Statistics
| Branch: | Revision:

root / kvm-all.c @ 9bdbe550

History | View | Annotate | Download (27.1 kB)

1
/*
2
 * QEMU KVM support
3
 *
4
 * Copyright IBM, Corp. 2008
5
 *           Red Hat, Inc. 2008
6
 *
7
 * Authors:
8
 *  Anthony Liguori   <aliguori@us.ibm.com>
9
 *  Glauber Costa     <gcosta@redhat.com>
10
 *
11
 * This work is licensed under the terms of the GNU GPL, version 2 or later.
12
 * See the COPYING file in the top-level directory.
13
 *
14
 */
15

    
16
#include <sys/types.h>
17
#include <sys/ioctl.h>
18
#include <sys/mman.h>
19
#include <stdarg.h>
20

    
21
#include <linux/kvm.h>
22

    
23
#include "qemu-common.h"
24
#include "sysemu.h"
25
#include "hw/hw.h"
26
#include "gdbstub.h"
27
#include "kvm.h"
28

    
29
/* KVM uses PAGE_SIZE in it's definition of COALESCED_MMIO_MAX */
30
#define PAGE_SIZE TARGET_PAGE_SIZE
31

    
32
//#define DEBUG_KVM
33

    
34
#ifdef DEBUG_KVM
35
#define dprintf(fmt, ...) \
36
    do { fprintf(stderr, fmt, ## __VA_ARGS__); } while (0)
37
#else
38
#define dprintf(fmt, ...) \
39
    do { } while (0)
40
#endif
41

    
42
typedef struct KVMSlot
43
{
44
    target_phys_addr_t start_addr;
45
    ram_addr_t memory_size;
46
    ram_addr_t phys_offset;
47
    int slot;
48
    int flags;
49
} KVMSlot;
50

    
51
typedef struct kvm_dirty_log KVMDirtyLog;
52

    
53
int kvm_allowed = 0;
54

    
55
struct KVMState
56
{
57
    KVMSlot slots[32];
58
    int fd;
59
    int vmfd;
60
    int regs_modified;
61
    int coalesced_mmio;
62
    int broken_set_mem_region;
63
    int migration_log;
64
#ifdef KVM_CAP_SET_GUEST_DEBUG
65
    struct kvm_sw_breakpoint_head kvm_sw_breakpoints;
66
#endif
67
    int irqchip_in_kernel;
68
    int pit_in_kernel;
69
};
70

    
71
static KVMState *kvm_state;
72

    
73
static KVMSlot *kvm_alloc_slot(KVMState *s)
74
{
75
    int i;
76

    
77
    for (i = 0; i < ARRAY_SIZE(s->slots); i++) {
78
        /* KVM private memory slots */
79
        if (i >= 8 && i < 12)
80
            continue;
81
        if (s->slots[i].memory_size == 0)
82
            return &s->slots[i];
83
    }
84

    
85
    fprintf(stderr, "%s: no free slot available\n", __func__);
86
    abort();
87
}
88

    
89
static KVMSlot *kvm_lookup_matching_slot(KVMState *s,
90
                                         target_phys_addr_t start_addr,
91
                                         target_phys_addr_t end_addr)
92
{
93
    int i;
94

    
95
    for (i = 0; i < ARRAY_SIZE(s->slots); i++) {
96
        KVMSlot *mem = &s->slots[i];
97

    
98
        if (start_addr == mem->start_addr &&
99
            end_addr == mem->start_addr + mem->memory_size) {
100
            return mem;
101
        }
102
    }
103

    
104
    return NULL;
105
}
106

    
107
/*
108
 * Find overlapping slot with lowest start address
109
 */
110
static KVMSlot *kvm_lookup_overlapping_slot(KVMState *s,
111
                                            target_phys_addr_t start_addr,
112
                                            target_phys_addr_t end_addr)
113
{
114
    KVMSlot *found = NULL;
115
    int i;
116

    
117
    for (i = 0; i < ARRAY_SIZE(s->slots); i++) {
118
        KVMSlot *mem = &s->slots[i];
119

    
120
        if (mem->memory_size == 0 ||
121
            (found && found->start_addr < mem->start_addr)) {
122
            continue;
123
        }
124

    
125
        if (end_addr > mem->start_addr &&
126
            start_addr < mem->start_addr + mem->memory_size) {
127
            found = mem;
128
        }
129
    }
130

    
131
    return found;
132
}
133

    
134
static int kvm_set_user_memory_region(KVMState *s, KVMSlot *slot)
135
{
136
    struct kvm_userspace_memory_region mem;
137

