Statistics
| Branch: | Revision:

root / hw / m25p80.c @ 9c17d615

History | View | Annotate | Download (18.8 kB)

1
/*
2
 * ST M25P80 emulator. Emulate all SPI flash devices based on the m25p80 command
3
 * set. Known devices table current as of Jun/2012 and taken from linux.
4
 * See drivers/mtd/devices/m25p80.c.
5
 *
6
 * Copyright (C) 2011 Edgar E. Iglesias <edgar.iglesias@gmail.com>
7
 * Copyright (C) 2012 Peter A. G. Crosthwaite <peter.crosthwaite@petalogix.com>
8
 * Copyright (C) 2012 PetaLogix
9
 *
10
 * This program is free software; you can redistribute it and/or
11
 * modify it under the terms of the GNU General Public License as
12
 * published by the Free Software Foundation; either version 2 or
13
 * (at your option) a later version of the License.
14
 *
15
 * This program is distributed in the hope that it will be useful,
16
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
17
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
18
 * GNU General Public License for more details.
19
 *
20
 * You should have received a copy of the GNU General Public License along
21
 * with this program; if not, see <http://www.gnu.org/licenses/>.
22
 */
23

    
24
#include "hw.h"
25
#include "sysemu/blockdev.h"
26
#include "ssi.h"
27
#include "devices.h"
28

    
29
#ifdef M25P80_ERR_DEBUG
30
#define DB_PRINT(...) do { \
31
    fprintf(stderr,  ": %s: ", __func__); \
32
    fprintf(stderr, ## __VA_ARGS__); \
33
    } while (0);
34
#else
35
    #define DB_PRINT(...)
36
#endif
37

    
38
/* Fields for FlashPartInfo->flags */
39

    
40
/* erase capabilities */
41
#define ER_4K 1
42
#define ER_32K 2
43
/* set to allow the page program command to write 0s back to 1. Useful for
44
 * modelling EEPROM with SPI flash command set
45
 */
46
#define WR_1 0x100
47

    
48
typedef struct FlashPartInfo {
49
    const char *part_name;
50
    /* jedec code. (jedec >> 16) & 0xff is the 1st byte, >> 8 the 2nd etc */
51
    uint32_t jedec;
52
    /* extended jedec code */
53
    uint16_t ext_jedec;
54
    /* there is confusion between manufacturers as to what a sector is. In this
55
     * device model, a "sector" is the size that is erased by the ERASE_SECTOR
56
     * command (opcode 0xd8).
57
     */
58
    uint32_t sector_size;
59
    uint32_t n_sectors;
60
    uint32_t page_size;
61
    uint8_t flags;
62
} FlashPartInfo;
63

    
64
/* adapted from linux */
65

    
66
#define INFO(_part_name, _jedec, _ext_jedec, _sector_size, _n_sectors, _flags)\
67
    .part_name = (_part_name),\
68
    .jedec = (_jedec),\
69
    .ext_jedec = (_ext_jedec),\
70
    .sector_size = (_sector_size),\
71
    .n_sectors = (_n_sectors),\
72
    .page_size = 256,\
73
    .flags = (_flags),\
74

    
75
#define JEDEC_NUMONYX 0x20
76
#define JEDEC_WINBOND 0xEF
77
#define JEDEC_SPANSION 0x01
78

    
79
static const FlashPartInfo known_devices[] = {
80
    /* Atmel -- some are (confusingly) marketed as "DataFlash" */
81
    { INFO("at25fs010",   0x1f6601,      0,  32 << 10,   4, ER_4K) },
82
    { INFO("at25fs040",   0x1f6604,      0,  64 << 10,   8, ER_4K) },
83

    
84
    { INFO("at25df041a",  0x1f4401,      0,  64 << 10,   8, ER_4K) },
85
    { INFO("at25df321a",  0x1f4701,      0,  64 << 10,  64, ER_4K) },
86
    { INFO("at25df641",   0x1f4800,      0,  64 << 10, 128, ER_4K) },
87

