Statistics
| Branch: | Revision:

root / kvm-all.c @ 99a0949b

History | View | Annotate | Download (27.2 kB)

1
/*
2
 * QEMU KVM support
3
 *
4
 * Copyright IBM, Corp. 2008
5
 *           Red Hat, Inc. 2008
6
 *
7
 * Authors:
8
 *  Anthony Liguori   <aliguori@us.ibm.com>
9
 *  Glauber Costa     <gcosta@redhat.com>
10
 *
11
 * This work is licensed under the terms of the GNU GPL, version 2 or later.
12
 * See the COPYING file in the top-level directory.
13
 *
14
 */
15

    
16
#include <sys/types.h>
17
#include <sys/ioctl.h>
18
#include <sys/mman.h>
19
#include <stdarg.h>
20

    
21
#include <linux/kvm.h>
22

    
23
#include "qemu-common.h"
24
#include "sysemu.h"
25
#include "hw/hw.h"
26
#include "gdbstub.h"
27
#include "kvm.h"
28

    
29
/* KVM uses PAGE_SIZE in it's definition of COALESCED_MMIO_MAX */
30
#define PAGE_SIZE TARGET_PAGE_SIZE
31

    
32
//#define DEBUG_KVM
33

    
34
#ifdef DEBUG_KVM
35
#define dprintf(fmt, ...) \
36
    do { fprintf(stderr, fmt, ## __VA_ARGS__); } while (0)
37
#else
38
#define dprintf(fmt, ...) \
39
    do { } while (0)
40
#endif
41

    
42
typedef struct KVMSlot
43
{
44
    a_target_phys_addr start_addr;
45
    a_ram_addr memory_size;
46
    a_ram_addr phys_offset;
47
    int slot;
48
    int flags;
49
} KVMSlot;
50

    
51
typedef struct kvm_dirty_log KVMDirtyLog;
52

    
53
int kvm_allowed = 0;
54

    
55
struct KVMState
56
{
57
    KVMSlot slots[32];
58
    int fd;
59
    int vmfd;
60
    int regs_modified;
61
    int coalesced_mmio;
62
    int broken_set_mem_region;
63
    int migration_log;
64
#ifdef KVM_CAP_SET_GUEST_DEBUG
65
    struct kvm_sw_breakpoint_head kvm_sw_breakpoints;
66
#endif
67
    int irqchip_in_kernel;
68
    int pit_in_kernel;
69
};
70

    
71
static KVMState *kvm_state;
72

    
73
static KVMSlot *kvm_alloc_slot(KVMState *s)
74
{
75
    int i;
76

    
77
    for (i = 0; i < ARRAY_SIZE(s->slots); i++) {
78
        /* KVM private memory slots */
79
        if (i >= 8 && i < 12)
80
            continue;
81
        if (s->slots[i].memory_size == 0)
82
            return &s->slots[i];
83
    }
84

    
85
    fprintf(stderr, "%s: no free slot available\n", __func__);
86
    abort();
87
}
88

    
89
static KVMSlot *kvm_lookup_matching_slot(KVMState *s,
90
                                         a_target_phys_addr start_addr,
91
                                         a_target_phys_addr end_addr)
92
{
93
    int i;
94

    
95
    for (i = 0; i < ARRAY_SIZE(s->slots); i++) {
96
        KVMSlot *mem = &s->slots[i];
97

    
98
        if (start_addr == mem->start_addr &&
99
            end_addr == mem->start_addr + mem->memory_size) {
100
            return mem;
101
        }
102
    }
103

    
104
    return NULL;
105
}
106

    
107
/*
108
 * Find overlapping slot with lowest start address
109
 */
110
static KVMSlot *kvm_lookup_overlapping_slot(KVMState *s,
111
                                            a_target_phys_addr start_addr,
112
                                            a_target_phys_addr end_addr)
113
{
114
    KVMSlot *found = NULL;
115
    int i;
116

    
117
    for (i = 0; i < ARRAY_SIZE(s->slots); i++) {
118
        KVMSlot *mem = &s->slots[i];
119

    
120
        if (mem->memory_size == 0 ||
121
            (found && found->start_addr < mem->start_addr)) {
122
            continue;
123
        }
124

    
125
        if (end_addr > mem->start_addr &&
126
            start_addr < mem->start_addr + mem->memory_size) {
127
            found = mem;
128
        }
129
    }
130

    
131
    return found;
132
}
133

    
134
static int kvm_set_user_memory_region(KVMState *s, KVMSlot *slot)
135
{
136
    struct kvm_userspace_memory_region mem;
137

