Statistics
| Branch: | Revision:

root / hw / pxa2xx.c @ 9c17d615

History | View | Annotate | Download (68.2 kB)

1
/*
2
 * Intel XScale PXA255/270 processor support.
3
 *
4
 * Copyright (c) 2006 Openedhand Ltd.
5
 * Written by Andrzej Zaborowski <balrog@zabor.org>
6
 *
7
 * This code is licensed under the GPL.
8
 */
9

    
10
#include "sysbus.h"
11
#include "pxa.h"
12
#include "sysemu/sysemu.h"
13
#include "serial.h"
14
#include "i2c.h"
15
#include "ssi.h"
16
#include "qemu-char.h"
17
#include "sysemu/blockdev.h"
18

    
19
static struct {
20
    hwaddr io_base;
21
    int irqn;
22
} pxa255_serial[] = {
23
    { 0x40100000, PXA2XX_PIC_FFUART },
24
    { 0x40200000, PXA2XX_PIC_BTUART },
25
    { 0x40700000, PXA2XX_PIC_STUART },
26
    { 0x41600000, PXA25X_PIC_HWUART },
27
    { 0, 0 }
28
}, pxa270_serial[] = {
29
    { 0x40100000, PXA2XX_PIC_FFUART },
30
    { 0x40200000, PXA2XX_PIC_BTUART },
31
    { 0x40700000, PXA2XX_PIC_STUART },
32
    { 0, 0 }
33
};
34

    
35
typedef struct PXASSPDef {
36
    hwaddr io_base;
37
    int irqn;
38
} PXASSPDef;
39

    
40
#if 0
41
static PXASSPDef pxa250_ssp[] = {
42
    { 0x41000000, PXA2XX_PIC_SSP },
43
    { 0, 0 }
44
};
45
#endif
46

    
47
static PXASSPDef pxa255_ssp[] = {
48
    { 0x41000000, PXA2XX_PIC_SSP },
49
    { 0x41400000, PXA25X_PIC_NSSP },
50
    { 0, 0 }
51
};
52

    
53
#if 0
54
static PXASSPDef pxa26x_ssp[] = {
55
    { 0x41000000, PXA2XX_PIC_SSP },
56
    { 0x41400000, PXA25X_PIC_NSSP },
57
    { 0x41500000, PXA26X_PIC_ASSP },
58
    { 0, 0 }
59
};
60
#endif
61

    
62
static PXASSPDef pxa27x_ssp[] = {
63
    { 0x41000000, PXA2XX_PIC_SSP },
64
    { 0x41700000, PXA27X_PIC_SSP2 },
65
    { 0x41900000, PXA2XX_PIC_SSP3 },
66
    { 0, 0 }
67
};
68

    
69
#define PMCR        0x00        /* Power Manager Control register */
70
#define PSSR        0x04        /* Power Manager Sleep Status register */
71
#define PSPR        0x08        /* Power Manager Scratch-Pad register */
72
#define PWER        0x0c        /* Power Manager Wake-Up Enable register */
73
#define PRER        0x10        /* Power Manager Rising-Edge Detect Enable register */
74
#define PFER        0x14        /* Power Manager Falling-Edge Detect Enable register */
75
#define PEDR        0x18        /* Power Manager Edge-Detect Status register */
76
#define PCFR        0x1c        /* Power Manager General Configuration register */
77
#define PGSR0        0x20        /* Power Manager GPIO Sleep-State register 0 */
78
#define PGSR1        0x24        /* Power Manager GPIO Sleep-State register 1 */
79
#define PGSR2        0x28        /* Power Manager GPIO Sleep-State register 2 */
80
#define PGSR3        0x2c        /* Power Manager GPIO Sleep-State register 3 */
81
#define RCSR        0x30        /* Reset Controller Status register */
82
#define PSLR        0x34        /* Power Manager Sleep Configuration register */
83
#define PTSR        0x38        /* Power Manager Standby Configuration register */
84
#define PVCR        0x40        /* Power Manager Voltage Change Control register */
85
#define PUCR        0x4c        /* Power Manager USIM Card Control/Status register */
86
#define PKWR        0x50        /* Power Manager Keyboard Wake-Up Enable register */
87
#define PKSR        0x54        /* Power Manager Keyboard Level-Detect Status */
88
#define PCMD0        0x80        /* Power Manager I2C Command register File 0 */
89
#define PCMD31        0xfc        /* Power Manager I2C Command register File 31 */
90

    
91
static uint64_t pxa2xx_pm_read(void *opaque, hwaddr addr,
92
                               unsigned size)
93
{
94
    PXA2xxState *s = (PXA2xxState *) opaque;
95

    
96
    switch (addr) {
97
    case PMCR ... PCMD31:
98
        if (addr & 3)
99
            goto fail;
100

    
101
        return s->pm_regs[addr >> 2];
102
    default:
103
    fail:
104
        printf("%s: Bad register " REG_FMT "\n", __FUNCTION__, addr);
105
        break;
106
    }
107
    return 0;
108
}
109

    
110
static void pxa2xx_pm_write(void *opaque, hwaddr addr,
111
                            uint64_t value, unsigned size)
112
{
113
    PXA2xxState *s = (PXA2xxState *) opaque;
114

    
115
    switch (addr) {
116
    case PMCR:
117
        /* Clear the write-one-to-clear bits... */
118
        s->pm_regs[addr >> 2] &= ~(value & 0x2a);
119
        /* ...and set the plain r/w bits */
120
        s->pm_regs[addr >> 2] &= ~0x15;
121
        s->pm_regs[addr >> 2] |= value & 0x15;
122
        break;
123

    
124
    case PSSR:        /* Read-clean registers */
125
    case RCSR:
126
    case PKSR:
127
        s->pm_regs[addr >> 2] &= ~value;
128
        break;
129

    
130
    default:        /* Read-write registers */
131
        if (!(addr & 3)) {
132
            s->pm_regs[addr >> 2] = value;
133
            break;
134
        }
135

    
136
        printf("%s: Bad register " REG_FMT "\n", __FUNCTION__, addr);
137
        break;
138
    }
139
}
140

    
141
static const MemoryRegionOps pxa2xx_pm_ops = {
142
    .read = pxa2xx_pm_read,
143
    .write = pxa2xx_pm_write,
144
    .endianness = DEVICE_NATIVE_ENDIAN,
145
};
146

    
147
static const VMStateDescription vmstate_pxa2xx_pm = {
148
    .name = "pxa2xx_pm",
149
    .version_id = 0,
150
    .minimum_version_id = 0,
151
    .minimum_version_id_old = 0,
152
    .fields      = (VMStateField[]) {
153
        VMSTATE_UINT32_ARRAY(pm_regs, PXA2xxState, 0x40),
154
        VMSTATE_END_OF_LIST()
155
    }
156
};
157

    
158
#define CCCR        0x00        /* Core Clock Configuration register */
159
#define CKEN        0x04        /* Clock Enable register */
160
#define OSCC        0x08        /* Oscillator Configuration register */
161
#define CCSR        0x0c        /* Core Clock Status register */
162

    
163
static uint64_t pxa2xx_cm_read(void *opaque, hwaddr addr,
164
                               unsigned size)
165
{
166
    PXA2xxState *s = (PXA2xxState *) opaque;
167

    
168
    switch (addr) {
169
    case CCCR:
170
    case CKEN:
171
    case OSCC:
172
        return s->cm_regs[addr >> 2];
173

    
174
    case CCSR:
175
        return s->cm_regs[CCCR >> 2] | (3 << 28);
176

    
177
    default:
178
        printf("%s: Bad register " REG_FMT "\n", __FUNCTION__, addr);
179
        break;
180
    }
181
    return 0;
182
}
183

    
184
static void pxa2xx_cm_write(void *opaque, hwaddr addr,
185
                            uint64_t value, unsigned size)
186
{
187
    PXA2xxState *s = (PXA2xxState *) opaque;
188

    
189
    switch (addr) {
190
    case CCCR:
191
    case CKEN:
192
        s->cm_regs[addr >> 2] = value;
193
        break;
194

    
195
    case OSCC:
196
        s->cm_regs[addr >> 2] &= ~0x6c;
197
        s->cm_regs[addr >> 2] |= value & 0x6e;
198
        if ((value >> 1) & 1)                        /* OON */
199
            s->cm_regs[addr >> 2] |= 1 << 0;        /* Oscillator is now stable */
200
        break;
201

    
202
    default:
203
        printf("%s: Bad register " REG_FMT "\n", __FUNCTION__, addr);
204
        break;
205
    }
206
}
207

    
208
static const MemoryRegionOps pxa2xx_cm_ops = {
209
    .read = pxa2xx_cm_read,
210
    .write = pxa2xx_cm_write,
211
    .endianness = DEVICE_NATIVE_ENDIAN,
212
};
213

    
214
static const VMStateDescription vmstate_pxa2xx_cm = {
215
    .name = "pxa2xx_cm",
216
    .version_id = 0,
217
    .minimum_version_id = 0,
218
    .minimum_version_id_old = 0,
219
    .fields      = (VMStateField[]) {
220
        VMSTATE_UINT32_ARRAY(cm_regs, PXA2xxState, 4),
221
        VMSTATE_UINT32(clkcfg, PXA2xxState),
222
        VMSTATE_UINT32(pmnc, PXA2xxState),
223
        VMSTATE_END_OF_LIST()
224
    }
225
};
226

    
227
static int pxa2xx_clkcfg_read(CPUARMState *env, const ARMCPRegInfo *ri,
228
                              uint64_t *value)
229
{
230
    PXA2xxState *s = (PXA2xxState *)ri->opaque;
231
    *value = s->clkcfg;
232
    return 0;
233
}
234

    
235
static int pxa2xx_clkcfg_write(CPUARMState *env, const ARMCPRegInfo *ri,
236
                               uint64_t value)
237
{
238
    PXA2xxState *s = (PXA2xxState *)ri->opaque;
239
    s->clkcfg = value & 0xf;
240
    if (value & 2) {
241
        printf("%s: CPU frequency change attempt\n", __func__);
242
    }
243
    return 0;
244
}
245

    
246
static int pxa2xx_pwrmode_write(CPUARMState *env, const ARMCPRegInfo *ri,
247
                                uint64_t value)
248
{
249
    PXA2xxState *s = (PXA2xxState *)ri->opaque;
250
    static const char *pwrmode[8] = {
251
        "Normal", "Idle", "Deep-idle", "Standby",
252
        "Sleep", "reserved (!)", "reserved (!)", "Deep-sleep",
253
    };
254

    
255
    if (value & 8) {
256
        printf("%s: CPU voltage change attempt\n", __func__);
257
    }
258
    switch (value & 7) {
259
    case 0:
260
        /* Do nothing */
261
        break;
262

    
263
    case 1:
264
        /* Idle */
265
        if (!(s->cm_regs[CCCR >> 2] & (1 << 31))) { /* CPDIS */
266
            cpu_interrupt(&s->cpu->env, CPU_INTERRUPT_HALT);
267
            break;
268
        }
269
        /* Fall through.  */
270

    
271
    case 2:
272
        /* Deep-Idle */
273
        cpu_interrupt(&s->cpu->env, CPU_INTERRUPT_HALT);
274
        s->pm_regs[RCSR >> 2] |= 0x8; /* Set GPR */
275
        goto message;
276

    
277
    case 3:
278
        s->cpu->env.uncached_cpsr =
279
            ARM_CPU_MODE_SVC | CPSR_A | CPSR_F | CPSR_I;
280
        s->cpu->env.cp15.c1_sys = 0;
281
        s->cpu->env.cp15.c1_coproc = 0;
282
        s->cpu->env.cp15.c2_base0 = 0;
283
        s->cpu->env.cp15.c3 = 0;
284
        s->pm_regs[PSSR >> 2] |= 0x8; /* Set STS */
285
        s->pm_regs[RCSR >> 2] |= 0x8; /* Set GPR */
286

    
287
        /*
288
         * The scratch-pad register is almost universally used
289
         * for storing the return address on suspend.  For the
290
         * lack of a resuming bootloader, perform a jump
291
         * directly to that address.
292
         */
293
        memset(s->cpu->env.regs, 0, 4 * 15);
294
        s->cpu->env.regs[15] = s->pm_regs[PSPR >> 2];
295

    
296
#if 0
297
        buffer = 0xe59ff000; /* ldr     pc, [pc, #0] */
298
        cpu_physical_memory_write(0, &buffer, 4);
299
        buffer = s->pm_regs[PSPR >> 2];
300
        cpu_physical_memory_write(8, &buffer, 4);
301
#endif
302

    
303
        /* Suspend */
304
        cpu_interrupt(cpu_single_env, CPU_INTERRUPT_HALT);
305

    
306
        goto message;
307

    
308
    default:
309
    message:
310
        printf("%s: machine entered %s mode\n", __func__,
311
               pwrmode[value & 7]);
312
    }
313

    
314
    return 0;
315
}
316

    
317
static int pxa2xx_cppmnc_read(CPUARMState *env, const ARMCPRegInfo *ri,
318
                              uint64_t *value)
319
{
320
    PXA2xxState *s = (PXA2xxState *)ri->opaque;
321
    *value = s->pmnc;
322
    return 0;
323
}
324