    
88
    { INFO("at26f004",    0x1f0400,      0,  64 << 10,   8, ER_4K) },
89
    { INFO("at26df081a",  0x1f4501,      0,  64 << 10,  16, ER_4K) },
90
    { INFO("at26df161a",  0x1f4601,      0,  64 << 10,  32, ER_4K) },
91
    { INFO("at26df321",   0x1f4700,      0,  64 << 10,  64, ER_4K) },
92

    
93
    /* EON -- en25xxx */
94
    { INFO("en25f32",     0x1c3116,      0,  64 << 10,  64, ER_4K) },
95
    { INFO("en25p32",     0x1c2016,      0,  64 << 10,  64, 0) },
96
    { INFO("en25q32b",    0x1c3016,      0,  64 << 10,  64, 0) },
97
    { INFO("en25p64",     0x1c2017,      0,  64 << 10, 128, 0) },
98

    
99
    /* Intel/Numonyx -- xxxs33b */
100
    { INFO("160s33b",     0x898911,      0,  64 << 10,  32, 0) },
101
    { INFO("320s33b",     0x898912,      0,  64 << 10,  64, 0) },
102
    { INFO("640s33b",     0x898913,      0,  64 << 10, 128, 0) },
103

    
104
    /* Macronix */
105
    { INFO("mx25l4005a",  0xc22013,      0,  64 << 10,   8, ER_4K) },
106
    { INFO("mx25l8005",   0xc22014,      0,  64 << 10,  16, 0) },
107
    { INFO("mx25l1606e",  0xc22015,      0,  64 << 10,  32, ER_4K) },
108
    { INFO("mx25l3205d",  0xc22016,      0,  64 << 10,  64, 0) },
109
    { INFO("mx25l6405d",  0xc22017,      0,  64 << 10, 128, 0) },
110
    { INFO("mx25l12805d", 0xc22018,      0,  64 << 10, 256, 0) },
111
    { INFO("mx25l12855e", 0xc22618,      0,  64 << 10, 256, 0) },
112
    { INFO("mx25l25635e", 0xc22019,      0,  64 << 10, 512, 0) },
113
    { INFO("mx25l25655e", 0xc22619,      0,  64 << 10, 512, 0) },
114

    
115
    /* Spansion -- single (large) sector size only, at least
116
     * for the chips listed here (without boot sectors).
117
     */
118
    { INFO("s25sl004a",   0x010212,      0,  64 << 10,   8, 0) },
119
    { INFO("s25sl008a",   0x010213,      0,  64 << 10,  16, 0) },
120
    { INFO("s25sl016a",   0x010214,      0,  64 << 10,  32, 0) },
121
    { INFO("s25sl032a",   0x010215,      0,  64 << 10,  64, 0) },
122
    { INFO("s25sl032p",   0x010215, 0x4d00,  64 << 10,  64, ER_4K) },
123
    { INFO("s25sl064a",   0x010216,      0,  64 << 10, 128, 0) },
124
    { INFO("s25fl256s0",  0x010219, 0x4d00, 256 << 10, 128, 0) },
125
    { INFO("s25fl256s1",  0x010219, 0x4d01,  64 << 10, 512, 0) },
126
    { INFO("s25fl512s",   0x010220, 0x4d00, 256 << 10, 256, 0) },
127
    { INFO("s70fl01gs",   0x010221, 0x4d00, 256 << 10, 256, 0) },
128
    { INFO("s25sl12800",  0x012018, 0x0300, 256 << 10,  64, 0) },
129
    { INFO("s25sl12801",  0x012018, 0x0301,  64 << 10, 256, 0) },
130
    { INFO("s25fl129p0",  0x012018, 0x4d00, 256 << 10,  64, 0) },
131
    { INFO("s25fl129p1",  0x012018, 0x4d01,  64 << 10, 256, 0) },
132
    { INFO("s25fl016k",   0xef4015,      0,  64 << 10,  32, ER_4K | ER_32K) },
133
    { INFO("s25fl064k",   0xef4017,      0,  64 << 10, 128, ER_4K | ER_32K) },
134

