Statistics
| Branch: | Revision:

root / target-mips / op_helper.c @ 9b7b85d2

History | View | Annotate | Download (44.2 kB)

1
/*
2
 *  MIPS emulation helpers for qemu.
3
 *
4
 *  Copyright (c) 2004-2005 Jocelyn Mayer
5
 *
6
 * This library is free software; you can redistribute it and/or
7
 * modify it under the terms of the GNU Lesser General Public
8
 * License as published by the Free Software Foundation; either
9
 * version 2 of the License, or (at your option) any later version.
10
 *
11
 * This library is distributed in the hope that it will be useful,
12
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14
 * Lesser General Public License for more details.
15
 *
16
 * You should have received a copy of the GNU Lesser General Public
17
 * License along with this library; if not, write to the Free Software
18
 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
19
 */
20
#include <stdlib.h>
21
#include "exec.h"
22

    
23
#include "host-utils.h"
24

    
25
/*****************************************************************************/
26
/* Exceptions processing helpers */
27

    
28
void do_raise_exception_err (uint32_t exception, int error_code)
29
{
30
#if 1
31
    if (logfile && exception < 0x100)
32
        fprintf(logfile, "%s: %d %d\n", __func__, exception, error_code);
33
#endif
34
    env->exception_index = exception;
35
    env->error_code = error_code;
36
    T0 = 0;
37
    cpu_loop_exit();
38
}
39

    
40
void do_raise_exception (uint32_t exception)
41
{
42
    do_raise_exception_err(exception, 0);
43
}
44

    
45
void do_interrupt_restart (void)
46
{
47
    if (!(env->CP0_Status & (1 << CP0St_EXL)) &&
48
        !(env->CP0_Status & (1 << CP0St_ERL)) &&
49
        !(env->hflags & MIPS_HFLAG_DM) &&
50
        (env->CP0_Status & (1 << CP0St_IE)) &&
51
        (env->CP0_Status & env->CP0_Cause & CP0Ca_IP_mask)) {
52
        env->CP0_Cause &= ~(0x1f << CP0Ca_EC);
53
        do_raise_exception(EXCP_EXT_INTERRUPT);
54
    }
55
}
56

    
57
void do_restore_state (void *pc_ptr)
58
{
59
    TranslationBlock *tb;
60
    unsigned long pc = (unsigned long) pc_ptr;
61
    
62
    tb = tb_find_pc (pc);
63
    if (tb) {
64
        cpu_restore_state (tb, env, pc, NULL);
65
    }
66
}
67

    
68
void do_clo (void)
69
{
70
    T0 = clo32(T0);
71
}
72

    
73
void do_clz (void)
74
{
75
    T0 = clz32(T0);
76
}
77

    
78
#if defined(TARGET_MIPS64)
79
#if TARGET_LONG_BITS > HOST_LONG_BITS
80
/* Those might call libgcc functions.  */
81
void do_dsll (void)
82
{
83
    T0 = T0 << T1;
84
}
85

    
86
void do_dsll32 (void)
87
{
88
    T0 = T0 << (T1 + 32);
89
}
90

    
91
void do_dsra (void)
92
{
93
    T0 = (int64_t)T0 >> T1;
94
}
95

    
96
void do_dsra32 (void)
97
{
98
    T0 = (int64_t)T0 >> (T1 + 32);
99
}
100

    
101
void do_dsrl (void)
102
{
103
    T0 = T0 >> T1;
104
}
105

    
106
void do_dsrl32 (void)
107
{
108
    T0 = T0 >> (T1 + 32);
109
}
110

    
111
void do_drotr (void)
112
{
113
    target_ulong tmp;
114

    
115
    if (T1) {
116
        tmp = T0 << (0x40 - T1);
117
        T0 = (T0 >> T1) | tmp;
118
    }
119
}
120

    
121
void do_drotr32 (void)
122
{
123
    target_ulong tmp;
124

    
125
    tmp = T0 << (0x40 - (32 + T1));
126
    T0 = (T0 >> (32 + T1)) | tmp;
127
}
128

    
129
void do_dsllv (void)
130
{
131
    T0 = T1 << (T0 & 0x3F);
132
}
133

    
134
void do_dsrav (void)
135
{
136
    T0 = (int64_t)T1 >> (T0 & 0x3F);
137
}
138

    
139
void do_dsrlv (void)
140
{
141
    T0 = T1 >> (T0 & 0x3F);
142
}
143

    
144
void do_drotrv (void)
145
{
146
    target_ulong tmp;
147

    
148
    T0 &= 0x3F;
149
    if (T0) {
150
        tmp = T1 << (0x40 - T0);
151
        T0 = (T1 >> T0) | tmp;
152
    } else
153
        T0 = T1;
154
}
155

    
156
#endif /* TARGET_LONG_BITS > HOST_LONG_BITS */
157

    
158
void do_dclo (void)
159
{
160
    T0 = clo64(T0);
161
}
162

    
163
void do_dclz (void)
164
{
165
    T0 = clz64(T0);
166
}
167

    
168
#endif /* TARGET_MIPS64 */
169

    
170
/* 64 bits arithmetic for 32 bits hosts */
171
#if TARGET_LONG_BITS > HOST_LONG_BITS
172
static always_inline uint64_t get_HILO (void)
173
{
174
    return (env->HI[env->current_tc][0] << 32) | (uint32_t)env->LO[env->current_tc][0];
175
}
176

    
177
static always_inline void set_HILO (uint64_t HILO)
178
{
179
    env->LO[env->current_tc][0] = (int32_t)HILO;
180
    env->HI[env->current_tc][0] = (int32_t)(HILO >> 32);
181
}
182

    
183
static always_inline void set_HIT0_LO (uint64_t HILO)
184
{
185
    env->LO[env->current_tc][0] = (int32_t)(HILO & 0xFFFFFFFF);
186
    T0 = env->HI[env->current_tc][0] = (int32_t)(HILO >> 32);
187
}
188

    
189
static always_inline void set_HI_LOT0 (uint64_t HILO)
190
{
191
    T0 = env->LO[env->current_tc][0] = (int32_t)(HILO & 0xFFFFFFFF);
192
    env->HI[env->current_tc][0] = (int32_t)(HILO >> 32);
193
}
194

    
195
void do_mult (void)
196
{
197
    set_HILO((int64_t)(int32_t)T0 * (int64_t)(int32_t)T1);
198
}
199

    
200
void do_multu (void)
201
{
202
    set_HILO((uint64_t)(uint32_t)T0 * (uint64_t)(uint32_t)T1);
203
}
204

    
205
void do_madd (void)
206
{
207
    int64_t tmp;
208

    
209
    tmp = ((int64_t)(int32_t)T0 * (int64_t)(int32_t)T1);
210
    set_HILO((int64_t)get_HILO() + tmp);
211
}
212

    
213
void do_maddu (void)
214
{
215
    uint64_t tmp;
216

    
217
    tmp = ((uint64_t)(uint32_t)T0 * (uint64_t)(uint32_t)T1);
218
    set_HILO(get_HILO() + tmp);
219
}
220

    
221
void do_msub (void)
222
{
223
    int64_t tmp;
224

    
225
    tmp = ((int64_t)(int32_t)T0 * (int64_t)(int32_t)T1);
226
    set_HILO((int64_t)get_HILO() - tmp);
227
}
228

    
229
void do_msubu (void)
230
{
231
    uint64_t tmp;
232

    
233
    tmp = ((uint64_t)(uint32_t)T0 * (uint64_t)(uint32_t)T1);
234
    set_HILO(get_HILO() - tmp);
235
}
236

    
237
/* Multiplication variants of the vr54xx. */
238
void do_muls (void)
239
{
240
    set_HI_LOT0(0 - ((int64_t)(int32_t)T0 * (int64_t)(int32_t)T1));
241
}
242

    
243
void do_mulsu (void)
244
{
245
    set_HI_LOT0(0 - ((uint64_t)(uint32_t)T0 * (uint64_t)(uint32_t)T1));
246
}
247

    
248
void do_macc (void)
249
{
250
    set_HI_LOT0(((int64_t)get_HILO()) + ((int64_t)(int32_t)T0 * (int64_t)(int32_t)T1));
251
}
252

    
253
void do_macchi (void)
254
{
255
    set_HIT0_LO(((int64_t)get_HILO()) + ((int64_t)(int32_t)T0 * (int64_t)(int32_t)T1));
256
}
257

    
258
void do_maccu (void)
259
{
260
    set_HI_LOT0(((uint64_t)get_HILO()) + ((uint64_t)(uint32_t)T0 * (uint64_t)(uint32_t)T1));
261
}
262

