Statistics
| Branch: | Revision:

root / hw / ppc.c @ 9c17d615

History | View | Annotate | Download (38.8 kB)

1
/*
2
 * QEMU generic PowerPC hardware System Emulator
3
 *
4
 * Copyright (c) 2003-2007 Jocelyn Mayer
5
 *
6
 * Permission is hereby granted, free of charge, to any person obtaining a copy
7
 * of this software and associated documentation files (the "Software"), to deal
8
 * in the Software without restriction, including without limitation the rights
9
 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10
 * copies of the Software, and to permit persons to whom the Software is
11
 * furnished to do so, subject to the following conditions:
12
 *
13
 * The above copyright notice and this permission notice shall be included in
14
 * all copies or substantial portions of the Software.
15
 *
16
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21
 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22
 * THE SOFTWARE.
23
 */
24
#include "hw.h"
25
#include "ppc.h"
26
#include "qemu/timer.h"
27
#include "sysemu/sysemu.h"
28
#include "nvram.h"
29
#include "qemu/log.h"
30
#include "loader.h"
31
#include "sysemu/kvm.h"
32
#include "kvm_ppc.h"
33

    
34
//#define PPC_DEBUG_IRQ
35
//#define PPC_DEBUG_TB
36

    
37
#ifdef PPC_DEBUG_IRQ
38
#  define LOG_IRQ(...) qemu_log_mask(CPU_LOG_INT, ## __VA_ARGS__)
39
#else
40
#  define LOG_IRQ(...) do { } while (0)
41
#endif
42

    
43

    
44
#ifdef PPC_DEBUG_TB
45
#  define LOG_TB(...) qemu_log(__VA_ARGS__)
46
#else
47
#  define LOG_TB(...) do { } while (0)
48
#endif
49

    
50
static void cpu_ppc_tb_stop (CPUPPCState *env);
51
static void cpu_ppc_tb_start (CPUPPCState *env);
52

    
53
void ppc_set_irq(CPUPPCState *env, int n_IRQ, int level)
54
{
55
    unsigned int old_pending = env->pending_interrupts;
56

    
57
    if (level) {
58
        env->pending_interrupts |= 1 << n_IRQ;
59
        cpu_interrupt(env, CPU_INTERRUPT_HARD);
60
    } else {
61
        env->pending_interrupts &= ~(1 << n_IRQ);
62
        if (env->pending_interrupts == 0)
63
            cpu_reset_interrupt(env, CPU_INTERRUPT_HARD);
64
    }
65

    
66
    if (old_pending != env->pending_interrupts) {
67
#ifdef CONFIG_KVM
68
        kvmppc_set_interrupt(env, n_IRQ, level);
69
#endif
70
    }
71

    
72
    LOG_IRQ("%s: %p n_IRQ %d level %d => pending %08" PRIx32
73
                "req %08x\n", __func__, env, n_IRQ, level,
74
                env->pending_interrupts, env->interrupt_request);
75
}
76

    
77
/* PowerPC 6xx / 7xx internal IRQ controller */
78
static void ppc6xx_set_irq(void *opaque, int pin, int level)
79
{
80
    PowerPCCPU *cpu = opaque;
81
    CPUPPCState *env = &cpu->env;
82
    int cur_level;
83

    
84
    LOG_IRQ("%s: env %p pin %d level %d\n", __func__,
85
                env, pin, level);
86
    cur_level = (env->irq_input_state >> pin) & 1;
87
    /* Don't generate spurious events */
88
    if ((cur_level == 1 && level == 0) || (cur_level == 0 && level != 0)) {
89
        switch (pin) {
90
        case PPC6xx_INPUT_TBEN:
91
            /* Level sensitive - active high */
92
            LOG_IRQ("%s: %s the time base\n",
93
                        __func__, level ? "start" : "stop");
94
            if (level) {
95
                cpu_ppc_tb_start(env);
96
            } else {
97
                cpu_ppc_tb_stop(env);
98
            }
99
        case PPC6xx_INPUT_INT:
100
            /* Level sensitive - active high */
101
            LOG_IRQ("%s: set the external IRQ state to %d\n",
102
                        __func__, level);
103
            ppc_set_irq(env, PPC_INTERRUPT_EXT, level);
104
            break;
105
        case PPC6xx_INPUT_SMI:
106
            /* Level sensitive - active high */
107
            LOG_IRQ("%s: set the SMI IRQ state to %d\n",
108
                        __func__, level);
109
            ppc_set_irq(env, PPC_INTERRUPT_SMI, level);
110
            break;
111
        case PPC6xx_INPUT_MCP:
112
            /* Negative edge sensitive */
113
            /* XXX: TODO: actual reaction may depends on HID0 status
114
             *            603/604/740/750: check HID0[EMCP]
115
             */
116
            if (cur_level == 1 && level == 0) {
117
                LOG_IRQ("%s: raise machine check state\n",
118
                            __func__);
119
                ppc_set_irq(env, PPC_INTERRUPT_MCK, 1);
120
            }
121
            break;
122
        case PPC6xx_INPUT_CKSTP_IN:
123
            /* Level sensitive - active low */
124
            /* XXX: TODO: relay the signal to CKSTP_OUT pin */
125
            /* XXX: Note that the only way to restart the CPU is to reset it */
126
            if (level) {
127
                LOG_IRQ("%s: stop the CPU\n", __func__);
128
                env->halted = 1;
129
            }
130
            break;
131
        case PPC6xx_INPUT_HRESET:
132
            /* Level sensitive - active low */
133
            if (level) {
134
                LOG_IRQ("%s: reset the CPU\n", __func__);
135
                cpu_interrupt(env, CPU_INTERRUPT_RESET);
136
            }
137
            break;
138
        case PPC6xx_INPUT_SRESET:
139
            LOG_IRQ("%s: set the RESET IRQ state to %d\n",
140
                        __func__, level);
141
            ppc_set_irq(env, PPC_INTERRUPT_RESET, level);
142
            break;
143
        default:
144
            /* Unknown pin - do nothing */
145
            LOG_IRQ("%s: unknown IRQ pin %d\n", __func__, pin);
146
            return;
147
        }
148
        if (level)
149
            env->irq_input_state |= 1 << pin;
150
        else
151
            env->irq_input_state &= ~(1 << pin);
152
    }
153
}
154

    
155
void ppc6xx_irq_init(CPUPPCState *env)
156
{
157
    PowerPCCPU *cpu = ppc_env_get_cpu(env);
158

    
159
    env->irq_inputs = (void **)qemu_allocate_irqs(&ppc6xx_set_irq, cpu,
160
                                                  PPC6xx_INPUT_NB);
161
}
162

    
163
#if defined(TARGET_PPC64)
164
/* PowerPC 970 internal IRQ controller */
165
static void ppc970_set_irq(void *opaque, int pin, int level)
166
{
167
    PowerPCCPU *cpu = opaque;
168
    CPUPPCState *env = &cpu->env;
169
    int cur_level;
170