    
325
static int pxa2xx_cppmnc_write(CPUARMState *env, const ARMCPRegInfo *ri,
326
                               uint64_t value)
327
{
328
    PXA2xxState *s = (PXA2xxState *)ri->opaque;
329
    s->pmnc = value;
330
    return 0;
331
}
332

    
333
static int pxa2xx_cpccnt_read(CPUARMState *env, const ARMCPRegInfo *ri,
334
                              uint64_t *value)
335
{
336
    PXA2xxState *s = (PXA2xxState *)ri->opaque;
337
    if (s->pmnc & 1) {
338
        *value = qemu_get_clock_ns(vm_clock);
339
    } else {
340
        *value = 0;
341
    }
342
    return 0;
343
}
344

    
345
static const ARMCPRegInfo pxa_cp_reginfo[] = {
346
    /* cp14 crn==1: perf registers */
347
    { .name = "CPPMNC", .cp = 14, .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 0,
348
      .access = PL1_RW,
349
      .readfn = pxa2xx_cppmnc_read, .writefn = pxa2xx_cppmnc_write },
350
    { .name = "CPCCNT", .cp = 14, .crn = 1, .crm = 1, .opc1 = 0, .opc2 = 0,
351
      .access = PL1_RW,
352
      .readfn = pxa2xx_cpccnt_read, .writefn = arm_cp_write_ignore },
353
    { .name = "CPINTEN", .cp = 14, .crn = 1, .crm = 4, .opc1 = 0, .opc2 = 0,
354
      .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
355
    { .name = "CPFLAG", .cp = 14, .crn = 1, .crm = 5, .opc1 = 0, .opc2 = 0,
356
      .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
357
    { .name = "CPEVTSEL", .cp = 14, .crn = 1, .crm = 8, .opc1 = 0, .opc2 = 0,
358
      .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
359
    /* cp14 crn==2: performance count registers */
360
    { .name = "CPPMN0", .cp = 14, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 0,
361
      .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
362
    { .name = "CPPMN1", .cp = 14, .crn = 2, .crm = 1, .opc1 = 0, .opc2 = 0,
363
      .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
364
    { .name = "CPPMN2", .cp = 14, .crn = 2, .crm = 2, .opc1 = 0, .opc2 = 0,
365
      .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
366
    { .name = "CPPMN3", .cp = 14, .crn = 2, .crm = 3, .opc1 = 0, .opc2 = 0,
367
      .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
368
    /* cp14 crn==6: CLKCFG */
369
    { .name = "CLKCFG", .cp = 14, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 0,
370
      .access = PL1_RW,
371
      .readfn = pxa2xx_clkcfg_read, .writefn = pxa2xx_clkcfg_write },
372
    /* cp14 crn==7: PWRMODE */
373
    { .name = "PWRMODE", .cp = 14, .crn = 7, .crm = 0, .opc1 = 0, .opc2 = 0,
374
      .access = PL1_RW,
375
      .readfn = arm_cp_read_zero, .writefn = pxa2xx_pwrmode_write },
376
    REGINFO_SENTINEL
377
};
378

    
379
static void pxa2xx_setup_cp14(PXA2xxState *s)
380
{
381
    define_arm_cp_regs_with_opaque(s->cpu, pxa_cp_reginfo, s);
382
}
383

    
384
#define MDCNFG                0x00        /* SDRAM Configuration register */
385
#define MDREFR                0x04        /* SDRAM Refresh Control register */
386
#define MSC0                0x08        /* Static Memory Control register 0 */
387
#define MSC1                0x0c        /* Static Memory Control register 1 */
388
#define MSC2                0x10        /* Static Memory Control register 2 */
389
#define MECR                0x14        /* Expansion Memory Bus Config register */
390
#define SXCNFG                0x1c        /* Synchronous Static Memory Config register */
391
#define MCMEM0                0x28        /* PC Card Memory Socket 0 Timing register */
392
#define MCMEM1                0x2c        /* PC Card Memory Socket 1 Timing register */
393
#define MCATT0                0x30        /* PC Card Attribute Socket 0 register */
394
#define MCATT1                0x34        /* PC Card Attribute Socket 1 register */
395
#define MCIO0                0x38        /* PC Card I/O Socket 0 Timing register */
396
#define MCIO1                0x3c        /* PC Card I/O Socket 1 Timing register */
397
#define MDMRS                0x40        /* SDRAM Mode Register Set Config register */
398
#define BOOT_DEF        0x44        /* Boot-time Default Configuration register */
399
#define ARB_CNTL        0x48        /* Arbiter Control register */
400
#define BSCNTR0                0x4c        /* Memory Buffer Strength Control register 0 */
401
#define BSCNTR1                0x50        /* Memory Buffer Strength Control register 1 */
402
#define LCDBSCNTR        0x54        /* LCD Buffer Strength Control register */
403
#define MDMRSLP                0x58        /* Low Power SDRAM Mode Set Config register */
404
#define BSCNTR2                0x5c        /* Memory Buffer Strength Control register 2 */
405
#define BSCNTR3                0x60        /* Memory Buffer Strength Control register 3 */
406
#define SA1110                0x64        /* SA-1110 Memory Compatibility register */
407

    
408
static uint64_t pxa2xx_mm_read(void *opaque, hwaddr addr,
409
                               unsigned size)
410
{
411
    PXA2xxState *s = (PXA2xxState *) opaque;
412

    
413
    switch (addr) {
414
    case MDCNFG ... SA1110:
415
        if ((addr & 3) == 0)
416
            return s->mm_regs[addr >> 2];
417

    
418
    default:
419
        printf("%s: Bad register " REG_FMT "\n", __FUNCTION__, addr);
420
        break;
421
    }
422
    return 0;
423
}
424

    
425
static void pxa2xx_mm_write(void *opaque, hwaddr addr,
426
                            uint64_t value, unsigned size)
427
{
428
    PXA2xxState *s = (PXA2xxState *) opaque;
429

    
430
    switch (addr) {
431
    case MDCNFG ... SA1110:
432
        if ((addr & 3) == 0) {
433
            s->mm_regs[addr >> 2] = value;
434
            break;
435
        }
436

    
437
    default:
438
        printf("%s: Bad register " REG_FMT "\n", __FUNCTION__, addr);
439
        break;
440
    }
441
}
442

    
443
static const MemoryRegionOps pxa2xx_mm_ops = {
444
    .read = pxa2xx_mm_read,
445
    .write = pxa2xx_mm_write,
446
    .endianness = DEVICE_NATIVE_ENDIAN,
447
};
448

    
449
static const VMStateDescription vmstate_pxa2xx_mm = {
450
    .name = "pxa2xx_mm",
451
    .version_id = 0,
452
    .minimum_version_id = 0,
453
    .minimum_version_id_old = 0,
454
    .fields      = (VMStateField[]) {
455
        VMSTATE_UINT32_ARRAY(mm_regs, PXA2xxState, 0x1a),
456
        VMSTATE_END_OF_LIST()
457
    }
458
};
459

    
460
/* Synchronous Serial Ports */
461
typedef struct {
462
    SysBusDevice busdev;
463
    MemoryRegion iomem;
464
    qemu_irq irq;
465
    int enable;
466
    SSIBus *bus;
467

    
468
    uint32_t sscr[2];
469
    uint32_t sspsp;
470
    uint32_t ssto;
471
    uint32_t ssitr;
472
    uint32_t sssr;
473
    uint8_t sstsa;
474
    uint8_t ssrsa;
475
    uint8_t ssacd;
476

    
477
    uint32_t rx_fifo[16];
478
    int rx_level;
479
    int rx_start;
480
} PXA2xxSSPState;
481

    
482
#define SSCR0        0x00        /* SSP Control register 0 */
483
#define SSCR1        0x04        /* SSP Control register 1 */
484
#define SSSR        0x08        /* SSP Status register */
485
#define SSITR        0x0c        /* SSP Interrupt Test register */
486
#define SSDR        0x10        /* SSP Data register */
487
#define SSTO        0x28        /* SSP Time-Out register */
488
#define SSPSP        0x2c        /* SSP Programmable Serial Protocol register */
489
#define SSTSA        0x30        /* SSP TX Time Slot Active register */
490
#define SSRSA        0x34        /* SSP RX Time Slot Active register */
491
#define SSTSS        0x38        /* SSP Time Slot Status register */
492
#define SSACD        0x3c        /* SSP Audio Clock Divider register */
493

    
494
/* Bitfields for above registers */
495
#define SSCR0_SPI(x)        (((x) & 0x30) == 0x00)
496
#define SSCR0_SSP(x)        (((x) & 0x30) == 0x10)
497
#define SSCR0_UWIRE(x)        (((x) & 0x30) == 0x20)
498
#define SSCR0_PSP(x)        (((x) & 0x30) == 0x30)
499
#define SSCR0_SSE        (1 << 7)
500
#define SSCR0_RIM        (1 << 22)
501
#define SSCR0_TIM        (1 << 23)
502
#define SSCR0_MOD        (1 << 31)
503
#define SSCR0_DSS(x)        (((((x) >> 16) & 0x10) | ((x) & 0xf)) + 1)
504
#define SSCR1_RIE        (1 << 0)
505
#define SSCR1_TIE        (1 << 1)
506
#define SSCR1_LBM        (1 << 2)
507
#define SSCR1_MWDS        (1 << 5)
508
#define SSCR1_TFT(x)        ((((x) >> 6) & 0xf) + 1)
509
#define SSCR1_RFT(x)        ((((x) >> 10) & 0xf) + 1)
510
#define SSCR1_EFWR        (1 << 14)
511
#define SSCR1_PINTE        (1 << 18)
512
#define SSCR1_TINTE        (1 << 19)
513
#define SSCR1_RSRE        (1 << 20)
514
#define SSCR1_TSRE        (1 << 21)
515
#define SSCR1_EBCEI        (1 << 29)
516
#define SSITR_INT        (7 << 5)
517
#define SSSR_TNF        (1 << 2)
518
#define SSSR_RNE        (1 << 3)
519
#define SSSR_TFS        (1 << 5)
520
#define SSSR_RFS        (1 << 6)
521
#define SSSR_ROR        (1 << 7)
522
#define SSSR_PINT        (1 << 18)
523
#define SSSR_TINT        (1 << 19)
524
#define SSSR_EOC        (1 << 20)
525
#define SSSR_TUR        (1 << 21)
526
#define SSSR_BCE        (1 << 23)
527
#define SSSR_RW                0x00bc0080
528

    
529
static void pxa2xx_ssp_int_update(PXA2xxSSPState *s)
530
{
531
    int level = 0;
532

    
533
    level |= s->ssitr & SSITR_INT;
534
    level |= (s->sssr & SSSR_BCE)  &&  (s->sscr[1] & SSCR1_EBCEI);
535
    level |= (s->sssr & SSSR_TUR)  && !(s->sscr[0] & SSCR0_TIM);
536
    level |= (s->sssr & SSSR_EOC)  &&  (s->sssr & (SSSR_TINT | SSSR_PINT));
537
    level |= (s->sssr & SSSR_TINT) &&  (s->sscr[1] & SSCR1_TINTE);
538
    level |= (s->sssr & SSSR_PINT) &&  (s->sscr[1] & SSCR1_PINTE);
539
    level |= (s->sssr & SSSR_ROR)  && !(s->sscr[0] & SSCR0_RIM);
540
    level |= (s->sssr & SSSR_RFS)  &&  (s->sscr[1] & SSCR1_RIE);
541
    level |= (s->sssr & SSSR_TFS)  &&  (s->sscr[1] & SSCR1_TIE);
542
    qemu_set_irq(s->irq, !!level);
543
}
544

    
545
static void pxa2xx_ssp_fifo_update(PXA2xxSSPState *s)
546
{
547
    s->sssr &= ~(0xf << 12);        /* Clear RFL */
548
    s->sssr &= ~(0xf << 8);        /* Clear TFL */
549
    s->sssr &= ~SSSR_TFS;
550
    s->sssr &= ~SSSR_TNF;
551
    if (s->enable) {
552
        s->sssr |= ((s->rx_level - 1) & 0xf) << 12;
553
        if (s->rx_level >= SSCR1_RFT(s->sscr[1]))
554
            s->sssr |= SSSR_RFS;
555
        else
556
            s->sssr &= ~SSSR_RFS;
557
        if (s->rx_level)
558
            s->sssr |= SSSR_RNE;
559
        else
560
            s->sssr &= ~SSSR_RNE;
561
        /* TX FIFO is never filled, so it is always in underrun
562
           condition if SSP is enabled */
563
        s->sssr |= SSSR_TFS;
564
        s->sssr |= SSSR_TNF;
565
    }
566

    
567
    pxa2xx_ssp_int_update(s);
568
}
569

    
570
static uint64_t pxa2xx_ssp_read(void *opaque, hwaddr addr,
571
                                unsigned size)
572
{
573
    PXA2xxSSPState *s = (PXA2xxSSPState *) opaque;
574
    uint32_t retval;
575