    
263
void do_macchiu (void)
264
{
265
    set_HIT0_LO(((uint64_t)get_HILO()) + ((uint64_t)(uint32_t)T0 * (uint64_t)(uint32_t)T1));
266
}
267

    
268
void do_msac (void)
269
{
270
    set_HI_LOT0(((int64_t)get_HILO()) - ((int64_t)(int32_t)T0 * (int64_t)(int32_t)T1));
271
}
272

    
273
void do_msachi (void)
274
{
275
    set_HIT0_LO(((int64_t)get_HILO()) - ((int64_t)(int32_t)T0 * (int64_t)(int32_t)T1));
276
}
277

    
278
void do_msacu (void)
279
{
280
    set_HI_LOT0(((uint64_t)get_HILO()) - ((uint64_t)(uint32_t)T0 * (uint64_t)(uint32_t)T1));
281
}
282

    
283
void do_msachiu (void)
284
{
285
    set_HIT0_LO(((uint64_t)get_HILO()) - ((uint64_t)(uint32_t)T0 * (uint64_t)(uint32_t)T1));
286
}
287

    
288
void do_mulhi (void)
289
{
290
    set_HIT0_LO((int64_t)(int32_t)T0 * (int64_t)(int32_t)T1);
291
}
292

    
293
void do_mulhiu (void)
294
{
295
    set_HIT0_LO((uint64_t)(uint32_t)T0 * (uint64_t)(uint32_t)T1);
296
}
297

    
298
void do_mulshi (void)
299
{
300
    set_HIT0_LO(0 - ((int64_t)(int32_t)T0 * (int64_t)(int32_t)T1));
301
}
302

    
303
void do_mulshiu (void)
304
{
305
    set_HIT0_LO(0 - ((uint64_t)(uint32_t)T0 * (uint64_t)(uint32_t)T1));
306
}
307
#endif /* TARGET_LONG_BITS > HOST_LONG_BITS */
308

    
309
#if defined(CONFIG_USER_ONLY)
310
void do_mfc0_random (void)
311
{
312
    cpu_abort(env, "mfc0 random\n");
313
}
314

    
315
void do_mfc0_count (void)
316
{
317
    cpu_abort(env, "mfc0 count\n");
318
}
319

    
320
void cpu_mips_store_count(CPUState *env, uint32_t value)
321
{
322
    cpu_abort(env, "mtc0 count\n");
323
}
324

    
325
void cpu_mips_store_compare(CPUState *env, uint32_t value)
326
{
327
    cpu_abort(env, "mtc0 compare\n");
328
}
329

    
330
void cpu_mips_start_count(CPUState *env)
331
{
332
    cpu_abort(env, "start count\n");
333
}
334

    
335
void cpu_mips_stop_count(CPUState *env)
336
{
337
    cpu_abort(env, "stop count\n");
338
}
339

    
340
void cpu_mips_update_irq(CPUState *env)
341
{
342
    cpu_abort(env, "mtc0 status / mtc0 cause\n");
343
}
344

    
345
void do_mtc0_status_debug(uint32_t old, uint32_t val)
346
{
347
    cpu_abort(env, "mtc0 status debug\n");
348
}
349

    
350
void do_mtc0_status_irqraise_debug (void)
351
{
352
    cpu_abort(env, "mtc0 status irqraise debug\n");
353
}
354

    
355
void cpu_mips_tlb_flush (CPUState *env, int flush_global)
356
{
357
    cpu_abort(env, "mips_tlb_flush\n");
358
}
359

    
360
#else
361

    
362
/* CP0 helpers */
363
void do_mfc0_random (void)
364
{
365
    T0 = (int32_t)cpu_mips_get_random(env);
366
}
367

    
368
void do_mfc0_count (void)
369
{
370
    T0 = (int32_t)cpu_mips_get_count(env);
371
}
372

    
373
void do_mtc0_status_debug(uint32_t old, uint32_t val)
374
{
375
    fprintf(logfile, "Status %08x (%08x) => %08x (%08x) Cause %08x",
376
            old, old & env->CP0_Cause & CP0Ca_IP_mask,
377
            val, val & env->CP0_Cause & CP0Ca_IP_mask,
378
            env->CP0_Cause);
379
    switch (env->hflags & MIPS_HFLAG_KSU) {
380
    case MIPS_HFLAG_UM: fputs(", UM\n", logfile); break;
381
    case MIPS_HFLAG_SM: fputs(", SM\n", logfile); break;
382
    case MIPS_HFLAG_KM: fputs("\n", logfile); break;
383
    default: cpu_abort(env, "Invalid MMU mode!\n"); break;
384
    }
385
}
386

    
387
void do_mtc0_status_irqraise_debug(void)
388
{
389
    fprintf(logfile, "Raise pending IRQs\n");
390
}
391

    
392
void fpu_handle_exception(void)
393
{
394
#ifdef CONFIG_SOFTFLOAT
395
    int flags = get_float_exception_flags(&env->fpu->fp_status);
396
    unsigned int cpuflags = 0, enable, cause = 0;
397

    
398
    enable = GET_FP_ENABLE(env->fpu->fcr31);
399

    
400
    /* determine current flags */
401
    if (flags & float_flag_invalid) {
402
        cpuflags |= FP_INVALID;
403
        cause |= FP_INVALID & enable;
404
    }
405
    if (flags & float_flag_divbyzero) {
406
        cpuflags |= FP_DIV0;
407
        cause |= FP_DIV0 & enable;
408
    }
409
    if (flags & float_flag_overflow) {
410
        cpuflags |= FP_OVERFLOW;
411
        cause |= FP_OVERFLOW & enable;
412
    }
413
    if (flags & float_flag_underflow) {
414
        cpuflags |= FP_UNDERFLOW;
415
        cause |= FP_UNDERFLOW & enable;
416
    }
417
    if (flags & float_flag_inexact) {
418
        cpuflags |= FP_INEXACT;
419
        cause |= FP_INEXACT & enable;
420
    }
421
    SET_FP_FLAGS(env->fpu->fcr31, cpuflags);
422
    SET_FP_CAUSE(env->fpu->fcr31, cause);
423
#else
424
    SET_FP_FLAGS(env->fpu->fcr31, 0);
425
    SET_FP_CAUSE(env->fpu->fcr31, 0);
426
#endif
427
}
428

    
429
/* TLB management */
430
void cpu_mips_tlb_flush (CPUState *env, int flush_global)
431
{
432
    /* Flush qemu's TLB and discard all shadowed entries.  */
433
    tlb_flush (env, flush_global);
434
    env->tlb->tlb_in_use = env->tlb->nb_tlb;
435
}
436

    
437
static void r4k_mips_tlb_flush_extra (CPUState *env, int first)
438
{
439
    /* Discard entries from env->tlb[first] onwards.  */
440
    while (env->tlb->tlb_in_use > first) {
441
        r4k_invalidate_tlb(env, --env->tlb->tlb_in_use, 0);
442
    }
443
}
444

    
445
static void r4k_fill_tlb (int idx)
446
{
447
    r4k_tlb_t *tlb;
448

    
449
    /* XXX: detect conflicting TLBs and raise a MCHECK exception when needed */
450
    tlb = &env->tlb->mmu.r4k.tlb[idx];
451
    tlb->VPN = env->CP0_EntryHi & (TARGET_PAGE_MASK << 1);
452
#if defined(TARGET_MIPS64)
453
    tlb->VPN &= env->SEGMask;
454
#endif
455
    tlb->ASID = env->CP0_EntryHi & 0xFF;
456
    tlb->PageMask = env->CP0_PageMask;
457
    tlb->G = env->CP0_EntryLo0 & env->CP0_EntryLo1 & 1;
458
    tlb->V0 = (env->CP0_EntryLo0 & 2) != 0;
459
    tlb->D0 = (env->CP0_EntryLo0 & 4) != 0;
460
    tlb->C0 = (env->CP0_EntryLo0 >> 3) & 0x7;
461
    tlb->PFN[0] = (env->CP0_EntryLo0 >> 6) << 12;
462
    tlb->V1 = (env->CP0_EntryLo1 & 2) != 0;
463
    tlb->D1 = (env->CP0_EntryLo1 & 4) != 0;
464
    tlb->C1 = (env->CP0_EntryLo1 >> 3) & 0x7;
465
    tlb->PFN[1] = (env->CP0_EntryLo1 >> 6) << 12;
466
}
467