    
138
    mem.slot = slot->slot;
139
    mem.guest_phys_addr = slot->start_addr;
140
    mem.memory_size = slot->memory_size;
141
    mem.userspace_addr = (unsigned long)qemu_get_ram_ptr(slot->phys_offset);
142
    mem.flags = slot->flags;
143
    if (s->migration_log) {
144
        mem.flags |= KVM_MEM_LOG_DIRTY_PAGES;
145
    }
146
    return kvm_vm_ioctl(s, KVM_SET_USER_MEMORY_REGION, &mem);
147
}
148

    
149
static void kvm_reset_vcpu(void *opaque)
150
{
151
    CPUState *env = opaque;
152

    
153
    if (kvm_arch_put_registers(env)) {
154
        fprintf(stderr, "Fatal: kvm vcpu reset failed\n");
155
        abort();
156
    }
157
}
158

    
159
int kvm_irqchip_in_kernel(void)
160
{
161
    return kvm_state->irqchip_in_kernel;
162
}
163

    
164
int kvm_pit_in_kernel(void)
165
{
166
    return kvm_state->pit_in_kernel;
167
}
168

    
169

    
170
int kvm_init_vcpu(CPUState *env)
171
{
172
    KVMState *s = kvm_state;
173
    long mmap_size;
174
    int ret;
175

    
176
    dprintf("kvm_init_vcpu\n");
177

    
178
    ret = kvm_vm_ioctl(s, KVM_CREATE_VCPU, env->cpu_index);
179
    if (ret < 0) {
180
        dprintf("kvm_create_vcpu failed\n");
181
        goto err;
182
    }
183

    
184
    env->kvm_fd = ret;
185
    env->kvm_state = s;
186

    
187
    mmap_size = kvm_ioctl(s, KVM_GET_VCPU_MMAP_SIZE, 0);
188
    if (mmap_size < 0) {
189
        dprintf("KVM_GET_VCPU_MMAP_SIZE failed\n");
190
        goto err;
191
    }
192

    
193
    env->kvm_run = mmap(NULL, mmap_size, PROT_READ | PROT_WRITE, MAP_SHARED,
194
                        env->kvm_fd, 0);
195
    if (env->kvm_run == MAP_FAILED) {
196
        ret = -errno;
197
        dprintf("mmap'ing vcpu state failed\n");
198
        goto err;
199
    }
200

    
201
    ret = kvm_arch_init_vcpu(env);
202
    if (ret == 0) {
203
        qemu_register_reset(kvm_reset_vcpu, env);
204
        ret = kvm_arch_put_registers(env);
205
    }
206
err:
207
    return ret;
208
}
209

    
210
int kvm_put_mp_state(CPUState *env)
211
{
212
    struct kvm_mp_state mp_state = { .mp_state = env->mp_state };
213

    
214
    return kvm_vcpu_ioctl(env, KVM_SET_MP_STATE, &mp_state);
215
}
216

    
217
int kvm_get_mp_state(CPUState *env)
218
{
219
    struct kvm_mp_state mp_state;
220
    int ret;
221

    
222
    ret = kvm_vcpu_ioctl(env, KVM_GET_MP_STATE, &mp_state);
223
    if (ret < 0) {
224
        return ret;
225
    }
226
    env->mp_state = mp_state.mp_state;
227
    return 0;
228
}
229

    
230
/*
231
 * dirty pages logging control
232
 */
233
static int kvm_dirty_pages_log_change(a_target_phys_addr phys_addr,
234
                                      a_ram_addr size, int flags, int mask)
235
{
236
    KVMState *s = kvm_state;
237
    KVMSlot *mem = kvm_lookup_matching_slot(s, phys_addr, phys_addr + size);
238
    int old_flags;
239

    
240
    if (mem == NULL)  {
241
            fprintf(stderr, "BUG: %s: invalid parameters " TARGET_FMT_plx "-"
242
                    TARGET_FMT_plx "\n", __func__, phys_addr,
243
                    (a_target_phys_addr)(phys_addr + size - 1));
244
            return -EINVAL;
245
    }
246

    
247
    old_flags = mem->flags;
248

    
249
    flags = (mem->flags & ~mask) | flags;
250
    mem->flags = flags;
251

    
252
    /* If nothing changed effectively, no need to issue ioctl */
253
    if (s->migration_log) {
254
        flags |= KVM_MEM_LOG_DIRTY_PAGES;
255
    }
256
    if (flags == old_flags) {
257
            return 0;
258
    }
259

    
260
    return kvm_set_user_memory_region(s, mem);
261
}
262

    
263
int kvm_log_start(a_target_phys_addr phys_addr, a_ram_addr size)
264
{
265
        return kvm_dirty_pages_log_change(phys_addr, size,
266
                                          KVM_MEM_LOG_DIRTY_PAGES,
267
                                          KVM_MEM_LOG_DIRTY_PAGES);
268
}
269

    
270
int kvm_log_stop(a_target_phys_addr phys_addr, a_ram_addr size)
271
{
272
        return kvm_dirty_pages_log_change(phys_addr, size,
273
                                          0,
274
                                          KVM_MEM_LOG_DIRTY_PAGES);
275
}
276