    
138
    mem.slot = slot->slot;
139
    mem.guest_phys_addr = slot->start_addr;
140
    mem.memory_size = slot->memory_size;
141
    mem.userspace_addr = (unsigned long)qemu_get_ram_ptr(slot->phys_offset);
142
    mem.flags = slot->flags;
143
    if (s->migration_log) {
144
        mem.flags |= KVM_MEM_LOG_DIRTY_PAGES;
145
    }
146
    return kvm_vm_ioctl(s, KVM_SET_USER_MEMORY_REGION, &mem);
147
}
148

    
149
static void kvm_reset_vcpu(void *opaque)
150
{
151
    CPUState *env = opaque;
152

    
153
    if (kvm_arch_put_registers(env)) {
154
        fprintf(stderr, "Fatal: kvm vcpu reset failed\n");
155
        abort();
156
    }
157
}
158

    
159
int kvm_irqchip_in_kernel(void)
160
{
161
    return kvm_state->irqchip_in_kernel;
162
}
163

    
164
int kvm_pit_in_kernel(void)
165
{
166
    return kvm_state->pit_in_kernel;
167
}
168

    
169

    
170
int kvm_init_vcpu(CPUState *env)
171
{
172
    KVMState *s = kvm_state;
173
    long mmap_size;
174
    int ret;
175

    
176
    dprintf("kvm_init_vcpu\n");
177

    
178
    ret = kvm_vm_ioctl(s, KVM_CREATE_VCPU, env->cpu_index);
179
    if (ret < 0) {
180
        dprintf("kvm_create_vcpu failed\n");
181
        goto err;
182
    }
183

    
184
    env->kvm_fd = ret;
185
    env->kvm_state = s;
186

    
187
    mmap_size = kvm_ioctl(s, KVM_GET_VCPU_MMAP_SIZE, 0);
188
    if (mmap_size < 0) {
189
        dprintf("KVM_GET_VCPU_MMAP_SIZE failed\n");
190
        goto err;
191
    }
192

    
193
    env->kvm_run = mmap(NULL, mmap_size, PROT_READ | PROT_WRITE, MAP_SHARED,
194
                        env->kvm_fd, 0);
195
    if (env->kvm_run == MAP_FAILED) {
196
        ret = -errno;
197
        dprintf("mmap'ing vcpu state failed\n");
198
        goto err;
199
    }
200

    
201
    ret = kvm_arch_init_vcpu(env);
202
    if (ret == 0) {
203
        qemu_register_reset(kvm_reset_vcpu, env);
204
        ret = kvm_arch_put_registers(env);
205
    }
206
err:
207
    return ret;
208
}
209

    
210
/*
211
 * dirty pages logging control
212
 */
213
static int kvm_dirty_pages_log_change(target_phys_addr_t phys_addr,
214
                                      ram_addr_t size, int flags, int mask)
215
{
216
    KVMState *s = kvm_state;
217
    KVMSlot *mem = kvm_lookup_matching_slot(s, phys_addr, phys_addr + size);
218
    int old_flags;
219

    
220
    if (mem == NULL)  {
221
            fprintf(stderr, "BUG: %s: invalid parameters " TARGET_FMT_plx "-"
222
                    TARGET_FMT_plx "\n", __func__, phys_addr,
223
                    (target_phys_addr_t)(phys_addr + size - 1));
224
            return -EINVAL;
225
    }
226

    
227
    old_flags = mem->flags;
228

    
229
    flags = (mem->flags & ~mask) | flags;
230
    mem->flags = flags;
231

    
232
    /* If nothing changed effectively, no need to issue ioctl */
233
    if (s->migration_log) {
234
        flags |= KVM_MEM_LOG_DIRTY_PAGES;
235
    }
236
    if (flags == old_flags) {
237
            return 0;
238
    }
239

    
240
    return kvm_set_user_memory_region(s, mem);
241
}
242

    
243
int kvm_log_start(target_phys_addr_t phys_addr, ram_addr_t size)
244
{
245
        return kvm_dirty_pages_log_change(phys_addr, size,
246
                                          KVM_MEM_LOG_DIRTY_PAGES,
247
                                          KVM_MEM_LOG_DIRTY_PAGES);
248
}
249

    
250
int kvm_log_stop(target_phys_addr_t phys_addr, ram_addr_t size)
251
{
252
        return kvm_dirty_pages_log_change(phys_addr, size,
253
                                          0,
254
                                          KVM_MEM_LOG_DIRTY_PAGES);
255
}
256

    
257
int kvm_set_migration_log(int enable)
258
{
259
    KVMState *s = kvm_state;
260
    KVMSlot *mem;
261
    int i, err;
262

    
263
    s->migration_log = enable;
264

    
265
    for (i = 0; i < ARRAY_SIZE(s->slots); i++) {
266
        mem = &s->slots[i];
267

    
268
        if (!!(mem->flags & KVM_MEM_LOG_DIRTY_PAGES) == enable) {
269
            continue;
270
        }
271
        err = kvm_set_user_memory_region(s, mem);
272
        if (err) {
273
            return err;
274
        }
275
    }
276
    return 0;
277
}
278