    
576
    switch (addr) {
577
    case SSCR0:
578
        return s->sscr[0];
579
    case SSCR1:
580
        return s->sscr[1];
581
    case SSPSP:
582
        return s->sspsp;
583
    case SSTO:
584
        return s->ssto;
585
    case SSITR:
586
        return s->ssitr;
587
    case SSSR:
588
        return s->sssr | s->ssitr;
589
    case SSDR:
590
        if (!s->enable)
591
            return 0xffffffff;
592
        if (s->rx_level < 1) {
593
            printf("%s: SSP Rx Underrun\n", __FUNCTION__);
594
            return 0xffffffff;
595
        }
596
        s->rx_level --;
597
        retval = s->rx_fifo[s->rx_start ++];
598
        s->rx_start &= 0xf;
599
        pxa2xx_ssp_fifo_update(s);
600
        return retval;
601
    case SSTSA:
602
        return s->sstsa;
603
    case SSRSA:
604
        return s->ssrsa;
605
    case SSTSS:
606
        return 0;
607
    case SSACD:
608
        return s->ssacd;
609
    default:
610
        printf("%s: Bad register " REG_FMT "\n", __FUNCTION__, addr);
611
        break;
612
    }
613
    return 0;
614
}
615

    
616
static void pxa2xx_ssp_write(void *opaque, hwaddr addr,
617
                             uint64_t value64, unsigned size)
618
{
619
    PXA2xxSSPState *s = (PXA2xxSSPState *) opaque;
620
    uint32_t value = value64;
621

    
622
    switch (addr) {
623
    case SSCR0:
624
        s->sscr[0] = value & 0xc7ffffff;
625
        s->enable = value & SSCR0_SSE;
626
        if (value & SSCR0_MOD)
627
            printf("%s: Attempt to use network mode\n", __FUNCTION__);
628
        if (s->enable && SSCR0_DSS(value) < 4)
629
            printf("%s: Wrong data size: %i bits\n", __FUNCTION__,
630
                            SSCR0_DSS(value));
631
        if (!(value & SSCR0_SSE)) {
632
            s->sssr = 0;
633
            s->ssitr = 0;
634
            s->rx_level = 0;
635
        }
636
        pxa2xx_ssp_fifo_update(s);
637
        break;
638

    
639
    case SSCR1:
640
        s->sscr[1] = value;
641
        if (value & (SSCR1_LBM | SSCR1_EFWR))
642
            printf("%s: Attempt to use SSP test mode\n", __FUNCTION__);
643
        pxa2xx_ssp_fifo_update(s);
644
        break;
645

    
646
    case SSPSP:
647
        s->sspsp = value;
648
        break;
649

    
650
    case SSTO:
651
        s->ssto = value;
652
        break;
653

    
654
    case SSITR:
655
        s->ssitr = value & SSITR_INT;
656
        pxa2xx_ssp_int_update(s);
657
        break;
658

    
659
    case SSSR:
660
        s->sssr &= ~(value & SSSR_RW);
661
        pxa2xx_ssp_int_update(s);
662
        break;
663

    
664
    case SSDR:
665
        if (SSCR0_UWIRE(s->sscr[0])) {
666
            if (s->sscr[1] & SSCR1_MWDS)
667
                value &= 0xffff;
668
            else
669
                value &= 0xff;
670
        } else
671
            /* Note how 32bits overflow does no harm here */
672
            value &= (1 << SSCR0_DSS(s->sscr[0])) - 1;
673

    
674
        /* Data goes from here to the Tx FIFO and is shifted out from
675
         * there directly to the slave, no need to buffer it.
676
         */
677
        if (s->enable) {
678
            uint32_t readval;
679
            readval = ssi_transfer(s->bus, value);
680
            if (s->rx_level < 0x10) {
681
                s->rx_fifo[(s->rx_start + s->rx_level ++) & 0xf] = readval;
682
            } else {
683
                s->sssr |= SSSR_ROR;
684
            }
685
        }
686
        pxa2xx_ssp_fifo_update(s);
687
        break;
688

    
689
    case SSTSA:
690
        s->sstsa = value;
691
        break;
692

    
693
    case SSRSA:
694
        s->ssrsa = value;
695
        break;
696

    
697
    case SSACD:
698
        s->ssacd = value;
699
        break;
700

    
701
    default:
702
        printf("%s: Bad register " REG_FMT "\n", __FUNCTION__, addr);
703
        break;
704
    }
705
}
706

    
707
static const MemoryRegionOps pxa2xx_ssp_ops = {
708
    .read = pxa2xx_ssp_read,
709
    .write = pxa2xx_ssp_write,
710
    .endianness = DEVICE_NATIVE_ENDIAN,
711
};
712

    
713
static void pxa2xx_ssp_save(QEMUFile *f, void *opaque)
714
{
715
    PXA2xxSSPState *s = (PXA2xxSSPState *) opaque;
716
    int i;
717

    
718
    qemu_put_be32(f, s->enable);
719

    
720
    qemu_put_be32s(f, &s->sscr[0]);
721
    qemu_put_be32s(f, &s->sscr[1]);
722
    qemu_put_be32s(f, &s->sspsp);
723
    qemu_put_be32s(f, &s->ssto);
724
    qemu_put_be32s(f, &s->ssitr);
725
    qemu_put_be32s(f, &s->sssr);
726
    qemu_put_8s(f, &s->sstsa);
727
    qemu_put_8s(f, &s->ssrsa);
728
    qemu_put_8s(f, &s->ssacd);
729

    
730
    qemu_put_byte(f, s->rx_level);
731
    for (i = 0; i < s->rx_level; i ++)
732
        qemu_put_byte(f, s->rx_fifo[(s->rx_start + i) & 0xf]);
733
}
734

    
735
static int pxa2xx_ssp_load(QEMUFile *f, void *opaque, int version_id)
736
{
737
    PXA2xxSSPState *s = (PXA2xxSSPState *) opaque;
738
    int i;
739

    
740
    s->enable = qemu_get_be32(f);
741

    
742
    qemu_get_be32s(f, &s->sscr[0]);
743
    qemu_get_be32s(f, &s->sscr[1]);
744
    qemu_get_be32s(f, &s->sspsp);
745
    qemu_get_be32s(f, &s->ssto);
746
    qemu_get_be32s(f, &s->ssitr);
747
    qemu_get_be32s(f, &s->sssr);
748
    qemu_get_8s(f, &s->sstsa);
749
    qemu_get_8s(f, &s->ssrsa);
750
    qemu_get_8s(f, &s->ssacd);
751

    
752
    s->rx_level = qemu_get_byte(f);
753
    s->rx_start = 0;
754
    for (i = 0; i < s->rx_level; i ++)
755
        s->rx_fifo[i] = qemu_get_byte(f);
756

    
757
    return 0;
758
}
759

    
760
static int pxa2xx_ssp_init(SysBusDevice *dev)
761
{
762
    PXA2xxSSPState *s = FROM_SYSBUS(PXA2xxSSPState, dev);
763

    
764
    sysbus_init_irq(dev, &s->irq);
765

    
766
    memory_region_init_io(&s->iomem, &pxa2xx_ssp_ops, s, "pxa2xx-ssp", 0x1000);
767
    sysbus_init_mmio(dev, &s->iomem);
768
    register_savevm(&dev->qdev, "pxa2xx_ssp", -1, 0,
769
                    pxa2xx_ssp_save, pxa2xx_ssp_load, s);
770

    
771
    s->bus = ssi_create_bus(&dev->qdev, "ssi");
772
    return 0;
773
}
774

    
775
/* Real-Time Clock */
776
#define RCNR                0x00        /* RTC Counter register */
777
#define RTAR                0x04        /* RTC Alarm register */
778
#define RTSR                0x08        /* RTC Status register */
779
#define RTTR                0x0c        /* RTC Timer Trim register */
780
#define RDCR                0x10        /* RTC Day Counter register */
781
#define RYCR                0x14        /* RTC Year Counter register */
782
#define RDAR1                0x18        /* RTC Wristwatch Day Alarm register 1 */
783
#define RYAR1                0x1c        /* RTC Wristwatch Year Alarm register 1 */
784
#define RDAR2                0x20        /* RTC Wristwatch Day Alarm register 2 */
785
#define RYAR2                0x24        /* RTC Wristwatch Year Alarm register 2 */
786
#define SWCR                0x28        /* RTC Stopwatch Counter register */
787
#define SWAR1                0x2c        /* RTC Stopwatch Alarm register 1 */
788
#define SWAR2                0x30        /* RTC Stopwatch Alarm register 2 */
789
#define RTCPICR                0x34        /* RTC Periodic Interrupt Counter register */
790
#define PIAR                0x38        /* RTC Periodic Interrupt Alarm register */
791

    
792
typedef struct {
793
    SysBusDevice busdev;
794
    MemoryRegion iomem;
795
    uint32_t rttr;
796
    uint32_t rtsr;
797
    uint32_t rtar;
798
    uint32_t rdar1;
799
    uint32_t rdar2;
800
    uint32_t ryar1;
801
    uint32_t ryar2;
802
    uint32_t swar1;
803
    uint32_t swar2;
804
    uint32_t piar;
805
    uint32_t last_rcnr;
806
    uint32_t last_rdcr;
807
    uint32_t last_rycr;
808
    uint32_t last_swcr;
809
    uint32_t last_rtcpicr;
810
    int64_t last_hz;
811
    int64_t last_sw;
812
    int64_t last_pi;
813
    QEMUTimer *rtc_hz;
814
    QEMUTimer *rtc_rdal1;
815
    QEMUTimer *rtc_rdal2;
816
    QEMUTimer *rtc_swal1;
817
    QEMUTimer *rtc_swal2;
818
    QEMUTimer *rtc_pi;
819
    qemu_irq rtc_irq;
820
} PXA2xxRTCState;
821

    
822
static inline void pxa2xx_rtc_int_update(PXA2xxRTCState *s)
823
{
824
    qemu_set_irq(s->rtc_irq, !!(s->rtsr & 0x2553));
825
}
826

    
827
static void pxa2xx_rtc_hzupdate(PXA2xxRTCState *s)
828
{
829
    int64_t rt = qemu_get_clock_ms(rtc_clock);
830
    s->last_rcnr += ((rt - s->last_hz) << 15) /
831
            (1000 * ((s->rttr & 0xffff) + 1));
832
    s->last_rdcr += ((rt - s->last_hz) << 15) /
833
            (1000 * ((s->rttr & 0xffff) + 1));
834
    s->last_hz = rt;
835
}
836

    
837
static void pxa2xx_rtc_swupdate(PXA2xxRTCState *s)
838
{
839
    int64_t rt = qemu_get_clock_ms(rtc_clock);
840
    if (s->rtsr & (1 << 12))
841
        s->last_swcr += (rt - s->last_sw) / 10;
842
    s->last_sw = rt;
843
}
844

    
845
static void pxa2xx_rtc_piupdate(PXA2xxRTCState *s)
846
{
847
    int64_t rt = qemu_get_clock_ms(rtc_clock);
848
    if (s->rtsr & (1 << 15))
849
        s->last_swcr += rt - s->last_pi;
850
    s->last_pi = rt;
851
}
852

    
853
static inline void pxa2xx_rtc_alarm_update(PXA2xxRTCState *s,
854
                uint32_t rtsr)
855
{
856
    if ((rtsr & (1 << 2)) && !(rtsr & (1 << 0)))
857
        qemu_mod_timer(s->rtc_hz, s->last_hz +
858
                (((s->rtar - s->last_rcnr) * 1000 *
859
                  ((s->rttr & 0xffff) + 1)) >> 15));
860
    else
861
        qemu_del_timer(s->rtc_hz);
862

    
863
    if ((rtsr & (1 << 5)) && !(rtsr & (1 << 4)))
864
        qemu_mod_timer(s->rtc_rdal1, s->last_hz +
865
                (((s->rdar1 - s->last_rdcr) * 1000 *
866
                  ((s->rttr & 0xffff) + 1)) >> 15)); /* TODO: fixup */
867
    else
868
        qemu_del_timer(s->rtc_rdal1);
869

    
870
    if ((rtsr & (1 << 7)) && !(rtsr & (1 << 6)))
871
        qemu_mod_timer(s->rtc_rdal2, s->last_hz +
872
                (((s->rdar2 - s->last_rdcr) * 1000 *
873
                  ((s->rttr & 0xffff) + 1)) >> 15)); /* TODO: fixup */
874
    else
875
        qemu_del_timer(s->rtc_rdal2);
876

    
877
    if ((rtsr & 0x1200) == 0x1200 && !(rtsr & (1 << 8)))
878
        qemu_mod_timer(s->rtc_swal1, s->last_sw +
879
                        (s->swar1 - s->last_swcr) * 10); /* TODO: fixup */
880
    else
881
        qemu_del_timer(s->rtc_swal1);
882

    
883
    if ((rtsr & 0x1800) == 0x1800 && !(rtsr & (1 << 10)))
884
        qemu_mod_timer(s->rtc_swal2, s->last_sw +
885
                        (s->swar2 - s->last_swcr) * 10); /* TODO: fixup */
886
    else
887
        qemu_del_timer(s->rtc_swal2);
888

    
889
    if ((rtsr & 0xc000) == 0xc000 && !(rtsr & (1 << 13)))
890
        qemu_mod_timer(s->rtc_pi, s->last_pi +
891
                        (s->piar & 0xffff) - s->last_rtcpicr);
892
    else
893
        qemu_del_timer(s->rtc_pi);
894
}
895

    
896
static inline void pxa2xx_rtc_hz_tick(void *opaque)
897
{
898
    PXA2xxRTCState *s = (PXA2xxRTCState *) opaque;
899
    s->rtsr |= (1 << 0);
900
    pxa2xx_rtc_alarm_update(s, s->rtsr);
901
    pxa2xx_rtc_int_update(s);
902
}
903