    
277
int kvm_set_migration_log(int enable)
278
{
279
    KVMState *s = kvm_state;
280
    KVMSlot *mem;
281
    int i, err;
282

    
283
    s->migration_log = enable;
284

    
285
    for (i = 0; i < ARRAY_SIZE(s->slots); i++) {
286
        mem = &s->slots[i];
287

    
288
        if (!!(mem->flags & KVM_MEM_LOG_DIRTY_PAGES) == enable) {
289
            continue;
290
        }
291
        err = kvm_set_user_memory_region(s, mem);
292
        if (err) {
293
            return err;
294
        }
295
    }
296
    return 0;
297
}
298

    
299
static int test_le_bit(unsigned long nr, unsigned char *addr)
300
{
301
    return (addr[nr >> 3] >> (nr & 7)) & 1;
302
}
303

    
304
/**
305
 * kvm_physical_sync_dirty_bitmap - Grab dirty bitmap from kernel space
306
 * This function updates qemu's dirty bitmap using cpu_physical_memory_set_dirty().
307
 * This means all bits are set to dirty.
308
 *
309
 * @start_add: start of logged region.
310
 * @end_addr: end of logged region.
311
 */
312
int kvm_physical_sync_dirty_bitmap(a_target_phys_addr start_addr,
313
                                   a_target_phys_addr end_addr)
314
{
315
    KVMState *s = kvm_state;
316
    unsigned long size, allocated_size = 0;
317
    a_target_phys_addr phys_addr;
318
    a_ram_addr addr;
319
    KVMDirtyLog d;
320
    KVMSlot *mem;
321
    int ret = 0;
322

    
323
    d.dirty_bitmap = NULL;
324
    while (start_addr < end_addr) {
325
        mem = kvm_lookup_overlapping_slot(s, start_addr, end_addr);
326
        if (mem == NULL) {
327
            break;
328
        }
329

    
330
        size = ((mem->memory_size >> TARGET_PAGE_BITS) + 7) / 8;
331
        if (!d.dirty_bitmap) {
332
            d.dirty_bitmap = qemu_malloc(size);
333
        } else if (size > allocated_size) {
334
            d.dirty_bitmap = qemu_realloc(d.dirty_bitmap, size);
335
        }
336
        allocated_size = size;
337
        memset(d.dirty_bitmap, 0, allocated_size);
338

    
339
        d.slot = mem->slot;
340

    
341
        if (kvm_vm_ioctl(s, KVM_GET_DIRTY_LOG, &d) == -1) {
342
            dprintf("ioctl failed %d\n", errno);
343
            ret = -1;
344
            break;
345
        }
346

    
347
        for (phys_addr = mem->start_addr, addr = mem->phys_offset;
348
             phys_addr < mem->start_addr + mem->memory_size;
349
             phys_addr += TARGET_PAGE_SIZE, addr += TARGET_PAGE_SIZE) {
350
            unsigned char *bitmap = (unsigned char *)d.dirty_bitmap;
351
            unsigned nr = (phys_addr - mem->start_addr) >> TARGET_PAGE_BITS;
352

    
353
            if (test_le_bit(nr, bitmap)) {
354
                cpu_physical_memory_set_dirty(addr);
355
            }
356
        }
357
        start_addr = phys_addr;
358
    }
359
    qemu_free(d.dirty_bitmap);
360

    
361
    return ret;
362
}
363

    
364
int kvm_coalesce_mmio_region(a_target_phys_addr start, a_ram_addr size)
365
{
366
    int ret = -ENOSYS;
367
#ifdef KVM_CAP_COALESCED_MMIO
368
    KVMState *s = kvm_state;
369

    
370
    if (s->coalesced_mmio) {
371
        struct kvm_coalesced_mmio_zone zone;
372

    
373
        zone.addr = start;
374
        zone.size = size;
375

    
376
        ret = kvm_vm_ioctl(s, KVM_REGISTER_COALESCED_MMIO, &zone);
377
    }
378
#endif
379

    
380
    return ret;
381
}
382

    
383
int kvm_uncoalesce_mmio_region(a_target_phys_addr start, a_ram_addr size)
384
{
385
    int ret = -ENOSYS;
386
#ifdef KVM_CAP_COALESCED_MMIO
387
    KVMState *s = kvm_state;
388

    
389
    if (s->coalesced_mmio) {
390
        struct kvm_coalesced_mmio_zone zone;
391

    
392
        zone.addr = start;
393
        zone.size = size;
394

    
395
        ret = kvm_vm_ioctl(s, KVM_UNREGISTER_COALESCED_MMIO, &zone);
396
    }
397
#endif
398

    
399
    return ret;
400
}
401

    
402
int kvm_check_extension(KVMState *s, unsigned int extension)
403
{
404
    int ret;
405

