0),
515
        DEFINE_PROP_END_OF_LIST(),
516
    }
517
};
518

    
519
static void ram_register_devices(void)
520
{
521
    sysbus_register_withprop(&ram_info);
522
}
523

    
524
device_init(ram_register_devices);
525

    
526
static CPUState *cpu_devinit(const char *cpu_model, const struct hwdef *hwdef)
527
{
528
    CPUState *env;
529
    QEMUBH *bh;
530
    ResetData *reset_info;
531

    
532
    if (!cpu_model)
533
        cpu_model = hwdef->default_cpu_model;
534
    env = cpu_init(cpu_model);
535
    if (!env) {
536
        fprintf(stderr, "Unable to find Sparc CPU definition\n");
537
        exit(1);
538
    }
539
    bh = qemu_bh_new(tick_irq, env);
540
    env->tick = ptimer_init(bh);
541
    ptimer_set_period(env->tick, 1ULL);
542

    
543
    bh = qemu_bh_new(stick_irq, env);
544
    env->stick = ptimer_init(bh);
545
    ptimer_set_period(env->stick, 1ULL);
546

    
547
    bh = qemu_bh_new(hstick_irq, env);
548
    env->hstick = ptimer_init(bh);
549
    ptimer_set_period(env->hstick, 1ULL);
550

    
551
    reset_info = qemu_mallocz(sizeof(ResetData));
552
    reset_info->env = env;
553
    reset_info->reset_addr = hwdef->prom_addr + 0x40ULL;
554
    qemu_register_reset(main_cpu_reset, reset_info);
555
    main_cpu_reset(reset_info);
556
    // Override warm reset address with cold start address
557
    env->pc = hwdef->prom_addr + 0x20ULL;
558
    env->npc = env->pc + 4;
559

    
560
    return env;
561
}
562

    
563
static void sun4uv_init(a_ram_addr RAM_size,
564
                        const char *boot_devices,
565
                        const char *kernel_filename, const char *kernel_cmdline,
566
                        const char *initrd_filename, const char *cpu_model,
567
                        const struct hwdef *hwdef)
568
{
569
    CPUState *env;
570
    a_m48t59 *nvram;
571
    unsigned int i;
572
    long initrd_size, kernel_size;
573
    PCIBus *pci_bus, *pci_bus2, *pci_bus3;
574
    qemu_irq *irq;
575
    DriveInfo *hd[MAX_IDE_BUS * MAX_IDE_DEVS];
576
    BlockDriverState *fd[MAX_FD];
577
    void *fw_cfg;
578
    DriveInfo *dinfo;
579

    
580
    /* init CPUs */
581
    env = cpu_devinit(cpu_model, hwdef);
582

    
583
    /* set up devices */
584
    ram_init(0, RAM_size);
585

    
586
    prom_init(hwdef->prom_addr, bios_name);
587

    
588

    
589
    irq = qemu_allocate_irqs(cpu_set_irq, env, MAX_PILS);
590
    pci_bus = pci_apb_init(APB_SPECIAL_BASE, APB_MEM_BASE, irq, &pci_bus2,
591
                           &pci_bus3);
592
    isa_mem_base = VGA_BASE;
593
    pci_vga_init(pci_bus, 0, 0);
594

    
595
    // XXX Should be pci_bus3
596
    pci_ebus_init(pci_bus, -1);
597

    
598
    i = 0;
599
    if (hwdef->console_serial_base) {
600
        serial_mm_init(hwdef->console_serial_base, 0, NULL, 115200,
601
                       serial_hds[i], 1);
602
        i++;
603
    }
604
    for(; i < MAX_SERIAL_PORTS; i++) {
605
        if (serial_hds[i]) {
606
            serial_init(serial_io[i], NULL/*serial_irq[i]*/, 115200,
607
                        serial_hds[i]);
608
        }
609
    }
610

    
611
    for(i = 0; i < MAX_PARALLEL_PORTS; i++) {
612
        if (parallel_hds[i]) {
613
            parallel_init(parallel_io[i], NULL/*parallel_irq[i]*/,
614
                          parallel_hds[i]);
615
        }
616
    }
617

    
618
    for(i = 0; i < nb_nics; i++)
619
        pci_nic_init(&nd_table[i], "ne2k_pci", NULL);
620

    
621
    if (drive_get_max_bus(IF_IDE) >= MAX_IDE_BUS) {
622
        fprintf(stderr, "qemu: too many IDE bus\n");
623
        exit(1);
624
    }
625
    for(i = 0; i < MAX_IDE_BUS * MAX_IDE_DEVS; i++) {
626
        hd[i] = drive_get(IF_IDE, i / MAX_IDE_DEVS,
627
                          i % MAX_IDE_DEVS);
628
    }
629

    
630
    pci_cmd646_ide_init(pci_bus, hd, 1);
631

    
632
    isa_create_simple("i8042");
633
    for(i = 0; i < MAX_FD; i++) {
634
        dinfo = drive_get(IF_FLOPPY, 0, i);
635
        fd[i] = dinfo ? dinfo->bdrv : NULL;
636
    }
637
    fdctrl_init_isa(fd);
638
    nvram = m48t59_init_isa(0x0074, NVRAM_SIZE, 59);
639

    
640
    initrd_size = 0;
641
    kernel_size = sun4u_load_kernel(kernel_filename, initrd_filename,
642
                                    ram_size, &initrd_size);
643

