Statistics
| Branch: | Revision:

root / target-microblaze / op_helper.c @ 99a0949b

History | View | Annotate | Download (6.8 kB)

1
/*
2
 *  Microblaze helper routines.
3
 *
4
 *  Copyright (c) 2009 Edgar E. Iglesias <edgar.iglesias@gmail.com>.
5
 *
6
 * This library is free software; you can redistribute it and/or
7
 * modify it under the terms of the GNU Lesser General Public
8
 * License as published by the Free Software Foundation; either
9
 * version 2 of the License, or (at your option) any later version.
10
 *
11
 * This library is distributed in the hope that it will be useful,
12
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14
 * Lesser General Public License for more details.
15
 *
16
 * You should have received a copy of the GNU Lesser General Public
17
 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18
 */
19

    
20
#include <assert.h>
21
#include "exec.h"
22
#include "helper.h"
23
#include "host-utils.h"
24

    
25
#define D(x)
26

    
27
#if !defined(CONFIG_USER_ONLY)
28
#define MMUSUFFIX _mmu
29
#define SHIFT 0
30
#include "softmmu_template.h"
31
#define SHIFT 1
32
#include "softmmu_template.h"
33
#define SHIFT 2
34
#include "softmmu_template.h"
35
#define SHIFT 3
36
#include "softmmu_template.h"
37

    
38
/* Try to fill the TLB and return an exception if error. If retaddr is
39
   NULL, it means that the function was called in C code (i.e. not
40
   from generated code or from helper.c) */
41
/* XXX: fix it to restore all registers */
42
void tlb_fill (target_ulong addr, int is_write, int mmu_idx, void *retaddr)
43
{
44
    TranslationBlock *tb;
45
    CPUState *saved_env;
46
    unsigned long pc;
47
    int ret;
48

    
49
    /* XXX: hack to restore env in all cases, even if not called from
50
       generated code */
51
    saved_env = env;
52
    env = cpu_single_env;
53

    
54
    ret = cpu_mb_handle_mmu_fault(env, addr, is_write, mmu_idx, 1);
55
    if (unlikely(ret)) {
56
        if (retaddr) {
57
            /* now we have a real cpu fault */
58
            pc = (unsigned long)retaddr;
59
            tb = tb_find_pc(pc);
60
            if (tb) {
61
                /* the PC is inside the translated code. It means that we have
62
                   a virtual CPU fault */
63
                cpu_restore_state(tb, env, pc, NULL);
64
            }
65
        }
66
        cpu_loop_exit();
67
    }
68
    env = saved_env;
69
}
70
#endif
71

    
72
void helper_raise_exception(uint32_t index)
73
{
74
    env->exception_index = index;
75
    cpu_loop_exit();
76
}
77

    
78
void helper_debug(void)
79
{
80
    int i;
81

    
82
    qemu_log("PC=%8.8x\n", env->sregs[SR_PC]);
83
    for (i = 0; i < 32; i++) {
84
        qemu_log("r%2.2d=%8.8x ", i, env->regs[i]);
85
        if ((i + 1) % 4 == 0)
86
            qemu_log("\n");
87
    }
88
    qemu_log("\n\n");
89
}
90

    
91
static inline uint32_t compute_carry(uint32_t a, uint32_t b, uint32_t cin)
92
{
93
    uint32_t cout = 0;
94

    
95
    if ((b == ~0) && cin)
96
        cout = 1;
97
    else if ((~0 - a) < (b + cin))
98
        cout = 1;
99
    return cout;
100
}
101

    
102
uint32_t helper_cmp(uint32_t a, uint32_t b)
103
{
104
    uint32_t t;
105

    
106
    t = b + ~a + 1;
107
    if ((b & 0x80000000) ^ (a & 0x80000000))
108
        t = (t & 0x7fffffff) | (b & 0x80000000);
109
    return t;
110
}
111

    
112
uint32_t helper_cmpu(uint32_t a, uint32_t b)
113
{
114
    uint32_t t;
115

    
116
    t = b + ~a + 1;
117
    if ((b & 0x80000000) ^ (a & 0x80000000))
118
        t = (t & 0x7fffffff) | (a & 0x80000000);
119
    return t;
120
}
121

    
122
uint32_t helper_addkc(uint32_t a, uint32_t b, uint32_t k, uint32_t c)
123
{
124
    uint32_t d, cf = 0, ncf;
125

    
126
    if (c)
127
        cf = env->sregs[SR_MSR] >> 31;
128
    assert(cf == 0 || cf == 1);
129
    d = a + b + cf;
130

    
131
    if (!k) {
132
        ncf = compute_carry(a, b, cf);
133
        assert(ncf == 0 || ncf == 1);
134
        if (ncf)
135
            env->sregs[SR_MSR] |= MSR_C | MSR_CC;
136
        else
137
            env->sregs[SR_MSR] &= ~(MSR_C | MSR_CC);
138
    }
139
    D(qemu_log("%x = %x + %x cf=%d ncf=%d k=%d c=%d\n",
140
               d, a, b, cf, ncf, k, c));
141
    return d;
142
}
143