    
279
static int test_le_bit(unsigned long nr, unsigned char *addr)
280
{
281
    return (addr[nr >> 3] >> (nr & 7)) & 1;
282
}
283

    
284
/**
285
 * kvm_physical_sync_dirty_bitmap - Grab dirty bitmap from kernel space
286
 * This function updates qemu's dirty bitmap using cpu_physical_memory_set_dirty().
287
 * This means all bits are set to dirty.
288
 *
289
 * @start_add: start of logged region.
290
 * @end_addr: end of logged region.
291
 */
292
int kvm_physical_sync_dirty_bitmap(target_phys_addr_t start_addr,
293
                                   target_phys_addr_t end_addr)
294
{
295
    KVMState *s = kvm_state;
296
    unsigned long size, allocated_size = 0;
297
    target_phys_addr_t phys_addr;
298
    ram_addr_t addr;
299
    KVMDirtyLog d;
300
    KVMSlot *mem;
301
    int ret = 0;
302

    
303
    d.dirty_bitmap = NULL;
304
    while (start_addr < end_addr) {
305
        mem = kvm_lookup_overlapping_slot(s, start_addr, end_addr);
306
        if (mem == NULL) {
307
            break;
308
        }
309

    
310
        size = ((mem->memory_size >> TARGET_PAGE_BITS) + 7) / 8;
311
        if (!d.dirty_bitmap) {
312
            d.dirty_bitmap = qemu_malloc(size);
313
        } else if (size > allocated_size) {
314
            d.dirty_bitmap = qemu_realloc(d.dirty_bitmap, size);
315
        }
316
        allocated_size = size;
317
        memset(d.dirty_bitmap, 0, allocated_size);
318

    
319
        d.slot = mem->slot;
320

    
321
        if (kvm_vm_ioctl(s, KVM_GET_DIRTY_LOG, &d) == -1) {
322
            dprintf("ioctl failed %d\n", errno);
323
            ret = -1;
324
            break;
325
        }
326

    
327
        for (phys_addr = mem->start_addr, addr = mem->phys_offset;
328
             phys_addr < mem->start_addr + mem->memory_size;
329
             phys_addr += TARGET_PAGE_SIZE, addr += TARGET_PAGE_SIZE) {
330
            unsigned char *bitmap = (unsigned char *)d.dirty_bitmap;
331
            unsigned nr = (phys_addr - mem->start_addr) >> TARGET_PAGE_BITS;
332

    
333
            if (test_le_bit(nr, bitmap)) {
334
                cpu_physical_memory_set_dirty(addr);
335
            }
336
        }
337
        start_addr = phys_addr;
338
    }
339
    qemu_free(d.dirty_bitmap);
340

    
341
    return ret;
342
}
343

    
344
int kvm_coalesce_mmio_region(target_phys_addr_t start, ram_addr_t size)
345
{
346
    int ret = -ENOSYS;
347
#ifdef KVM_CAP_COALESCED_MMIO
348
    KVMState *s = kvm_state;
349

    
350
    if (s->coalesced_mmio) {
351
        struct kvm_coalesced_mmio_zone zone;
352

    
353
        zone.addr = start;
354
        zone.size = size;
355

    
356
        ret = kvm_vm_ioctl(s, KVM_REGISTER_COALESCED_MMIO, &zone);
357
    }
358
#endif
359

    
360
    return ret;
361
}
362

    
363
int kvm_uncoalesce_mmio_region(target_phys_addr_t start, ram_addr_t size)
364
{
365
    int ret = -ENOSYS;
366
#ifdef KVM_CAP_COALESCED_MMIO
367
    KVMState *s = kvm_state;
368

    
369
    if (s->coalesced_mmio) {
370
        struct kvm_coalesced_mmio_zone zone;
371

    
372
        zone.addr = start;
373
        zone.size = size;
374

    
375
        ret = kvm_vm_ioctl(s, KVM_UNREGISTER_COALESCED_MMIO, &zone);
376
    }
377
#endif
378

    
379
    return ret;
380
}
381

    
382
int kvm_check_extension(KVMState *s, unsigned int extension)
383
{
384
    int ret;
385

    
386
    ret = kvm_ioctl(s, KVM_CHECK_EXTENSION, extension);
387
    if (ret < 0) {
388
        ret = 0;
389
    }
390

    
391
    return ret;
392
}
393

    
394
int kvm_init(int smp_cpus)
395
{
396
    static const char upgrade_note[] =
397
        "Please upgrade to at least kernel 2.6.29 or recent kvm-kmod\n"
398
        "(see http://sourceforge.net/projects/kvm).\n";
399
    KVMState *s;
400
    int ret;
401
    int i;
402

