Statistics
| Branch: | Revision:

root / hw / wdt_i6300esb.c @ 99a0949b

History | View | Annotate | Download (14.3 kB)

1
/*
2
 * Virtual hardware watchdog.
3
 *
4
 * Copyright (C) 2009 Red Hat Inc.
5
 *
6
 * This program is free software; you can redistribute it and/or
7
 * modify it under the terms of the GNU General Public License
8
 * as published by the Free Software Foundation; either version 2
9
 * of the License, or (at your option) any later version.
10
 *
11
 * This program is distributed in the hope that it will be useful,
12
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14
 * GNU General Public License for more details.
15
 *
16
 * You should have received a copy of the GNU General Public License
17
 * along with this program; if not, see <http://www.gnu.org/licenses/>.
18
 *
19
 * By Richard W.M. Jones (rjones@redhat.com).
20
 */
21

    
22
#include <inttypes.h>
23

    
24
#include "qemu-common.h"
25
#include "qemu-timer.h"
26
#include "watchdog.h"
27
#include "hw.h"
28
#include "pci.h"
29

    
30
/*#define I6300ESB_DEBUG 1*/
31

    
32
#ifdef I6300ESB_DEBUG
33
#define i6300esb_debug(fs,...) \
34
    fprintf(stderr,"i6300esb: %s: "fs,__func__,##__VA_ARGS__)
35
#else
36
#define i6300esb_debug(fs,...)
37
#endif
38

    
39
#ifndef PCI_DEVICE_ID_INTEL_ESB_9
40
#define PCI_DEVICE_ID_INTEL_ESB_9 0x25ab
41
#endif
42

    
43
/* PCI configuration registers */
44
#define ESB_CONFIG_REG  0x60            /* Config register                   */
45
#define ESB_LOCK_REG    0x68            /* WDT lock register                 */
46

    
47
/* Memory mapped registers (offset from base address) */
48
#define ESB_TIMER1_REG  0x00            /* Timer1 value after each reset     */
49
#define ESB_TIMER2_REG  0x04            /* Timer2 value after each reset     */
50
#define ESB_GINTSR_REG  0x08            /* General Interrupt Status Register */
51
#define ESB_RELOAD_REG  0x0c            /* Reload register                   */
52

    
53
/* Lock register bits */
54
#define ESB_WDT_FUNC    (0x01 << 2)   /* Watchdog functionality            */
55
#define ESB_WDT_ENABLE  (0x01 << 1)   /* Enable WDT                        */
56
#define ESB_WDT_LOCK    (0x01 << 0)   /* Lock (nowayout)                   */
57

    
58
/* Config register bits */
59
#define ESB_WDT_REBOOT  (0x01 << 5)   /* Enable reboot on timeout          */
60
#define ESB_WDT_FREQ    (0x01 << 2)   /* Decrement frequency               */
61
#define ESB_WDT_INTTYPE (0x11 << 0)   /* Interrupt type on timer1 timeout  */
62

    
63
/* Reload register bits */
64
#define ESB_WDT_RELOAD  (0x01 << 8)    /* prevent timeout                   */
65

    
66
/* Magic constants */
67
#define ESB_UNLOCK1     0x80            /* Step 1 to unlock reset registers  */
68
#define ESB_UNLOCK2     0x86            /* Step 2 to unlock reset registers  */
69

    
70
/* Device state. */
71
struct I6300State {
72
    PCIDevice dev;
73

    
74
    int reboot_enabled;         /* "Reboot" on timer expiry.  The real action
75
                                 * performed depends on the -watchdog-action
76
                                 * param passed on QEMU command line.
77
                                 */
78
    int clock_scale;            /* Clock scale. */
79
#define CLOCK_SCALE_1KHZ 0
80
#define CLOCK_SCALE_1MHZ 1
81