    
171
    LOG_IRQ("%s: env %p pin %d level %d\n", __func__,
172
                env, pin, level);
173
    cur_level = (env->irq_input_state >> pin) & 1;
174
    /* Don't generate spurious events */
175
    if ((cur_level == 1 && level == 0) || (cur_level == 0 && level != 0)) {
176
        switch (pin) {
177
        case PPC970_INPUT_INT:
178
            /* Level sensitive - active high */
179
            LOG_IRQ("%s: set the external IRQ state to %d\n",
180
                        __func__, level);
181
            ppc_set_irq(env, PPC_INTERRUPT_EXT, level);
182
            break;
183
        case PPC970_INPUT_THINT:
184
            /* Level sensitive - active high */
185
            LOG_IRQ("%s: set the SMI IRQ state to %d\n", __func__,
186
                        level);
187
            ppc_set_irq(env, PPC_INTERRUPT_THERM, level);
188
            break;
189
        case PPC970_INPUT_MCP:
190
            /* Negative edge sensitive */
191
            /* XXX: TODO: actual reaction may depends on HID0 status
192
             *            603/604/740/750: check HID0[EMCP]
193
             */
194
            if (cur_level == 1 && level == 0) {
195
                LOG_IRQ("%s: raise machine check state\n",
196
                            __func__);
197
                ppc_set_irq(env, PPC_INTERRUPT_MCK, 1);
198
            }
199
            break;
200
        case PPC970_INPUT_CKSTP:
201
            /* Level sensitive - active low */
202
            /* XXX: TODO: relay the signal to CKSTP_OUT pin */
203
            if (level) {
204
                LOG_IRQ("%s: stop the CPU\n", __func__);
205
                env->halted = 1;
206
            } else {
207
                LOG_IRQ("%s: restart the CPU\n", __func__);
208
                env->halted = 0;
209
                qemu_cpu_kick(CPU(cpu));
210
            }
211
            break;
212
        case PPC970_INPUT_HRESET:
213
            /* Level sensitive - active low */
214
            if (level) {
215
                cpu_interrupt(env, CPU_INTERRUPT_RESET);
216
            }
217
            break;
218
        case PPC970_INPUT_SRESET:
219
            LOG_IRQ("%s: set the RESET IRQ state to %d\n",
220
                        __func__, level);
221
            ppc_set_irq(env, PPC_INTERRUPT_RESET, level);
222
            break;
223
        case PPC970_INPUT_TBEN:
224
            LOG_IRQ("%s: set the TBEN state to %d\n", __func__,
225
                        level);
226
            /* XXX: TODO */
227
            break;
228
        default:
229
            /* Unknown pin - do nothing */
230
            LOG_IRQ("%s: unknown IRQ pin %d\n", __func__, pin);
231
            return;
232
        }
233
        if (level)
234
            env->irq_input_state |= 1 << pin;
235
        else
236
            env->irq_input_state &= ~(1 << pin);
237
    }
238
}
239

    
240
void ppc970_irq_init(CPUPPCState *env)
241
{
242
    PowerPCCPU *cpu = ppc_env_get_cpu(env);
243

    
244
    env->irq_inputs = (void **)qemu_allocate_irqs(&ppc970_set_irq, cpu,
245
                                                  PPC970_INPUT_NB);
246
}
247

    
248
/* POWER7 internal IRQ controller */
249
static void power7_set_irq(void *opaque, int pin, int level)
250
{
251
    PowerPCCPU *cpu = opaque;
252
    CPUPPCState *env = &cpu->env;
253

    
254
    LOG_IRQ("%s: env %p pin %d level %d\n", __func__,
255
                env, pin, level);
256

    
257
    switch (pin) {
258
    case POWER7_INPUT_INT:
259
        /* Level sensitive - active high */
260
        LOG_IRQ("%s: set the external IRQ state to %d\n",
261
                __func__, level);
262
        ppc_set_irq(env, PPC_INTERRUPT_EXT, level);
263
        break;
264
    default:
265
        /* Unknown pin - do nothing */
266
        LOG_IRQ("%s: unknown IRQ pin %d\n", __func__, pin);
267
        return;
268
    }
269
    if (level) {
270
        env->irq_input_state |= 1 << pin;
271
    } else {
272
        env->irq_input_state &= ~(1 << pin);
273
    }
274
}
275

    
276
void ppcPOWER7_irq_init(CPUPPCState *env)
277
{
278
    PowerPCCPU *cpu = ppc_env_get_cpu(env);
279

    
280
    env->irq_inputs = (void **)qemu_allocate_irqs(&power7_set_irq, cpu,
281
                                                  POWER7_INPUT_NB);
282
}
283
#endif /* defined(TARGET_PPC64) */
284

    
285
/* PowerPC 40x internal IRQ controller */
286
static void ppc40x_set_irq(void *opaque, int pin, int level)
287
{
288
    PowerPCCPU *cpu = opaque;
289
    CPUPPCState *env = &cpu->env;
290
    int cur_level;
291

    
292
    LOG_IRQ("%s: env %p pin %d level %d\n", __func__,
293
                env, pin, level);
294
    cur_level = (env->irq_input_state >> pin) & 1;
295
    /* Don't generate spurious events */
296
    if ((cur_level == 1 && level == 0) || (cur_level == 0 && level != 0)) {
297
        switch (pin) {
298
        case PPC40x_INPUT_RESET_SYS:
299
            if (level) {
300
                LOG_IRQ("%s: reset the PowerPC system\n",
301
                            __func__);
302
                ppc40x_system_reset(env);
303
            }
304
            break;
305
        case PPC40x_INPUT_RESET_CHIP:
306
            if (level) {
307
                LOG_IRQ("%s: reset the PowerPC chip\n", __func__);
308
                ppc40x_chip_reset(env);
309
            }
310
            break;
311
        case PPC40x_INPUT_RESET_CORE:
312
            /* XXX: TODO: update DBSR[MRR] */
313
            if (level) {
314
                LOG_IRQ("%s: reset the PowerPC core\n", __func__);
315
                ppc40x_core_reset(env);
316
            }
317
            break;
318
        case PPC40x_INPUT_CINT:
319
            /* Level sensitive - active high */
320
            LOG_IRQ("%s: set the critical IRQ state to %d\n",
321
                        __func__, level);
322
            ppc_set_irq(env, PPC_INTERRUPT_CEXT, level);
323
            break;
324
        case PPC40x_INPUT_INT:
325
            /* Level sensitive - active high */
326
            LOG_IRQ("%s: set the external IRQ state to %d\n",
327
                        __func__, level);
328
            ppc_set_irq(env, PPC_INTERRUPT_EXT, level);
329
            break;
330
        case PPC40x_INPUT_HALT:
331
            /* Level sensitive - active low */
332
            if (level) {
333
                LOG_IRQ("%s: stop the CPU\n", __func__);
334
                env->halted = 1;
335
            } else {
336
                LOG_IRQ("%s: restart the CPU\n", __func__);
337
                env->halted = 0;
338
                qemu_cpu_kick(CPU(cpu));
339
            }
340
            break;
341
        case PPC40x_INPUT_DEBUG:
342
            /* Level sensitive - active high */
343
            LOG_IRQ("%s: set the debug pin state to %d\n",
344
                        __func__, level);
345
            ppc_set_irq(env, PPC_INTERRUPT_DEBUG, level);
346
            break;
347
        default:
348
            /* Unknown pin - do nothing */
349
            LOG_IRQ("%s: unknown IRQ pin %d\n", __func__, pin);
350
            return;
351
        }
352
        if (level)
353
            env->irq_input_state |= 1 << pin;
354
        else
355
            env->irq_input_state &= ~(1 << pin);
356
    }
357
}
358