    
468
void r4k_do_tlbwi (void)
469
{
470
    /* Discard cached TLB entries.  We could avoid doing this if the
471
       tlbwi is just upgrading access permissions on the current entry;
472
       that might be a further win.  */
473
    r4k_mips_tlb_flush_extra (env, env->tlb->nb_tlb);
474

    
475
    r4k_invalidate_tlb(env, env->CP0_Index % env->tlb->nb_tlb, 0);
476
    r4k_fill_tlb(env->CP0_Index % env->tlb->nb_tlb);
477
}
478

    
479
void r4k_do_tlbwr (void)
480
{
481
    int r = cpu_mips_get_random(env);
482

    
483
    r4k_invalidate_tlb(env, r, 1);
484
    r4k_fill_tlb(r);
485
}
486

    
487
void r4k_do_tlbp (void)
488
{
489
    r4k_tlb_t *tlb;
490
    target_ulong mask;
491
    target_ulong tag;
492
    target_ulong VPN;
493
    uint8_t ASID;
494
    int i;
495

    
496
    ASID = env->CP0_EntryHi & 0xFF;
497
    for (i = 0; i < env->tlb->nb_tlb; i++) {
498
        tlb = &env->tlb->mmu.r4k.tlb[i];
499
        /* 1k pages are not supported. */
500
        mask = tlb->PageMask | ~(TARGET_PAGE_MASK << 1);
501
        tag = env->CP0_EntryHi & ~mask;
502
        VPN = tlb->VPN & ~mask;
503
        /* Check ASID, virtual page number & size */
504
        if ((tlb->G == 1 || tlb->ASID == ASID) && VPN == tag) {
505
            /* TLB match */
506
            env->CP0_Index = i;
507
            break;
508
        }
509
    }
510
    if (i == env->tlb->nb_tlb) {
511
        /* No match.  Discard any shadow entries, if any of them match.  */
512
        for (i = env->tlb->nb_tlb; i < env->tlb->tlb_in_use; i++) {
513
            tlb = &env->tlb->mmu.r4k.tlb[i];
514
            /* 1k pages are not supported. */
515
            mask = tlb->PageMask | ~(TARGET_PAGE_MASK << 1);
516
            tag = env->CP0_EntryHi & ~mask;
517
            VPN = tlb->VPN & ~mask;
518
            /* Check ASID, virtual page number & size */
519
            if ((tlb->G == 1 || tlb->ASID == ASID) && VPN == tag) {
520
                r4k_mips_tlb_flush_extra (env, i);
521
                break;
522
            }
523
        }
524

    
525
        env->CP0_Index |= 0x80000000;
526
    }
527
}
528

    
529
void r4k_do_tlbr (void)
530
{
531
    r4k_tlb_t *tlb;
532
    uint8_t ASID;
533

    
534
    ASID = env->CP0_EntryHi & 0xFF;
535
    tlb = &env->tlb->mmu.r4k.tlb[env->CP0_Index % env->tlb->nb_tlb];
536

    
537
    /* If this will change the current ASID, flush qemu's TLB.  */
538
    if (ASID != tlb->ASID)
539
        cpu_mips_tlb_flush (env, 1);
540

    
541
    r4k_mips_tlb_flush_extra(env, env->tlb->nb_tlb);
542

    
543
    env->CP0_EntryHi = tlb->VPN | tlb->ASID;
544
    env->CP0_PageMask = tlb->PageMask;
545
    env->CP0_EntryLo0 = tlb->G | (tlb->V0 << 1) | (tlb->D0 << 2) |
546
                        (tlb->C0 << 3) | (tlb->PFN[0] >> 6);
547
    env->CP0_EntryLo1 = tlb->G | (tlb->V1 << 1) | (tlb->D1 << 2) |
548
                        (tlb->C1 << 3) | (tlb->PFN[1] >> 6);
549
}
550

    
551
#endif /* !CONFIG_USER_ONLY */
552

    
553
void dump_ldst (const unsigned char *func)
554
{
555
    if (loglevel)
556
        fprintf(logfile, "%s => " TARGET_FMT_lx " " TARGET_FMT_lx "\n", __func__, T0, T1);
557
}
558

    
559
void dump_sc (void)
560
{
561
    if (loglevel) {
562
        fprintf(logfile, "%s " TARGET_FMT_lx " at " TARGET_FMT_lx " (" TARGET_FMT_lx ")\n", __func__,
563
                T1, T0, env->CP0_LLAddr);
564
    }
565
}
566

    
567
void debug_pre_eret (void)
568
{
569
    fprintf(logfile, "ERET: PC " TARGET_FMT_lx " EPC " TARGET_FMT_lx,
570
            env->PC[env->current_tc], env->CP0_EPC);
571
    if (env->CP0_Status & (1 << CP0St_ERL))
572
        fprintf(logfile, " ErrorEPC " TARGET_FMT_lx, env->CP0_ErrorEPC);
573
    if (env->hflags & MIPS_HFLAG_DM)
574
        fprintf(logfile, " DEPC " TARGET_FMT_lx, env->CP0_DEPC);
575
    fputs("\n", logfile);
576
}
577

    
578
void debug_post_eret (void)
579
{
580
    fprintf(logfile, "  =>  PC " TARGET_FMT_lx " EPC " TARGET_FMT_lx,
581
            env->PC[env->current_tc], env->CP0_EPC);
582
    if (env->CP0_Status & (1 << CP0St_ERL))
583
        fprintf(logfile, " ErrorEPC " TARGET_FMT_lx, env->CP0_ErrorEPC);
584
    if (env->hflags & MIPS_HFLAG_DM)
585
        fprintf(logfile, " DEPC " TARGET_FMT_lx, env->CP0_DEPC);
586
    switch (env->hflags & MIPS_HFLAG_KSU) {
587
    case MIPS_HFLAG_UM: fputs(", UM\n", logfile); break;
588
    case MIPS_HFLAG_SM: fputs(", SM\n", logfile); break;
589
    case MIPS_HFLAG_KM: fputs("\n", logfile); break;
590
    default: cpu_abort(env, "Invalid MMU mode!\n"); break;
591
    }
592
}
593

    
594
void do_pmon (int function)
595
{
596
    function /= 2;
597
    switch (function) {
598
    case 2: /* TODO: char inbyte(int waitflag); */
599
        if (env->gpr[env->current_tc][4] == 0)
600
            env->gpr[env->current_tc][2] = -1;
601
        /* Fall through */
602
    case 11: /* TODO: char inbyte (void); */
603
        env->gpr[env->current_tc][2] = -1;
604
        break;
605
    case 3:
606
    case 12:
607
        printf("%c", (char)(env->gpr[env->current_tc][4] & 0xFF));
608
        break;
609
    case 17:
610
        break;
611
    case 158:
612
        {
613
            unsigned char *fmt = (void *)(unsigned long)env->gpr[env->current_tc][4];
614
            printf("%s", fmt);
615
        }
616
        break;
617
    }
618
}
619

    
620
#if !defined(CONFIG_USER_ONLY)
621

    
622
static void do_unaligned_access (target_ulong addr, int is_write, int is_user, void *retaddr);
623

    
624
#define MMUSUFFIX _mmu
625
#define ALIGNED_ONLY
626

    
627
#define SHIFT 0
628
#include "softmmu_template.h"
629

    
630
#define SHIFT 1
631
#include "softmmu_template.h"
632

    
633
#define SHIFT 2
634
#include "softmmu_template.h"
635

    
636
#define SHIFT 3
637
#include "softmmu_template.h"
638

    
639
static void do_unaligned_access (target_ulong addr, int is_write, int is_user, void *retaddr)
640
{
641
    env->CP0_BadVAddr = addr;
642
    do_restore_state (retaddr);
643
    do_raise_exception ((is_write == 1) ? EXCP_AdES : EXCP_AdEL);
644
}
645

    
646
void tlb_fill (target_ulong addr, int is_write, int mmu_idx, void *retaddr)
647
{
648
    TranslationBlock *tb;
649
    CPUState *saved_env;
650
    unsigned long pc;
651
    int ret;
652

    
653
    /* XXX: hack to restore env in all cases, even if not called from
654
       generated code */
655
    saved_env = env;
656
    env = cpu_single_env;
657
    ret = cpu_mips_handle_mmu_fault(env, addr, is_write, mmu_idx, 1);
658
    if (ret) {
659
        if (retaddr) {
660
            /* now we have a real cpu fault */
661
            pc = (unsigned long)retaddr;
662
            tb = tb_find_pc(pc);
663
            if (tb) {
664
                /* the PC is inside the translated code. It means that we have
665
                   a virtual CPU fault */
666
                cpu_restore_state(tb, env, pc, NULL);
667
            }
668
        }
669
        do_raise_exception_err(env->exception_index, env->error_code);
670
    }
671
    env = saved_env;
672
}
673