    
904
static inline void pxa2xx_rtc_rdal1_tick(void *opaque)
905
{
906
    PXA2xxRTCState *s = (PXA2xxRTCState *) opaque;
907
    s->rtsr |= (1 << 4);
908
    pxa2xx_rtc_alarm_update(s, s->rtsr);
909
    pxa2xx_rtc_int_update(s);
910
}
911

    
912
static inline void pxa2xx_rtc_rdal2_tick(void *opaque)
913
{
914
    PXA2xxRTCState *s = (PXA2xxRTCState *) opaque;
915
    s->rtsr |= (1 << 6);
916
    pxa2xx_rtc_alarm_update(s, s->rtsr);
917
    pxa2xx_rtc_int_update(s);
918
}
919

    
920
static inline void pxa2xx_rtc_swal1_tick(void *opaque)
921
{
922
    PXA2xxRTCState *s = (PXA2xxRTCState *) opaque;
923
    s->rtsr |= (1 << 8);
924
    pxa2xx_rtc_alarm_update(s, s->rtsr);
925
    pxa2xx_rtc_int_update(s);
926
}
927

    
928
static inline void pxa2xx_rtc_swal2_tick(void *opaque)
929
{
930
    PXA2xxRTCState *s = (PXA2xxRTCState *) opaque;
931
    s->rtsr |= (1 << 10);
932
    pxa2xx_rtc_alarm_update(s, s->rtsr);
933
    pxa2xx_rtc_int_update(s);
934
}
935

    
936
static inline void pxa2xx_rtc_pi_tick(void *opaque)
937
{
938
    PXA2xxRTCState *s = (PXA2xxRTCState *) opaque;
939
    s->rtsr |= (1 << 13);
940
    pxa2xx_rtc_piupdate(s);
941
    s->last_rtcpicr = 0;
942
    pxa2xx_rtc_alarm_update(s, s->rtsr);
943
    pxa2xx_rtc_int_update(s);
944
}
945

    
946
static uint64_t pxa2xx_rtc_read(void *opaque, hwaddr addr,
947
                                unsigned size)
948
{
949
    PXA2xxRTCState *s = (PXA2xxRTCState *) opaque;
950

    
951
    switch (addr) {
952
    case RTTR:
953
        return s->rttr;
954
    case RTSR:
955
        return s->rtsr;
956
    case RTAR:
957
        return s->rtar;
958
    case RDAR1:
959
        return s->rdar1;
960
    case RDAR2:
961
        return s->rdar2;
962
    case RYAR1:
963
        return s->ryar1;
964
    case RYAR2:
965
        return s->ryar2;
966
    case SWAR1:
967
        return s->swar1;
968
    case SWAR2:
969
        return s->swar2;
970
    case PIAR:
971
        return s->piar;
972
    case RCNR:
973
        return s->last_rcnr + ((qemu_get_clock_ms(rtc_clock) - s->last_hz) << 15) /
974
                (1000 * ((s->rttr & 0xffff) + 1));
975
    case RDCR:
976
        return s->last_rdcr + ((qemu_get_clock_ms(rtc_clock) - s->last_hz) << 15) /
977
                (1000 * ((s->rttr & 0xffff) + 1));
978
    case RYCR:
979
        return s->last_rycr;
980
    case SWCR:
981
        if (s->rtsr & (1 << 12))
982
            return s->last_swcr + (qemu_get_clock_ms(rtc_clock) - s->last_sw) / 10;
983
        else
984
            return s->last_swcr;
985
    default:
986
        printf("%s: Bad register " REG_FMT "\n", __FUNCTION__, addr);
987
        break;
988
    }
989
    return 0;
990
}
991

    
992
static void pxa2xx_rtc_write(void *opaque, hwaddr addr,
993
                             uint64_t value64, unsigned size)
994
{
995
    PXA2xxRTCState *s = (PXA2xxRTCState *) opaque;
996
    uint32_t value = value64;
997

    
998
    switch (addr) {
999
    case RTTR:
1000
        if (!(s->rttr & (1 << 31))) {
1001
            pxa2xx_rtc_hzupdate(s);
1002
            s->rttr = value;
1003
            pxa2xx_rtc_alarm_update(s, s->rtsr);
1004
        }
1005
        break;
1006

    
1007
    case RTSR:
1008
        if ((s->rtsr ^ value) & (1 << 15))
1009
            pxa2xx_rtc_piupdate(s);
1010

    
1011
        if ((s->rtsr ^ value) & (1 << 12))
1012
            pxa2xx_rtc_swupdate(s);
1013

    
1014
        if (((s->rtsr ^ value) & 0x4aac) | (value & ~0xdaac))
1015
            pxa2xx_rtc_alarm_update(s, value);
1016

    
1017
        s->rtsr = (value & 0xdaac) | (s->rtsr & ~(value & ~0xdaac));
1018
        pxa2xx_rtc_int_update(s);
1019
        break;
1020

    
1021
    case RTAR:
1022
        s->rtar = value;
1023
        pxa2xx_rtc_alarm_update(s, s->rtsr);
1024
        break;
1025

    
1026
    case RDAR1:
1027
        s->rdar1 = value;
1028
        pxa2xx_rtc_alarm_update(s, s->rtsr);
1029
        break;
1030

    
1031
    case RDAR2:
1032
        s->rdar2 = value;
1033
        pxa2xx_rtc_alarm_update(s, s->rtsr);
1034
        break;
1035

    
1036
    case RYAR1:
1037
        s->ryar1 = value;
1038
        pxa2xx_rtc_alarm_update(s, s->rtsr);
1039
        break;
1040

    
1041
    case RYAR2:
1042
        s->ryar2 = value;
1043
        pxa2xx_rtc_alarm_update(s, s->rtsr);
1044
        break;
1045

    
1046
    case SWAR1:
1047
        pxa2xx_rtc_swupdate(s);
1048
        s->swar1 = value;
1049
        s->last_swcr = 0;
1050
        pxa2xx_rtc_alarm_update(s, s->rtsr);
1051
        break;
1052

    
1053
    case SWAR2:
1054
        s->swar2 = value;
1055
        pxa2xx_rtc_alarm_update(s, s->rtsr);
1056
        break;
1057

    
1058
    case PIAR:
1059
        s->piar = value;
1060
        pxa2xx_rtc_alarm_update(s, s->rtsr);
1061
        break;
1062

    
1063
    case RCNR:
1064
        pxa2xx_rtc_hzupdate(s);
1065
        s->last_rcnr = value;
1066
        pxa2xx_rtc_alarm_update(s, s->rtsr);
1067
        break;
1068

    
1069
    case RDCR:
1070
        pxa2xx_rtc_hzupdate(s);
1071
        s->last_rdcr = value;
1072
        pxa2xx_rtc_alarm_update(s, s->rtsr);
1073
        break;
1074

    
1075
    case RYCR:
1076
        s->last_rycr = value;
1077
        break;
1078

    
1079
    case SWCR:
1080
        pxa2xx_rtc_swupdate(s);
1081
        s->last_swcr = value;
1082
        pxa2xx_rtc_alarm_update(s, s->rtsr);
1083
        break;
1084

    
1085
    case RTCPICR:
1086
        pxa2xx_rtc_piupdate(s);
1087
        s->last_rtcpicr = value & 0xffff;
1088
        pxa2xx_rtc_alarm_update(s, s->rtsr);
1089
        break;
1090

    
1091
    default:
1092
        printf("%s: Bad register " REG_FMT "\n", __FUNCTION__, addr);
1093
    }
1094
}
1095

    
1096
static const MemoryRegionOps pxa2xx_rtc_ops = {
1097
    .read = pxa2xx_rtc_read,
1098
    .write = pxa2xx_rtc_write,
1099
    .endianness = DEVICE_NATIVE_ENDIAN,
1100
};
1101

    
1102
static int pxa2xx_rtc_init(SysBusDevice *dev)
1103
{
1104
    PXA2xxRTCState *s = FROM_SYSBUS(PXA2xxRTCState, dev);
1105
    struct tm tm;
1106
    int wom;
1107

    
1108
    s->rttr = 0x7fff;
1109
    s->rtsr = 0;
1110

    
1111
    qemu_get_timedate(&tm, 0);
1112
    wom = ((tm.tm_mday - 1) / 7) + 1;
1113

    
1114
    s->last_rcnr = (uint32_t) mktimegm(&tm);
1115
    s->last_rdcr = (wom << 20) | ((tm.tm_wday + 1) << 17) |
1116
            (tm.tm_hour << 12) | (tm.tm_min << 6) | tm.tm_sec;
1117
    s->last_rycr = ((tm.tm_year + 1900) << 9) |
1118
            ((tm.tm_mon + 1) << 5) | tm.tm_mday;
1119
    s->last_swcr = (tm.tm_hour << 19) |
1120
            (tm.tm_min << 13) | (tm.tm_sec << 7);
1121
    s->last_rtcpicr = 0;
1122
    s->last_hz = s->last_sw = s->last_pi = qemu_get_clock_ms(rtc_clock);
1123

    
1124
    s->rtc_hz    = qemu_new_timer_ms(rtc_clock, pxa2xx_rtc_hz_tick,    s);
1125
    s->rtc_rdal1 = qemu_new_timer_ms(rtc_clock, pxa2xx_rtc_rdal1_tick, s);
1126
    s->rtc_rdal2 = qemu_new_timer_ms(rtc_clock, pxa2xx_rtc_rdal2_tick, s);
1127
    s->rtc_swal1 = qemu_new_timer_ms(rtc_clock, pxa2xx_rtc_swal1_tick, s);
1128
    s->rtc_swal2 = qemu_new_timer_ms(rtc_clock, pxa2xx_rtc_swal2_tick, s);
1129
    s->rtc_pi    = qemu_new_timer_ms(rtc_clock, pxa2xx_rtc_pi_tick,    s);
1130

    
1131
    sysbus_init_irq(dev, &s->rtc_irq);
1132

    
1133
    memory_region_init_io(&s->iomem, &pxa2xx_rtc_ops, s, "pxa2xx-rtc", 0x10000);
1134
    sysbus_init_mmio(dev, &s->iomem);
1135

    
1136
    return 0;
1137
}
1138

    
1139
static void pxa2xx_rtc_pre_save(void *opaque)
1140
{
1141
    PXA2xxRTCState *s = (PXA2xxRTCState *) opaque;
1142

    
1143
    pxa2xx_rtc_hzupdate(s);
1144
    pxa2xx_rtc_piupdate(s);
1145
    pxa2xx_rtc_swupdate(s);
1146
}
1147

    
1148
static int pxa2xx_rtc_post_load(void *opaque, int version_id)
1149
{
1150
    PXA2xxRTCState *s = (PXA2xxRTCState *) opaque;
1151

    
1152
    pxa2xx_rtc_alarm_update(s, s->rtsr);
1153

    
1154
    return 0;
1155
}
1156

    
1157
static const VMStateDescription vmstate_pxa2xx_rtc_regs = {
1158
    .name = "pxa2xx_rtc",
1159
    .version_id = 0,
1160
    .minimum_version_id = 0,
1161
    .minimum_version_id_old = 0,
1162
    .pre_save = pxa2xx_rtc_pre_save,
1163
    .post_load = pxa2xx_rtc_post_load,
1164
    .fields = (VMStateField[]) {
1165
        VMSTATE_UINT32(rttr, PXA2xxRTCState),
1166
        VMSTATE_UINT32(rtsr, PXA2xxRTCState),
1167
        VMSTATE_UINT32(rtar, PXA2xxRTCState),
1168
        VMSTATE_UINT32(rdar1, PXA2xxRTCState),
1169
        VMSTATE_UINT32(rdar2, PXA2xxRTCState),
1170
        VMSTATE_UINT32(ryar1, PXA2xxRTCState),
1171
        VMSTATE_UINT32(ryar2, PXA2xxRTCState),
1172
        VMSTATE_UINT32(swar1, PXA2xxRTCState),
1173
        VMSTATE_UINT32(swar2, PXA2xxRTCState),
1174
        VMSTATE_UINT32(piar, PXA2xxRTCState),
1175
        VMSTATE_UINT32(last_rcnr, PXA2xxRTCState),
1176
        VMSTATE_UINT32(last_rdcr, PXA2xxRTCState),
1177
        VMSTATE_UINT32(last_rycr, PXA2xxRTCState),
1178
        VMSTATE_UINT32(last_swcr, PXA2xxRTCState),
1179
        VMSTATE_UINT32(last_rtcpicr, PXA2xxRTCState),
1180
        VMSTATE_INT64(last_hz, PXA2xxRTCState),
1181
        VMSTATE_INT64(last_sw, PXA2xxRTCState),
1182
        VMSTATE_INT64(last_pi, PXA2xxRTCState),
1183
        VMSTATE_END_OF_LIST(),
1184
    },
1185
};
1186

    
1187
static void pxa2xx_rtc_sysbus_class_init(ObjectClass *klass, void *data)
1188
{
1189
    DeviceClass *dc = DEVICE_CLASS(klass);
1190
    SysBusDeviceClass *k = SYS_BUS_DEVICE_CLASS(klass);
1191

    
1192
    k->init = pxa2xx_rtc_init;
1193
    dc->desc = "PXA2xx RTC Controller";
1194
    dc->vmsd = &vmstate_pxa2xx_rtc_regs;
1195
}
1196