    
403
    if (smp_cpus > 1) {
404
        fprintf(stderr, "No SMP KVM support, use '-smp 1'\n");
405
        return -EINVAL;
406
    }
407

    
408
    s = qemu_mallocz(sizeof(KVMState));
409

    
410
#ifdef KVM_CAP_SET_GUEST_DEBUG
411
    QTAILQ_INIT(&s->kvm_sw_breakpoints);
412
#endif
413
    for (i = 0; i < ARRAY_SIZE(s->slots); i++)
414
        s->slots[i].slot = i;
415

    
416
    s->vmfd = -1;
417
    s->fd = open("/dev/kvm", O_RDWR);
418
    if (s->fd == -1) {
419
        fprintf(stderr, "Could not access KVM kernel module: %m\n");
420
        ret = -errno;
421
        goto err;
422
    }
423

    
424
    ret = kvm_ioctl(s, KVM_GET_API_VERSION, 0);
425
    if (ret < KVM_API_VERSION) {
426
        if (ret > 0)
427
            ret = -EINVAL;
428
        fprintf(stderr, "kvm version too old\n");
429
        goto err;
430
    }
431

    
432
    if (ret > KVM_API_VERSION) {
433
        ret = -EINVAL;
434
        fprintf(stderr, "kvm version not supported\n");
435
        goto err;
436
    }
437

    
438
    s->vmfd = kvm_ioctl(s, KVM_CREATE_VM, 0);
439
    if (s->vmfd < 0)
440
        goto err;
441

    
442
    /* initially, KVM allocated its own memory and we had to jump through
443
     * hooks to make phys_ram_base point to this.  Modern versions of KVM
444
     * just use a user allocated buffer so we can use regular pages
445
     * unmodified.  Make sure we have a sufficiently modern version of KVM.
446
     */
447
    if (!kvm_check_extension(s, KVM_CAP_USER_MEMORY)) {
448
        ret = -EINVAL;
449
        fprintf(stderr, "kvm does not support KVM_CAP_USER_MEMORY\n%s",
450
                upgrade_note);
451
        goto err;
452
    }
453

    
454
    /* There was a nasty bug in < kvm-80 that prevents memory slots from being
455
     * destroyed properly.  Since we rely on this capability, refuse to work
456
     * with any kernel without this capability. */
457
    if (!kvm_check_extension(s, KVM_CAP_DESTROY_MEMORY_REGION_WORKS)) {
458
        ret = -EINVAL;
459

    
460
        fprintf(stderr,
461
                "KVM kernel module broken (DESTROY_MEMORY_REGION).\n%s",
462
                upgrade_note);
463
        goto err;
464
    }
465

    
466
#ifdef KVM_CAP_COALESCED_MMIO
467
    s->coalesced_mmio = kvm_check_extension(s, KVM_CAP_COALESCED_MMIO);
468
#else
469
    s->coalesced_mmio = 0;
470
#endif
471

    
472
    s->broken_set_mem_region = 1;
473
#ifdef KVM_CAP_JOIN_MEMORY_REGIONS_WORKS
474
    ret = kvm_ioctl(s, KVM_CHECK_EXTENSION, KVM_CAP_JOIN_MEMORY_REGIONS_WORKS);
475
    if (ret > 0) {
476
        s->broken_set_mem_region = 0;
477
    }
478
#endif
479

    
480
    ret = kvm_arch_init(s, smp_cpus);
481
    if (ret < 0)
482
        goto err;
483

    
484
    kvm_state = s;
485

    
486
    return 0;
487

    
488
err:
489
    if (s) {
490
        if (s->vmfd != -1)
491
            close(s->vmfd);
492
        if (s->fd != -1)
493
            close(s->fd);
494
    }
495
    qemu_free(s);
496

    
497
    return ret;
498
}
499

    
500
static int kvm_handle_io(uint16_t port, void *data, int direction, int size,
501
                         uint32_t count)
502
{
503
    int i;
504
    uint8_t *ptr = data;
505

    
506
    for (i = 0; i < count; i++) {
507
        if (direction == KVM_EXIT_IO_IN) {
508
            switch (size) {
509
            case 1:
510
                stb_p(ptr, cpu_inb(port));
511
                break;
512
            case 2:
513
                stw_p(ptr, cpu_inw(port));
514
                break;
515
            case 4:
516
                stl_p(ptr, cpu_inl(port));
517
                break;
518
            }
519
        } else {
520
            switch (size) {
521
            case 1:
522
                cpu_outb(port, ldub_p(ptr));
523
                break;
524
            case 2:
525
                cpu_outw(port, lduw_p(ptr));
526
                break;
527
            case 4:
528
                cpu_outl(port, ldl_p(ptr));
529
                break;
530
            }
531
        }
532