    
674
void do_unassigned_access(target_phys_addr_t addr, int is_write, int is_exec,
675
                          int unused)
676
{
677
    if (is_exec)
678
        do_raise_exception(EXCP_IBE);
679
    else
680
        do_raise_exception(EXCP_DBE);
681
}
682
#endif
683

    
684
/* Complex FPU operations which may need stack space. */
685

    
686
#define FLOAT_ONE32 make_float32(0x3f8 << 20)
687
#define FLOAT_ONE64 make_float64(0x3ffULL << 52)
688
#define FLOAT_TWO32 make_float32(1 << 30)
689
#define FLOAT_TWO64 make_float64(1ULL << 62)
690
#define FLOAT_QNAN32 0x7fbfffff
691
#define FLOAT_QNAN64 0x7ff7ffffffffffffULL
692
#define FLOAT_SNAN32 0x7fffffff
693
#define FLOAT_SNAN64 0x7fffffffffffffffULL
694

    
695
/* convert MIPS rounding mode in FCR31 to IEEE library */
696
unsigned int ieee_rm[] = {
697
    float_round_nearest_even,
698
    float_round_to_zero,
699
    float_round_up,
700
    float_round_down
701
};
702

    
703
#define RESTORE_ROUNDING_MODE \
704
    set_float_rounding_mode(ieee_rm[env->fpu->fcr31 & 3], &env->fpu->fp_status)
705

    
706
void do_cfc1 (int reg)
707
{
708
    switch (reg) {
709
    case 0:
710
        T0 = (int32_t)env->fpu->fcr0;
711
        break;
712
    case 25:
713
        T0 = ((env->fpu->fcr31 >> 24) & 0xfe) | ((env->fpu->fcr31 >> 23) & 0x1);
714
        break;
715
    case 26:
716
        T0 = env->fpu->fcr31 & 0x0003f07c;
717
        break;
718
    case 28:
719
        T0 = (env->fpu->fcr31 & 0x00000f83) | ((env->fpu->fcr31 >> 22) & 0x4);
720
        break;
721
    default:
722
        T0 = (int32_t)env->fpu->fcr31;
723
        break;
724
    }
725
}
726

    
727
void do_ctc1 (int reg)
728
{
729
    switch(reg) {
730
    case 25:
731
        if (T0 & 0xffffff00)
732
            return;
733
        env->fpu->fcr31 = (env->fpu->fcr31 & 0x017fffff) | ((T0 & 0xfe) << 24) |
734
                     ((T0 & 0x1) << 23);
735
        break;
736
    case 26:
737
        if (T0 & 0x007c0000)
738
            return;
739
        env->fpu->fcr31 = (env->fpu->fcr31 & 0xfffc0f83) | (T0 & 0x0003f07c);
740
        break;
741
    case 28:
742
        if (T0 & 0x007c0000)
743
            return;
744
        env->fpu->fcr31 = (env->fpu->fcr31 & 0xfefff07c) | (T0 & 0x00000f83) |
745
                     ((T0 & 0x4) << 22);
746
        break;
747
    case 31:
748
        if (T0 & 0x007c0000)
749
            return;
750
        env->fpu->fcr31 = T0;
751
        break;
752
    default:
753
        return;
754
    }
755
    /* set rounding mode */
756
    RESTORE_ROUNDING_MODE;
757
    set_float_exception_flags(0, &env->fpu->fp_status);
758
    if ((GET_FP_ENABLE(env->fpu->fcr31) | 0x20) & GET_FP_CAUSE(env->fpu->fcr31))
759
        do_raise_exception(EXCP_FPE);
760
}
761

    
762
static always_inline char ieee_ex_to_mips(char xcpt)
763
{
764
    return (xcpt & float_flag_inexact) >> 5 |
765
           (xcpt & float_flag_underflow) >> 3 |
766
           (xcpt & float_flag_overflow) >> 1 |
767
           (xcpt & float_flag_divbyzero) << 1 |
768
           (xcpt & float_flag_invalid) << 4;
769
}
770

    
771
static always_inline char mips_ex_to_ieee(char xcpt)
772
{
773
    return (xcpt & FP_INEXACT) << 5 |
774
           (xcpt & FP_UNDERFLOW) << 3 |
775
           (xcpt & FP_OVERFLOW) << 1 |
776
           (xcpt & FP_DIV0) >> 1 |
777
           (xcpt & FP_INVALID) >> 4;
778
}
779

    
780
static always_inline void update_fcr31(void)
781
{
782
    int tmp = ieee_ex_to_mips(get_float_exception_flags(&env->fpu->fp_status));
783

    
784
    SET_FP_CAUSE(env->fpu->fcr31, tmp);
785
    if (GET_FP_ENABLE(env->fpu->fcr31) & tmp)
786
        do_raise_exception(EXCP_FPE);
787
    else
788
        UPDATE_FP_FLAGS(env->fpu->fcr31, tmp);
789
}
790

    
791
#define FLOAT_OP(name, p) void do_float_##name##_##p(void)
792

    
793
FLOAT_OP(cvtd, s)
794
{
795
    set_float_exception_flags(0, &env->fpu->fp_status);
796
    FDT2 = float32_to_float64(FST0, &env->fpu->fp_status);
797
    update_fcr31();
798
}
799
FLOAT_OP(cvtd, w)
800
{
801
    set_float_exception_flags(0, &env->fpu->fp_status);
802
    FDT2 = int32_to_float64(WT0, &env->fpu->fp_status);
803
    update_fcr31();
804
}
805
FLOAT_OP(cvtd, l)
806
{
807
    set_float_exception_flags(0, &env->fpu->fp_status);
808
    FDT2 = int64_to_float64(DT0, &env->fpu->fp_status);
809
    update_fcr31();
810
}
811
FLOAT_OP(cvtl, d)
812
{
813
    set_float_exception_flags(0, &env->fpu->fp_status);
814
    DT2 = float64_to_int64(FDT0, &env->fpu->fp_status);
815
    update_fcr31();
816
    if (GET_FP_CAUSE(env->fpu->fcr31) & (FP_OVERFLOW | FP_INVALID))
817
        DT2 = FLOAT_SNAN64;
818
}
819
FLOAT_OP(cvtl, s)
820
{
821
    set_float_exception_flags(0, &env->fpu->fp_status);
822
    DT2 = float32_to_int64(FST0, &env->fpu->fp_status);
823
    update_fcr31();
824
    if (GET_FP_CAUSE(env->fpu->fcr31) & (FP_OVERFLOW | FP_INVALID))
825
        DT2 = FLOAT_SNAN64;
826
}
827

    
828
FLOAT_OP(cvtps, pw)
829
{
830
    set_float_exception_flags(0, &env->fpu->fp_status);
831
    FST2 = int32_to_float32(WT0, &env->fpu->fp_status);
832
    FSTH2 = int32_to_float32(WTH0, &env->fpu->fp_status);
833
    update_fcr31();
834
}
835
FLOAT_OP(cvtpw, ps)
836
{
837
    set_float_exception_flags(0, &env->fpu->fp_status);
838
    WT2 = float32_to_int32(FST0, &env->fpu->fp_status);
839
    WTH2 = float32_to_int32(FSTH0, &env->fpu->fp_status);
840
    update_fcr31();
841
    if (GET_FP_CAUSE(env->fpu->fcr31) & (FP_OVERFLOW | FP_INVALID))
842
        WT2 = FLOAT_SNAN32;
843
}
844
FLOAT_OP(cvts, d)
845
{
846
    set_float_exception_flags(0, &env->fpu->fp_status);
847
    FST2 = float64_to_float32(FDT0, &env->fpu->fp_status);
848
    update_fcr31();
849
}
850
FLOAT_OP(cvts, w)
851
{
852
    set_float_exception_flags(0, &env->fpu->fp_status);
853
    FST2 = int32_to_float32(WT0, &env->fpu->fp_status);
854
    update_fcr31();
855
}
856
FLOAT_OP(cvts, l)
857
{
858
    set_float_exception_flags(0, &env->fpu->fp_status);
859
    FST2 = int64_to_float32(DT0, &env->fpu->fp_status);
860
    update_fcr31();
861
}
862
FLOAT_OP(cvts, pl)
863
{
864
    set_float_exception_flags(0, &env->fpu->fp_status);
865
    WT2 = WT0;
866
    update_fcr31();
867
}
868
FLOAT_OP(cvts, pu)
869
{
870
    set_float_exception_flags(0, &env->fpu->fp_status);
871
    WT2 = WTH0;
872
    update_fcr31();
873
}
874
FLOAT_OP(cvtw, s)
875
{
876
    set_float_exception_flags(0, &env->fpu->fp_status);
877
    WT2 = float32_to_int32(FST0, &env->fpu->fp_status);
878
    update_fcr31();
879
    if (GET_FP_CAUSE(env->fpu->fcr31) & (FP_OVERFLOW | FP_INVALID))
880
        WT2 = FLOAT_SNAN32;
881
}
882
FLOAT_OP(cvtw, d)
883
{
884
    set_float_exception_flags(0, &env->fpu->fp_status);
885
    WT2 = float64_to_int32(FDT0, &env->fpu->fp_status);
886
    update_fcr31();
887
    if (GET_FP_CAUSE(env->fpu->fcr31) & (FP_OVERFLOW | FP_INVALID))
888
        WT2 = FLOAT_SNAN32;
889
}
890