    
82
    int int_type;               /* Interrupt type generated. */
83
#define INT_TYPE_IRQ 0          /* APIC 1, INT 10 */
84
#define INT_TYPE_SMI 2
85
#define INT_TYPE_DISABLED 3
86

    
87
    int free_run;               /* If true, reload timer on expiry. */
88
    int locked;                 /* If true, enabled field cannot be changed. */
89
    int enabled;                /* If true, watchdog is enabled. */
90

    
91
    QEMUTimer *timer;           /* The actual watchdog timer. */
92

    
93
    uint32_t timer1_preload;    /* Values preloaded into timer1, timer2. */
94
    uint32_t timer2_preload;
95
    int stage;                  /* Stage (1 or 2). */
96

    
97
    int unlock_state;           /* Guest writes 0x80, 0x86 to unlock the
98
                                 * registers, and we transition through
99
                                 * states 0 -> 1 -> 2 when this happens.
100
                                 */
101

    
102
    int previous_reboot_flag;   /* If the watchdog caused the previous
103
                                 * reboot, this flag will be set.
104
                                 */
105
};
106

    
107
typedef struct I6300State I6300State;
108

    
109
/* This function is called when the watchdog has either been enabled
110
 * (hence it starts counting down) or has been keep-alived.
111
 */
112
static void i6300esb_restart_timer(I6300State *d, int stage)
113
{
114
    int64_t timeout;
115

    
116
    if (!d->enabled)
117
        return;
118

    
119
    d->stage = stage;
120

    
121
    if (d->stage <= 1)
122
        timeout = d->timer1_preload;
123
    else
124
        timeout = d->timer2_preload;
125

    
126
    if (d->clock_scale == CLOCK_SCALE_1KHZ)
127
        timeout <<= 15;
128
    else
129
        timeout <<= 5;
130

    
131
    /* Get the timeout in units of ticks_per_sec. */
132
    timeout = get_ticks_per_sec() * timeout / 33000000;
133

    
134
    i6300esb_debug("stage %d, timeout %" PRIi64 "\n", d->stage, timeout);
135

    
136
    qemu_mod_timer(d->timer, qemu_get_clock(vm_clock) + timeout);
137
}
138

    
139
/* This is called when the guest disables the watchdog. */
140
static void i6300esb_disable_timer(I6300State *d)
141
{
142
    i6300esb_debug("timer disabled\n");
143

    
144
    qemu_del_timer(d->timer);
145
}
146

    
147
static void i6300esb_reset(I6300State *d)
148
{
149
    /* XXX We should probably reset other parts of the state here,
150
     * but we should also reset our state on general machine reset
151
     * too.  For now just disable the timer so it doesn't fire
152
     * again after the reboot.
153
     */
154
    i6300esb_disable_timer(d);
155
}
156

    
157
/* This function is called when the watchdog expires.  Note that
158
 * the hardware has two timers, and so expiry happens in two stages.
159
 * If d->stage == 1 then we perform the first stage action (usually,
160
 * sending an interrupt) and then restart the timer again for the
161
 * second stage.  If the second stage expires then the watchdog
162
 * really has run out.
163
 */
164
static void i6300esb_timer_expired(void *vp)
165
{
166
    I6300State *d = (I6300State *) vp;
167

    
168
    i6300esb_debug("stage %d\n", d->stage);
169

    
170
    if (d->stage == 1) {
171
        /* What to do at the end of stage 1? */
172
        switch (d->int_type) {
173
        case INT_TYPE_IRQ:
174
            fprintf(stderr, "i6300esb_timer_expired: I would send APIC 1 INT 10 here if I knew how (XXX)\n");
175
            break;
176
        case INT_TYPE_SMI:
177
            fprintf(stderr, "i6300esb_timer_expired: I would send SMI here if I knew how (XXX)\n");
178
            break;
179
        }
180