    
135
    /* SST -- large erase sizes are "overlays", "sectors" are 4<< 10 */
136
    { INFO("sst25vf040b", 0xbf258d,      0,  64 << 10,   8, ER_4K) },
137
    { INFO("sst25vf080b", 0xbf258e,      0,  64 << 10,  16, ER_4K) },
138
    { INFO("sst25vf016b", 0xbf2541,      0,  64 << 10,  32, ER_4K) },
139
    { INFO("sst25vf032b", 0xbf254a,      0,  64 << 10,  64, ER_4K) },
140
    { INFO("sst25wf512",  0xbf2501,      0,  64 << 10,   1, ER_4K) },
141
    { INFO("sst25wf010",  0xbf2502,      0,  64 << 10,   2, ER_4K) },
142
    { INFO("sst25wf020",  0xbf2503,      0,  64 << 10,   4, ER_4K) },
143
    { INFO("sst25wf040",  0xbf2504,      0,  64 << 10,   8, ER_4K) },
144

    
145
    /* ST Microelectronics -- newer production may have feature updates */
146
    { INFO("m25p05",      0x202010,      0,  32 << 10,   2, 0) },
147
    { INFO("m25p10",      0x202011,      0,  32 << 10,   4, 0) },
148
    { INFO("m25p20",      0x202012,      0,  64 << 10,   4, 0) },
149
    { INFO("m25p40",      0x202013,      0,  64 << 10,   8, 0) },
150
    { INFO("m25p80",      0x202014,      0,  64 << 10,  16, 0) },
151
    { INFO("m25p16",      0x202015,      0,  64 << 10,  32, 0) },
152
    { INFO("m25p32",      0x202016,      0,  64 << 10,  64, 0) },
153
    { INFO("m25p64",      0x202017,      0,  64 << 10, 128, 0) },
154
    { INFO("m25p128",     0x202018,      0, 256 << 10,  64, 0) },
155

    
156
    { INFO("m45pe10",     0x204011,      0,  64 << 10,   2, 0) },
157
    { INFO("m45pe80",     0x204014,      0,  64 << 10,  16, 0) },
158
    { INFO("m45pe16",     0x204015,      0,  64 << 10,  32, 0) },
159

    
160
    { INFO("m25pe80",     0x208014,      0,  64 << 10,  16, 0) },
161
    { INFO("m25pe16",     0x208015,      0,  64 << 10,  32, ER_4K) },
162

    
163
    { INFO("m25px32",     0x207116,      0,  64 << 10,  64, ER_4K) },
164
    { INFO("m25px32-s0",  0x207316,      0,  64 << 10,  64, ER_4K) },
165
    { INFO("m25px32-s1",  0x206316,      0,  64 << 10,  64, ER_4K) },
166
    { INFO("m25px64",     0x207117,      0,  64 << 10, 128, 0) },
167

    
168
    /* Winbond -- w25x "blocks" are 64k, "sectors" are 4KiB */
169
    { INFO("w25x10",      0xef3011,      0,  64 << 10,   2, ER_4K) },
170
    { INFO("w25x20",      0xef3012,      0,  64 << 10,   4, ER_4K) },
171
    { INFO("w25x40",      0xef3013,      0,  64 << 10,   8, ER_4K) },
172
    { INFO("w25x80",      0xef3014,      0,  64 << 10,  16, ER_4K) },
173
    { INFO("w25x16",      0xef3015,      0,  64 << 10,  32, ER_4K) },
174
    { INFO("w25x32",      0xef3016,      0,  64 << 10,  64, ER_4K) },
175
    { INFO("w25q32",      0xef4016,      0,  64 << 10,  64, ER_4K) },
176
    { INFO("w25x64",      0xef3017,      0,  64 << 10, 128, ER_4K) },
177
    { INFO("w25q64",      0xef4017,      0,  64 << 10, 128, ER_4K) },
178

    
179
    /* Numonyx -- n25q128 */
180
    { INFO("n25q128",      0x20ba18,      0,  64 << 10, 256, 0) },
181