    
891
FLOAT_OP(roundl, d)
892
{
893
    set_float_rounding_mode(float_round_nearest_even, &env->fpu->fp_status);
894
    DT2 = float64_to_int64(FDT0, &env->fpu->fp_status);
895
    RESTORE_ROUNDING_MODE;
896
    update_fcr31();
897
    if (GET_FP_CAUSE(env->fpu->fcr31) & (FP_OVERFLOW | FP_INVALID))
898
        DT2 = FLOAT_SNAN64;
899
}
900
FLOAT_OP(roundl, s)
901
{
902
    set_float_rounding_mode(float_round_nearest_even, &env->fpu->fp_status);
903
    DT2 = float32_to_int64(FST0, &env->fpu->fp_status);
904
    RESTORE_ROUNDING_MODE;
905
    update_fcr31();
906
    if (GET_FP_CAUSE(env->fpu->fcr31) & (FP_OVERFLOW | FP_INVALID))
907
        DT2 = FLOAT_SNAN64;
908
}
909
FLOAT_OP(roundw, d)
910
{
911
    set_float_rounding_mode(float_round_nearest_even, &env->fpu->fp_status);
912
    WT2 = float64_to_int32(FDT0, &env->fpu->fp_status);
913
    RESTORE_ROUNDING_MODE;
914
    update_fcr31();
915
    if (GET_FP_CAUSE(env->fpu->fcr31) & (FP_OVERFLOW | FP_INVALID))
916
        WT2 = FLOAT_SNAN32;
917
}
918
FLOAT_OP(roundw, s)
919
{
920
    set_float_rounding_mode(float_round_nearest_even, &env->fpu->fp_status);
921
    WT2 = float32_to_int32(FST0, &env->fpu->fp_status);
922
    RESTORE_ROUNDING_MODE;
923
    update_fcr31();
924
    if (GET_FP_CAUSE(env->fpu->fcr31) & (FP_OVERFLOW | FP_INVALID))
925
        WT2 = FLOAT_SNAN32;
926
}
927

    
928
FLOAT_OP(truncl, d)
929
{
930
    DT2 = float64_to_int64_round_to_zero(FDT0, &env->fpu->fp_status);
931
    update_fcr31();
932
    if (GET_FP_CAUSE(env->fpu->fcr31) & (FP_OVERFLOW | FP_INVALID))
933
        DT2 = FLOAT_SNAN64;
934
}
935
FLOAT_OP(truncl, s)
936
{
937
    DT2 = float32_to_int64_round_to_zero(FST0, &env->fpu->fp_status);
938
    update_fcr31();
939
    if (GET_FP_CAUSE(env->fpu->fcr31) & (FP_OVERFLOW | FP_INVALID))
940
        DT2 = FLOAT_SNAN64;
941
}
942
FLOAT_OP(truncw, d)
943
{
944
    WT2 = float64_to_int32_round_to_zero(FDT0, &env->fpu->fp_status);
945
    update_fcr31();
946
    if (GET_FP_CAUSE(env->fpu->fcr31) & (FP_OVERFLOW | FP_INVALID))
947
        WT2 = FLOAT_SNAN32;
948
}
949
FLOAT_OP(truncw, s)
950
{
951
    WT2 = float32_to_int32_round_to_zero(FST0, &env->fpu->fp_status);
952
    update_fcr31();
953
    if (GET_FP_CAUSE(env->fpu->fcr31) & (FP_OVERFLOW | FP_INVALID))
954
        WT2 = FLOAT_SNAN32;
955
}
956

    
957
FLOAT_OP(ceill, d)
958
{
959
    set_float_rounding_mode(float_round_up, &env->fpu->fp_status);
960
    DT2 = float64_to_int64(FDT0, &env->fpu->fp_status);
961
    RESTORE_ROUNDING_MODE;
962
    update_fcr31();
963
    if (GET_FP_CAUSE(env->fpu->fcr31) & (FP_OVERFLOW | FP_INVALID))
964
        DT2 = FLOAT_SNAN64;
965
}
966
FLOAT_OP(ceill, s)
967
{
968
    set_float_rounding_mode(float_round_up, &env->fpu->fp_status);
969
    DT2 = float32_to_int64(FST0, &env->fpu->fp_status);
970
    RESTORE_ROUNDING_MODE;
971
    update_fcr31();
972
    if (GET_FP_CAUSE(env->fpu->fcr31) & (FP_OVERFLOW | FP_INVALID))
973
        DT2 = FLOAT_SNAN64;
974
}
975
FLOAT_OP(ceilw, d)
976
{
977
    set_float_rounding_mode(float_round_up, &env->fpu->fp_status);
978
    WT2 = float64_to_int32(FDT0, &env->fpu->fp_status);
979
    RESTORE_ROUNDING_MODE;
980
    update_fcr31();
981
    if (GET_FP_CAUSE(env->fpu->fcr31) & (FP_OVERFLOW | FP_INVALID))
982
        WT2 = FLOAT_SNAN32;
983
}
984
FLOAT_OP(ceilw, s)
985
{
986
    set_float_rounding_mode(float_round_up, &env->fpu->fp_status);
987
    WT2 = float32_to_int32(FST0, &env->fpu->fp_status);
988
    RESTORE_ROUNDING_MODE;
989
    update_fcr31();
990
    if (GET_FP_CAUSE(env->fpu->fcr31) & (FP_OVERFLOW | FP_INVALID))
991
        WT2 = FLOAT_SNAN32;
992
}
993

    
994
FLOAT_OP(floorl, d)
995
{
996
    set_float_rounding_mode(float_round_down, &env->fpu->fp_status);
997
    DT2 = float64_to_int64(FDT0, &env->fpu->fp_status);
998
    RESTORE_ROUNDING_MODE;
999
    update_fcr31();
1000
    if (GET_FP_CAUSE(env->fpu->fcr31) & (FP_OVERFLOW | FP_INVALID))
1001
        DT2 = FLOAT_SNAN64;
1002
}
1003
FLOAT_OP(floorl, s)
1004
{
1005
    set_float_rounding_mode(float_round_down, &env->fpu->fp_status);
1006
    DT2 = float32_to_int64(FST0, &env->fpu->fp_status);
1007
    RESTORE_ROUNDING_MODE;
1008
    update_fcr31();
1009
    if (GET_FP_CAUSE(env->fpu->fcr31) & (FP_OVERFLOW | FP_INVALID))
1010
        DT2 = FLOAT_SNAN64;
1011
}
1012
FLOAT_OP(floorw, d)
1013
{
1014
    set_float_rounding_mode(float_round_down, &env->fpu->fp_status);
1015
    WT2 = float64_to_int32(FDT0, &env->fpu->fp_status);
1016
    RESTORE_ROUNDING_MODE;
1017
    update_fcr31();
1018
    if (GET_FP_CAUSE(env->fpu->fcr31) & (FP_OVERFLOW | FP_INVALID))
1019
        WT2 = FLOAT_SNAN32;
1020
}
1021
FLOAT_OP(floorw, s)
1022
{
1023
    set_float_rounding_mode(float_round_down, &env->fpu->fp_status);
1024
    WT2 = float32_to_int32(FST0, &env->fpu->fp_status);
1025
    RESTORE_ROUNDING_MODE;
1026
    update_fcr31();
1027
    if (GET_FP_CAUSE(env->fpu->fcr31) & (FP_OVERFLOW | FP_INVALID))
1028
        WT2 = FLOAT_SNAN32;
1029
}
1030