    
533
        ptr += size;
534
    }
535

    
536
    return 1;
537
}
538

    
539
static void kvm_run_coalesced_mmio(CPUState *env, struct kvm_run *run)
540
{
541
#ifdef KVM_CAP_COALESCED_MMIO
542
    KVMState *s = kvm_state;
543
    if (s->coalesced_mmio) {
544
        struct kvm_coalesced_mmio_ring *ring;
545

    
546
        ring = (void *)run + (s->coalesced_mmio * TARGET_PAGE_SIZE);
547
        while (ring->first != ring->last) {
548
            struct kvm_coalesced_mmio *ent;
549

    
550
            ent = &ring->coalesced_mmio[ring->first];
551

    
552
            cpu_physical_memory_write(ent->phys_addr, ent->data, ent->len);
553
            /* FIXME smp_wmb() */
554
            ring->first = (ring->first + 1) % KVM_COALESCED_MMIO_MAX;
555
        }
556
    }
557
#endif
558
}
559

    
560
void kvm_cpu_synchronize_state(CPUState *env)
561
{
562
    if (!env->kvm_state->regs_modified) {
563
        kvm_arch_get_registers(env);
564
        env->kvm_state->regs_modified = 1;
565
    }
566
}
567

    
568
int kvm_cpu_exec(CPUState *env)
569
{
570
    struct kvm_run *run = env->kvm_run;
571
    int ret;
572

    
573
    dprintf("kvm_cpu_exec()\n");
574

    
575
    do {
576
        if (env->exit_request) {
577
            dprintf("interrupt exit requested\n");
578
            ret = 0;
579
            break;
580
        }
581

    
582
        if (env->kvm_state->regs_modified) {
583
            kvm_arch_put_registers(env);
584
            env->kvm_state->regs_modified = 0;
585
        }
586

    
587
        kvm_arch_pre_run(env, run);
588
        qemu_mutex_unlock_iothread();
589
        ret = kvm_vcpu_ioctl(env, KVM_RUN, 0);
590
        qemu_mutex_lock_iothread();
591
        kvm_arch_post_run(env, run);
592

    
593
        if (ret == -EINTR || ret == -EAGAIN) {
594
            dprintf("io window exit\n");
595
            ret = 0;
596
            break;
597
        }
598

    
599
        if (ret < 0) {
600
            dprintf("kvm run failed %s\n", strerror(-ret));
601
            abort();
602
        }
603

    
604
        kvm_run_coalesced_mmio(env, run);
605

    
606
        ret = 0; /* exit loop */
607
        switch (run->exit_reason) {
608
        case KVM_EXIT_IO:
609
            dprintf("handle_io\n");
610
            ret = kvm_handle_io(run->io.port,
611
                                (uint8_t *)run + run->io.data_offset,
612
                                run->io.direction,
613
                                run->io.size,
614
                                run->io.count);
615
            break;
616
        case KVM_EXIT_MMIO:
617
            dprintf("handle_mmio\n");
618
            cpu_physical_memory_rw(run->mmio.phys_addr,
619
                                   run->mmio.data,
620
                                   run->mmio.len,
621
                                   run->mmio.is_write);
622
            ret = 1;
623
            break;
624
        case KVM_EXIT_IRQ_WINDOW_OPEN:
625
            dprintf("irq_window_open\n");
626
            break;
627
        case KVM_EXIT_SHUTDOWN:
628
            dprintf("shutdown\n");
629
            qemu_system_reset_request();
630
            ret = 1;
631
            break;
632
        case KVM_EXIT_UNKNOWN:
633
            dprintf("kvm_exit_unknown\n");
634
            break;
635
        case KVM_EXIT_FAIL_ENTRY:
636
            dprintf("kvm_exit_fail_entry\n");
637
            break;
638
        case KVM_EXIT_EXCEPTION:
639
            dprintf("kvm_exit_exception\n");
640
            break;
641
        case KVM_EXIT_DEBUG:
642
            dprintf("kvm_exit_debug\n");
643
#ifdef KVM_CAP_SET_GUEST_DEBUG
644
            if (kvm_arch_debug(&run->debug.arch)) {
645
                gdb_set_stop_cpu(env);
646
                vm_stop(EXCP_DEBUG);
647
                env->exception_index = EXCP_DEBUG;
648
                return 0;
649
            }
650
            /* re-enter, this exception was guest-internal */
651
            ret = 1;
652
#endif /* KVM_CAP_SET_GUEST_DEBUG */
653
            break;
654
        default:
655
            dprintf("kvm_arch_handle_exit\n");
656
            ret = kvm_arch_handle_exit(env, run);
657
            break;
658
        }
659
    } while (ret > 0);
660

    
661
    if (env->exit_request) {
662
        env->exit_request = 0;
663
        env->exception_index = EXCP_INTERRUPT;
664
    }
665