    
182
    { },
183
};
184

    
185
typedef enum {
186
    NOP = 0,
187
    WRDI = 0x4,
188
    RDSR = 0x5,
189
    WREN = 0x6,
190
    JEDEC_READ = 0x9f,
191
    BULK_ERASE = 0xc7,
192

    
193
    READ = 0x3,
194
    FAST_READ = 0xb,
195
    DOR = 0x3b,
196
    QOR = 0x6b,
197
    DIOR = 0xbb,
198
    QIOR = 0xeb,
199

    
200
    PP = 0x2,
201
    DPP = 0xa2,
202
    QPP = 0x32,
203

    
204
    ERASE_4K = 0x20,
205
    ERASE_32K = 0x52,
206
    ERASE_SECTOR = 0xd8,
207
} FlashCMD;
208

    
209
typedef enum {
210
    STATE_IDLE,
211
    STATE_PAGE_PROGRAM,
212
    STATE_READ,
213
    STATE_COLLECTING_DATA,
214
    STATE_READING_DATA,
215
} CMDState;
216

    
217
typedef struct Flash {
218
    SSISlave ssidev;
219
    uint32_t r;
220

    
221
    BlockDriverState *bdrv;
222

    
223
    uint8_t *storage;
224
    uint32_t size;
225
    int page_size;
226

    
227
    uint8_t state;
228
    uint8_t data[16];
229
    uint32_t len;
230
    uint32_t pos;
231
    uint8_t needed_bytes;
232
    uint8_t cmd_in_progress;
233
    uint64_t cur_addr;
234
    bool write_enable;
235

    
236
    int64_t dirty_page;
237

    
238
    char *part_name;
239
    const FlashPartInfo *pi;
240

    
241
} Flash;
242

    
243
static void bdrv_sync_complete(void *opaque, int ret)
244
{
245
    /* do nothing. Masters do not directly interact with the backing store,
246
     * only the working copy so no mutexing required.
247
     */
248
}
249

    
250
static void flash_sync_page(Flash *s, int page)
251
{
252
    if (s->bdrv) {
253
        int bdrv_sector, nb_sectors;
254
        QEMUIOVector iov;
255

    
256
        bdrv_sector = (page * s->pi->page_size) / BDRV_SECTOR_SIZE;
257
        nb_sectors = DIV_ROUND_UP(s->pi->page_size, BDRV_SECTOR_SIZE);
258
        qemu_iovec_init(&iov, 1);
259
        qemu_iovec_add(&iov, s->storage + bdrv_sector * BDRV_SECTOR_SIZE,
260
                                                nb_sectors * BDRV_SECTOR_SIZE);
261
        bdrv_aio_writev(s->bdrv, bdrv_sector, &iov, nb_sectors,
262
                                                bdrv_sync_complete, NULL);
263
    }
264
}
265

    
266
static inline void flash_sync_area(Flash *s, int64_t off, int64_t len)
267
{
268
    int64_t start, end, nb_sectors;
269
    QEMUIOVector iov;
270

    
271
    if (!s->bdrv) {
272
        return;
273
    }
274

    
275
    assert(!(len % BDRV_SECTOR_SIZE));
276
    start = off / BDRV_SECTOR_SIZE;
277
    end = (off + len) / BDRV_SECTOR_SIZE;
278
    nb_sectors = end - start;
279
    qemu_iovec_init(&iov, 1);
280
    qemu_iovec_add(&iov, s->storage + (start * BDRV_SECTOR_SIZE),
281
                                        nb_sectors * BDRV_SECTOR_SIZE);
282
    bdrv_aio_writev(s->bdrv, start, &iov, nb_sectors, bdrv_sync_complete, NULL);
283
}
284

    
285
static void flash_erase(Flash *s, int offset, FlashCMD cmd)
286
{
287
    uint32_t len;
288
    uint8_t capa_to_assert = 0;
289