    
359
void ppc40x_irq_init(CPUPPCState *env)
360
{
361
    PowerPCCPU *cpu = ppc_env_get_cpu(env);
362

    
363
    env->irq_inputs = (void **)qemu_allocate_irqs(&ppc40x_set_irq,
364
                                                  cpu, PPC40x_INPUT_NB);
365
}
366

    
367
/* PowerPC E500 internal IRQ controller */
368
static void ppce500_set_irq(void *opaque, int pin, int level)
369
{
370
    PowerPCCPU *cpu = opaque;
371
    CPUPPCState *env = &cpu->env;
372
    int cur_level;
373

    
374
    LOG_IRQ("%s: env %p pin %d level %d\n", __func__,
375
                env, pin, level);
376
    cur_level = (env->irq_input_state >> pin) & 1;
377
    /* Don't generate spurious events */
378
    if ((cur_level == 1 && level == 0) || (cur_level == 0 && level != 0)) {
379
        switch (pin) {
380
        case PPCE500_INPUT_MCK:
381
            if (level) {
382
                LOG_IRQ("%s: reset the PowerPC system\n",
383
                            __func__);
384
                qemu_system_reset_request();
385
            }
386
            break;
387
        case PPCE500_INPUT_RESET_CORE:
388
            if (level) {
389
                LOG_IRQ("%s: reset the PowerPC core\n", __func__);
390
                ppc_set_irq(env, PPC_INTERRUPT_MCK, level);
391
            }
392
            break;
393
        case PPCE500_INPUT_CINT:
394
            /* Level sensitive - active high */
395
            LOG_IRQ("%s: set the critical IRQ state to %d\n",
396
                        __func__, level);
397
            ppc_set_irq(env, PPC_INTERRUPT_CEXT, level);
398
            break;
399
        case PPCE500_INPUT_INT:
400
            /* Level sensitive - active high */
401
            LOG_IRQ("%s: set the core IRQ state to %d\n",
402
                        __func__, level);
403
            ppc_set_irq(env, PPC_INTERRUPT_EXT, level);
404
            break;
405
        case PPCE500_INPUT_DEBUG:
406
            /* Level sensitive - active high */
407
            LOG_IRQ("%s: set the debug pin state to %d\n",
408
                        __func__, level);
409
            ppc_set_irq(env, PPC_INTERRUPT_DEBUG, level);
410
            break;
411
        default:
412
            /* Unknown pin - do nothing */
413
            LOG_IRQ("%s: unknown IRQ pin %d\n", __func__, pin);
414
            return;
415
        }
416
        if (level)
417
            env->irq_input_state |= 1 << pin;
418
        else
419
            env->irq_input_state &= ~(1 << pin);
420
    }
421
}
422

    
423
void ppce500_irq_init(CPUPPCState *env)
424
{
425
    PowerPCCPU *cpu = ppc_env_get_cpu(env);
426

    
427
    env->irq_inputs = (void **)qemu_allocate_irqs(&ppce500_set_irq,
428
                                                  cpu, PPCE500_INPUT_NB);
429
}
430
/*****************************************************************************/
431
/* PowerPC time base and decrementer emulation */
432

    
433
uint64_t cpu_ppc_get_tb(ppc_tb_t *tb_env, uint64_t vmclk, int64_t tb_offset)
434
{
435
    /* TB time in tb periods */
436
    return muldiv64(vmclk, tb_env->tb_freq, get_ticks_per_sec()) + tb_offset;
437
}
438

    
439
uint64_t cpu_ppc_load_tbl (CPUPPCState *env)
440
{
441
    ppc_tb_t *tb_env = env->tb_env;
442
    uint64_t tb;
443

    
444
    if (kvm_enabled()) {
445
        return env->spr[SPR_TBL];
446
    }
447

    
448
    tb = cpu_ppc_get_tb(tb_env, qemu_get_clock_ns(vm_clock), tb_env->tb_offset);
449
    LOG_TB("%s: tb %016" PRIx64 "\n", __func__, tb);
450

    
451
    return tb;
452
}
453

    
454
static inline uint32_t _cpu_ppc_load_tbu(CPUPPCState *env)
455
{
456
    ppc_tb_t *tb_env = env->tb_env;
457
    uint64_t tb;
458

    
459
    tb = cpu_ppc_get_tb(tb_env, qemu_get_clock_ns(vm_clock), tb_env->tb_offset);
460
    LOG_TB("%s: tb %016" PRIx64 "\n", __func__, tb);
461

    
462
    return tb >> 32;
463
}
464

    
465
uint32_t cpu_ppc_load_tbu (CPUPPCState *env)
466
{
467
    if (kvm_enabled()) {
468
        return env->spr[SPR_TBU];
469
    }
470

    
471
    return _cpu_ppc_load_tbu(env);
472
}
473

    
474
static inline void cpu_ppc_store_tb(ppc_tb_t *tb_env, uint64_t vmclk,
475
                                    int64_t *tb_offsetp, uint64_t value)
476
{
477
    *tb_offsetp = value - muldiv64(vmclk, tb_env->tb_freq, get_ticks_per_sec());
478
    LOG_TB("%s: tb %016" PRIx64 " offset %08" PRIx64 "\n",
479
                __func__, value, *tb_offsetp);
480
}
481

    
482
void cpu_ppc_store_tbl (CPUPPCState *env, uint32_t value)
483
{
484
    ppc_tb_t *tb_env = env->tb_env;
485
    uint64_t tb;
486

    
487
    tb = cpu_ppc_get_tb(tb_env, qemu_get_clock_ns(vm_clock), tb_env->tb_offset);
488
    tb &= 0xFFFFFFFF00000000ULL;
489
    cpu_ppc_store_tb(tb_env, qemu_get_clock_ns(vm_clock),
490
                     &tb_env->tb_offset, tb | (uint64_t)value);
491
}
492

    
493
static inline void _cpu_ppc_store_tbu(CPUPPCState *env, uint32_t value)
494
{
495
    ppc_tb_t *tb_env = env->tb_env;
496
    uint64_t tb;
497

    
498
    tb = cpu_ppc_get_tb(tb_env, qemu_get_clock_ns(vm_clock), tb_env->tb_offset);
499
    tb &= 0x00000000FFFFFFFFULL;
500
    cpu_ppc_store_tb(tb_env, qemu_get_clock_ns(vm_clock),
501
                     &tb_env->tb_offset, ((uint64_t)value << 32) | tb);
502
}
503

    
504
void cpu_ppc_store_tbu (CPUPPCState *env, uint32_t value)
505
{
506
    _cpu_ppc_store_tbu(env, value);
507
}
508