    
144
uint32_t helper_subkc(uint32_t a, uint32_t b, uint32_t k, uint32_t c)
145
{
146
    uint32_t d, cf = 1, ncf;
147

    
148
    if (c)
149
        cf = env->sregs[SR_MSR] >> 31; 
150
    assert(cf == 0 || cf == 1);
151
    d = b + ~a + cf;
152

    
153
    if (!k) {
154
        ncf = compute_carry(b, ~a, cf);
155
        assert(ncf == 0 || ncf == 1);
156
        if (ncf)
157
            env->sregs[SR_MSR] |= MSR_C | MSR_CC;
158
        else
159
            env->sregs[SR_MSR] &= ~(MSR_C | MSR_CC);
160
    }
161
    D(qemu_log("%x = %x + %x cf=%d ncf=%d k=%d c=%d\n",
162
               d, a, b, cf, ncf, k, c));
163
    return d;
164
}
165

    
166
static inline int div_prepare(uint32_t a, uint32_t b)
167
{
168
    if (b == 0) {
169
        env->sregs[SR_MSR] |= MSR_DZ;
170

    
171
        if ((env->sregs[SR_MSR] & MSR_EE)
172
            && !(env->pvr.regs[2] & PVR2_DIV_ZERO_EXC_MASK)) {
173
            env->sregs[SR_ESR] = ESR_EC_DIVZERO;
174
            helper_raise_exception(EXCP_HW_EXCP);
175
        }
176
        return 0;
177
    }
178
    env->sregs[SR_MSR] &= ~MSR_DZ;
179
    return 1;
180
}
181

    
182
uint32_t helper_divs(uint32_t a, uint32_t b)
183
{
184
    if (!div_prepare(a, b))
185
        return 0;
186
    return (int32_t)a / (int32_t)b;
187
}
188

    
189
uint32_t helper_divu(uint32_t a, uint32_t b)
190
{
191
    if (!div_prepare(a, b))
192
        return 0;
193
    return a / b;
194
}
195

    
196
uint32_t helper_pcmpbf(uint32_t a, uint32_t b)
197
{
198
    unsigned int i;
199
    uint32_t mask = 0xff000000;
200

    
201
    for (i = 0; i < 4; i++) {
202
        if ((a & mask) == (b & mask))
203
            return i + 1;
204
        mask >>= 8;
205
    }
206
    return 0;
207
}
208

    
209
void helper_memalign(uint32_t addr, uint32_t dr, uint32_t wr, uint32_t mask)
210
{
211
    if (addr & mask) {
212
            qemu_log_mask(CPU_LOG_INT,
213
                          "unaligned access addr=%x mask=%x, wr=%d dr=r%d\n",
214
                          addr, mask, wr, dr);
215
            env->sregs[SR_EAR] = addr;
216
            env->sregs[SR_ESR] = ESR_EC_UNALIGNED_DATA | (wr << 10) \
217
                                 | (dr & 31) << 5;
218
            if (mask == 3) {
219
                env->sregs[SR_ESR] |= 1 << 11;
220
            }
221
            if (!(env->sregs[SR_MSR] & MSR_EE)) {
222
                return;
223
            }
224
            helper_raise_exception(EXCP_HW_EXCP);
225
    }
226
}
227

    
228
#if !defined(CONFIG_USER_ONLY)
229
/* Writes/reads to the MMU's special regs end up here.  */
230
uint32_t helper_mmu_read(uint32_t rn)
231
{
232
    return mmu_read(env, rn);
233
}
234

    
235
void helper_mmu_write(uint32_t rn, uint32_t v)
236
{
237
    mmu_write(env, rn, v);
238
}
239
#endif
240

    
241
void do_unassigned_access(a_target_phys_addr addr, int is_write, int is_exec,
242
                          int is_asi, int size)
243
{
244
    CPUState *saved_env;
245
    /* XXX: hack to restore env in all cases, even if not called from
246
       generated code */
247
    saved_env = env;
248
    env = cpu_single_env;
249
    qemu_log_mask(CPU_LOG_INT, "Unassigned " TARGET_FMT_plx " wr=%d exe=%d\n",
250
             addr, is_write, is_exec);
251
    if (!(env->sregs[SR_MSR] & MSR_EE)) {
252
        return;
253
    }
254

    
255
    env->sregs[SR_EAR] = addr;
256
    if (is_exec) {
257
        if ((env->pvr.regs[2] & PVR2_IOPB_BUS_EXC_MASK)) {
258
            env->sregs[SR_ESR] = ESR_EC_INSN_BUS;
259
            helper_raise_exception(EXCP_HW_EXCP);
260
        }
261
    } else {
262
        if ((env->pvr.regs[2] & PVR2_DOPB_BUS_EXC_MASK)) {
263
            env->sregs[SR_ESR] = ESR_EC_DATA_BUS;
264
            helper_raise_exception(EXCP_HW_EXCP);
265
        }
266
    }
267
}