    
290
    switch (cmd) {
291
    case ERASE_4K:
292
        len = 4 << 10;
293
        capa_to_assert = ER_4K;
294
        break;
295
    case ERASE_32K:
296
        len = 32 << 10;
297
        capa_to_assert = ER_32K;
298
        break;
299
    case ERASE_SECTOR:
300
        len = s->pi->sector_size;
301
        break;
302
    case BULK_ERASE:
303
        len = s->size;
304
        break;
305
    default:
306
        abort();
307
    }
308

    
309
    DB_PRINT("offset = %#x, len = %d\n", offset, len);
310
    if ((s->pi->flags & capa_to_assert) != capa_to_assert) {
311
        hw_error("m25p80: %dk erase size not supported by device\n", len);
312
    }
313

    
314
    if (!s->write_enable) {
315
        DB_PRINT("erase with write protect!\n");
316
        return;
317
    }
318
    memset(s->storage + offset, 0xff, len);
319
    flash_sync_area(s, offset, len);
320
}
321

    
322
static inline void flash_sync_dirty(Flash *s, int64_t newpage)
323
{
324
    if (s->dirty_page >= 0 && s->dirty_page != newpage) {
325
        flash_sync_page(s, s->dirty_page);
326
        s->dirty_page = newpage;
327
    }
328
}
329

    
330
static inline
331
void flash_write8(Flash *s, uint64_t addr, uint8_t data)
332
{
333
    int64_t page = addr / s->pi->page_size;
334
    uint8_t prev = s->storage[s->cur_addr];
335

    
336
    if (!s->write_enable) {
337
        DB_PRINT("write with write protect!\n");
338
    }
339

    
340
    if ((prev ^ data) & data) {
341
        DB_PRINT("programming zero to one! addr=%lx  %x -> %x\n",
342
                  addr, prev, data);
343
    }
344

    
345
    if (s->pi->flags & WR_1) {
346
        s->storage[s->cur_addr] = data;
347
    } else {
348
        s->storage[s->cur_addr] &= data;
349
    }
350

    
351
    flash_sync_dirty(s, page);
352
    s->dirty_page = page;
353
}
354

    
355
static void complete_collecting_data(Flash *s)
356
{
357
    s->cur_addr = s->data[0] << 16;
358
    s->cur_addr |= s->data[1] << 8;
359
    s->cur_addr |= s->data[2];
360

    
361
    switch (s->cmd_in_progress) {
362
    case DPP:
363
    case QPP:
364
    case PP:
365
        s->state = STATE_PAGE_PROGRAM;
366
        break;
367
    case READ:
368
    case FAST_READ:
369
    case DOR:
370
    case QOR:
371
    case DIOR:
372
    case QIOR:
373
        s->state = STATE_READ;
374
        break;
375
    case ERASE_4K:
376
    case ERASE_32K:
377
    case ERASE_SECTOR:
378
        flash_erase(s, s->cur_addr, s->cmd_in_progress);
379
        break;
380
    default:
381
        break;
382
    }
383
}
384

    
385
static void decode_new_cmd(Flash *s, uint32_t value)
386
{
387
    s->cmd_in_progress = value;
388
    DB_PRINT("decoded new command:%x\n", value);
389

    
390
    switch (value) {
391

    
392
    case ERASE_4K:
393
    case ERASE_32K:
394
    case ERASE_SECTOR:
395
    case READ:
396
    case DPP:
397
    case QPP:
398
    case PP:
399
        s->needed_bytes = 3;
400
        s->pos = 0;
401
        s->len = 0;
402
        s->state = STATE_COLLECTING_DATA;
403
        break;
404

    
405
    case FAST_READ:
406
    case DOR:
407
    case QOR:
408
        s->needed_bytes = 4;
409
        s->pos = 0;
410
        s->len = 0;
411
        s->state = STATE_COLLECTING_DATA;
412
        break;
413

    
414
    case DIOR:
415
        switch ((s->pi->jedec >> 16) & 0xFF) {
416
        case JEDEC_WINBOND:
417
        case JEDEC_SPANSION:
418
            s->needed_bytes = 4;
419
            break;
420
        case JEDEC_NUMONYX:
421
        default:
422
            s->needed_bytes = 5;
423
        }
424
        s->pos = 0;
425
        s->len = 0;
426
        s->state = STATE_COLLECTING_DATA;
427
        break;
428