    
1197
static TypeInfo pxa2xx_rtc_sysbus_info = {
1198
    .name          = "pxa2xx_rtc",
1199
    .parent        = TYPE_SYS_BUS_DEVICE,
1200
    .instance_size = sizeof(PXA2xxRTCState),
1201
    .class_init    = pxa2xx_rtc_sysbus_class_init,
1202
};
1203

    
1204
/* I2C Interface */
1205
typedef struct {
1206
    I2CSlave i2c;
1207
    PXA2xxI2CState *host;
1208
} PXA2xxI2CSlaveState;
1209

    
1210
struct PXA2xxI2CState {
1211
    SysBusDevice busdev;
1212
    MemoryRegion iomem;
1213
    PXA2xxI2CSlaveState *slave;
1214
    i2c_bus *bus;
1215
    qemu_irq irq;
1216
    uint32_t offset;
1217
    uint32_t region_size;
1218

    
1219
    uint16_t control;
1220
    uint16_t status;
1221
    uint8_t ibmr;
1222
    uint8_t data;
1223
};
1224

    
1225
#define IBMR        0x80        /* I2C Bus Monitor register */
1226
#define IDBR        0x88        /* I2C Data Buffer register */
1227
#define ICR        0x90        /* I2C Control register */
1228
#define ISR        0x98        /* I2C Status register */
1229
#define ISAR        0xa0        /* I2C Slave Address register */
1230

    
1231
static void pxa2xx_i2c_update(PXA2xxI2CState *s)
1232
{
1233
    uint16_t level = 0;
1234
    level |= s->status & s->control & (1 << 10);                /* BED */
1235
    level |= (s->status & (1 << 7)) && (s->control & (1 << 9));        /* IRF */
1236
    level |= (s->status & (1 << 6)) && (s->control & (1 << 8));        /* ITE */
1237
    level |= s->status & (1 << 9);                                /* SAD */
1238
    qemu_set_irq(s->irq, !!level);
1239
}
1240

    
1241
/* These are only stubs now.  */
1242
static void pxa2xx_i2c_event(I2CSlave *i2c, enum i2c_event event)
1243
{
1244
    PXA2xxI2CSlaveState *slave = FROM_I2C_SLAVE(PXA2xxI2CSlaveState, i2c);
1245
    PXA2xxI2CState *s = slave->host;
1246

    
1247
    switch (event) {
1248
    case I2C_START_SEND:
1249
        s->status |= (1 << 9);                                /* set SAD */
1250
        s->status &= ~(1 << 0);                                /* clear RWM */
1251
        break;
1252
    case I2C_START_RECV:
1253
        s->status |= (1 << 9);                                /* set SAD */
1254
        s->status |= 1 << 0;                                /* set RWM */
1255
        break;
1256
    case I2C_FINISH:
1257
        s->status |= (1 << 4);                                /* set SSD */
1258
        break;
1259
    case I2C_NACK:
1260
        s->status |= 1 << 1;                                /* set ACKNAK */
1261
        break;
1262
    }
1263
    pxa2xx_i2c_update(s);
1264
}
1265

    
1266
static int pxa2xx_i2c_rx(I2CSlave *i2c)
1267
{
1268
    PXA2xxI2CSlaveState *slave = FROM_I2C_SLAVE(PXA2xxI2CSlaveState, i2c);
1269
    PXA2xxI2CState *s = slave->host;
1270
    if ((s->control & (1 << 14)) || !(s->control & (1 << 6)))
1271
        return 0;
1272

    
1273
    if (s->status & (1 << 0)) {                        /* RWM */
1274
        s->status |= 1 << 6;                        /* set ITE */
1275
    }
1276
    pxa2xx_i2c_update(s);
1277

    
1278
    return s->data;
1279
}
1280

    
1281
static int pxa2xx_i2c_tx(I2CSlave *i2c, uint8_t data)
1282
{
1283
    PXA2xxI2CSlaveState *slave = FROM_I2C_SLAVE(PXA2xxI2CSlaveState, i2c);
1284
    PXA2xxI2CState *s = slave->host;
1285
    if ((s->control & (1 << 14)) || !(s->control & (1 << 6)))
1286
        return 1;
1287

    
1288
    if (!(s->status & (1 << 0))) {                /* RWM */
1289
        s->status |= 1 << 7;                        /* set IRF */
1290
        s->data = data;
1291
    }
1292
    pxa2xx_i2c_update(s);
1293

    
1294
    return 1;
1295
}
1296

    
1297
static uint64_t pxa2xx_i2c_read(void *opaque, hwaddr addr,
1298
                                unsigned size)
1299
{
1300
    PXA2xxI2CState *s = (PXA2xxI2CState *) opaque;
1301

    
1302
    addr -= s->offset;
1303
    switch (addr) {
1304
    case ICR:
1305
        return s->control;
1306
    case ISR:
1307
        return s->status | (i2c_bus_busy(s->bus) << 2);
1308
    case ISAR:
1309
        return s->slave->i2c.address;
1310
    case IDBR:
1311
        return s->data;
1312
    case IBMR:
1313
        if (s->status & (1 << 2))
1314
            s->ibmr ^= 3;        /* Fake SCL and SDA pin changes */
1315
        else
1316
            s->ibmr = 0;
1317
        return s->ibmr;
1318
    default:
1319
        printf("%s: Bad register " REG_FMT "\n", __FUNCTION__, addr);
1320
        break;
1321
    }
1322
    return 0;
1323
}
1324

    
1325
static void pxa2xx_i2c_write(void *opaque, hwaddr addr,
1326
                             uint64_t value64, unsigned size)
1327
{
1328
    PXA2xxI2CState *s = (PXA2xxI2CState *) opaque;
1329
    uint32_t value = value64;
1330
    int ack;
1331

    
1332
    addr -= s->offset;
1333
    switch (addr) {
1334
    case ICR:
1335
        s->control = value & 0xfff7;
1336
        if ((value & (1 << 3)) && (value & (1 << 6))) {        /* TB and IUE */
1337
            /* TODO: slave mode */
1338
            if (value & (1 << 0)) {                        /* START condition */
1339
                if (s->data & 1)
1340
                    s->status |= 1 << 0;                /* set RWM */
1341
                else
1342
                    s->status &= ~(1 << 0);                /* clear RWM */
1343
                ack = !i2c_start_transfer(s->bus, s->data >> 1, s->data & 1);
1344
            } else {
1345
                if (s->status & (1 << 0)) {                /* RWM */
1346
                    s->data = i2c_recv(s->bus);
1347
                    if (value & (1 << 2))                /* ACKNAK */
1348
                        i2c_nack(s->bus);
1349
                    ack = 1;
1350
                } else
1351
                    ack = !i2c_send(s->bus, s->data);
1352
            }
1353

    
1354
            if (value & (1 << 1))                        /* STOP condition */
1355
                i2c_end_transfer(s->bus);
1356

    
1357
            if (ack) {
1358
                if (value & (1 << 0))                        /* START condition */
1359
                    s->status |= 1 << 6;                /* set ITE */
1360
                else
1361
                    if (s->status & (1 << 0))                /* RWM */
1362
                        s->status |= 1 << 7;                /* set IRF */
1363
                    else
1364
                        s->status |= 1 << 6;                /* set ITE */
1365
                s->status &= ~(1 << 1);                        /* clear ACKNAK */
1366
            } else {
1367
                s->status |= 1 << 6;                        /* set ITE */
1368
                s->status |= 1 << 10;                        /* set BED */
1369
                s->status |= 1 << 1;                        /* set ACKNAK */
1370
            }
1371
        }
1372
        if (!(value & (1 << 3)) && (value & (1 << 6)))        /* !TB and IUE */
1373
            if (value & (1 << 4))                        /* MA */
1374
                i2c_end_transfer(s->bus);
1375
        pxa2xx_i2c_update(s);
1376
        break;
1377

    
1378
    case ISR:
1379
        s->status &= ~(value & 0x07f0);
1380
        pxa2xx_i2c_update(s);
1381
        break;
1382

    
1383
    case ISAR:
1384
        i2c_set_slave_address(&s->slave->i2c, value & 0x7f);
1385
        break;
1386

    
1387
    case IDBR:
1388
        s->data = value & 0xff;
1389
        break;
1390

    
1391
    default:
1392
        printf("%s: Bad register " REG_FMT "\n", __FUNCTION__, addr);
1393
    }
1394
}
1395

    
1396
static const MemoryRegionOps pxa2xx_i2c_ops = {
1397
    .read = pxa2xx_i2c_read,
1398
    .write = pxa2xx_i2c_write,
1399
    .endianness = DEVICE_NATIVE_ENDIAN,
1400
};
1401

    
1402
static const VMStateDescription vmstate_pxa2xx_i2c_slave = {
1403
    .name = "pxa2xx_i2c_slave",
1404
    .version_id = 1,
1405
    .minimum_version_id = 1,
1406
    .minimum_version_id_old = 1,
1407
    .fields      = (VMStateField []) {
1408
        VMSTATE_I2C_SLAVE(i2c, PXA2xxI2CSlaveState),
1409
        VMSTATE_END_OF_LIST()
1410
    }
1411
};
1412

    
1413
static const VMStateDescription vmstate_pxa2xx_i2c = {
1414
    .name = "pxa2xx_i2c",
1415
    .version_id = 1,
1416
    .minimum_version_id = 1,
1417
    .minimum_version_id_old = 1,
1418
    .fields      = (VMStateField []) {
1419
        VMSTATE_UINT16(control, PXA2xxI2CState),
1420
        VMSTATE_UINT16(status, PXA2xxI2CState),
1421
        VMSTATE_UINT8(ibmr, PXA2xxI2CState),
1422
        VMSTATE_UINT8(data, PXA2xxI2CState),
1423
        VMSTATE_STRUCT_POINTER(slave, PXA2xxI2CState,
1424
                               vmstate_pxa2xx_i2c_slave, PXA2xxI2CSlaveState *),
1425
        VMSTATE_END_OF_LIST()
1426
    }
1427
};
1428

    
1429
static int pxa2xx_i2c_slave_init(I2CSlave *i2c)
1430
{
1431
    /* Nothing to do.  */
1432
    return 0;
1433
}
1434

    
1435
static void pxa2xx_i2c_slave_class_init(ObjectClass *klass, void *data)
1436
{
1437
    I2CSlaveClass *k = I2C_SLAVE_CLASS(klass);
1438

    
1439
    k->init = pxa2xx_i2c_slave_init;
1440
    k->event = pxa2xx_i2c_event;
1441
    k->recv = pxa2xx_i2c_rx;
1442
    k->send = pxa2xx_i2c_tx;
1443
}
1444

    
1445
static TypeInfo pxa2xx_i2c_slave_info = {
1446
    .name          = "pxa2xx-i2c-slave",
1447
    .parent        = TYPE_I2C_SLAVE,
1448
    .instance_size = sizeof(PXA2xxI2CSlaveState),
1449
    .class_init    = pxa2xx_i2c_slave_class_init,
1450
};
1451

    
1452
PXA2xxI2CState *pxa2xx_i2c_init(hwaddr base,
1453
                qemu_irq irq, uint32_t region_size)
1454
{
1455
    DeviceState *dev;
1456
    SysBusDevice *i2c_dev;
1457
    PXA2xxI2CState *s;
1458

    
1459
    i2c_dev = sysbus_from_qdev(qdev_create(NULL, "pxa2xx_i2c"));
1460
    qdev_prop_set_uint32(&i2c_dev->qdev, "size", region_size + 1);
1461
    qdev_prop_set_uint32(&i2c_dev->qdev, "offset", base & region_size);
1462

    
1463
    qdev_init_nofail(&i2c_dev->qdev);
1464

    
1465
    sysbus_mmio_map(i2c_dev, 0, base & ~region_size);
1466
    sysbus_connect_irq(i2c_dev, 0, irq);
1467

    
1468
    s = FROM_SYSBUS(PXA2xxI2CState, i2c_dev);
1469
    /* FIXME: Should the slave device really be on a separate bus?  */
1470
    dev = i2c_create_slave(i2c_init_bus(NULL, "dummy"), "pxa2xx-i2c-slave", 0);
1471
    s->slave = FROM_I2C_SLAVE(PXA2xxI2CSlaveState, I2C_SLAVE_FROM_QDEV(dev));
1472
    s->slave->host = s;
1473

    
1474
    return s;
1475
}
1476

    
1477
static int pxa2xx_i2c_initfn(SysBusDevice *dev)
1478
{
1479
    PXA2xxI2CState *s = FROM_SYSBUS(PXA2xxI2CState, dev);
1480

    
1481
    s->bus = i2c_init_bus(&dev->qdev, "i2c");
1482

    
1483
    memory_region_init_io(&s->iomem, &pxa2xx_i2c_ops, s,
1484
                          "pxa2xx-i2x", s->region_size);
1485
    sysbus_init_mmio(dev, &s->iomem);
1486
    sysbus_init_irq(dev, &s->irq);
1487

    
1488
    return 0;
1489
}
1490

    
1491
i2c_bus *pxa2xx_i2c_bus(PXA2xxI2CState *s)
1492
{
1493
    return s->bus;
1494
}
1495

    
1496
static Property pxa2xx_i2c_properties[] = {
1497
    DEFINE_PROP_UINT32("size", PXA2xxI2CState, region_size, 0x10000),
1498
    DEFINE_PROP_UINT32("offset", PXA2xxI2CState, offset, 0),
1499
    DEFINE_PROP_END_OF_LIST(),
1500
};
1501