    
666
    return ret;
667
}
668

    
669
void kvm_set_phys_mem(target_phys_addr_t start_addr,
670
                      ram_addr_t size,
671
                      ram_addr_t phys_offset)
672
{
673
    KVMState *s = kvm_state;
674
    ram_addr_t flags = phys_offset & ~TARGET_PAGE_MASK;
675
    KVMSlot *mem, old;
676
    int err;
677

    
678
    if (start_addr & ~TARGET_PAGE_MASK) {
679
        if (flags >= IO_MEM_UNASSIGNED) {
680
            if (!kvm_lookup_overlapping_slot(s, start_addr,
681
                                             start_addr + size)) {
682
                return;
683
            }
684
            fprintf(stderr, "Unaligned split of a KVM memory slot\n");
685
        } else {
686
            fprintf(stderr, "Only page-aligned memory slots supported\n");
687
        }
688
        abort();
689
    }
690

    
691
    /* KVM does not support read-only slots */
692
    phys_offset &= ~IO_MEM_ROM;
693

    
694
    while (1) {
695
        mem = kvm_lookup_overlapping_slot(s, start_addr, start_addr + size);
696
        if (!mem) {
697
            break;
698
        }
699

    
700
        if (flags < IO_MEM_UNASSIGNED && start_addr >= mem->start_addr &&
701
            (start_addr + size <= mem->start_addr + mem->memory_size) &&
702
            (phys_offset - start_addr == mem->phys_offset - mem->start_addr)) {
703
            /* The new slot fits into the existing one and comes with
704
             * identical parameters - nothing to be done. */
705
            return;
706
        }
707

    
708
        old = *mem;
709

    
710
        /* unregister the overlapping slot */
711
        mem->memory_size = 0;
712
        err = kvm_set_user_memory_region(s, mem);
713
        if (err) {
714
            fprintf(stderr, "%s: error unregistering overlapping slot: %s\n",
715
                    __func__, strerror(-err));
716
            abort();
717
        }
718

    
719
        /* Workaround for older KVM versions: we can't join slots, even not by
720
         * unregistering the previous ones and then registering the larger
721
         * slot. We have to maintain the existing fragmentation. Sigh.
722
         *
723
         * This workaround assumes that the new slot starts at the same
724
         * address as the first existing one. If not or if some overlapping
725
         * slot comes around later, we will fail (not seen in practice so far)
726
         * - and actually require a recent KVM version. */
727
        if (s->broken_set_mem_region &&
728
            old.start_addr == start_addr && old.memory_size < size &&
729
            flags < IO_MEM_UNASSIGNED) {
730
            mem = kvm_alloc_slot(s);
731
            mem->memory_size = old.memory_size;
732
            mem->start_addr = old.start_addr;
733
            mem->phys_offset = old.phys_offset;
734
            mem->flags = 0;
735

    
736
            err = kvm_set_user_memory_region(s, mem);
737
            if (err) {
738
                fprintf(stderr, "%s: error updating slot: %s\n", __func__,
739
                        strerror(-err));
740
                abort();
741
            }
742

    
743
            start_addr += old.memory_size;
744
            phys_offset += old.memory_size;
745
            size -= old.memory_size;
746
            continue;
747
        }
748

    
749
        /* register prefix slot */
750
        if (old.start_addr < start_addr) {
751
            mem = kvm_alloc_slot(s);
752
            mem->memory_size = start_addr - old.start_addr;
753
            mem->start_addr = old.start_addr;
754
            mem->phys_offset = old.phys_offset;
755
            mem->flags = 0;
756

    
757
            err = kvm_set_user_memory_region(s, mem);
758
            if (err) {
759
                fprintf(stderr, "%s: error registering prefix slot: %s\n",
760
                        __func__, strerror(-err));
761
                abort();
762
            }
763
        }
764

    
765
        /* register suffix slot */
766
        if (old.start_addr + old.memory_size > start_addr + size) {
767
            ram_addr_t size_delta;
768

    
769
            mem = kvm_alloc_slot(s);
770
            mem->start_addr = start_addr + size;
771
            size_delta = mem->start_addr - old.start_addr;
772
            mem->memory_size = old.memory_size - size_delta;
773
            mem->phys_offset = old.phys_offset + size_delta;
774
            mem->flags = 0;
775

    
776
            err = kvm_set_user_memory_region(s, mem);
777
            if (err) {
778
                fprintf(stderr, "%s: error registering suffix slot: %s\n",
779
                        __func__, strerror(-err));
780
                abort();
781
            }
782
        }
783
    }
784

    
785
    /* in case the KVM bug workaround already "consumed" the new slot */
786
    if (!size)
787
        return;
788

    
789
    /* KVM does not need to know about this memory */
790
    if (flags >= IO_MEM_UNASSIGNED)
791
        return;
792