    
429
    case QIOR:
430
        switch ((s->pi->jedec >> 16) & 0xFF) {
431
        case JEDEC_WINBOND:
432
        case JEDEC_SPANSION:
433
            s->needed_bytes = 6;
434
            break;
435
        case JEDEC_NUMONYX:
436
        default:
437
            s->needed_bytes = 8;
438
        }
439
        s->pos = 0;
440
        s->len = 0;
441
        s->state = STATE_COLLECTING_DATA;
442
        break;
443

    
444
    case WRDI:
445
        s->write_enable = false;
446
        break;
447
    case WREN:
448
        s->write_enable = true;
449
        break;
450

    
451
    case RDSR:
452
        s->data[0] = (!!s->write_enable) << 1;
453
        s->pos = 0;
454
        s->len = 1;
455
        s->state = STATE_READING_DATA;
456
        break;
457

    
458
    case JEDEC_READ:
459
        DB_PRINT("populated jedec code\n");
460
        s->data[0] = (s->pi->jedec >> 16) & 0xff;
461
        s->data[1] = (s->pi->jedec >> 8) & 0xff;
462
        s->data[2] = s->pi->jedec & 0xff;
463
        if (s->pi->ext_jedec) {
464
            s->data[3] = (s->pi->ext_jedec >> 8) & 0xff;
465
            s->data[4] = s->pi->ext_jedec & 0xff;
466
            s->len = 5;
467
        } else {
468
            s->len = 3;
469
        }
470
        s->pos = 0;
471
        s->state = STATE_READING_DATA;
472
        break;
473

    
474
    case BULK_ERASE:
475
        if (s->write_enable) {
476
            DB_PRINT("chip erase\n");
477
            flash_erase(s, 0, BULK_ERASE);
478
        } else {
479
            DB_PRINT("chip erase with write protect!\n");
480
        }
481
        break;
482
    case NOP:
483
        break;
484
    default:
485
        DB_PRINT("Unknown cmd %x\n", value);
486
        break;
487
    }
488
}
489

    
490
static int m25p80_cs(SSISlave *ss, bool select)
491
{
492
    Flash *s = FROM_SSI_SLAVE(Flash, ss);
493

    
494
    if (select) {
495
        s->len = 0;
496
        s->pos = 0;
497
        s->state = STATE_IDLE;
498
        flash_sync_dirty(s, -1);
499
    }
500

    
501
    DB_PRINT("%sselect\n", select ? "de" : "");
502

    
503
    return 0;
504
}
505

    
506
static uint32_t m25p80_transfer8(SSISlave *ss, uint32_t tx)
507
{
508
    Flash *s = FROM_SSI_SLAVE(Flash, ss);
509
    uint32_t r = 0;
510

    
511
    switch (s->state) {
512

    
513
    case STATE_PAGE_PROGRAM:
514
        DB_PRINT("page program cur_addr=%lx data=%x\n", s->cur_addr,
515
                 (uint8_t)tx);
516
        flash_write8(s, s->cur_addr, (uint8_t)tx);
517
        s->cur_addr++;
518
        break;
519

    
520
    case STATE_READ:
521
        r = s->storage[s->cur_addr];
522
        DB_PRINT("READ 0x%lx=%x\n", s->cur_addr, r);
523
        s->cur_addr = (s->cur_addr + 1) % s->size;
524
        break;
525

    
526
    case STATE_COLLECTING_DATA:
527
        s->data[s->len] = (uint8_t)tx;
528
        s->len++;
529

    
530
        if (s->len == s->needed_bytes) {
531
            complete_collecting_data(s);
532
        }
533
        break;
534

    
535
    case STATE_READING_DATA:
536
        r = s->data[s->pos];
537
        s->pos++;
538
        if (s->pos == s->len) {
539
            s->pos = 0;
540
            s->state = STATE_IDLE;
541
        }
542
        break;
543