    
181
        /* Start the second stage. */
182
        i6300esb_restart_timer(d, 2);
183
    } else {
184
        /* Second stage expired, reboot for real. */
185
        if (d->reboot_enabled) {
186
            d->previous_reboot_flag = 1;
187
            watchdog_perform_action(); /* This reboots, exits, etc */
188
            i6300esb_reset(d);
189
        }
190

    
191
        /* In "free running mode" we start stage 1 again. */
192
        if (d->free_run)
193
            i6300esb_restart_timer(d, 1);
194
    }
195
}
196

    
197
static void i6300esb_config_write(PCIDevice *dev, uint32_t addr,
198
                                  uint32_t data, int len)
199
{
200
    I6300State *d = DO_UPCAST(I6300State, dev, dev);
201
    int old;
202

    
203
    i6300esb_debug("addr = %x, data = %x, len = %d\n", addr, data, len);
204

    
205
    if (addr == ESB_CONFIG_REG && len == 2) {
206
        d->reboot_enabled = (data & ESB_WDT_REBOOT) == 0;
207
        d->clock_scale =
208
            (data & ESB_WDT_FREQ) != 0 ? CLOCK_SCALE_1MHZ : CLOCK_SCALE_1KHZ;
209
        d->int_type = (data & ESB_WDT_INTTYPE);
210
    } else if (addr == ESB_LOCK_REG && len == 1) {
211
        if (!d->locked) {
212
            d->locked = (data & ESB_WDT_LOCK) != 0;
213
            d->free_run = (data & ESB_WDT_FUNC) != 0;
214
            old = d->enabled;
215
            d->enabled = (data & ESB_WDT_ENABLE) != 0;
216
            if (!old && d->enabled) /* Enabled transitioned from 0 -> 1 */
217
                i6300esb_restart_timer(d, 1);
218
            else if (!d->enabled)
219
                i6300esb_disable_timer(d);
220
        }
221
    } else {
222
        pci_default_write_config(dev, addr, data, len);
223
    }
224
}
225

    
226
static uint32_t i6300esb_config_read(PCIDevice *dev, uint32_t addr, int len)
227
{
228
    I6300State *d = DO_UPCAST(I6300State, dev, dev);
229
    uint32_t data;
230

    
231
    i6300esb_debug ("addr = %x, len = %d\n", addr, len);
232

    
233
    if (addr == ESB_CONFIG_REG && len == 2) {
234
        data =
235
            (d->reboot_enabled ? 0 : ESB_WDT_REBOOT) |
236
            (d->clock_scale == CLOCK_SCALE_1MHZ ? ESB_WDT_FREQ : 0) |
237
            d->int_type;
238
        return data;
239
    } else if (addr == ESB_LOCK_REG && len == 1) {
240
        data =
241
            (d->free_run ? ESB_WDT_FUNC : 0) |
242
            (d->locked ? ESB_WDT_LOCK : 0) |
243
            (d->enabled ? ESB_WDT_ENABLE : 0);
244
        return data;
245
    } else {
246
        return pci_default_read_config(dev, addr, len);
247
    }
248
}
249

    
250
static uint32_t i6300esb_mem_readb(void *vp, a_target_phys_addr addr)
251
{
252
    i6300esb_debug ("addr = %x\n", (int) addr);
253

    
254
    return 0;
255
}
256

    
257
static uint32_t i6300esb_mem_readw(void *vp, a_target_phys_addr addr)
258
{
259
    uint32_t data = 0;
260
    I6300State *d = (I6300State *) vp;
261

    
262
    i6300esb_debug("addr = %x\n", (int) addr);
263

    
264
    if (addr == 0xc) {
265
        /* The previous reboot flag is really bit 9, but there is
266
         * a bug in the Linux driver where it thinks it's bit 12.
267
         * Set both.
268
         */
269
        data = d->previous_reboot_flag ? 0x1200 : 0;
270
    }
271

    
272
    return data;
273
}
274

    
275
static uint32_t i6300esb_mem_readl(void *vp, a_target_phys_addr addr)
276
{
277
    i6300esb_debug("addr = %x\n", (int) addr);
278