    
509
uint64_t cpu_ppc_load_atbl (CPUPPCState *env)
510
{
511
    ppc_tb_t *tb_env = env->tb_env;
512
    uint64_t tb;
513

    
514
    tb = cpu_ppc_get_tb(tb_env, qemu_get_clock_ns(vm_clock), tb_env->atb_offset);
515
    LOG_TB("%s: tb %016" PRIx64 "\n", __func__, tb);
516

    
517
    return tb;
518
}
519

    
520
uint32_t cpu_ppc_load_atbu (CPUPPCState *env)
521
{
522
    ppc_tb_t *tb_env = env->tb_env;
523
    uint64_t tb;
524

    
525
    tb = cpu_ppc_get_tb(tb_env, qemu_get_clock_ns(vm_clock), tb_env->atb_offset);
526
    LOG_TB("%s: tb %016" PRIx64 "\n", __func__, tb);
527

    
528
    return tb >> 32;
529
}
530

    
531
void cpu_ppc_store_atbl (CPUPPCState *env, uint32_t value)
532
{
533
    ppc_tb_t *tb_env = env->tb_env;
534
    uint64_t tb;
535

    
536
    tb = cpu_ppc_get_tb(tb_env, qemu_get_clock_ns(vm_clock), tb_env->atb_offset);
537
    tb &= 0xFFFFFFFF00000000ULL;
538
    cpu_ppc_store_tb(tb_env, qemu_get_clock_ns(vm_clock),
539
                     &tb_env->atb_offset, tb | (uint64_t)value);
540
}
541

    
542
void cpu_ppc_store_atbu (CPUPPCState *env, uint32_t value)
543
{
544
    ppc_tb_t *tb_env = env->tb_env;
545
    uint64_t tb;
546

    
547
    tb = cpu_ppc_get_tb(tb_env, qemu_get_clock_ns(vm_clock), tb_env->atb_offset);
548
    tb &= 0x00000000FFFFFFFFULL;
549
    cpu_ppc_store_tb(tb_env, qemu_get_clock_ns(vm_clock),
550
                     &tb_env->atb_offset, ((uint64_t)value << 32) | tb);
551
}
552

    
553
static void cpu_ppc_tb_stop (CPUPPCState *env)
554
{
555
    ppc_tb_t *tb_env = env->tb_env;
556
    uint64_t tb, atb, vmclk;
557

    
558
    /* If the time base is already frozen, do nothing */
559
    if (tb_env->tb_freq != 0) {
560
        vmclk = qemu_get_clock_ns(vm_clock);
561
        /* Get the time base */
562
        tb = cpu_ppc_get_tb(tb_env, vmclk, tb_env->tb_offset);
563
        /* Get the alternate time base */
564
        atb = cpu_ppc_get_tb(tb_env, vmclk, tb_env->atb_offset);
565
        /* Store the time base value (ie compute the current offset) */
566
        cpu_ppc_store_tb(tb_env, vmclk, &tb_env->tb_offset, tb);
567
        /* Store the alternate time base value (compute the current offset) */
568
        cpu_ppc_store_tb(tb_env, vmclk, &tb_env->atb_offset, atb);
569
        /* Set the time base frequency to zero */
570
        tb_env->tb_freq = 0;
571
        /* Now, the time bases are frozen to tb_offset / atb_offset value */
572
    }
573
}
574

    
575
static void cpu_ppc_tb_start (CPUPPCState *env)
576
{
577
    ppc_tb_t *tb_env = env->tb_env;
578
    uint64_t tb, atb, vmclk;
579

    
580
    /* If the time base is not frozen, do nothing */
581
    if (tb_env->tb_freq == 0) {
582
        vmclk = qemu_get_clock_ns(vm_clock);
583
        /* Get the time base from tb_offset */
584
        tb = tb_env->tb_offset;
585
        /* Get the alternate time base from atb_offset */
586
        atb = tb_env->atb_offset;
587
        /* Restore the tb frequency from the decrementer frequency */
588
        tb_env->tb_freq = tb_env->decr_freq;
589
        /* Store the time base value */
590
        cpu_ppc_store_tb(tb_env, vmclk, &tb_env->tb_offset, tb);
591
        /* Store the alternate time base value */
592
        cpu_ppc_store_tb(tb_env, vmclk, &tb_env->atb_offset, atb);
593
    }
594
}
595

    
596
static inline uint32_t _cpu_ppc_load_decr(CPUPPCState *env, uint64_t next)
597
{
598
    ppc_tb_t *tb_env = env->tb_env;
599
    uint32_t decr;
600
    int64_t diff;
601

    
602
    diff = next - qemu_get_clock_ns(vm_clock);
603
    if (diff >= 0) {
604
        decr = muldiv64(diff, tb_env->decr_freq, get_ticks_per_sec());
605
    } else if (tb_env->flags & PPC_TIMER_BOOKE) {
606
        decr = 0;
607
    }  else {
608
        decr = -muldiv64(-diff, tb_env->decr_freq, get_ticks_per_sec());
609
    }
610
    LOG_TB("%s: %08" PRIx32 "\n", __func__, decr);
611

    
612
    return decr;
613
}
614

    
615
uint32_t cpu_ppc_load_decr (CPUPPCState *env)
616
{
617
    ppc_tb_t *tb_env = env->tb_env;
618

    
619
    if (kvm_enabled()) {
620
        return env->spr[SPR_DECR];
621
    }
622

    
623
    return _cpu_ppc_load_decr(env, tb_env->decr_next);
624
}
625

    
626
uint32_t cpu_ppc_load_hdecr (CPUPPCState *env)
627
{
628
    ppc_tb_t *tb_env = env->tb_env;
629

    
630
    return _cpu_ppc_load_decr(env, tb_env->hdecr_next);
631
}
632

    
633
uint64_t cpu_ppc_load_purr (CPUPPCState *env)
634
{
635
    ppc_tb_t *tb_env = env->tb_env;
636
    uint64_t diff;
637

    
638
    diff = qemu_get_clock_ns(vm_clock) - tb_env->purr_start;
639

    
640
    return tb_env->purr_load + muldiv64(diff, tb_env->tb_freq, get_ticks_per_sec());
641
}
642

    
643
/* When decrementer expires,
644
 * all we need to do is generate or queue a CPU exception
645
 */
646
static inline void cpu_ppc_decr_excp(CPUPPCState *env)
647
{
648
    /* Raise it */
649
    LOG_TB("raise decrementer exception\n");
650
    ppc_set_irq(env, PPC_INTERRUPT_DECR, 1);
651
}
652

    
653
static inline void cpu_ppc_hdecr_excp(CPUPPCState *env)
654
{
655
    /* Raise it */
656
    LOG_TB("raise decrementer exception\n");
657
    ppc_set_irq(env, PPC_INTERRUPT_HDECR, 1);
658
}
659