    
406
    ret = kvm_ioctl(s, KVM_CHECK_EXTENSION, extension);
407
    if (ret < 0) {
408
        ret = 0;
409
    }
410

    
411
    return ret;
412
}
413

    
414
int kvm_init(int smp_cpus)
415
{
416
    static const char upgrade_note[] =
417
        "Please upgrade to at least kernel 2.6.29 or recent kvm-kmod\n"
418
        "(see http://sourceforge.net/projects/kvm).\n";
419
    KVMState *s;
420
    int ret;
421
    int i;
422

    
423
    if (smp_cpus > 1) {
424
        fprintf(stderr, "No SMP KVM support, use '-smp 1'\n");
425
        return -EINVAL;
426
    }
427

    
428
    s = qemu_mallocz(sizeof(KVMState));
429

    
430
#ifdef KVM_CAP_SET_GUEST_DEBUG
431
    QTAILQ_INIT(&s->kvm_sw_breakpoints);
432
#endif
433
    for (i = 0; i < ARRAY_SIZE(s->slots); i++)
434
        s->slots[i].slot = i;
435

    
436
    s->vmfd = -1;
437
    s->fd = open("/dev/kvm", O_RDWR);
438
    if (s->fd == -1) {
439
        fprintf(stderr, "Could not access KVM kernel module: %m\n");
440
        ret = -errno;
441
        goto err;
442
    }
443

    
444
    ret = kvm_ioctl(s, KVM_GET_API_VERSION, 0);
445
    if (ret < KVM_API_VERSION) {
446
        if (ret > 0)
447
            ret = -EINVAL;
448
        fprintf(stderr, "kvm version too old\n");
449
        goto err;
450
    }
451

    
452
    if (ret > KVM_API_VERSION) {
453
        ret = -EINVAL;
454
        fprintf(stderr, "kvm version not supported\n");
455
        goto err;
456
    }
457

    
458
    s->vmfd = kvm_ioctl(s, KVM_CREATE_VM, 0);
459
    if (s->vmfd < 0)
460
        goto err;
461

    
462
    /* initially, KVM allocated its own memory and we had to jump through
463
     * hooks to make phys_ram_base point to this.  Modern versions of KVM
464
     * just use a user allocated buffer so we can use regular pages
465
     * unmodified.  Make sure we have a sufficiently modern version of KVM.
466
     */
467
    if (!kvm_check_extension(s, KVM_CAP_USER_MEMORY)) {
468
        ret = -EINVAL;
469
        fprintf(stderr, "kvm does not support KVM_CAP_USER_MEMORY\n%s",
470
                upgrade_note);
471
        goto err;
472
    }
473

    
474
    /* There was a nasty bug in < kvm-80 that prevents memory slots from being
475
     * destroyed properly.  Since we rely on this capability, refuse to work
476
     * with any kernel without this capability. */
477
    if (!kvm_check_extension(s, KVM_CAP_DESTROY_MEMORY_REGION_WORKS)) {
478
        ret = -EINVAL;
479

    
480
        fprintf(stderr,
481
                "KVM kernel module broken (DESTROY_MEMORY_REGION).\n%s",
482
                upgrade_note);
483
        goto err;
484
    }
485

    
486
#ifdef KVM_CAP_COALESCED_MMIO
487
    s->coalesced_mmio = kvm_check_extension(s, KVM_CAP_COALESCED_MMIO);
488
#else
489
    s->coalesced_mmio = 0;
490
#endif
491

    
492
    s->broken_set_mem_region = 1;
493
#ifdef KVM_CAP_JOIN_MEMORY_REGIONS_WORKS
494
    ret = kvm_ioctl(s, KVM_CHECK_EXTENSION, KVM_CAP_JOIN_MEMORY_REGIONS_WORKS);
495
    if (ret > 0) {
496
        s->broken_set_mem_region = 0;
497
    }
498
#endif
499

    
500
    ret = kvm_arch_init(s, smp_cpus);
501
    if (ret < 0)
502
        goto err;
503

    
504
    kvm_state = s;
505

    
506
    return 0;
507

    
508
err:
509
    if (s) {
510
        if (s->vmfd != -1)
511
            close(s->vmfd);
512
        if (s->fd != -1)
513
            close(s->fd);
514
    }
515
    qemu_free(s);
516

    
517
    return ret;
518
}
519

    
520
static int kvm_handle_io(uint16_t port, void *data, int direction, int size,
521
                         uint32_t count)
522
{
523
    int i;
524
    uint8_t *ptr = data;
525