    
279
    return 0;
280
}
281

    
282
static void i6300esb_mem_writeb(void *vp, a_target_phys_addr addr, uint32_t val)
283
{
284
    I6300State *d = (I6300State *) vp;
285

    
286
    i6300esb_debug("addr = %x, val = %x\n", (int) addr, val);
287

    
288
    if (addr == 0xc && val == 0x80)
289
        d->unlock_state = 1;
290
    else if (addr == 0xc && val == 0x86 && d->unlock_state == 1)
291
        d->unlock_state = 2;
292
}
293

    
294
static void i6300esb_mem_writew(void *vp, a_target_phys_addr addr, uint32_t val)
295
{
296
    I6300State *d = (I6300State *) vp;
297

    
298
    i6300esb_debug("addr = %x, val = %x\n", (int) addr, val);
299

    
300
    if (addr == 0xc && val == 0x80)
301
        d->unlock_state = 1;
302
    else if (addr == 0xc && val == 0x86 && d->unlock_state == 1)
303
        d->unlock_state = 2;
304
    else {
305
        if (d->unlock_state == 2) {
306
            if (addr == 0xc) {
307
                if ((val & 0x100) != 0)
308
                    /* This is the "ping" from the userspace watchdog in
309
                     * the guest ...
310
                     */
311
                    i6300esb_restart_timer(d, 1);
312

    
313
                /* Setting bit 9 resets the previous reboot flag.
314
                 * There's a bug in the Linux driver where it sets
315
                 * bit 12 instead.
316
                 */
317
                if ((val & 0x200) != 0 || (val & 0x1000) != 0) {
318
                    d->previous_reboot_flag = 0;
319
                }
320
            }
321

    
322
            d->unlock_state = 0;
323
        }
324
    }
325
}
326

    
327
static void i6300esb_mem_writel(void *vp, a_target_phys_addr addr, uint32_t val)
328
{
329
    I6300State *d = (I6300State *) vp;
330

    
331
    i6300esb_debug ("addr = %x, val = %x\n", (int) addr, val);
332

    
333
    if (addr == 0xc && val == 0x80)
334
        d->unlock_state = 1;
335
    else if (addr == 0xc && val == 0x86 && d->unlock_state == 1)
336
        d->unlock_state = 2;
337
    else {
338
        if (d->unlock_state == 2) {
339
            if (addr == 0)
340
                d->timer1_preload = val & 0xfffff;
341
            else if (addr == 4)
342
                d->timer2_preload = val & 0xfffff;
343

    
344
            d->unlock_state = 0;
345
        }
346
    }
347
}
348

    
349
static void i6300esb_map(PCIDevice *dev, int region_num,
350
                         uint32_t addr, uint32_t size, int type)
351
{
352
    static CPUReadMemoryFunc * const mem_read[3] = {
353
        i6300esb_mem_readb,
354
        i6300esb_mem_readw,
355
        i6300esb_mem_readl,
356
    };
357
    static CPUWriteMemoryFunc * const mem_write[3] = {
358
        i6300esb_mem_writeb,
359
        i6300esb_mem_writew,
360
        i6300esb_mem_writel,
361
    };
362
    I6300State *d = DO_UPCAST(I6300State, dev, dev);
363
    int io_mem;
364

    
365
    i6300esb_debug("addr = %x, size = %x, type = %d\n", addr, size, type);
366

    
367
    io_mem = cpu_register_io_memory(mem_read, mem_write, d);
368
    cpu_register_physical_memory (addr, 0x10, io_mem);
369
    /* qemu_register_coalesced_mmio (addr, 0x10); ? */
370
}
371

    
372
static void i6300esb_save(QEMUFile *f, void *vp)
373
{
374
    I6300State *d = (I6300State *) vp;
375