    
660
static void __cpu_ppc_store_decr (CPUPPCState *env, uint64_t *nextp,
661
                                  struct QEMUTimer *timer,
662
                                  void (*raise_excp)(CPUPPCState *),
663
                                  uint32_t decr, uint32_t value,
664
                                  int is_excp)
665
{
666
    ppc_tb_t *tb_env = env->tb_env;
667
    uint64_t now, next;
668

    
669
    LOG_TB("%s: %08" PRIx32 " => %08" PRIx32 "\n", __func__,
670
                decr, value);
671

    
672
    if (kvm_enabled()) {
673
        /* KVM handles decrementer exceptions, we don't need our own timer */
674
        return;
675
    }
676

    
677
    now = qemu_get_clock_ns(vm_clock);
678
    next = now + muldiv64(value, get_ticks_per_sec(), tb_env->decr_freq);
679
    if (is_excp) {
680
        next += *nextp - now;
681
    }
682
    if (next == now) {
683
        next++;
684
    }
685
    *nextp = next;
686
    /* Adjust timer */
687
    qemu_mod_timer(timer, next);
688

    
689
    /* If we set a negative value and the decrementer was positive, raise an
690
     * exception.
691
     */
692
    if ((tb_env->flags & PPC_DECR_UNDERFLOW_TRIGGERED)
693
        && (value & 0x80000000)
694
        && !(decr & 0x80000000)) {
695
        (*raise_excp)(env);
696
    }
697
}
698

    
699
static inline void _cpu_ppc_store_decr(CPUPPCState *env, uint32_t decr,
700
                                       uint32_t value, int is_excp)
701
{
702
    ppc_tb_t *tb_env = env->tb_env;
703

    
704
    __cpu_ppc_store_decr(env, &tb_env->decr_next, tb_env->decr_timer,
705
                         &cpu_ppc_decr_excp, decr, value, is_excp);
706
}
707

    
708
void cpu_ppc_store_decr (CPUPPCState *env, uint32_t value)
709
{
710
    _cpu_ppc_store_decr(env, cpu_ppc_load_decr(env), value, 0);
711
}
712

    
713
static void cpu_ppc_decr_cb (void *opaque)
714
{
715
    _cpu_ppc_store_decr(opaque, 0x00000000, 0xFFFFFFFF, 1);
716
}
717

    
718
static inline void _cpu_ppc_store_hdecr(CPUPPCState *env, uint32_t hdecr,
719
                                        uint32_t value, int is_excp)
720
{
721
    ppc_tb_t *tb_env = env->tb_env;
722

    
723
    if (tb_env->hdecr_timer != NULL) {
724
        __cpu_ppc_store_decr(env, &tb_env->hdecr_next, tb_env->hdecr_timer,
725
                             &cpu_ppc_hdecr_excp, hdecr, value, is_excp);
726
    }
727
}
728

    
729
void cpu_ppc_store_hdecr (CPUPPCState *env, uint32_t value)
730
{
731
    _cpu_ppc_store_hdecr(env, cpu_ppc_load_hdecr(env), value, 0);
732
}
733

    
734
static void cpu_ppc_hdecr_cb (void *opaque)
735
{
736
    _cpu_ppc_store_hdecr(opaque, 0x00000000, 0xFFFFFFFF, 1);
737
}
738

    
739
static void cpu_ppc_store_purr(CPUPPCState *env, uint64_t value)
740
{
741
    ppc_tb_t *tb_env = env->tb_env;
742

    
743
    tb_env->purr_load = value;
744
    tb_env->purr_start = qemu_get_clock_ns(vm_clock);
745
}
746

    
747
static void cpu_ppc_set_tb_clk (void *opaque, uint32_t freq)
748
{
749
    CPUPPCState *env = opaque;
750
    ppc_tb_t *tb_env = env->tb_env;
751

    
752
    tb_env->tb_freq = freq;
753
    tb_env->decr_freq = freq;
754
    /* There is a bug in Linux 2.4 kernels:
755
     * if a decrementer exception is pending when it enables msr_ee at startup,
756
     * it's not ready to handle it...
757
     */
758
    _cpu_ppc_store_decr(env, 0xFFFFFFFF, 0xFFFFFFFF, 0);
759
    _cpu_ppc_store_hdecr(env, 0xFFFFFFFF, 0xFFFFFFFF, 0);
760
    cpu_ppc_store_purr(env, 0x0000000000000000ULL);
761
}
762

    
763
/* Set up (once) timebase frequency (in Hz) */
764
clk_setup_cb cpu_ppc_tb_init (CPUPPCState *env, uint32_t freq)
765
{
766
    ppc_tb_t *tb_env;
767

    
768
    tb_env = g_malloc0(sizeof(ppc_tb_t));
769
    env->tb_env = tb_env;
770
    tb_env->flags = PPC_DECR_UNDERFLOW_TRIGGERED;
771
    /* Create new timer */
772
    tb_env->decr_timer = qemu_new_timer_ns(vm_clock, &cpu_ppc_decr_cb, env);
773
    if (0) {
774
        /* XXX: find a suitable condition to enable the hypervisor decrementer
775
         */
776
        tb_env->hdecr_timer = qemu_new_timer_ns(vm_clock, &cpu_ppc_hdecr_cb, env);
777
    } else {
778
        tb_env->hdecr_timer = NULL;
779
    }
780
    cpu_ppc_set_tb_clk(env, freq);
781

    
782
    return &cpu_ppc_set_tb_clk;
783
}
784

    
785
/* Specific helpers for POWER & PowerPC 601 RTC */
786
#if 0
787
static clk_setup_cb cpu_ppc601_rtc_init (CPUPPCState *env)
788
{
789
    return cpu_ppc_tb_init(env, 7812500);
790
}
791
#endif
792

    
793
void cpu_ppc601_store_rtcu (CPUPPCState *env, uint32_t value)
794
{
795
    _cpu_ppc_store_tbu(env, value);
796
}
797

    
798
uint32_t cpu_ppc601_load_rtcu (CPUPPCState *env)
799
{
800
    return _cpu_ppc_load_tbu(env);
801
}
802

    
803
void cpu_ppc601_store_rtcl (CPUPPCState *env, uint32_t value)
804
{
805
    cpu_ppc_store_tbl(env, value & 0x3FFFFF80);
806
}
807

    
808
uint32_t cpu_ppc601_load_rtcl (CPUPPCState *env)
809
{
810
    return cpu_ppc_load_tbl(env) & 0x3FFFFF80;
811
}
812

    
813
/*****************************************************************************/
814
/* PowerPC 40x timers */
815

    
816
/* PIT, FIT & WDT */
817
typedef struct ppc40x_timer_t ppc40x_timer_t;
818
struct ppc40x_timer_t {
819
    uint64_t pit_reload;  /* PIT auto-reload value        */
820
    uint64_t fit_next;    /* Tick for next FIT interrupt  */
821
    struct QEMUTimer *fit_timer;
822
    uint64_t wdt_next;    /* Tick for next WDT interrupt  */
823
    struct QEMUTimer *wdt_timer;
824

    
825
    /* 405 have the PIT, 440 have a DECR.  */
826
    unsigned int decr_excp;
827
};
828