    
526
    for (i = 0; i < count; i++) {
527
        if (direction == KVM_EXIT_IO_IN) {
528
            switch (size) {
529
            case 1:
530
                stb_p(ptr, cpu_inb(port));
531
                break;
532
            case 2:
533
                stw_p(ptr, cpu_inw(port));
534
                break;
535
            case 4:
536
                stl_p(ptr, cpu_inl(port));
537
                break;
538
            }
539
        } else {
540
            switch (size) {
541
            case 1:
542
                cpu_outb(port, ldub_p(ptr));
543
                break;
544
            case 2:
545
                cpu_outw(port, lduw_p(ptr));
546
                break;
547
            case 4:
548
                cpu_outl(port, ldl_p(ptr));
549
                break;
550
            }
551
        }
552

    
553
        ptr += size;
554
    }
555

    
556
    return 1;
557
}
558

    
559
static void kvm_run_coalesced_mmio(CPUState *env, struct kvm_run *run)
560
{
561
#ifdef KVM_CAP_COALESCED_MMIO
562
    KVMState *s = kvm_state;
563
    if (s->coalesced_mmio) {
564
        struct kvm_coalesced_mmio_ring *ring;
565

    
566
        ring = (void *)run + (s->coalesced_mmio * TARGET_PAGE_SIZE);
567
        while (ring->first != ring->last) {
568
            struct kvm_coalesced_mmio *ent;
569

    
570
            ent = &ring->coalesced_mmio[ring->first];
571

    
572
            cpu_physical_memory_write(ent->phys_addr, ent->data, ent->len);
573
            /* FIXME smp_wmb() */
574
            ring->first = (ring->first + 1) % KVM_COALESCED_MMIO_MAX;
575
        }
576
    }
577
#endif
578
}
579

    
580
void kvm_cpu_synchronize_state(CPUState *env)
581
{
582
    if (!env->kvm_state->regs_modified) {
583
        kvm_arch_get_registers(env);
584
        env->kvm_state->regs_modified = 1;
585
    }
586
}
587

    
588
int kvm_cpu_exec(CPUState *env)
589
{
590
    struct kvm_run *run = env->kvm_run;
591
    int ret;
592

    
593
    dprintf("kvm_cpu_exec()\n");
594

    
595
    do {
596
        if (env->exit_request) {
597
            dprintf("interrupt exit requested\n");
598
            ret = 0;
599
            break;
600
        }
601

    
602
        if (env->kvm_state->regs_modified) {
603
            kvm_arch_put_registers(env);
604
            env->kvm_state->regs_modified = 0;
605
        }
606

    
607
        kvm_arch_pre_run(env, run);
608
        ret = kvm_vcpu_ioctl(env, KVM_RUN, 0);
609
        kvm_arch_post_run(env, run);
610

    
611
        if (ret == -EINTR || ret == -EAGAIN) {
612
            dprintf("io window exit\n");
613
            ret = 0;
614
            break;
615
        }
616

    
617
        if (ret < 0) {
618
            dprintf("kvm run failed %s\n", strerror(-ret));
619
            abort();
620
        }
621

    
622
        kvm_run_coalesced_mmio(env, run);
623

    
624
        ret = 0; /* exit loop */
625
        switch (run->exit_reason) {
626
        case KVM_EXIT_IO:
627
            dprintf("handle_io\n");
628
            ret = kvm_handle_io(run->io.port,
629
                                (uint8_t *)run + run->io.data_offset,
630
                                run->io.direction,
631
                                run->io.size,
632
                                run->io.count);
633
            break;
634
        case KVM_EXIT_MMIO:
635
            dprintf("handle_mmio\n");
636
            cpu_physical_memory_rw(run->mmio.phys_addr,
637
                                   run->mmio.data,
638
                                   run->mmio.len,
639
                                   run->mmio.is_write);
640
            ret = 1;
641
            break;
642
        case KVM_EXIT_IRQ_WINDOW_OPEN:
643
            dprintf("irq_window_open\n");
644
            break;
645
        case KVM_EXIT_SHUTDOWN:
646
            dprintf("shutdown\n");
647
            qemu_system_reset_request();
648
            ret = 1;
649
            break;
650
        case KVM_EXIT_UNKNOWN:
651
            dprintf("kvm_exit_unknown\n");
652
            break;
653
        case KVM_EXIT_FAIL_ENTRY:
654
            dprintf("kvm_exit_fail_entry\n");
655
            break;
656
        case KVM_EXIT_EXCEPTION:
657
            dprintf("kvm_exit_exception\n");
658
            break;
659
        case KVM_EXIT_DEBUG:
660
            dprintf("kvm_exit_debug\n");
661
#ifdef KVM_CAP_SET_GUEST_DEBUG
662
            if (kvm_arch_debug(&run->debug.arch)) {
663
                gdb_set_stop_cpu(env);
664
                vm_stop(EXCP_DEBUG);
665
                env->exception_index = EXCP_DEBUG;
666
                return 0;
667
            }
668
            /* re-enter, this exception was guest-internal */
669
            ret = 1;
670
#endif /* KVM_CAP_SET_GUEST_DEBUG */
671
            break;
672
        default:
673
            dprintf("kvm_arch_handle_exit\n");
674
            ret = kvm_arch_handle_exit(env, run);
675
            break;
676
        }
677
    } while (ret > 0);
678