    
1031
/* MIPS specific unary operations */
1032
FLOAT_OP(recip, d)
1033
{
1034
    set_float_exception_flags(0, &env->fpu->fp_status);
1035
    FDT2 = float64_div(FLOAT_ONE64, FDT0, &env->fpu->fp_status);
1036
    update_fcr31();
1037
}
1038
FLOAT_OP(recip, s)
1039
{
1040
    set_float_exception_flags(0, &env->fpu->fp_status);
1041
    FST2 = float32_div(FLOAT_ONE32, FST0, &env->fpu->fp_status);
1042
    update_fcr31();
1043
}
1044

    
1045
FLOAT_OP(rsqrt, d)
1046
{
1047
    set_float_exception_flags(0, &env->fpu->fp_status);
1048
    FDT2 = float64_sqrt(FDT0, &env->fpu->fp_status);
1049
    FDT2 = float64_div(FLOAT_ONE64, FDT2, &env->fpu->fp_status);
1050
    update_fcr31();
1051
}
1052
FLOAT_OP(rsqrt, s)
1053
{
1054
    set_float_exception_flags(0, &env->fpu->fp_status);
1055
    FST2 = float32_sqrt(FST0, &env->fpu->fp_status);
1056
    FST2 = float32_div(FLOAT_ONE32, FST2, &env->fpu->fp_status);
1057
    update_fcr31();
1058
}
1059

    
1060
FLOAT_OP(recip1, d)
1061
{
1062
    set_float_exception_flags(0, &env->fpu->fp_status);
1063
    FDT2 = float64_div(FLOAT_ONE64, FDT0, &env->fpu->fp_status);
1064
    update_fcr31();
1065
}
1066
FLOAT_OP(recip1, s)
1067
{
1068
    set_float_exception_flags(0, &env->fpu->fp_status);
1069
    FST2 = float32_div(FLOAT_ONE32, FST0, &env->fpu->fp_status);
1070
    update_fcr31();
1071
}
1072
FLOAT_OP(recip1, ps)
1073
{
1074
    set_float_exception_flags(0, &env->fpu->fp_status);
1075
    FST2 = float32_div(FLOAT_ONE32, FST0, &env->fpu->fp_status);
1076
    FSTH2 = float32_div(FLOAT_ONE32, FSTH0, &env->fpu->fp_status);
1077
    update_fcr31();
1078
}
1079

    
1080
FLOAT_OP(rsqrt1, d)
1081
{
1082
    set_float_exception_flags(0, &env->fpu->fp_status);
1083
    FDT2 = float64_sqrt(FDT0, &env->fpu->fp_status);
1084
    FDT2 = float64_div(FLOAT_ONE64, FDT2, &env->fpu->fp_status);
1085
    update_fcr31();
1086
}
1087
FLOAT_OP(rsqrt1, s)
1088
{
1089
    set_float_exception_flags(0, &env->fpu->fp_status);
1090
    FST2 = float32_sqrt(FST0, &env->fpu->fp_status);
1091
    FST2 = float32_div(FLOAT_ONE32, FST2, &env->fpu->fp_status);
1092
    update_fcr31();
1093
}
1094
FLOAT_OP(rsqrt1, ps)
1095
{
1096
    set_float_exception_flags(0, &env->fpu->fp_status);
1097
    FST2 = float32_sqrt(FST0, &env->fpu->fp_status);
1098
    FSTH2 = float32_sqrt(FSTH0, &env->fpu->fp_status);
1099
    FST2 = float32_div(FLOAT_ONE32, FST2, &env->fpu->fp_status);
1100
    FSTH2 = float32_div(FLOAT_ONE32, FSTH2, &env->fpu->fp_status);
1101
    update_fcr31();
1102
}
1103

    
1104
/* binary operations */
1105
#define FLOAT_BINOP(name) \
1106
FLOAT_OP(name, d)         \
1107
{                         \
1108
    set_float_exception_flags(0, &env->fpu->fp_status);            \
1109
    FDT2 = float64_ ## name (FDT0, FDT1, &env->fpu->fp_status);    \
1110
    update_fcr31();                                                \
1111
    if (GET_FP_CAUSE(env->fpu->fcr31) & FP_INVALID)                \
1112
        DT2 = FLOAT_QNAN64;                                        \
1113
}                         \
1114
FLOAT_OP(name, s)         \
1115
{                         \
1116
    set_float_exception_flags(0, &env->fpu->fp_status);            \
1117
    FST2 = float32_ ## name (FST0, FST1, &env->fpu->fp_status);    \
1118
    update_fcr31();                                                \
1119
    if (GET_FP_CAUSE(env->fpu->fcr31) & FP_INVALID)                \
1120
        WT2 = FLOAT_QNAN32;                                        \
1121
}                         \
1122
FLOAT_OP(name, ps)        \
1123
{                         \
1124
    set_float_exception_flags(0, &env->fpu->fp_status);            \
1125
    FST2 = float32_ ## name (FST0, FST1, &env->fpu->fp_status);    \
1126
    FSTH2 = float32_ ## name (FSTH0, FSTH1, &env->fpu->fp_status); \
1127
    update_fcr31();       \
1128
    if (GET_FP_CAUSE(env->fpu->fcr31) & FP_INVALID) {              \
1129
        WT2 = FLOAT_QNAN32;                                        \
1130
        WTH2 = FLOAT_QNAN32;                                       \
1131
    }                     \
1132
}
1133
FLOAT_BINOP(add)
1134
FLOAT_BINOP(sub)
1135
FLOAT_BINOP(mul)
1136
FLOAT_BINOP(div)
1137
#undef FLOAT_BINOP
1138

    
1139
/* MIPS specific binary operations */
1140
FLOAT_OP(recip2, d)
1141
{
1142
    set_float_exception_flags(0, &env->fpu->fp_status);
1143
    FDT2 = float64_mul(FDT0, FDT2, &env->fpu->fp_status);
1144
    FDT2 = float64_chs(float64_sub(FDT2, FLOAT_ONE64, &env->fpu->fp_status));
1145
    update_fcr31();
1146
}
1147
FLOAT_OP(recip2, s)
1148
{
1149
    set_float_exception_flags(0, &env->fpu->fp_status);
1150
    FST2 = float32_mul(FST0, FST2, &env->fpu->fp_status);
1151
    FST2 = float32_chs(float32_sub(FST2, FLOAT_ONE32, &env->fpu->fp_status));
1152
    update_fcr31();
1153
}
1154
FLOAT_OP(recip2, ps)
1155
{
1156
    set_float_exception_flags(0, &env->fpu->fp_status);
1157
    FST2 = float32_mul(FST0, FST2, &env->fpu->fp_status);
1158
    FSTH2 = float32_mul(FSTH0, FSTH2, &env->fpu->fp_status);
1159
    FST2 = float32_chs(float32_sub(FST2, FLOAT_ONE32, &env->fpu->fp_status));
1160
    FSTH2 = float32_chs(float32_sub(FSTH2, FLOAT_ONE32, &env->fpu->fp_status));
1161
    update_fcr31();
1162
}
1163

    
1164
FLOAT_OP(rsqrt2, d)
1165
{
1166
    set_float_exception_flags(0, &env->fpu->fp_status);
1167
    FDT2 = float64_mul(FDT0, FDT2, &env->fpu->fp_status);
1168
    FDT2 = float64_sub(FDT2, FLOAT_ONE64, &env->fpu->fp_status);
1169
    FDT2 = float64_chs(float64_div(FDT2, FLOAT_TWO64, &env->fpu->fp_status));
1170
    update_fcr31();
1171
}
1172
FLOAT_OP(rsqrt2, s)
1173
{
1174
    set_float_exception_flags(0, &env->fpu->fp_status);
1175
    FST2 = float32_mul(FST0, FST2, &env->fpu->fp_status);
1176
    FST2 = float32_sub(FST2, FLOAT_ONE32, &env->fpu->fp_status);
1177
    FST2 = float32_chs(float32_div(FST2, FLOAT_TWO32, &env->fpu->fp_status));
1178
    update_fcr31();
1179
}
1180
FLOAT_OP(rsqrt2, ps)
1181
{
1182
    set_float_exception_flags(0, &env->fpu->fp_status);
1183
    FST2 = float32_mul(FST0, FST2, &env->fpu->fp_status);
1184
    FSTH2 = float32_mul(FSTH0, FSTH2, &env->fpu->fp_status);
1185
    FST2 = float32_sub(FST2, FLOAT_ONE32, &env->fpu->fp_status);
1186
    FSTH2 = float32_sub(FSTH2, FLOAT_ONE32, &env->fpu->fp_status);
1187
    FST2 = float32_chs(float32_div(FST2, FLOAT_TWO32, &env->fpu->fp_status));
1188
    FSTH2 = float32_chs(float32_div(FSTH2, FLOAT_TWO32, &env->fpu->fp_status));
1189
    update_fcr31();
1190
}
1191