    
829
/* Fixed interval timer */
830
static void cpu_4xx_fit_cb (void *opaque)
831
{
832
    CPUPPCState *env;
833
    ppc_tb_t *tb_env;
834
    ppc40x_timer_t *ppc40x_timer;
835
    uint64_t now, next;
836

    
837
    env = opaque;
838
    tb_env = env->tb_env;
839
    ppc40x_timer = tb_env->opaque;
840
    now = qemu_get_clock_ns(vm_clock);
841
    switch ((env->spr[SPR_40x_TCR] >> 24) & 0x3) {
842
    case 0:
843
        next = 1 << 9;
844
        break;
845
    case 1:
846
        next = 1 << 13;
847
        break;
848
    case 2:
849
        next = 1 << 17;
850
        break;
851
    case 3:
852
        next = 1 << 21;
853
        break;
854
    default:
855
        /* Cannot occur, but makes gcc happy */
856
        return;
857
    }
858
    next = now + muldiv64(next, get_ticks_per_sec(), tb_env->tb_freq);
859
    if (next == now)
860
        next++;
861
    qemu_mod_timer(ppc40x_timer->fit_timer, next);
862
    env->spr[SPR_40x_TSR] |= 1 << 26;
863
    if ((env->spr[SPR_40x_TCR] >> 23) & 0x1)
864
        ppc_set_irq(env, PPC_INTERRUPT_FIT, 1);
865
    LOG_TB("%s: ir %d TCR " TARGET_FMT_lx " TSR " TARGET_FMT_lx "\n", __func__,
866
           (int)((env->spr[SPR_40x_TCR] >> 23) & 0x1),
867
           env->spr[SPR_40x_TCR], env->spr[SPR_40x_TSR]);
868
}
869

    
870
/* Programmable interval timer */
871
static void start_stop_pit (CPUPPCState *env, ppc_tb_t *tb_env, int is_excp)
872
{
873
    ppc40x_timer_t *ppc40x_timer;
874
    uint64_t now, next;
875

    
876
    ppc40x_timer = tb_env->opaque;
877
    if (ppc40x_timer->pit_reload <= 1 ||
878
        !((env->spr[SPR_40x_TCR] >> 26) & 0x1) ||
879
        (is_excp && !((env->spr[SPR_40x_TCR] >> 22) & 0x1))) {
880
        /* Stop PIT */
881
        LOG_TB("%s: stop PIT\n", __func__);
882
        qemu_del_timer(tb_env->decr_timer);
883
    } else {
884
        LOG_TB("%s: start PIT %016" PRIx64 "\n",
885
                    __func__, ppc40x_timer->pit_reload);
886
        now = qemu_get_clock_ns(vm_clock);
887
        next = now + muldiv64(ppc40x_timer->pit_reload,
888
                              get_ticks_per_sec(), tb_env->decr_freq);
889
        if (is_excp)
890
            next += tb_env->decr_next - now;
891
        if (next == now)
892
            next++;
893
        qemu_mod_timer(tb_env->decr_timer, next);
894
        tb_env->decr_next = next;
895
    }
896
}
897

    
898
static void cpu_4xx_pit_cb (void *opaque)
899
{
900
    CPUPPCState *env;
901
    ppc_tb_t *tb_env;
902
    ppc40x_timer_t *ppc40x_timer;
903

    
904
    env = opaque;
905
    tb_env = env->tb_env;
906
    ppc40x_timer = tb_env->opaque;
907
    env->spr[SPR_40x_TSR] |= 1 << 27;
908
    if ((env->spr[SPR_40x_TCR] >> 26) & 0x1)
909
        ppc_set_irq(env, ppc40x_timer->decr_excp, 1);
910
    start_stop_pit(env, tb_env, 1);
911
    LOG_TB("%s: ar %d ir %d TCR " TARGET_FMT_lx " TSR " TARGET_FMT_lx " "
912
           "%016" PRIx64 "\n", __func__,
913
           (int)((env->spr[SPR_40x_TCR] >> 22) & 0x1),
914
           (int)((env->spr[SPR_40x_TCR] >> 26) & 0x1),
915
           env->spr[SPR_40x_TCR], env->spr[SPR_40x_TSR],
916
           ppc40x_timer->pit_reload);
917
}
918

    
919
/* Watchdog timer */
920
static void cpu_4xx_wdt_cb (void *opaque)
921
{
922
    CPUPPCState *env;
923
    ppc_tb_t *tb_env;
924
    ppc40x_timer_t *ppc40x_timer;
925
    uint64_t now, next;
926

    
927
    env = opaque;
928
    tb_env = env->tb_env;
929
    ppc40x_timer = tb_env->opaque;
930
    now = qemu_get_clock_ns(vm_clock);
931
    switch ((env->spr[SPR_40x_TCR] >> 30) & 0x3) {
932
    case 0:
933
        next = 1 << 17;
934
        break;
935
    case 1:
936
        next = 1 << 21;
937
        break;
938
    case 2:
939
        next = 1 << 25;
940
        break;
941
    case 3:
942
        next = 1 << 29;
943
        break;
944
    default:
945
        /* Cannot occur, but makes gcc happy */
946
        return;
947
    }
948
    next = now + muldiv64(next, get_ticks_per_sec(), tb_env->decr_freq);
949
    if (next == now)
950
        next++;
951
    LOG_TB("%s: TCR " TARGET_FMT_lx " TSR " TARGET_FMT_lx "\n", __func__,
952
           env->spr[SPR_40x_TCR], env->spr[SPR_40x_TSR]);
953
    switch ((env->spr[SPR_40x_TSR] >> 30) & 0x3) {
954
    case 0x0:
955
    case 0x1:
956
        qemu_mod_timer(ppc40x_timer->wdt_timer, next);
957
        ppc40x_timer->wdt_next = next;
958
        env->spr[SPR_40x_TSR] |= 1 << 31;
959
        break;
960
    case 0x2:
961
        qemu_mod_timer(ppc40x_timer->wdt_timer, next);
962
        ppc40x_timer->wdt_next = next;
963
        env->spr[SPR_40x_TSR] |= 1 << 30;
964
        if ((env->spr[SPR_40x_TCR] >> 27) & 0x1)
965
            ppc_set_irq(env, PPC_INTERRUPT_WDT, 1);
966
        break;
967
    case 0x3:
968
        env->spr[SPR_40x_TSR] &= ~0x30000000;
969
        env->spr[SPR_40x_TSR] |= env->spr[SPR_40x_TCR] & 0x30000000;
970
        switch ((env->spr[SPR_40x_TCR] >> 28) & 0x3) {
971
        case 0x0:
972
            /* No reset */
973
            break;
974
        case 0x1: /* Core reset */
975
            ppc40x_core_reset(env);
976
            break;
977
        case 0x2: /* Chip reset */
978
            ppc40x_chip_reset(env);
979
            break;
980
        case 0x3: /* System reset */
981
            ppc40x_system_reset(env);
982
            break;
983
        }
984
    }
985
}
986

    
987
void store_40x_pit (CPUPPCState *env, target_ulong val)
988
{
989
    ppc_tb_t *tb_env;
990
    ppc40x_timer_t *ppc40x_timer;
991