    
544
    default:
545
    case STATE_IDLE:
546
        decode_new_cmd(s, (uint8_t)tx);
547
        break;
548
    }
549

    
550
    return r;
551
}
552

    
553
static int m25p80_init(SSISlave *ss)
554
{
555
    DriveInfo *dinfo;
556
    Flash *s = FROM_SSI_SLAVE(Flash, ss);
557
    const FlashPartInfo *i;
558

    
559
    if (!s->part_name) { /* default to actual m25p80 if no partname given */
560
        s->part_name = (char *)"m25p80";
561
    }
562

    
563
    i = known_devices;
564
    for (i = known_devices;; i++) {
565
        assert(i);
566
        if (!i->part_name) {
567
            fprintf(stderr, "Unknown SPI flash part: \"%s\"\n", s->part_name);
568
            return 1;
569
        } else if (!strcmp(i->part_name, s->part_name)) {
570
            s->pi = i;
571
            break;
572
        }
573
    }
574

    
575
    s->size = s->pi->sector_size * s->pi->n_sectors;
576
    s->dirty_page = -1;
577
    s->storage = qemu_blockalign(s->bdrv, s->size);
578

    
579
    dinfo = drive_get_next(IF_MTD);
580

    
581
    if (dinfo && dinfo->bdrv) {
582
        DB_PRINT("Binding to IF_MTD drive\n");
583
        s->bdrv = dinfo->bdrv;
584
        /* FIXME: Move to late init */
585
        if (bdrv_read(s->bdrv, 0, s->storage, DIV_ROUND_UP(s->size,
586
                                                    BDRV_SECTOR_SIZE))) {
587
            fprintf(stderr, "Failed to initialize SPI flash!\n");
588
            return 1;
589
        }
590
    } else {
591
        memset(s->storage, 0xFF, s->size);
592
    }
593

    
594
    return 0;
595
}
596

    
597
static void m25p80_pre_save(void *opaque)
598
{
599
    flash_sync_dirty((Flash *)opaque, -1);
600
}
601

    
602
static const VMStateDescription vmstate_m25p80 = {
603
    .name = "xilinx_spi",
604
    .version_id = 1,
605
    .minimum_version_id = 1,
606
    .minimum_version_id_old = 1,
607
    .pre_save = m25p80_pre_save,
608
    .fields = (VMStateField[]) {
609
        VMSTATE_UINT8(state, Flash),
610
        VMSTATE_UINT8_ARRAY(data, Flash, 16),
611
        VMSTATE_UINT32(len, Flash),
612
        VMSTATE_UINT32(pos, Flash),
613
        VMSTATE_UINT8(needed_bytes, Flash),
614
        VMSTATE_UINT8(cmd_in_progress, Flash),
615
        VMSTATE_UINT64(cur_addr, Flash),
616
        VMSTATE_BOOL(write_enable, Flash),
617
        VMSTATE_END_OF_LIST()
618
    }
619
};
620

    
621
static Property m25p80_properties[] = {
622
    DEFINE_PROP_STRING("partname", Flash, part_name),
623
    DEFINE_PROP_END_OF_LIST(),
624
};
625

    
626
static void m25p80_class_init(ObjectClass *klass, void *data)
627
{
628
    DeviceClass *dc = DEVICE_CLASS(klass);
629
    SSISlaveClass *k = SSI_SLAVE_CLASS(klass);
630

    
631
    k->init = m25p80_init;
632
    k->transfer = m25p80_transfer8;
633
    k->set_cs = m25p80_cs;
634
    k->cs_polarity = SSI_CS_LOW;
635
    dc->props = m25p80_properties;
636
    dc->vmsd = &vmstate_m25p80;
637
}
638

    
639
static const TypeInfo m25p80_info = {
640
    .name           = "m25p80",
641
    .parent         = TYPE_SSI_SLAVE,
642
    .instance_size  = sizeof(Flash),
643
    .class_init     = m25p80_class_init,
644
};
645

    
646
static void m25p80_register_types(void)
647
{
648
    type_register_static(&m25p80_info);
649
}
650

    
651
type_init(m25p80_register_types)