    
1192
FLOAT_OP(addr, ps)
1193
{
1194
    set_float_exception_flags(0, &env->fpu->fp_status);
1195
    FST2 = float32_add (FST0, FSTH0, &env->fpu->fp_status);
1196
    FSTH2 = float32_add (FST1, FSTH1, &env->fpu->fp_status);
1197
    update_fcr31();
1198
}
1199

    
1200
FLOAT_OP(mulr, ps)
1201
{
1202
    set_float_exception_flags(0, &env->fpu->fp_status);
1203
    FST2 = float32_mul (FST0, FSTH0, &env->fpu->fp_status);
1204
    FSTH2 = float32_mul (FST1, FSTH1, &env->fpu->fp_status);
1205
    update_fcr31();
1206
}
1207

    
1208
/* compare operations */
1209
#define FOP_COND_D(op, cond)                   \
1210
void do_cmp_d_ ## op (long cc)                 \
1211
{                                              \
1212
    int c = cond;                              \
1213
    update_fcr31();                            \
1214
    if (c)                                     \
1215
        SET_FP_COND(cc, env->fpu);             \
1216
    else                                       \
1217
        CLEAR_FP_COND(cc, env->fpu);           \
1218
}                                              \
1219
void do_cmpabs_d_ ## op (long cc)              \
1220
{                                              \
1221
    int c;                                     \
1222
    FDT0 = float64_abs(FDT0);                  \
1223
    FDT1 = float64_abs(FDT1);                  \
1224
    c = cond;                                  \
1225
    update_fcr31();                            \
1226
    if (c)                                     \
1227
        SET_FP_COND(cc, env->fpu);             \
1228
    else                                       \
1229
        CLEAR_FP_COND(cc, env->fpu);           \
1230
}
1231

    
1232
int float64_is_unordered(int sig, float64 a, float64 b STATUS_PARAM)
1233
{
1234
    if (float64_is_signaling_nan(a) ||
1235
        float64_is_signaling_nan(b) ||
1236
        (sig && (float64_is_nan(a) || float64_is_nan(b)))) {
1237
        float_raise(float_flag_invalid, status);
1238
        return 1;
1239
    } else if (float64_is_nan(a) || float64_is_nan(b)) {
1240
        return 1;
1241
    } else {
1242
        return 0;
1243
    }
1244
}
1245

    
1246
/* NOTE: the comma operator will make "cond" to eval to false,
1247
 * but float*_is_unordered() is still called. */
1248
FOP_COND_D(f,   (float64_is_unordered(0, FDT1, FDT0, &env->fpu->fp_status), 0))
1249
FOP_COND_D(un,  float64_is_unordered(0, FDT1, FDT0, &env->fpu->fp_status))
1250
FOP_COND_D(eq,  !float64_is_unordered(0, FDT1, FDT0, &env->fpu->fp_status) && float64_eq(FDT0, FDT1, &env->fpu->fp_status))
1251
FOP_COND_D(ueq, float64_is_unordered(0, FDT1, FDT0, &env->fpu->fp_status)  || float64_eq(FDT0, FDT1, &env->fpu->fp_status))
1252
FOP_COND_D(olt, !float64_is_unordered(0, FDT1, FDT0, &env->fpu->fp_status) && float64_lt(FDT0, FDT1, &env->fpu->fp_status))
1253
FOP_COND_D(ult, float64_is_unordered(0, FDT1, FDT0, &env->fpu->fp_status)  || float64_lt(FDT0, FDT1, &env->fpu->fp_status))
1254
FOP_COND_D(ole, !float64_is_unordered(0, FDT1, FDT0, &env->fpu->fp_status) && float64_le(FDT0, FDT1, &env->fpu->fp_status))
1255
FOP_COND_D(ule, float64_is_unordered(0, FDT1, FDT0, &env->fpu->fp_status)  || float64_le(FDT0, FDT1, &env->fpu->fp_status))
1256
/* NOTE: the comma operator will make "cond" to eval to false,
1257
 * but float*_is_unordered() is still called. */
1258
FOP_COND_D(sf,  (float64_is_unordered(1, FDT1, FDT0, &env->fpu->fp_status), 0))
1259
FOP_COND_D(ngle,float64_is_unordered(1, FDT1, FDT0, &env->fpu->fp_status))
1260
FOP_COND_D(seq, !float64_is_unordered(1, FDT1, FDT0, &env->fpu->fp_status) && float64_eq(FDT0, FDT1, &env->fpu->fp_status))
1261
FOP_COND_D(ngl, float64_is_unordered(1, FDT1, FDT0, &env->fpu->fp_status)  || float64_eq(FDT0, FDT1, &env->fpu->fp_status))
1262
FOP_COND_D(lt,  !float64_is_unordered(1, FDT1, FDT0, &env->fpu->fp_status) && float64_lt(FDT0, FDT1, &env->fpu->fp_status))
1263
FOP_COND_D(nge, float64_is_unordered(1, FDT1, FDT0, &env->fpu->fp_status)  || float64_lt(FDT0, FDT1, &env->fpu->fp_status))
1264
FOP_COND_D(le,  !float64_is_unordered(1, FDT1, FDT0, &env->fpu->fp_status) && float64_le(FDT0, FDT1, &env->fpu->fp_status))
1265
FOP_COND_D(ngt, float64_is_unordered(1, FDT1, FDT0, &env->fpu->fp_status)  || float64_le(FDT0, FDT1, &env->fpu->fp_status))
1266

    
1267
#define FOP_COND_S(op, cond)                   \
1268
void do_cmp_s_ ## op (long cc)                 \
1269
{                                              \
1270
    int c = cond;                              \
1271
    update_fcr31();                            \
1272
    if (c)                                     \
1273
        SET_FP_COND(cc, env->fpu);             \
1274
    else                                       \
1275
        CLEAR_FP_COND(cc, env->fpu);           \
1276
}                                              \
1277
void do_cmpabs_s_ ## op (long cc)              \
1278
{                                              \
1279
    int c;                                     \
1280
    FST0 = float32_abs(FST0);                  \
1281
    FST1 = float32_abs(FST1);                  \
1282
    c = cond;                                  \
1283
    update_fcr31();                            \
1284
    if (c)                                     \
1285
        SET_FP_COND(cc, env->fpu);             \
1286
    else                                       \
1287
        CLEAR_FP_COND(cc, env->fpu);           \
1288
}
1289

    
1290
flag float32_is_unordered(int sig, float32 a, float32 b STATUS_PARAM)
1291
{
1292
    if (float32_is_signaling_nan(a) ||
1293
        float32_is_signaling_nan(b) ||
1294
        (sig && (float32_is_nan(a) || float32_is_nan(b)))) {
1295
        float_raise(float_flag_invalid, status);
1296
        return 1;
1297
    } else if (float32_is_nan(a) || float32_is_nan(b)) {
1298
        return 1;
1299
    } else {
1300
        return 0;
1301
    }
1302
}
1303

    
1304
/* NOTE: the comma operator will make "cond" to eval to false,
1305
 * but float*_is_unordered() is still called. */
1306
FOP_COND_S(f,   (float32_is_unordered(0, FST1, FST0, &env->fpu->fp_status), 0))
1307
FOP_COND_S(un,  float32_is_unordered(0, FST1, FST0, &env->fpu->fp_status))
1308
FOP_COND_S(eq,  !float32_is_unordered(0, FST1, FST0, &env->fpu->fp_status) && float32_eq(FST0, FST1, &env->fpu->fp_status))
1309
FOP_COND_S(ueq, float32_is_unordered(0, FST1, FST0, &env->fpu->fp_status)  || float32_eq(FST0, FST1, &env->fpu->fp_status))
1310
FOP_COND_S(olt, !float32_is_unordered(0, FST1, FST0, &env->fpu->fp_status) && float32_lt(FST0, FST1, &env->fpu->fp_status))
1311
FOP_COND_S(ult, float32_is_unordered(0, FST1, FST0, &env->fpu->fp_status)  || float32_lt(FST0, FST1, &env->fpu->fp_status))
1312
FOP_COND_S(ole, !float32_is_unordered(0, FST1, FST0, &env->fpu->fp_status) && float32_le(FST0, FST1, &env->fpu->fp_status))
1313
FOP_COND_S(ule, float32_is_unordered(0, FST1, FST0, &env->fpu->fp_status)  || float32_le(FST0, FST1, &env->fpu->fp_status))
1314
/* NOTE: the comma operator will make "cond" to eval to false,
1315
 * but float*_is_unordered() is still called. */
1316
FOP_COND_S(sf,  (float32_is_unordered(1, FST1, FST0, &env->fpu->fp_status), 0))
1317
FOP_COND_S(ngle,float32_is_unordered(1, FST1, FST0, &env->fpu->fp_status))
1318
FOP_COND_S(seq, !float32_is_unordered(1, FST1, FST0, &env->fpu->fp_status) && float32_eq(FST0, FST1, &env->fpu->fp_status))
1319
FOP_COND_S(ngl, float32_is_unordered(1, FST1, FST0, &env->fpu->fp_status)  || float32_eq(FST0, FST1, &env->fpu->fp_status))
1320
FOP_COND_S(lt,  !float32_is_unordered(1, FST1, FST0, &env->fpu->fp_status) && float32_lt(FST0, FST1, &env->fpu->fp_status))
1321
FOP_COND_S(nge, float32_is_unordered(1, FST1, FST0, &env->fpu->fp_status)  || float32_lt(FST0, FST1, &env->fpu->fp_status))
1322
FOP_COND_S(le,  !float32_is_unordered(1, FST1, FST0, &env->fpu->fp_status) && float32_le(FST0, FST1, &env->fpu->fp_status))
1323
FOP_COND_S(ngt, float32_is_unordered(1, FST1, FST0, &env->fpu->fp_status)  || float32_le(FST0, FST1, &env->fpu->fp_status))
1324