    
644
    sun4u_NVRAM_set_params(nvram, NVRAM_SIZE, "Sun4u", RAM_size, boot_devices,
645
                           KERNEL_LOAD_ADDR, kernel_size,
646
                           kernel_cmdline,
647
                           INITRD_LOAD_ADDR, initrd_size,
648
                           /* XXX: need an option to load a NVRAM image */
649
                           0,
650
                           graphic_width, graphic_height, graphic_depth,
651
                           (uint8_t *)&nd_table[0].macaddr);
652

    
653
    fw_cfg = fw_cfg_init(BIOS_CFG_IOPORT, BIOS_CFG_IOPORT + 1, 0, 0);
654
    fw_cfg_add_i32(fw_cfg, FW_CFG_ID, 1);
655
    fw_cfg_add_i64(fw_cfg, FW_CFG_RAM_SIZE, (uint64_t)ram_size);
656
    fw_cfg_add_i16(fw_cfg, FW_CFG_MACHINE_ID, hwdef->machine_id);
657
    fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_ADDR, KERNEL_LOAD_ADDR);
658
    fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_SIZE, kernel_size);
659
    if (kernel_cmdline) {
660
        fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_CMDLINE, CMDLINE_ADDR);
661
        pstrcpy_targphys(CMDLINE_ADDR, TARGET_PAGE_SIZE, kernel_cmdline);
662
    } else {
663
        fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_CMDLINE, 0);
664
    }
665
    fw_cfg_add_i32(fw_cfg, FW_CFG_INITRD_ADDR, INITRD_LOAD_ADDR);
666
    fw_cfg_add_i32(fw_cfg, FW_CFG_INITRD_SIZE, initrd_size);
667
    fw_cfg_add_i16(fw_cfg, FW_CFG_BOOT_DEVICE, boot_devices[0]);
668

    
669
    fw_cfg_add_i16(fw_cfg, FW_CFG_SPARC64_WIDTH, graphic_width);
670
    fw_cfg_add_i16(fw_cfg, FW_CFG_SPARC64_HEIGHT, graphic_height);
671
    fw_cfg_add_i16(fw_cfg, FW_CFG_SPARC64_DEPTH, graphic_depth);
672

    
673
    qemu_register_boot_set(fw_cfg_boot_set, fw_cfg);
674
}
675

    
676
enum {
677
    sun4u_id = 0,
678
    sun4v_id = 64,
679
    niagara_id,
680
};
681

    
682
static const struct hwdef hwdefs[] = {
683
    /* Sun4u generic PC-like machine */
684
    {
685
        .default_cpu_model = "TI UltraSparc II",
686
        .machine_id = sun4u_id,
687
        .prom_addr = 0x1fff0000000ULL,
688
        .console_serial_base = 0,
689
    },
690
    /* Sun4v generic PC-like machine */
691
    {
692
        .default_cpu_model = "Sun UltraSparc T1",
693
        .machine_id = sun4v_id,
694
        .prom_addr = 0x1fff0000000ULL,
695
        .console_serial_base = 0,
696
    },
697
    /* Sun4v generic Niagara machine */
698
    {
699
        .default_cpu_model = "Sun UltraSparc T1",
700
        .machine_id = niagara_id,
701
        .prom_addr = 0xfff0000000ULL,
702
        .console_serial_base = 0xfff0c2c000ULL,
703
    },
704
};
705

    
706
/* Sun4u hardware initialisation */
707
static void sun4u_init(a_ram_addr RAM_size,
708
                       const char *boot_devices,
709
                       const char *kernel_filename, const char *kernel_cmdline,
710
                       const char *initrd_filename, const char *cpu_model)
711
{
712
    sun4uv_init(RAM_size, boot_devices, kernel_filename,
713
                kernel_cmdline, initrd_filename, cpu_model, &hwdefs[0]);
714
}
715

    
716
/* Sun4v hardware initialisation */
717
static void sun4v_init(a_ram_addr RAM_size,
718
                       const char *boot_devices,
719
                       const char *kernel_filename, const char *kernel_cmdline,
720
                       const char *initrd_filename, const char *cpu_model)
721
{
722
    sun4uv_init(RAM_size, boot_devices, kernel_filename,
723
                kernel_cmdline, initrd_filename, cpu_model, &hwdefs[1]);
724
}
725

    
726
/* Niagara hardware initialisation */
727
static void niagara_init(a_ram_addr RAM_size,
728
                         const char *boot_devices,
729
                         const char *kernel_filename, const char *kernel_cmdline,
730
                         const char *initrd_filename, const char *cpu_model)
731
{
732
    sun4uv_init(RAM_size, boot_devices, kernel_filename,
733
                kernel_cmdline, initrd_filename, cpu_model, &hwdefs[2]);
734
}
735

    
736
static QEMUMachine sun4u_machine = {
737
    .name = "sun4u",
738
    .desc = "Sun4u platform",
739
    .init = sun4u_init,
740
    .max_cpus = 1, // XXX for now
741
    .is_default = 1,
742
};
743

    
744
static QEMUMachine sun4v_machine = {
745
    .name = "sun4v",
746
    .desc = "Sun4v platform",
747
    .init = sun4v_init,
748
    .max_cpus = 1, // XXX for now
749
};
750

    
751
static QEMUMachine niagara_machine = {
752
    .name = "Niagara",
753
    .desc = "Sun4v platform, Niagara",
754
    .init = niagara_init,
755
    .max_cpus = 1, // XXX for now
756
};
757

    
758
static void sun4u_machine_init(void)
759
{
760
    qemu_register_machine(&sun4u_machine);
761
    qemu_register_machine(&sun4v_machine);
762
    qemu_register_machine(&niagara_machine);
763
}
764

    
765
machine_init(sun4u_machine_init);