    
679
    if (env->exit_request) {
680
        env->exit_request = 0;
681
        env->exception_index = EXCP_INTERRUPT;
682
    }
683

    
684
    return ret;
685
}
686

    
687
void kvm_set_phys_mem(a_target_phys_addr start_addr,
688
                      a_ram_addr size,
689
                      a_ram_addr phys_offset)
690
{
691
    KVMState *s = kvm_state;
692
    a_ram_addr flags = phys_offset & ~TARGET_PAGE_MASK;
693
    KVMSlot *mem, old;
694
    int err;
695

    
696
    if (start_addr & ~TARGET_PAGE_MASK) {
697
        if (flags >= IO_MEM_UNASSIGNED) {
698
            if (!kvm_lookup_overlapping_slot(s, start_addr,
699
                                             start_addr + size)) {
700
                return;
701
            }
702
            fprintf(stderr, "Unaligned split of a KVM memory slot\n");
703
        } else {
704
            fprintf(stderr, "Only page-aligned memory slots supported\n");
705
        }
706
        abort();
707
    }
708

    
709
    /* KVM does not support read-only slots */
710
    phys_offset &= ~IO_MEM_ROM;
711

    
712
    while (1) {
713
        mem = kvm_lookup_overlapping_slot(s, start_addr, start_addr + size);
714
        if (!mem) {
715
            break;
716
        }
717

    
718
        if (flags < IO_MEM_UNASSIGNED && start_addr >= mem->start_addr &&
719
            (start_addr + size <= mem->start_addr + mem->memory_size) &&
720
            (phys_offset - start_addr == mem->phys_offset - mem->start_addr)) {
721
            /* The new slot fits into the existing one and comes with
722
             * identical parameters - nothing to be done. */
723
            return;
724
        }
725

    
726
        old = *mem;
727

    
728
        /* unregister the overlapping slot */
729
        mem->memory_size = 0;
730
        err = kvm_set_user_memory_region(s, mem);
731
        if (err) {
732
            fprintf(stderr, "%s: error unregistering overlapping slot: %s\n",
733
                    __func__, strerror(-err));
734
            abort();
735
        }
736

    
737
        /* Workaround for older KVM versions: we can't join slots, even not by
738
         * unregistering the previous ones and then registering the larger
739
         * slot. We have to maintain the existing fragmentation. Sigh.
740
         *
741
         * This workaround assumes that the new slot starts at the same
742
         * address as the first existing one. If not or if some overlapping
743
         * slot comes around later, we will fail (not seen in practice so far)
744
         * - and actually require a recent KVM version. */
745
        if (s->broken_set_mem_region &&
746
            old.start_addr == start_addr && old.memory_size < size &&
747
            flags < IO_MEM_UNASSIGNED) {
748
            mem = kvm_alloc_slot(s);
749
            mem->memory_size = old.memory_size;
750
            mem->start_addr = old.start_addr;
751
            mem->phys_offset = old.phys_offset;
752
            mem->flags = 0;
753

    
754
            err = kvm_set_user_memory_region(s, mem);
755
            if (err) {
756
                fprintf(stderr, "%s: error updating slot: %s\n", __func__,
757
                        strerror(-err));
758
                abort();
759
            }
760

    
761
            start_addr += old.memory_size;
762
            phys_offset += old.memory_size;
763
            size -= old.memory_size;
764
            continue;
765
        }
766

    
767
        /* register prefix slot */
768
        if (old.start_addr < start_addr) {
769
            mem = kvm_alloc_slot(s);
770
            mem->memory_size = start_addr - old.start_addr;
771
            mem->start_addr = old.start_addr;
772
            mem->phys_offset = old.phys_offset;
773
            mem->flags = 0;
774

    
775
            err = kvm_set_user_memory_region(s, mem);
776
            if (err) {
777
                fprintf(stderr, "%s: error registering prefix slot: %s\n",
778
                        __func__, strerror(-err));
779
                abort();
780
            }
781
        }
782

    
783
        /* register suffix slot */
784
        if (old.start_addr + old.memory_size > start_addr + size) {
785
            a_ram_addr size_delta;
786

    
787
            mem = kvm_alloc_slot(s);
788
            mem->start_addr = start_addr + size;
789
            size_delta = mem->start_addr - old.start_addr;
790
            mem->memory_size = old.memory_size - size_delta;
791
            mem->phys_offset = old.phys_offset + size_delta;
792
            mem->flags = 0;
793