    
376
    pci_device_save(&d->dev, f);
377
    qemu_put_be32(f, d->reboot_enabled);
378
    qemu_put_be32(f, d->clock_scale);
379
    qemu_put_be32(f, d->int_type);
380
    qemu_put_be32(f, d->free_run);
381
    qemu_put_be32(f, d->locked);
382
    qemu_put_be32(f, d->enabled);
383
    qemu_put_timer(f, d->timer);
384
    qemu_put_be32(f, d->timer1_preload);
385
    qemu_put_be32(f, d->timer2_preload);
386
    qemu_put_be32(f, d->stage);
387
    qemu_put_be32(f, d->unlock_state);
388
    qemu_put_be32(f, d->previous_reboot_flag);
389
}
390

    
391
static int i6300esb_load(QEMUFile *f, void *vp, int version)
392
{
393
    I6300State *d = (I6300State *) vp;
394

    
395
    if (version != sizeof (I6300State))
396
        return -EINVAL;
397

    
398
    pci_device_load(&d->dev, f);
399
    d->reboot_enabled = qemu_get_be32(f);
400
    d->clock_scale = qemu_get_be32(f);
401
    d->int_type = qemu_get_be32(f);
402
    d->free_run = qemu_get_be32(f);
403
    d->locked = qemu_get_be32(f);
404
    d->enabled = qemu_get_be32(f);
405
    qemu_get_timer(f, d->timer);
406
    d->timer1_preload = qemu_get_be32(f);
407
    d->timer2_preload = qemu_get_be32(f);
408
    d->stage = qemu_get_be32(f);
409
    d->unlock_state = qemu_get_be32(f);
410
    d->previous_reboot_flag = qemu_get_be32(f);
411

    
412
    return 0;
413
}
414

    
415
static int i6300esb_init(PCIDevice *dev)
416
{
417
    I6300State *d = DO_UPCAST(I6300State, dev, dev);
418
    uint8_t *pci_conf;
419

    
420
    d->reboot_enabled = 1;
421
    d->clock_scale = CLOCK_SCALE_1KHZ;
422
    d->int_type = INT_TYPE_IRQ;
423
    d->free_run = 0;
424
    d->locked = 0;
425
    d->enabled = 0;
426
    d->timer = qemu_new_timer(vm_clock, i6300esb_timer_expired, d);
427
    d->timer1_preload = 0xfffff;
428
    d->timer2_preload = 0xfffff;
429
    d->stage = 1;
430
    d->unlock_state = 0;
431
    d->previous_reboot_flag = 0;
432

    
433
    pci_conf = d->dev.config;
434
    pci_config_set_vendor_id(pci_conf, PCI_VENDOR_ID_INTEL);
435
    pci_config_set_device_id(pci_conf, PCI_DEVICE_ID_INTEL_ESB_9);
436
    pci_config_set_class(pci_conf, PCI_CLASS_SYSTEM_OTHER);
437
    pci_conf[0x0e] = 0x00;
438

    
439
    pci_register_bar(&d->dev, 0, 0x10,
440
                            PCI_ADDRESS_SPACE_MEM, i6300esb_map);
441

    
442
    register_savevm("i6300esb_wdt", -1, sizeof(I6300State),
443
                     i6300esb_save, i6300esb_load, d);
444

    
445
    return 0;
446
}
447

    
448
static WatchdogTimerModel model = {
449
    .wdt_name = "i6300esb",
450
    .wdt_description = "Intel 6300ESB",
451
};
452

    
453
static PCIDeviceInfo i6300esb_info = {
454
    .qdev.name    = "i6300esb",
455
    .qdev.size    = sizeof(I6300State),
456
    .config_read  = i6300esb_config_read,
457
    .config_write = i6300esb_config_write,
458
    .init         = i6300esb_init,
459
};
460

    
461
static void i6300esb_register_devices(void)
462
{
463
    watchdog_add_model(&model);
464
    pci_qdev_register(&i6300esb_info);
465
}
466

    
467
device_init(i6300esb_register_devices);