    
1325
#define FOP_COND_PS(op, condl, condh)          \
1326
void do_cmp_ps_ ## op (long cc)                \
1327
{                                              \
1328
    int cl = condl;                            \
1329
    int ch = condh;                            \
1330
    update_fcr31();                            \
1331
    if (cl)                                    \
1332
        SET_FP_COND(cc, env->fpu);             \
1333
    else                                       \
1334
        CLEAR_FP_COND(cc, env->fpu);           \
1335
    if (ch)                                    \
1336
        SET_FP_COND(cc + 1, env->fpu);         \
1337
    else                                       \
1338
        CLEAR_FP_COND(cc + 1, env->fpu);       \
1339
}                                              \
1340
void do_cmpabs_ps_ ## op (long cc)             \
1341
{                                              \
1342
    int cl, ch;                                \
1343
    FST0 = float32_abs(FST0);                  \
1344
    FSTH0 = float32_abs(FSTH0);                \
1345
    FST1 = float32_abs(FST1);                  \
1346
    FSTH1 = float32_abs(FSTH1);                \
1347
    cl = condl;                                \
1348
    ch = condh;                                \
1349
    update_fcr31();                            \
1350
    if (cl)                                    \
1351
        SET_FP_COND(cc, env->fpu);             \
1352
    else                                       \
1353
        CLEAR_FP_COND(cc, env->fpu);           \
1354
    if (ch)                                    \
1355
        SET_FP_COND(cc + 1, env->fpu);         \
1356
    else                                       \
1357
        CLEAR_FP_COND(cc + 1, env->fpu);       \
1358
}
1359

    
1360
/* NOTE: the comma operator will make "cond" to eval to false,
1361
 * but float*_is_unordered() is still called. */
1362
FOP_COND_PS(f,   (float32_is_unordered(0, FST1, FST0, &env->fpu->fp_status), 0),
1363
                 (float32_is_unordered(0, FSTH1, FSTH0, &env->fpu->fp_status), 0))
1364
FOP_COND_PS(un,  float32_is_unordered(0, FST1, FST0, &env->fpu->fp_status),
1365
                 float32_is_unordered(0, FSTH1, FSTH0, &env->fpu->fp_status))
1366
FOP_COND_PS(eq,  !float32_is_unordered(0, FST1, FST0, &env->fpu->fp_status)   && float32_eq(FST0, FST1, &env->fpu->fp_status),
1367
                 !float32_is_unordered(0, FSTH1, FSTH0, &env->fpu->fp_status) && float32_eq(FSTH0, FSTH1, &env->fpu->fp_status))
1368
FOP_COND_PS(ueq, float32_is_unordered(0, FST1, FST0, &env->fpu->fp_status)    || float32_eq(FST0, FST1, &env->fpu->fp_status),
1369
                 float32_is_unordered(0, FSTH1, FSTH0, &env->fpu->fp_status)  || float32_eq(FSTH0, FSTH1, &env->fpu->fp_status))
1370
FOP_COND_PS(olt, !float32_is_unordered(0, FST1, FST0, &env->fpu->fp_status)   && float32_lt(FST0, FST1, &env->fpu->fp_status),
1371
                 !float32_is_unordered(0, FSTH1, FSTH0, &env->fpu->fp_status) && float32_lt(FSTH0, FSTH1, &env->fpu->fp_status))
1372
FOP_COND_PS(ult, float32_is_unordered(0, FST1, FST0, &env->fpu->fp_status)    || float32_lt(FST0, FST1, &env->fpu->fp_status),
1373
                 float32_is_unordered(0, FSTH1, FSTH0, &env->fpu->fp_status)  || float32_lt(FSTH0, FSTH1, &env->fpu->fp_status))
1374
FOP_COND_PS(ole, !float32_is_unordered(0, FST1, FST0, &env->fpu->fp_status)   && float32_le(FST0, FST1, &env->fpu->fp_status),
1375
                 !float32_is_unordered(0, FSTH1, FSTH0, &env->fpu->fp_status) && float32_le(FSTH0, FSTH1, &env->fpu->fp_status))
1376
FOP_COND_PS(ule, float32_is_unordered(0, FST1, FST0, &env->fpu->fp_status)    || float32_le(FST0, FST1, &env->fpu->fp_status),
1377
                 float32_is_unordered(0, FSTH1, FSTH0, &env->fpu->fp_status)  || float32_le(FSTH0, FSTH1, &env->fpu->fp_status))
1378
/* NOTE: the comma operator will make "cond" to eval to false,
1379
 * but float*_is_unordered() is still called. */
1380
FOP_COND_PS(sf,  (float32_is_unordered(1, FST1, FST0, &env->fpu->fp_status), 0),
1381
                 (float32_is_unordered(1, FSTH1, FSTH0, &env->fpu->fp_status), 0))
1382
FOP_COND_PS(ngle,float32_is_unordered(1, FST1, FST0, &env->fpu->fp_status),
1383
                 float32_is_unordered(1, FSTH1, FSTH0, &env->fpu->fp_status))
1384
FOP_COND_PS(seq, !float32_is_unordered(1, FST1, FST0, &env->fpu->fp_status)   && float32_eq(FST0, FST1, &env->fpu->fp_status),
1385
                 !float32_is_unordered(1, FSTH1, FSTH0, &env->fpu->fp_status) && float32_eq(FSTH0, FSTH1, &env->fpu->fp_status))
1386
FOP_COND_PS(ngl, float32_is_unordered(1, FST1, FST0, &env->fpu->fp_status)    || float32_eq(FST0, FST1, &env->fpu->fp_status),
1387
                 float32_is_unordered(1, FSTH1, FSTH0, &env->fpu->fp_status)  || float32_eq(FSTH0, FSTH1, &env->fpu->fp_status))
1388
FOP_COND_PS(lt,  !float32_is_unordered(1, FST1, FST0, &env->fpu->fp_status)   && float32_lt(FST0, FST1, &env->fpu->fp_status),
1389
                 !float32_is_unordered(1, FSTH1, FSTH0, &env->fpu->fp_status) && float32_lt(FSTH0, FSTH1, &env->fpu->fp_status))
1390
FOP_COND_PS(nge, float32_is_unordered(1, FST1, FST0, &env->fpu->fp_status)    || float32_lt(FST0, FST1, &env->fpu->fp_status),
1391
                 float32_is_unordered(1, FSTH1, FSTH0, &env->fpu->fp_status)  || float32_lt(FSTH0, FSTH1, &env->fpu->fp_status))
1392
FOP_COND_PS(le,  !float32_is_unordered(1, FST1, FST0, &env->fpu->fp_status)   && float32_le(FST0, FST1, &env->fpu->fp_status),
1393
                 !float32_is_unordered(1, FSTH1, FSTH0, &env->fpu->fp_status) && float32_le(FSTH0, FSTH1, &env->fpu->fp_status))
1394
FOP_COND_PS(ngt, float32_is_unordered(1, FST1, FST0, &env->fpu->fp_status)    || float32_le(FST0, FST1, &env->fpu->fp_status),
1395
                 float32_is_unordered(1, FSTH1, FSTH0, &env->fpu->fp_status)  || float32_le(FSTH0, FSTH1, &env->fpu->fp_status))