    
794
            err = kvm_set_user_memory_region(s, mem);
795
            if (err) {
796
                fprintf(stderr, "%s: error registering suffix slot: %s\n",
797
                        __func__, strerror(-err));
798
                abort();
799
            }
800
        }
801
    }
802

    
803
    /* in case the KVM bug workaround already "consumed" the new slot */
804
    if (!size)
805
        return;
806

    
807
    /* KVM does not need to know about this memory */
808
    if (flags >= IO_MEM_UNASSIGNED)
809
        return;
810

    
811
    mem = kvm_alloc_slot(s);
812
    mem->memory_size = size;
813
    mem->start_addr = start_addr;
814
    mem->phys_offset = phys_offset;
815
    mem->flags = 0;
816

    
817
    err = kvm_set_user_memory_region(s, mem);
818
    if (err) {
819
        fprintf(stderr, "%s: error registering slot: %s\n", __func__,
820
                strerror(-err));
821
        abort();
822
    }
823
}
824

    
825
int kvm_ioctl(KVMState *s, int type, ...)
826
{
827
    int ret;
828
    void *arg;
829
    va_list ap;
830

    
831
    va_start(ap, type);
832
    arg = va_arg(ap, void *);
833
    va_end(ap);
834

    
835
    ret = ioctl(s->fd, type, arg);
836
    if (ret == -1)
837
        ret = -errno;
838

    
839
    return ret;
840
}
841

    
842
int kvm_vm_ioctl(KVMState *s, int type, ...)
843
{
844
    int ret;
845
    void *arg;
846
    va_list ap;
847

    
848
    va_start(ap, type);
849
    arg = va_arg(ap, void *);
850
    va_end(ap);
851

    
852
    ret = ioctl(s->vmfd, type, arg);
853
    if (ret == -1)
854
        ret = -errno;
855

    
856
    return ret;
857
}
858

    
859
int kvm_vcpu_ioctl(CPUState *env, int type, ...)
860
{
861
    int ret;
862
    void *arg;
863
    va_list ap;
864

    
865
    va_start(ap, type);
866
    arg = va_arg(ap, void *);
867
    va_end(ap);
868

    
869
    ret = ioctl(env->kvm_fd, type, arg);
870
    if (ret == -1)
871
        ret = -errno;
872

    
873
    return ret;
874
}
875

    
876
int kvm_has_sync_mmu(void)
877
{
878
#ifdef KVM_CAP_SYNC_MMU
879
    KVMState *s = kvm_state;
880

    
881
    return kvm_check_extension(s, KVM_CAP_SYNC_MMU);
882
#else
883
    return 0;
884
#endif
885
}
886

    
887
void kvm_setup_guest_memory(void *start, size_t size)
888
{
889
    if (!kvm_has_sync_mmu()) {
890
#ifdef MADV_DONTFORK
891
        int ret = madvise(start, size, MADV_DONTFORK);
892

    
893
        if (ret) {
894
            perror("madvice");
895
            exit(1);
896
        }
897
#else
898
        fprintf(stderr,
899
                "Need MADV_DONTFORK in absence of synchronous KVM MMU\n");
900
        exit(1);
901
#endif
902
    }
903
}
904

    
905
#ifdef KVM_CAP_SET_GUEST_DEBUG
906
static void on_vcpu(CPUState *env, void (*func)(void *data), void *data)
907
{
908
    if (env == cpu_single_env) {
909
        func(data);
910
        return;
911
    }
912
    abort();
913
}
914

    
915
struct kvm_sw_breakpoint *kvm_find_sw_breakpoint(CPUState *env,
916
                                                 target_ulong pc)
917
{
918
    struct kvm_sw_breakpoint *bp;
919

    
920
    QTAILQ_FOREACH(bp, &env->kvm_state->kvm_sw_breakpoints, entry) {
921
        if (bp->pc == pc)
922
            return bp;
923
    }
924
    return NULL;
925
}
926

    
927
int kvm_sw_breakpoints_active(CPUState *env)
928
{
929
    return !QTAILQ_EMPTY(&env->kvm_state->kvm_sw_breakpoints);
930
}
931

    
932
struct kvm_set_guest_debug_data {
933
    struct kvm_guest_debug dbg;
934
    CPUState *env;
935
    int err;
936
};
937

    
938
static void kvm_invoke_set_guest_debug(void *data)
939
{
940
    struct kvm_set_guest_debug_data *dbg_data = data;
941
    dbg_data->err = kvm_vcpu_ioctl(dbg_data->env, KVM_SET_GUEST_DEBUG, &dbg_data->dbg);
942
}
943

    
944
int kvm_update_guest_debug(CPUState *env, unsigned long reinject_trap)
945
{
946
    struct kvm_set_guest_debug_data data;
947

    
948
    data.dbg.control = 0;
949
    if (env->singlestep_enabled)
950
        data.dbg.control = KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_SINGLESTEP;
951