    
1502
static void pxa2xx_i2c_class_init(ObjectClass *klass, void *data)
1503
{
1504
    DeviceClass *dc = DEVICE_CLASS(klass);
1505
    SysBusDeviceClass *k = SYS_BUS_DEVICE_CLASS(klass);
1506

    
1507
    k->init = pxa2xx_i2c_initfn;
1508
    dc->desc = "PXA2xx I2C Bus Controller";
1509
    dc->vmsd = &vmstate_pxa2xx_i2c;
1510
    dc->props = pxa2xx_i2c_properties;
1511
}
1512

    
1513
static TypeInfo pxa2xx_i2c_info = {
1514
    .name          = "pxa2xx_i2c",
1515
    .parent        = TYPE_SYS_BUS_DEVICE,
1516
    .instance_size = sizeof(PXA2xxI2CState),
1517
    .class_init    = pxa2xx_i2c_class_init,
1518
};
1519

    
1520
/* PXA Inter-IC Sound Controller */
1521
static void pxa2xx_i2s_reset(PXA2xxI2SState *i2s)
1522
{
1523
    i2s->rx_len = 0;
1524
    i2s->tx_len = 0;
1525
    i2s->fifo_len = 0;
1526
    i2s->clk = 0x1a;
1527
    i2s->control[0] = 0x00;
1528
    i2s->control[1] = 0x00;
1529
    i2s->status = 0x00;
1530
    i2s->mask = 0x00;
1531
}
1532

    
1533
#define SACR_TFTH(val)        ((val >> 8) & 0xf)
1534
#define SACR_RFTH(val)        ((val >> 12) & 0xf)
1535
#define SACR_DREC(val)        (val & (1 << 3))
1536
#define SACR_DPRL(val)        (val & (1 << 4))
1537

    
1538
static inline void pxa2xx_i2s_update(PXA2xxI2SState *i2s)
1539
{
1540
    int rfs, tfs;
1541
    rfs = SACR_RFTH(i2s->control[0]) < i2s->rx_len &&
1542
            !SACR_DREC(i2s->control[1]);
1543
    tfs = (i2s->tx_len || i2s->fifo_len < SACR_TFTH(i2s->control[0])) &&
1544
            i2s->enable && !SACR_DPRL(i2s->control[1]);
1545

    
1546
    qemu_set_irq(i2s->rx_dma, rfs);
1547
    qemu_set_irq(i2s->tx_dma, tfs);
1548

    
1549
    i2s->status &= 0xe0;
1550
    if (i2s->fifo_len < 16 || !i2s->enable)
1551
        i2s->status |= 1 << 0;                        /* TNF */
1552
    if (i2s->rx_len)
1553
        i2s->status |= 1 << 1;                        /* RNE */
1554
    if (i2s->enable)
1555
        i2s->status |= 1 << 2;                        /* BSY */
1556
    if (tfs)
1557
        i2s->status |= 1 << 3;                        /* TFS */
1558
    if (rfs)
1559
        i2s->status |= 1 << 4;                        /* RFS */
1560
    if (!(i2s->tx_len && i2s->enable))
1561
        i2s->status |= i2s->fifo_len << 8;        /* TFL */
1562
    i2s->status |= MAX(i2s->rx_len, 0xf) << 12;        /* RFL */
1563

    
1564
    qemu_set_irq(i2s->irq, i2s->status & i2s->mask);
1565
}
1566

    
1567
#define SACR0        0x00        /* Serial Audio Global Control register */
1568
#define SACR1        0x04        /* Serial Audio I2S/MSB-Justified Control register */
1569
#define SASR0        0x0c        /* Serial Audio Interface and FIFO Status register */
1570
#define SAIMR        0x14        /* Serial Audio Interrupt Mask register */
1571
#define SAICR        0x18        /* Serial Audio Interrupt Clear register */
1572
#define SADIV        0x60        /* Serial Audio Clock Divider register */
1573
#define SADR        0x80        /* Serial Audio Data register */
1574

    
1575
static uint64_t pxa2xx_i2s_read(void *opaque, hwaddr addr,
1576
                                unsigned size)
1577
{
1578
    PXA2xxI2SState *s = (PXA2xxI2SState *) opaque;
1579

    
1580
    switch (addr) {
1581
    case SACR0:
1582
        return s->control[0];
1583
    case SACR1:
1584
        return s->control[1];
1585
    case SASR0:
1586
        return s->status;
1587
    case SAIMR:
1588
        return s->mask;
1589
    case SAICR:
1590
        return 0;
1591
    case SADIV:
1592
        return s->clk;
1593
    case SADR:
1594
        if (s->rx_len > 0) {
1595
            s->rx_len --;
1596
            pxa2xx_i2s_update(s);
1597
            return s->codec_in(s->opaque);
1598
        }
1599
        return 0;
1600
    default:
1601
        printf("%s: Bad register " REG_FMT "\n", __FUNCTION__, addr);
1602
        break;
1603
    }
1604
    return 0;
1605
}
1606

    
1607
static void pxa2xx_i2s_write(void *opaque, hwaddr addr,
1608
                             uint64_t value, unsigned size)
1609
{
1610
    PXA2xxI2SState *s = (PXA2xxI2SState *) opaque;
1611
    uint32_t *sample;
1612

    
1613
    switch (addr) {
1614
    case SACR0:
1615
        if (value & (1 << 3))                                /* RST */
1616
            pxa2xx_i2s_reset(s);
1617
        s->control[0] = value & 0xff3d;
1618
        if (!s->enable && (value & 1) && s->tx_len) {        /* ENB */
1619
            for (sample = s->fifo; s->fifo_len > 0; s->fifo_len --, sample ++)
1620
                s->codec_out(s->opaque, *sample);
1621
            s->status &= ~(1 << 7);                        /* I2SOFF */
1622
        }
1623
        if (value & (1 << 4))                                /* EFWR */
1624
            printf("%s: Attempt to use special function\n", __FUNCTION__);
1625
        s->enable = (value & 9) == 1;                        /* ENB && !RST*/
1626
        pxa2xx_i2s_update(s);
1627
        break;
1628
    case SACR1:
1629
        s->control[1] = value & 0x0039;
1630
        if (value & (1 << 5))                                /* ENLBF */
1631
            printf("%s: Attempt to use loopback function\n", __FUNCTION__);
1632
        if (value & (1 << 4))                                /* DPRL */
1633
            s->fifo_len = 0;
1634
        pxa2xx_i2s_update(s);
1635
        break;
1636
    case SAIMR:
1637
        s->mask = value & 0x0078;
1638
        pxa2xx_i2s_update(s);
1639
        break;
1640
    case SAICR:
1641
        s->status &= ~(value & (3 << 5));
1642
        pxa2xx_i2s_update(s);
1643
        break;
1644
    case SADIV:
1645
        s->clk = value & 0x007f;
1646
        break;
1647
    case SADR:
1648
        if (s->tx_len && s->enable) {
1649
            s->tx_len --;
1650
            pxa2xx_i2s_update(s);
1651
            s->codec_out(s->opaque, value);
1652
        } else if (s->fifo_len < 16) {
1653
            s->fifo[s->fifo_len ++] = value;
1654
            pxa2xx_i2s_update(s);
1655
        }
1656
        break;
1657
    default:
1658
        printf("%s: Bad register " REG_FMT "\n", __FUNCTION__, addr);
1659
    }
1660
}
1661

    
1662
static const MemoryRegionOps pxa2xx_i2s_ops = {
1663
    .read = pxa2xx_i2s_read,
1664
    .write = pxa2xx_i2s_write,
1665
    .endianness = DEVICE_NATIVE_ENDIAN,
1666
};
1667

    
1668
static const VMStateDescription vmstate_pxa2xx_i2s = {
1669
    .name = "pxa2xx_i2s",
1670
    .version_id = 0,
1671
    .minimum_version_id = 0,
1672
    .minimum_version_id_old = 0,
1673
    .fields      = (VMStateField[]) {
1674
        VMSTATE_UINT32_ARRAY(control, PXA2xxI2SState, 2),
1675
        VMSTATE_UINT32(status, PXA2xxI2SState),
1676
        VMSTATE_UINT32(mask, PXA2xxI2SState),
1677
        VMSTATE_UINT32(clk, PXA2xxI2SState),
1678
        VMSTATE_INT32(enable, PXA2xxI2SState),
1679
        VMSTATE_INT32(rx_len, PXA2xxI2SState),
1680
        VMSTATE_INT32(tx_len, PXA2xxI2SState),
1681
        VMSTATE_INT32(fifo_len, PXA2xxI2SState),
1682
        VMSTATE_END_OF_LIST()
1683
    }
1684
};
1685

    
1686
static void pxa2xx_i2s_data_req(void *opaque, int tx, int rx)
1687
{
1688
    PXA2xxI2SState *s = (PXA2xxI2SState *) opaque;
1689
    uint32_t *sample;
1690

    
1691
    /* Signal FIFO errors */
1692
    if (s->enable && s->tx_len)
1693
        s->status |= 1 << 5;                /* TUR */
1694
    if (s->enable && s->rx_len)
1695
        s->status |= 1 << 6;                /* ROR */
1696

    
1697
    /* Should be tx - MIN(tx, s->fifo_len) but we don't really need to
1698
     * handle the cases where it makes a difference.  */
1699
    s->tx_len = tx - s->fifo_len;
1700
    s->rx_len = rx;
1701
    /* Note that is s->codec_out wasn't set, we wouldn't get called.  */
1702
    if (s->enable)
1703
        for (sample = s->fifo; s->fifo_len; s->fifo_len --, sample ++)
1704
            s->codec_out(s->opaque, *sample);
1705
    pxa2xx_i2s_update(s);
1706
}
1707

    
1708
static PXA2xxI2SState *pxa2xx_i2s_init(MemoryRegion *sysmem,
1709
                hwaddr base,
1710
                qemu_irq irq, qemu_irq rx_dma, qemu_irq tx_dma)
1711
{
1712
    PXA2xxI2SState *s = (PXA2xxI2SState *)
1713
            g_malloc0(sizeof(PXA2xxI2SState));
1714

    
1715
    s->irq = irq;
1716
    s->rx_dma = rx_dma;
1717
    s->tx_dma = tx_dma;
1718
    s->data_req = pxa2xx_i2s_data_req;
1719

    
1720
    pxa2xx_i2s_reset(s);
1721

    
1722
    memory_region_init_io(&s->iomem, &pxa2xx_i2s_ops, s,
1723
                          "pxa2xx-i2s", 0x100000);
1724
    memory_region_add_subregion(sysmem, base, &s->iomem);
1725

    
1726
    vmstate_register(NULL, base, &vmstate_pxa2xx_i2s, s);
1727

    
1728
    return s;
1729
}
1730

    
1731
/* PXA Fast Infra-red Communications Port */
1732
struct PXA2xxFIrState {
1733
    MemoryRegion iomem;
1734
    qemu_irq irq;
1735
    qemu_irq rx_dma;
1736
    qemu_irq tx_dma;
1737
    int enable;
1738
    CharDriverState *chr;
1739

    
1740
    uint8_t control[3];
1741
    uint8_t status[2];
1742

    
1743
    int rx_len;
1744
    int rx_start;
1745
    uint8_t rx_fifo[64];
1746
};
1747

    
1748
static void pxa2xx_fir_reset(PXA2xxFIrState *s)
1749
{
1750
    s->control[0] = 0x00;
1751
    s->control[1] = 0x00;
1752
    s->control[2] = 0x00;
1753
    s->status[0] = 0x00;
1754
    s->status[1] = 0x00;
1755
    s->enable = 0;
1756
}
1757

    
1758
static inline void pxa2xx_fir_update(PXA2xxFIrState *s)
1759
{
1760
    static const int tresh[4] = { 8, 16, 32, 0 };
1761
    int intr = 0;
1762
    if ((s->control[0] & (1 << 4)) &&                        /* RXE */
1763
                    s->rx_len >= tresh[s->control[2] & 3])        /* TRIG */
1764
        s->status[0] |= 1 << 4;                                /* RFS */
1765
    else
1766
        s->status[0] &= ~(1 << 4);                        /* RFS */
1767
    if (s->control[0] & (1 << 3))                        /* TXE */
1768
        s->status[0] |= 1 << 3;                                /* TFS */
1769
    else
1770
        s->status[0] &= ~(1 << 3);                        /* TFS */
1771
    if (s->rx_len)
1772
        s->status[1] |= 1 << 2;                                /* RNE */
1773
    else
1774
        s->status[1] &= ~(1 << 2);                        /* RNE */
1775
    if (s->control[0] & (1 << 4))                        /* RXE */
1776
        s->status[1] |= 1 << 0;                                /* RSY */
1777
    else
1778
        s->status[1] &= ~(1 << 0);                        /* RSY */
1779

    
1780
    intr |= (s->control[0] & (1 << 5)) &&                /* RIE */
1781
            (s->status[0] & (1 << 4));                        /* RFS */
1782
    intr |= (s->control[0] & (1 << 6)) &&                /* TIE */
1783
            (s->status[0] & (1 << 3));                        /* TFS */
1784
    intr |= (s->control[2] & (1 << 4)) &&                /* TRAIL */
1785
            (s->status[0] & (1 << 6));                        /* EOC */
1786
    intr |= (s->control[0] & (1 << 2)) &&                /* TUS */
1787
            (s->status[0] & (1 << 1));                        /* TUR */
1788
    intr |= s->status[0] & 0x25;                        /* FRE, RAB, EIF */
1789