    
992
    tb_env = env->tb_env;
993
    ppc40x_timer = tb_env->opaque;
994
    LOG_TB("%s val" TARGET_FMT_lx "\n", __func__, val);
995
    ppc40x_timer->pit_reload = val;
996
    start_stop_pit(env, tb_env, 0);
997
}
998

    
999
target_ulong load_40x_pit (CPUPPCState *env)
1000
{
1001
    return cpu_ppc_load_decr(env);
1002
}
1003

    
1004
static void ppc_40x_set_tb_clk (void *opaque, uint32_t freq)
1005
{
1006
    CPUPPCState *env = opaque;
1007
    ppc_tb_t *tb_env = env->tb_env;
1008

    
1009
    LOG_TB("%s set new frequency to %" PRIu32 "\n", __func__,
1010
                freq);
1011
    tb_env->tb_freq = freq;
1012
    tb_env->decr_freq = freq;
1013
    /* XXX: we should also update all timers */
1014
}
1015

    
1016
clk_setup_cb ppc_40x_timers_init (CPUPPCState *env, uint32_t freq,
1017
                                  unsigned int decr_excp)
1018
{
1019
    ppc_tb_t *tb_env;
1020
    ppc40x_timer_t *ppc40x_timer;
1021

    
1022
    tb_env = g_malloc0(sizeof(ppc_tb_t));
1023
    env->tb_env = tb_env;
1024
    tb_env->flags = PPC_DECR_UNDERFLOW_TRIGGERED;
1025
    ppc40x_timer = g_malloc0(sizeof(ppc40x_timer_t));
1026
    tb_env->tb_freq = freq;
1027
    tb_env->decr_freq = freq;
1028
    tb_env->opaque = ppc40x_timer;
1029
    LOG_TB("%s freq %" PRIu32 "\n", __func__, freq);
1030
    if (ppc40x_timer != NULL) {
1031
        /* We use decr timer for PIT */
1032
        tb_env->decr_timer = qemu_new_timer_ns(vm_clock, &cpu_4xx_pit_cb, env);
1033
        ppc40x_timer->fit_timer =
1034
            qemu_new_timer_ns(vm_clock, &cpu_4xx_fit_cb, env);
1035
        ppc40x_timer->wdt_timer =
1036
            qemu_new_timer_ns(vm_clock, &cpu_4xx_wdt_cb, env);
1037
        ppc40x_timer->decr_excp = decr_excp;
1038
    }
1039

    
1040
    return &ppc_40x_set_tb_clk;
1041
}
1042

    
1043
/*****************************************************************************/
1044
/* Embedded PowerPC Device Control Registers */
1045
typedef struct ppc_dcrn_t ppc_dcrn_t;
1046
struct ppc_dcrn_t {
1047
    dcr_read_cb dcr_read;
1048
    dcr_write_cb dcr_write;
1049
    void *opaque;
1050
};
1051

    
1052
/* XXX: on 460, DCR addresses are 32 bits wide,
1053
 *      using DCRIPR to get the 22 upper bits of the DCR address
1054
 */
1055
#define DCRN_NB 1024
1056
struct ppc_dcr_t {
1057
    ppc_dcrn_t dcrn[DCRN_NB];
1058
    int (*read_error)(int dcrn);
1059
    int (*write_error)(int dcrn);
1060
};
1061

    
1062
int ppc_dcr_read (ppc_dcr_t *dcr_env, int dcrn, uint32_t *valp)
1063
{
1064
    ppc_dcrn_t *dcr;
1065

    
1066
    if (dcrn < 0 || dcrn >= DCRN_NB)
1067
        goto error;
1068
    dcr = &dcr_env->dcrn[dcrn];
1069
    if (dcr->dcr_read == NULL)
1070
        goto error;
1071
    *valp = (*dcr->dcr_read)(dcr->opaque, dcrn);
1072

    
1073
    return 0;
1074

    
1075
 error:
1076
    if (dcr_env->read_error != NULL)
1077
        return (*dcr_env->read_error)(dcrn);
1078

    
1079
    return -1;
1080
}
1081

    
1082
int ppc_dcr_write (ppc_dcr_t *dcr_env, int dcrn, uint32_t val)
1083
{
1084
    ppc_dcrn_t *dcr;
1085

    
1086
    if (dcrn < 0 || dcrn >= DCRN_NB)
1087
        goto error;
1088
    dcr = &dcr_env->dcrn[dcrn];
1089
    if (dcr->dcr_write == NULL)
1090
        goto error;
1091
    (*dcr->dcr_write)(dcr->opaque, dcrn, val);
1092

    
1093
    return 0;
1094

    
1095
 error:
1096
    if (dcr_env->write_error != NULL)
1097
        return (*dcr_env->write_error)(dcrn);
1098

    
1099
    return -1;
1100
}
1101

    
1102
int ppc_dcr_register (CPUPPCState *env, int dcrn, void *opaque,
1103
                      dcr_read_cb dcr_read, dcr_write_cb dcr_write)
1104
{
1105
    ppc_dcr_t *dcr_env;
1106
    ppc_dcrn_t *dcr;
1107

    
1108
    dcr_env = env->dcr_env;
1109
    if (dcr_env == NULL)
1110
        return -1;
1111
    if (dcrn < 0 || dcrn >= DCRN_NB)
1112
        return -1;
1113
    dcr = &dcr_env->dcrn[dcrn];
1114
    if (dcr->opaque != NULL ||
1115
        dcr->dcr_read != NULL ||
1116
        dcr->dcr_write != NULL)
1117
        return -1;
1118
    dcr->opaque = opaque;
1119
    dcr->dcr_read = dcr_read;
1120
    dcr->dcr_write = dcr_write;
1121

    
1122
    return 0;
1123
}
1124

    
1125
int ppc_dcr_init (CPUPPCState *env, int (*read_error)(int dcrn),
1126
                  int (*write_error)(int dcrn))
1127
{
1128
    ppc_dcr_t *dcr_env;
1129

    
1130
    dcr_env = g_malloc0(sizeof(ppc_dcr_t));
1131
    dcr_env->read_error = read_error;
1132
    dcr_env->write_error = write_error;
1133
    env->dcr_env = dcr_env;
1134

    
1135
    return 0;
1136
}
1137

    
1138
/*****************************************************************************/
1139
/* Debug port */
1140
void PPC_debug_write (void *opaque, uint32_t addr, uint32_t val)
1141
{
1142
    addr &= 0xF;
1143
    switch (addr) {
1144
    case 0:
1145
        printf("%c", val);
1146
        break;
1147
    case 1:
1148
        printf("\n");
1149
        fflush(stdout);
1150
        break;
1151
    case 2:
1152
        printf("Set loglevel to %04" PRIx32 "\n", val);
1153
        cpu_set_log(val | 0x100);
1154
        break;
1155
    }
1156
}
1157

    
1158
/*****************************************************************************/
1159
/* NVRAM helpers */
1160
static inline uint32_t nvram_read (nvram_t *nvram, uint32_t addr)
1161
{
1162
    return (*nvram->read_fn)(nvram->opaque, addr);
1163
}
1164