    
952
    kvm_arch_update_guest_debug(env, &data.dbg);
953
    data.dbg.control |= reinject_trap;
954
    data.env = env;
955

    
956
    on_vcpu(env, kvm_invoke_set_guest_debug, &data);
957
    return data.err;
958
}
959

    
960
int kvm_insert_breakpoint(CPUState *current_env, target_ulong addr,
961
                          target_ulong len, int type)
962
{
963
    struct kvm_sw_breakpoint *bp;
964
    CPUState *env;
965
    int err;
966

    
967
    if (type == GDB_BREAKPOINT_SW) {
968
        bp = kvm_find_sw_breakpoint(current_env, addr);
969
        if (bp) {
970
            bp->use_count++;
971
            return 0;
972
        }
973

    
974
        bp = qemu_malloc(sizeof(struct kvm_sw_breakpoint));
975
        if (!bp)
976
            return -ENOMEM;
977

    
978
        bp->pc = addr;
979
        bp->use_count = 1;
980
        err = kvm_arch_insert_sw_breakpoint(current_env, bp);
981
        if (err) {
982
            free(bp);
983
            return err;
984
        }
985

    
986
        QTAILQ_INSERT_HEAD(&current_env->kvm_state->kvm_sw_breakpoints,
987
                          bp, entry);
988
    } else {
989
        err = kvm_arch_insert_hw_breakpoint(addr, len, type);
990
        if (err)
991
            return err;
992
    }
993

    
994
    for (env = first_cpu; env != NULL; env = env->next_cpu) {
995
        err = kvm_update_guest_debug(env, 0);
996
        if (err)
997
            return err;
998
    }
999
    return 0;
1000
}
1001

    
1002
int kvm_remove_breakpoint(CPUState *current_env, target_ulong addr,
1003
                          target_ulong len, int type)
1004
{
1005
    struct kvm_sw_breakpoint *bp;
1006
    CPUState *env;
1007
    int err;
1008

    
1009
    if (type == GDB_BREAKPOINT_SW) {
1010
        bp = kvm_find_sw_breakpoint(current_env, addr);
1011
        if (!bp)
1012
            return -ENOENT;
1013

    
1014
        if (bp->use_count > 1) {
1015
            bp->use_count--;
1016
            return 0;
1017
        }
1018

    
1019
        err = kvm_arch_remove_sw_breakpoint(current_env, bp);
1020
        if (err)
1021
            return err;
1022

    
1023
        QTAILQ_REMOVE(&current_env->kvm_state->kvm_sw_breakpoints, bp, entry);
1024
        qemu_free(bp);
1025
    } else {
1026
        err = kvm_arch_remove_hw_breakpoint(addr, len, type);
1027
        if (err)
1028
            return err;
1029
    }
1030

    
1031
    for (env = first_cpu; env != NULL; env = env->next_cpu) {
1032
        err = kvm_update_guest_debug(env, 0);
1033
        if (err)
1034
            return err;
1035
    }
1036
    return 0;
1037
}
1038

    
1039
void kvm_remove_all_breakpoints(CPUState *current_env)
1040
{
1041
    struct kvm_sw_breakpoint *bp, *next;
1042
    KVMState *s = current_env->kvm_state;
1043
    CPUState *env;
1044

    
1045
    QTAILQ_FOREACH_SAFE(bp, &s->kvm_sw_breakpoints, entry, next) {
1046
        if (kvm_arch_remove_sw_breakpoint(current_env, bp) != 0) {
1047
            /* Try harder to find a CPU that currently sees the breakpoint. */
1048
            for (env = first_cpu; env != NULL; env = env->next_cpu) {
1049
                if (kvm_arch_remove_sw_breakpoint(env, bp) == 0)
1050
                    break;
1051
            }
1052
        }
1053
    }
1054
    kvm_arch_remove_all_hw_breakpoints();
1055

    
1056
    for (env = first_cpu; env != NULL; env = env->next_cpu)
1057
        kvm_update_guest_debug(env, 0);
1058
}
1059

    
1060
#else /* !KVM_CAP_SET_GUEST_DEBUG */
1061

    
1062
int kvm_update_guest_debug(CPUState *env, unsigned long reinject_trap)
1063
{
1064
    return -EINVAL;
1065
}
1066

    
1067
int kvm_insert_breakpoint(CPUState *current_env, target_ulong addr,
1068
                          target_ulong len, int type)
1069
{
1070
    return -EINVAL;
1071
}
1072

    
1073
int kvm_remove_breakpoint(CPUState *current_env, target_ulong addr,
1074
                          target_ulong len, int type)
1075
{
1076
    return -EINVAL;
1077
}
1078

    
1079
void kvm_remove_all_breakpoints(CPUState *current_env)
1080
{
1081
}
1082
#endif /* !KVM_CAP_SET_GUEST_DEBUG */