    
1790
    qemu_set_irq(s->rx_dma, (s->status[0] >> 4) & 1);
1791
    qemu_set_irq(s->tx_dma, (s->status[0] >> 3) & 1);
1792

    
1793
    qemu_set_irq(s->irq, intr && s->enable);
1794
}
1795

    
1796
#define ICCR0        0x00        /* FICP Control register 0 */
1797
#define ICCR1        0x04        /* FICP Control register 1 */
1798
#define ICCR2        0x08        /* FICP Control register 2 */
1799
#define ICDR        0x0c        /* FICP Data register */
1800
#define ICSR0        0x14        /* FICP Status register 0 */
1801
#define ICSR1        0x18        /* FICP Status register 1 */
1802
#define ICFOR        0x1c        /* FICP FIFO Occupancy Status register */
1803

    
1804
static uint64_t pxa2xx_fir_read(void *opaque, hwaddr addr,
1805
                                unsigned size)
1806
{
1807
    PXA2xxFIrState *s = (PXA2xxFIrState *) opaque;
1808
    uint8_t ret;
1809

    
1810
    switch (addr) {
1811
    case ICCR0:
1812
        return s->control[0];
1813
    case ICCR1:
1814
        return s->control[1];
1815
    case ICCR2:
1816
        return s->control[2];
1817
    case ICDR:
1818
        s->status[0] &= ~0x01;
1819
        s->status[1] &= ~0x72;
1820
        if (s->rx_len) {
1821
            s->rx_len --;
1822
            ret = s->rx_fifo[s->rx_start ++];
1823
            s->rx_start &= 63;
1824
            pxa2xx_fir_update(s);
1825
            return ret;
1826
        }
1827
        printf("%s: Rx FIFO underrun.\n", __FUNCTION__);
1828
        break;
1829
    case ICSR0:
1830
        return s->status[0];
1831
    case ICSR1:
1832
        return s->status[1] | (1 << 3);                        /* TNF */
1833
    case ICFOR:
1834
        return s->rx_len;
1835
    default:
1836
        printf("%s: Bad register " REG_FMT "\n", __FUNCTION__, addr);
1837
        break;
1838
    }
1839
    return 0;
1840
}
1841

    
1842
static void pxa2xx_fir_write(void *opaque, hwaddr addr,
1843
                             uint64_t value64, unsigned size)
1844
{
1845
    PXA2xxFIrState *s = (PXA2xxFIrState *) opaque;
1846
    uint32_t value = value64;
1847
    uint8_t ch;
1848

    
1849
    switch (addr) {
1850
    case ICCR0:
1851
        s->control[0] = value;
1852
        if (!(value & (1 << 4)))                        /* RXE */
1853
            s->rx_len = s->rx_start = 0;
1854
        if (!(value & (1 << 3))) {                      /* TXE */
1855
            /* Nop */
1856
        }
1857
        s->enable = value & 1;                                /* ITR */
1858
        if (!s->enable)
1859
            s->status[0] = 0;
1860
        pxa2xx_fir_update(s);
1861
        break;
1862
    case ICCR1:
1863
        s->control[1] = value;
1864
        break;
1865
    case ICCR2:
1866
        s->control[2] = value & 0x3f;
1867
        pxa2xx_fir_update(s);
1868
        break;
1869
    case ICDR:
1870
        if (s->control[2] & (1 << 2))                        /* TXP */
1871
            ch = value;
1872
        else
1873
            ch = ~value;
1874
        if (s->chr && s->enable && (s->control[0] & (1 << 3)))        /* TXE */
1875
            qemu_chr_fe_write(s->chr, &ch, 1);
1876
        break;
1877
    case ICSR0:
1878
        s->status[0] &= ~(value & 0x66);
1879
        pxa2xx_fir_update(s);
1880
        break;
1881
    case ICFOR:
1882
        break;
1883
    default:
1884
        printf("%s: Bad register " REG_FMT "\n", __FUNCTION__, addr);
1885
    }
1886
}
1887

    
1888
static const MemoryRegionOps pxa2xx_fir_ops = {
1889
    .read = pxa2xx_fir_read,
1890
    .write = pxa2xx_fir_write,
1891
    .endianness = DEVICE_NATIVE_ENDIAN,
1892
};
1893

    
1894
static int pxa2xx_fir_is_empty(void *opaque)
1895
{
1896
    PXA2xxFIrState *s = (PXA2xxFIrState *) opaque;
1897
    return (s->rx_len < 64);
1898
}
1899

    
1900
static void pxa2xx_fir_rx(void *opaque, const uint8_t *buf, int size)
1901
{
1902
    PXA2xxFIrState *s = (PXA2xxFIrState *) opaque;
1903
    if (!(s->control[0] & (1 << 4)))                        /* RXE */
1904
        return;
1905

    
1906
    while (size --) {
1907
        s->status[1] |= 1 << 4;                                /* EOF */
1908
        if (s->rx_len >= 64) {
1909
            s->status[1] |= 1 << 6;                        /* ROR */
1910
            break;
1911
        }
1912

    
1913
        if (s->control[2] & (1 << 3))                        /* RXP */
1914
            s->rx_fifo[(s->rx_start + s->rx_len ++) & 63] = *(buf ++);
1915
        else
1916
            s->rx_fifo[(s->rx_start + s->rx_len ++) & 63] = ~*(buf ++);
1917
    }
1918

    
1919
    pxa2xx_fir_update(s);
1920
}
1921

    
1922
static void pxa2xx_fir_event(void *opaque, int event)
1923
{
1924
}
1925

    
1926
static void pxa2xx_fir_save(QEMUFile *f, void *opaque)
1927
{
1928
    PXA2xxFIrState *s = (PXA2xxFIrState *) opaque;
1929
    int i;
1930

    
1931
    qemu_put_be32(f, s->enable);
1932

    
1933
    qemu_put_8s(f, &s->control[0]);
1934
    qemu_put_8s(f, &s->control[1]);
1935
    qemu_put_8s(f, &s->control[2]);
1936
    qemu_put_8s(f, &s->status[0]);
1937
    qemu_put_8s(f, &s->status[1]);
1938

    
1939
    qemu_put_byte(f, s->rx_len);
1940
    for (i = 0; i < s->rx_len; i ++)
1941
        qemu_put_byte(f, s->rx_fifo[(s->rx_start + i) & 63]);
1942
}
1943

    
1944
static int pxa2xx_fir_load(QEMUFile *f, void *opaque, int version_id)
1945
{
1946
    PXA2xxFIrState *s = (PXA2xxFIrState *) opaque;
1947
    int i;
1948

    
1949
    s->enable = qemu_get_be32(f);
1950

    
1951
    qemu_get_8s(f, &s->control[0]);
1952
    qemu_get_8s(f, &s->control[1]);
1953
    qemu_get_8s(f, &s->control[2]);
1954
    qemu_get_8s(f, &s->status[0]);
1955
    qemu_get_8s(f, &s->status[1]);
1956

    
1957
    s->rx_len = qemu_get_byte(f);
1958
    s->rx_start = 0;
1959
    for (i = 0; i < s->rx_len; i ++)
1960
        s->rx_fifo[i] = qemu_get_byte(f);
1961

    
1962
    return 0;
1963
}
1964

    
1965
static PXA2xxFIrState *pxa2xx_fir_init(MemoryRegion *sysmem,
1966
                hwaddr base,
1967
                qemu_irq irq, qemu_irq rx_dma, qemu_irq tx_dma,
1968
                CharDriverState *chr)
1969
{
1970
    PXA2xxFIrState *s = (PXA2xxFIrState *)
1971
            g_malloc0(sizeof(PXA2xxFIrState));
1972

    
1973
    s->irq = irq;
1974
    s->rx_dma = rx_dma;
1975
    s->tx_dma = tx_dma;
1976
    s->chr = chr;
1977

    
1978
    pxa2xx_fir_reset(s);
1979

    
1980
    memory_region_init_io(&s->iomem, &pxa2xx_fir_ops, s, "pxa2xx-fir", 0x1000);
1981
    memory_region_add_subregion(sysmem, base, &s->iomem);
1982

    
1983
    if (chr)
1984
        qemu_chr_add_handlers(chr, pxa2xx_fir_is_empty,
1985
                        pxa2xx_fir_rx, pxa2xx_fir_event, s);
1986

    
1987
    register_savevm(NULL, "pxa2xx_fir", 0, 0, pxa2xx_fir_save,
1988
                    pxa2xx_fir_load, s);
1989

    
1990
    return s;
1991
}
1992

    
1993
static void pxa2xx_reset(void *opaque, int line, int level)
1994
{
1995
    PXA2xxState *s = (PXA2xxState *) opaque;
1996

    
1997
    if (level && (s->pm_regs[PCFR >> 2] & 0x10)) {        /* GPR_EN */
1998
        cpu_reset(CPU(s->cpu));
1999
        /* TODO: reset peripherals */
2000
    }
2001
}
2002

    
2003
/* Initialise a PXA270 integrated chip (ARM based core).  */
2004
PXA2xxState *pxa270_init(MemoryRegion *address_space,
2005
                         unsigned int sdram_size, const char *revision)
2006
{
2007
    PXA2xxState *s;
2008
    int i;
2009
    DriveInfo *dinfo;
2010
    s = (PXA2xxState *) g_malloc0(sizeof(PXA2xxState));
2011

    
2012
    if (revision && strncmp(revision, "pxa27", 5)) {
2013
        fprintf(stderr, "Machine requires a PXA27x processor.\n");
2014
        exit(1);
2015
    }
2016
    if (!revision)
2017
        revision = "pxa270";
2018
    
2019
    s->cpu = cpu_arm_init(revision);
2020
    if (s->cpu == NULL) {
2021
        fprintf(stderr, "Unable to find CPU definition\n");
2022
        exit(1);
2023
    }
2024
    s->reset = qemu_allocate_irqs(pxa2xx_reset, s, 1)[0];
2025

    
2026
    /* SDRAM & Internal Memory Storage */
2027
    memory_region_init_ram(&s->sdram, "pxa270.sdram", sdram_size);
2028
    vmstate_register_ram_global(&s->sdram);
2029
    memory_region_add_subregion(address_space, PXA2XX_SDRAM_BASE, &s->sdram);
2030
    memory_region_init_ram(&s->internal, "pxa270.internal", 0x40000);
2031
    vmstate_register_ram_global(&s->internal);
2032
    memory_region_add_subregion(address_space, PXA2XX_INTERNAL_BASE,
2033
                                &s->internal);
2034

    
2035
    s->pic = pxa2xx_pic_init(0x40d00000, s->cpu);
2036

    
2037
    s->dma = pxa27x_dma_init(0x40000000,
2038
                    qdev_get_gpio_in(s->pic, PXA2XX_PIC_DMA));
2039

    
2040
    sysbus_create_varargs("pxa27x-timer", 0x40a00000,
2041
                    qdev_get_gpio_in(s->pic, PXA2XX_PIC_OST_0 + 0),
2042
                    qdev_get_gpio_in(s->pic, PXA2XX_PIC_OST_0 + 1),
2043
                    qdev_get_gpio_in(s->pic, PXA2XX_PIC_OST_0 + 2),
2044
                    qdev_get_gpio_in(s->pic, PXA2XX_PIC_OST_0 + 3),
2045
                    qdev_get_gpio_in(s->pic, PXA27X_PIC_OST_4_11),
2046
                    NULL);
2047

    
2048
    s->gpio = pxa2xx_gpio_init(0x40e00000, &s->cpu->env, s->pic, 121);
2049

    
2050
    dinfo = drive_get(IF_SD, 0, 0);
2051
    if (!dinfo) {
2052
        fprintf(stderr, "qemu: missing SecureDigital device\n");
2053
        exit(1);
2054
    }
2055
    s->mmc = pxa2xx_mmci_init(address_space, 0x41100000, dinfo->bdrv,
2056
                    qdev_get_gpio_in(s->pic, PXA2XX_PIC_MMC),
2057
                    qdev_get_gpio_in(s->dma, PXA2XX_RX_RQ_MMCI),
2058
                    qdev_get_gpio_in(s->dma, PXA2XX_TX_RQ_MMCI));
2059

    
2060
    for (i = 0; pxa270_serial[i].io_base; i++) {
2061
        if (serial_hds[i]) {
2062
            serial_mm_init(address_space, pxa270_serial[i].io_base, 2,
2063
                           qdev_get_gpio_in(s->pic, pxa270_serial[i].irqn),
2064
                           14857000 / 16, serial_hds[i],
2065
                           DEVICE_NATIVE_ENDIAN);
2066
        } else {
2067
            break;
2068
        }
2069
    }
2070
    if (serial_hds[i])
2071
        s->fir = pxa2xx_fir_init(address_space, 0x40800000,
2072
                        qdev_get_gpio_in(s->pic, PXA2XX_PIC_ICP),
2073
                        qdev_get_gpio_in(s->dma, PXA2XX_RX_RQ_ICP),
2074
                        qdev_get_gpio_in(s->dma, PXA2XX_TX_RQ_ICP),
2075
                        serial_hds[i]);
2076