    
1165
static inline void nvram_write (nvram_t *nvram, uint32_t addr, uint32_t val)
1166
{
1167
    (*nvram->write_fn)(nvram->opaque, addr, val);
1168
}
1169

    
1170
static void NVRAM_set_byte(nvram_t *nvram, uint32_t addr, uint8_t value)
1171
{
1172
    nvram_write(nvram, addr, value);
1173
}
1174

    
1175
static uint8_t NVRAM_get_byte(nvram_t *nvram, uint32_t addr)
1176
{
1177
    return nvram_read(nvram, addr);
1178
}
1179

    
1180
static void NVRAM_set_word(nvram_t *nvram, uint32_t addr, uint16_t value)
1181
{
1182
    nvram_write(nvram, addr, value >> 8);
1183
    nvram_write(nvram, addr + 1, value & 0xFF);
1184
}
1185

    
1186
static uint16_t NVRAM_get_word(nvram_t *nvram, uint32_t addr)
1187
{
1188
    uint16_t tmp;
1189

    
1190
    tmp = nvram_read(nvram, addr) << 8;
1191
    tmp |= nvram_read(nvram, addr + 1);
1192

    
1193
    return tmp;
1194
}
1195

    
1196
static void NVRAM_set_lword(nvram_t *nvram, uint32_t addr, uint32_t value)
1197
{
1198
    nvram_write(nvram, addr, value >> 24);
1199
    nvram_write(nvram, addr + 1, (value >> 16) & 0xFF);
1200
    nvram_write(nvram, addr + 2, (value >> 8) & 0xFF);
1201
    nvram_write(nvram, addr + 3, value & 0xFF);
1202
}
1203

    
1204
uint32_t NVRAM_get_lword (nvram_t *nvram, uint32_t addr)
1205
{
1206
    uint32_t tmp;
1207

    
1208
    tmp = nvram_read(nvram, addr) << 24;
1209
    tmp |= nvram_read(nvram, addr + 1) << 16;
1210
    tmp |= nvram_read(nvram, addr + 2) << 8;
1211
    tmp |= nvram_read(nvram, addr + 3);
1212

    
1213
    return tmp;
1214
}
1215

    
1216
static void NVRAM_set_string(nvram_t *nvram, uint32_t addr, const char *str,
1217
                             uint32_t max)
1218
{
1219
    int i;
1220

    
1221
    for (i = 0; i < max && str[i] != '\0'; i++) {
1222
        nvram_write(nvram, addr + i, str[i]);
1223
    }
1224
    nvram_write(nvram, addr + i, str[i]);
1225
    nvram_write(nvram, addr + max - 1, '\0');
1226
}
1227

    
1228
int NVRAM_get_string (nvram_t *nvram, uint8_t *dst, uint16_t addr, int max)
1229
{
1230
    int i;
1231

    
1232
    memset(dst, 0, max);
1233
    for (i = 0; i < max; i++) {
1234
        dst[i] = NVRAM_get_byte(nvram, addr + i);
1235
        if (dst[i] == '\0')
1236
            break;
1237
    }
1238

    
1239
    return i;
1240
}
1241

    
1242
static uint16_t NVRAM_crc_update (uint16_t prev, uint16_t value)
1243
{
1244
    uint16_t tmp;
1245
    uint16_t pd, pd1, pd2;
1246

    
1247
    tmp = prev >> 8;
1248
    pd = prev ^ value;
1249
    pd1 = pd & 0x000F;
1250
    pd2 = ((pd >> 4) & 0x000F) ^ pd1;
1251
    tmp ^= (pd1 << 3) | (pd1 << 8);
1252
    tmp ^= pd2 | (pd2 << 7) | (pd2 << 12);
1253

    
1254
    return tmp;
1255
}
1256

    
1257
static uint16_t NVRAM_compute_crc (nvram_t *nvram, uint32_t start, uint32_t count)
1258
{
1259
    uint32_t i;
1260
    uint16_t crc = 0xFFFF;
1261
    int odd;
1262

    
1263
    odd = count & 1;
1264
    count &= ~1;
1265
    for (i = 0; i != count; i++) {
1266
        crc = NVRAM_crc_update(crc, NVRAM_get_word(nvram, start + i));
1267
    }
1268
    if (odd) {
1269
        crc = NVRAM_crc_update(crc, NVRAM_get_byte(nvram, start + i) << 8);
1270
    }
1271

    
1272
    return crc;
1273
}
1274

    
1275
#define CMDLINE_ADDR 0x017ff000
1276

    
1277
int PPC_NVRAM_set_params (nvram_t *nvram, uint16_t NVRAM_size,
1278
                          const char *arch,
1279
                          uint32_t RAM_size, int boot_device,
1280
                          uint32_t kernel_image, uint32_t kernel_size,
1281
                          const char *cmdline,
1282
                          uint32_t initrd_image, uint32_t initrd_size,
1283
                          uint32_t NVRAM_image,
1284
                          int width, int height, int depth)
1285
{
1286
    uint16_t crc;
1287

    
1288
    /* Set parameters for Open Hack'Ware BIOS */
1289
    NVRAM_set_string(nvram, 0x00, "QEMU_BIOS", 16);
1290
    NVRAM_set_lword(nvram,  0x10, 0x00000002); /* structure v2 */
1291
    NVRAM_set_word(nvram,   0x14, NVRAM_size);
1292
    NVRAM_set_string(nvram, 0x20, arch, 16);
1293
    NVRAM_set_lword(nvram,  0x30, RAM_size);
1294
    NVRAM_set_byte(nvram,   0x34, boot_device);
1295
    NVRAM_set_lword(nvram,  0x38, kernel_image);
1296
    NVRAM_set_lword(nvram,  0x3C, kernel_size);
1297
    if (cmdline) {
1298
        /* XXX: put the cmdline in NVRAM too ? */
1299
        pstrcpy_targphys("cmdline", CMDLINE_ADDR, RAM_size - CMDLINE_ADDR, cmdline);
1300
        NVRAM_set_lword(nvram,  0x40, CMDLINE_ADDR);
1301
        NVRAM_set_lword(nvram,  0x44, strlen(cmdline));
1302
    } else {
1303
        NVRAM_set_lword(nvram,  0x40, 0);
1304
        NVRAM_set_lword(nvram,  0x44, 0);
1305
    }
1306
    NVRAM_set_lword(nvram,  0x48, initrd_image);
1307
    NVRAM_set_lword(nvram,  0x4C, initrd_size);
1308
    NVRAM_set_lword(nvram,  0x50, NVRAM_image);
1309

    
1310
    NVRAM_set_word(nvram,   0x54, width);
1311
    NVRAM_set_word(nvram,   0x56, height);
1312
    NVRAM_set_word(nvram,   0x58, depth);
1313
    crc = NVRAM_compute_crc(nvram, 0x00, 0xF8);
1314
    NVRAM_set_word(nvram,   0xFC, crc);
1315

    
1316
    return 0;
1317
}