    
793
    mem = kvm_alloc_slot(s);
794
    mem->memory_size = size;
795
    mem->start_addr = start_addr;
796
    mem->phys_offset = phys_offset;
797
    mem->flags = 0;
798

    
799
    err = kvm_set_user_memory_region(s, mem);
800
    if (err) {
801
        fprintf(stderr, "%s: error registering slot: %s\n", __func__,
802
                strerror(-err));
803
        abort();
804
    }
805
}
806

    
807
int kvm_ioctl(KVMState *s, int type, ...)
808
{
809
    int ret;
810
    void *arg;
811
    va_list ap;
812

    
813
    va_start(ap, type);
814
    arg = va_arg(ap, void *);
815
    va_end(ap);
816

    
817
    ret = ioctl(s->fd, type, arg);
818
    if (ret == -1)
819
        ret = -errno;
820

    
821
    return ret;
822
}
823

    
824
int kvm_vm_ioctl(KVMState *s, int type, ...)
825
{
826
    int ret;
827
    void *arg;
828
    va_list ap;
829

    
830
    va_start(ap, type);
831
    arg = va_arg(ap, void *);
832
    va_end(ap);
833

    
834
    ret = ioctl(s->vmfd, type, arg);
835
    if (ret == -1)
836
        ret = -errno;
837

    
838
    return ret;
839
}
840

    
841
int kvm_vcpu_ioctl(CPUState *env, int type, ...)
842
{
843
    int ret;
844
    void *arg;
845
    va_list ap;
846

    
847
    va_start(ap, type);
848
    arg = va_arg(ap, void *);
849
    va_end(ap);
850

    
851
    ret = ioctl(env->kvm_fd, type, arg);
852
    if (ret == -1)
853
        ret = -errno;
854

    
855
    return ret;
856
}
857

    
858
int kvm_has_sync_mmu(void)
859
{
860
#ifdef KVM_CAP_SYNC_MMU
861
    KVMState *s = kvm_state;
862

    
863
    return kvm_check_extension(s, KVM_CAP_SYNC_MMU);
864
#else
865
    return 0;
866
#endif
867
}
868

    
869
void kvm_setup_guest_memory(void *start, size_t size)
870
{
871
    if (!kvm_has_sync_mmu()) {
872
#ifdef MADV_DONTFORK
873
        int ret = madvise(start, size, MADV_DONTFORK);
874

    
875
        if (ret) {
876
            perror("madvice");
877
            exit(1);
878
        }
879
#else
880
        fprintf(stderr,
881
                "Need MADV_DONTFORK in absence of synchronous KVM MMU\n");
882
        exit(1);
883
#endif
884
    }
885
}
886

    
887
#ifdef KVM_CAP_SET_GUEST_DEBUG
888
static void on_vcpu(CPUState *env, void (*func)(void *data), void *data)
889
{
890
#ifdef CONFIG_IOTHREAD
891
    if (env == cpu_single_env) {
892
        func(data);
893
        return;
894
    }
895
    abort();
896
#else
897
    func(data);
898
#endif
899
}
900

    
901
struct kvm_sw_breakpoint *kvm_find_sw_breakpoint(CPUState *env,
902
                                                 target_ulong pc)
903
{
904
    struct kvm_sw_breakpoint *bp;
905

    
906
    QTAILQ_FOREACH(bp, &env->kvm_state->kvm_sw_breakpoints, entry) {
907
        if (bp->pc == pc)
908
            return bp;
909
    }
910
    return NULL;
911
}
912

    
913
int kvm_sw_breakpoints_active(CPUState *env)
914
{
915
    return !QTAILQ_EMPTY(&env->kvm_state->kvm_sw_breakpoints);
916
}
917

    
918
struct kvm_set_guest_debug_data {
919
    struct kvm_guest_debug dbg;
920
    CPUState *env;
921
    int err;
922
};
923

    
924
static void kvm_invoke_set_guest_debug(void *data)
925
{
926
    struct kvm_set_guest_debug_data *dbg_data = data;
927
    CPUState *env = dbg_data->env;
928

    
929
    if (env->kvm_state->regs_modified) {
930
        kvm_arch_put_registers(env);
931
        env->kvm_state->regs_modified = 0;
932
    }
933
    dbg_data->err = kvm_vcpu_ioctl(env, KVM_SET_GUEST_DEBUG, &dbg_data->dbg);
934
}
935

    
936
int kvm_update_guest_debug(CPUState *env, unsigned long reinject_trap)
937
{
938
    struct kvm_set_guest_debug_data data;
939

    
940
    data.dbg.control = 0;
941
    if (env->singlestep_enabled)
942
        data.dbg.control = KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_SINGLESTEP;
943