    
2077
    s->lcd = pxa2xx_lcdc_init(address_space, 0x44000000,
2078
                    qdev_get_gpio_in(s->pic, PXA2XX_PIC_LCD));
2079

    
2080
    s->cm_base = 0x41300000;
2081
    s->cm_regs[CCCR >> 2] = 0x02000210;        /* 416.0 MHz */
2082
    s->clkcfg = 0x00000009;                /* Turbo mode active */
2083
    memory_region_init_io(&s->cm_iomem, &pxa2xx_cm_ops, s, "pxa2xx-cm", 0x1000);
2084
    memory_region_add_subregion(address_space, s->cm_base, &s->cm_iomem);
2085
    vmstate_register(NULL, 0, &vmstate_pxa2xx_cm, s);
2086

    
2087
    pxa2xx_setup_cp14(s);
2088

    
2089
    s->mm_base = 0x48000000;
2090
    s->mm_regs[MDMRS >> 2] = 0x00020002;
2091
    s->mm_regs[MDREFR >> 2] = 0x03ca4000;
2092
    s->mm_regs[MECR >> 2] = 0x00000001;        /* Two PC Card sockets */
2093
    memory_region_init_io(&s->mm_iomem, &pxa2xx_mm_ops, s, "pxa2xx-mm", 0x1000);
2094
    memory_region_add_subregion(address_space, s->mm_base, &s->mm_iomem);
2095
    vmstate_register(NULL, 0, &vmstate_pxa2xx_mm, s);
2096

    
2097
    s->pm_base = 0x40f00000;
2098
    memory_region_init_io(&s->pm_iomem, &pxa2xx_pm_ops, s, "pxa2xx-pm", 0x100);
2099
    memory_region_add_subregion(address_space, s->pm_base, &s->pm_iomem);
2100
    vmstate_register(NULL, 0, &vmstate_pxa2xx_pm, s);
2101

    
2102
    for (i = 0; pxa27x_ssp[i].io_base; i ++);
2103
    s->ssp = (SSIBus **)g_malloc0(sizeof(SSIBus *) * i);
2104
    for (i = 0; pxa27x_ssp[i].io_base; i ++) {
2105
        DeviceState *dev;
2106
        dev = sysbus_create_simple("pxa2xx-ssp", pxa27x_ssp[i].io_base,
2107
                        qdev_get_gpio_in(s->pic, pxa27x_ssp[i].irqn));
2108
        s->ssp[i] = (SSIBus *)qdev_get_child_bus(dev, "ssi");
2109
    }
2110

    
2111
    if (usb_enabled(false)) {
2112
        sysbus_create_simple("sysbus-ohci", 0x4c000000,
2113
                        qdev_get_gpio_in(s->pic, PXA2XX_PIC_USBH1));
2114
    }
2115

    
2116
    s->pcmcia[0] = pxa2xx_pcmcia_init(address_space, 0x20000000);
2117
    s->pcmcia[1] = pxa2xx_pcmcia_init(address_space, 0x30000000);
2118

    
2119
    sysbus_create_simple("pxa2xx_rtc", 0x40900000,
2120
                    qdev_get_gpio_in(s->pic, PXA2XX_PIC_RTCALARM));
2121

    
2122
    s->i2c[0] = pxa2xx_i2c_init(0x40301600,
2123
                    qdev_get_gpio_in(s->pic, PXA2XX_PIC_I2C), 0xffff);
2124
    s->i2c[1] = pxa2xx_i2c_init(0x40f00100,
2125
                    qdev_get_gpio_in(s->pic, PXA2XX_PIC_PWRI2C), 0xff);
2126

    
2127
    s->i2s = pxa2xx_i2s_init(address_space, 0x40400000,
2128
                    qdev_get_gpio_in(s->pic, PXA2XX_PIC_I2S),
2129
                    qdev_get_gpio_in(s->dma, PXA2XX_RX_RQ_I2S),
2130
                    qdev_get_gpio_in(s->dma, PXA2XX_TX_RQ_I2S));
2131

    
2132
    s->kp = pxa27x_keypad_init(address_space, 0x41500000,
2133
                    qdev_get_gpio_in(s->pic, PXA2XX_PIC_KEYPAD));
2134

    
2135
    /* GPIO1 resets the processor */
2136
    /* The handler can be overridden by board-specific code */
2137
    qdev_connect_gpio_out(s->gpio, 1, s->reset);
2138
    return s;
2139
}
2140

    
2141
/* Initialise a PXA255 integrated chip (ARM based core).  */
2142
PXA2xxState *pxa255_init(MemoryRegion *address_space, unsigned int sdram_size)
2143
{
2144
    PXA2xxState *s;
2145
    int i;
2146
    DriveInfo *dinfo;
2147

    
2148
    s = (PXA2xxState *) g_malloc0(sizeof(PXA2xxState));
2149

    
2150
    s->cpu = cpu_arm_init("pxa255");
2151
    if (s->cpu == NULL) {
2152
        fprintf(stderr, "Unable to find CPU definition\n");
2153
        exit(1);
2154
    }
2155
    s->reset = qemu_allocate_irqs(pxa2xx_reset, s, 1)[0];
2156

    
2157
    /* SDRAM & Internal Memory Storage */
2158
    memory_region_init_ram(&s->sdram, "pxa255.sdram", sdram_size);
2159
    vmstate_register_ram_global(&s->sdram);
2160
    memory_region_add_subregion(address_space, PXA2XX_SDRAM_BASE, &s->sdram);
2161
    memory_region_init_ram(&s->internal, "pxa255.internal",
2162
                           PXA2XX_INTERNAL_SIZE);
2163
    vmstate_register_ram_global(&s->internal);
2164
    memory_region_add_subregion(address_space, PXA2XX_INTERNAL_BASE,
2165
                                &s->internal);
2166

    
2167
    s->pic = pxa2xx_pic_init(0x40d00000, s->cpu);
2168

    
2169
    s->dma = pxa255_dma_init(0x40000000,
2170
                    qdev_get_gpio_in(s->pic, PXA2XX_PIC_DMA));
2171

    
2172
    sysbus_create_varargs("pxa25x-timer", 0x40a00000,
2173
                    qdev_get_gpio_in(s->pic, PXA2XX_PIC_OST_0 + 0),
2174
                    qdev_get_gpio_in(s->pic, PXA2XX_PIC_OST_0 + 1),
2175
                    qdev_get_gpio_in(s->pic, PXA2XX_PIC_OST_0 + 2),
2176
                    qdev_get_gpio_in(s->pic, PXA2XX_PIC_OST_0 + 3),
2177
                    NULL);
2178

    
2179
    s->gpio = pxa2xx_gpio_init(0x40e00000, &s->cpu->env, s->pic, 85);
2180

    
2181
    dinfo = drive_get(IF_SD, 0, 0);
2182
    if (!dinfo) {
2183
        fprintf(stderr, "qemu: missing SecureDigital device\n");
2184
        exit(1);
2185
    }
2186
    s->mmc = pxa2xx_mmci_init(address_space, 0x41100000, dinfo->bdrv,
2187
                    qdev_get_gpio_in(s->pic, PXA2XX_PIC_MMC),
2188
                    qdev_get_gpio_in(s->dma, PXA2XX_RX_RQ_MMCI),
2189
                    qdev_get_gpio_in(s->dma, PXA2XX_TX_RQ_MMCI));
2190

    
2191
    for (i = 0; pxa255_serial[i].io_base; i++) {
2192
        if (serial_hds[i]) {
2193
            serial_mm_init(address_space, pxa255_serial[i].io_base, 2,
2194
                           qdev_get_gpio_in(s->pic, pxa255_serial[i].irqn),
2195
                           14745600 / 16, serial_hds[i],
2196
                           DEVICE_NATIVE_ENDIAN);
2197
        } else {
2198
            break;
2199
        }
2200
    }
2201
    if (serial_hds[i])
2202
        s->fir = pxa2xx_fir_init(address_space, 0x40800000,
2203
                        qdev_get_gpio_in(s->pic, PXA2XX_PIC_ICP),
2204
                        qdev_get_gpio_in(s->dma, PXA2XX_RX_RQ_ICP),
2205
                        qdev_get_gpio_in(s->dma, PXA2XX_TX_RQ_ICP),
2206
                        serial_hds[i]);
2207

    
2208
    s->lcd = pxa2xx_lcdc_init(address_space, 0x44000000,
2209
                    qdev_get_gpio_in(s->pic, PXA2XX_PIC_LCD));
2210

    
2211
    s->cm_base = 0x41300000;
2212
    s->cm_regs[CCCR >> 2] = 0x02000210;        /* 416.0 MHz */
2213
    s->clkcfg = 0x00000009;                /* Turbo mode active */
2214
    memory_region_init_io(&s->cm_iomem, &pxa2xx_cm_ops, s, "pxa2xx-cm", 0x1000);
2215
    memory_region_add_subregion(address_space, s->cm_base, &s->cm_iomem);
2216
    vmstate_register(NULL, 0, &vmstate_pxa2xx_cm, s);
2217

    
2218
    pxa2xx_setup_cp14(s);
2219

    
2220
    s->mm_base = 0x48000000;
2221
    s->mm_regs[MDMRS >> 2] = 0x00020002;
2222
    s->mm_regs[MDREFR >> 2] = 0x03ca4000;
2223
    s->mm_regs[MECR >> 2] = 0x00000001;        /* Two PC Card sockets */
2224
    memory_region_init_io(&s->mm_iomem, &pxa2xx_mm_ops, s, "pxa2xx-mm", 0x1000);
2225
    memory_region_add_subregion(address_space, s->mm_base, &s->mm_iomem);
2226
    vmstate_register(NULL, 0, &vmstate_pxa2xx_mm, s);
2227

    
2228
    s->pm_base = 0x40f00000;
2229
    memory_region_init_io(&s->pm_iomem, &pxa2xx_pm_ops, s, "pxa2xx-pm", 0x100);
2230
    memory_region_add_subregion(address_space, s->pm_base, &s->pm_iomem);
2231
    vmstate_register(NULL, 0, &vmstate_pxa2xx_pm, s);
2232

    
2233
    for (i = 0; pxa255_ssp[i].io_base; i ++);
2234
    s->ssp = (SSIBus **)g_malloc0(sizeof(SSIBus *) * i);
2235
    for (i = 0; pxa255_ssp[i].io_base; i ++) {
2236
        DeviceState *dev;
2237
        dev = sysbus_create_simple("pxa2xx-ssp", pxa255_ssp[i].io_base,
2238
                        qdev_get_gpio_in(s->pic, pxa255_ssp[i].irqn));
2239
        s->ssp[i] = (SSIBus *)qdev_get_child_bus(dev, "ssi");
2240
    }
2241

    
2242
    if (usb_enabled(false)) {
2243
        sysbus_create_simple("sysbus-ohci", 0x4c000000,
2244
                        qdev_get_gpio_in(s->pic, PXA2XX_PIC_USBH1));
2245
    }
2246

    
2247
    s->pcmcia[0] = pxa2xx_pcmcia_init(address_space, 0x20000000);
2248
    s->pcmcia[1] = pxa2xx_pcmcia_init(address_space, 0x30000000);
2249

    
2250
    sysbus_create_simple("pxa2xx_rtc", 0x40900000,
2251
                    qdev_get_gpio_in(s->pic, PXA2XX_PIC_RTCALARM));
2252

    
2253
    s->i2c[0] = pxa2xx_i2c_init(0x40301600,
2254
                    qdev_get_gpio_in(s->pic, PXA2XX_PIC_I2C), 0xffff);
2255
    s->i2c[1] = pxa2xx_i2c_init(0x40f00100,
2256
                    qdev_get_gpio_in(s->pic, PXA2XX_PIC_PWRI2C), 0xff);
2257

    
2258
    s->i2s = pxa2xx_i2s_init(address_space, 0x40400000,
2259
                    qdev_get_gpio_in(s->pic, PXA2XX_PIC_I2S),
2260
                    qdev_get_gpio_in(s->dma, PXA2XX_RX_RQ_I2S),
2261
                    qdev_get_gpio_in(s->dma, PXA2XX_TX_RQ_I2S));
2262

    
2263
    /* GPIO1 resets the processor */
2264
    /* The handler can be overridden by board-specific code */
2265
    qdev_connect_gpio_out(s->gpio, 1, s->reset);
2266
    return s;
2267
}
2268

    
2269
static void pxa2xx_ssp_class_init(ObjectClass *klass, void *data)
2270
{
2271
    SysBusDeviceClass *sdc = SYS_BUS_DEVICE_CLASS(klass);
2272

    
2273
    sdc->init = pxa2xx_ssp_init;
2274
}
2275

    
2276
static TypeInfo pxa2xx_ssp_info = {
2277
    .name          = "pxa2xx-ssp",
2278
    .parent        = TYPE_SYS_BUS_DEVICE,
2279
    .instance_size = sizeof(PXA2xxSSPState),
2280
    .class_init    = pxa2xx_ssp_class_init,
2281
};
2282

    
2283
static void pxa2xx_register_types(void)
2284
{
2285
    type_register_static(&pxa2xx_i2c_slave_info);
2286
    type_register_static(&pxa2xx_ssp_info);
2287
    type_register_static(&pxa2xx_i2c_info);
2288
    type_register_static(&pxa2xx_rtc_sysbus_info);
2289
}
2290

    
2291
type_init(pxa2xx_register_types)