    
944
    kvm_arch_update_guest_debug(env, &data.dbg);
945
    data.dbg.control |= reinject_trap;
946
    data.env = env;
947

    
948
    on_vcpu(env, kvm_invoke_set_guest_debug, &data);
949
    return data.err;
950
}
951

    
952
int kvm_insert_breakpoint(CPUState *current_env, target_ulong addr,
953
                          target_ulong len, int type)
954
{
955
    struct kvm_sw_breakpoint *bp;
956
    CPUState *env;
957
    int err;
958

    
959
    if (type == GDB_BREAKPOINT_SW) {
960
        bp = kvm_find_sw_breakpoint(current_env, addr);
961
        if (bp) {
962
            bp->use_count++;
963
            return 0;
964
        }
965

    
966
        bp = qemu_malloc(sizeof(struct kvm_sw_breakpoint));
967
        if (!bp)
968
            return -ENOMEM;
969

    
970
        bp->pc = addr;
971
        bp->use_count = 1;
972
        err = kvm_arch_insert_sw_breakpoint(current_env, bp);
973
        if (err) {
974
            free(bp);
975
            return err;
976
        }
977

    
978
        QTAILQ_INSERT_HEAD(&current_env->kvm_state->kvm_sw_breakpoints,
979
                          bp, entry);
980
    } else {
981
        err = kvm_arch_insert_hw_breakpoint(addr, len, type);
982
        if (err)
983
            return err;
984
    }
985

    
986
    for (env = first_cpu; env != NULL; env = env->next_cpu) {
987
        err = kvm_update_guest_debug(env, 0);
988
        if (err)
989
            return err;
990
    }
991
    return 0;
992
}
993

    
994
int kvm_remove_breakpoint(CPUState *current_env, target_ulong addr,
995
                          target_ulong len, int type)
996
{
997
    struct kvm_sw_breakpoint *bp;
998
    CPUState *env;
999
    int err;
1000

    
1001
    if (type == GDB_BREAKPOINT_SW) {
1002
        bp = kvm_find_sw_breakpoint(current_env, addr);
1003
        if (!bp)
1004
            return -ENOENT;
1005

    
1006
        if (bp->use_count > 1) {
1007
            bp->use_count--;
1008
            return 0;
1009
        }
1010

    
1011
        err = kvm_arch_remove_sw_breakpoint(current_env, bp);
1012
        if (err)
1013
            return err;
1014

    
1015
        QTAILQ_REMOVE(&current_env->kvm_state->kvm_sw_breakpoints, bp, entry);
1016
        qemu_free(bp);
1017
    } else {
1018
        err = kvm_arch_remove_hw_breakpoint(addr, len, type);
1019
        if (err)
1020
            return err;
1021
    }
1022

    
1023
    for (env = first_cpu; env != NULL; env = env->next_cpu) {
1024
        err = kvm_update_guest_debug(env, 0);
1025
        if (err)
1026
            return err;
1027
    }
1028
    return 0;
1029
}
1030

    
1031
void kvm_remove_all_breakpoints(CPUState *current_env)
1032
{
1033
    struct kvm_sw_breakpoint *bp, *next;
1034
    KVMState *s = current_env->kvm_state;
1035
    CPUState *env;
1036

    
1037
    QTAILQ_FOREACH_SAFE(bp, &s->kvm_sw_breakpoints, entry, next) {
1038
        if (kvm_arch_remove_sw_breakpoint(current_env, bp) != 0) {
1039
            /* Try harder to find a CPU that currently sees the breakpoint. */
1040
            for (env = first_cpu; env != NULL; env = env->next_cpu) {
1041
                if (kvm_arch_remove_sw_breakpoint(env, bp) == 0)
1042
                    break;
1043
            }
1044
        }
1045
    }
1046
    kvm_arch_remove_all_hw_breakpoints();
1047

    
1048
    for (env = first_cpu; env != NULL; env = env->next_cpu)
1049
        kvm_update_guest_debug(env, 0);
1050
}
1051

    
1052
#else /* !KVM_CAP_SET_GUEST_DEBUG */
1053

    
1054
int kvm_update_guest_debug(CPUState *env, unsigned long reinject_trap)
1055
{
1056
    return -EINVAL;
1057
}
1058

    
1059
int kvm_insert_breakpoint(CPUState *current_env, target_ulong addr,
1060
                          target_ulong len, int type)
1061
{
1062
    return -EINVAL;
1063
}
1064

    
1065
int kvm_remove_breakpoint(CPUState *current_env, target_ulong addr,
1066
                          target_ulong len, int type)
1067
{
1068
    return -EINVAL;
1069
}
1070

    
1071
void kvm_remove_all_breakpoints(CPUState *current_env)
1072
{
1073
}
1074
#endif /* !KVM_CAP_SET_GUEST_DEBUG */