Statistics
| Branch: | Revision:

root / hw / xilinx_spi.c @ 9c17d615

History | View | Annotate | Download (9.5 kB)

1
/*
2
 * QEMU model of the Xilinx SPI Controller
3
 *
4
 * Copyright (C) 2010 Edgar E. Iglesias.
5
 * Copyright (C) 2012 Peter A. G. Crosthwaite <peter.crosthwaite@petalogix.com>
6
 * Copyright (C) 2012 PetaLogix
7
 *
8
 * Permission is hereby granted, free of charge, to any person obtaining a copy
9
 * of this software and associated documentation files (the "Software"), to deal
10
 * in the Software without restriction, including without limitation the rights
11
 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
12
 * copies of the Software, and to permit persons to whom the Software is
13
 * furnished to do so, subject to the following conditions:
14
 *
15
 * The above copyright notice and this permission notice shall be included in
16
 * all copies or substantial portions of the Software.
17
 *
18
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
19
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
20
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
21
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
22
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
23
 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
24
 * THE SOFTWARE.
25
 */
26

    
27
#include "sysbus.h"
28
#include "sysemu/sysemu.h"
29
#include "qemu/log.h"
30
#include "fifo.h"
31

    
32
#include "ssi.h"
33

    
34
#ifdef XILINX_SPI_ERR_DEBUG
35
#define DB_PRINT(...) do { \
36
    fprintf(stderr,  ": %s: ", __func__); \
37
    fprintf(stderr, ## __VA_ARGS__); \
38
    } while (0);
39
#else
40
    #define DB_PRINT(...)
41
#endif
42

    
43
#define R_DGIER     (0x1c / 4)
44
#define R_DGIER_IE  (1 << 31)
45

    
46
#define R_IPISR     (0x20 / 4)
47
#define IRQ_DRR_NOT_EMPTY    (1 << (31 - 23))
48
#define IRQ_DRR_OVERRUN      (1 << (31 - 26))
49
#define IRQ_DRR_FULL         (1 << (31 - 27))
50
#define IRQ_TX_FF_HALF_EMPTY (1 << 6)
51
#define IRQ_DTR_UNDERRUN     (1 << 3)
52
#define IRQ_DTR_EMPTY        (1 << (31 - 29))
53

    
54
#define R_IPIER     (0x28 / 4)
55
#define R_SRR       (0x40 / 4)
56
#define R_SPICR     (0x60 / 4)
57
#define R_SPICR_TXFF_RST     (1 << 5)
58
#define R_SPICR_RXFF_RST     (1 << 6)
59
#define R_SPICR_MTI          (1 << 8)
60

    
61
#define R_SPISR     (0x64 / 4)
62
#define SR_TX_FULL    (1 << 3)
63
#define SR_TX_EMPTY   (1 << 2)
64
#define SR_RX_FULL    (1 << 1)
65
#define SR_RX_EMPTY   (1 << 0)
66

    
67
#define R_SPIDTR    (0x68 / 4)
68
#define R_SPIDRR    (0x6C / 4)
69
#define R_SPISSR    (0x70 / 4)
70
#define R_TX_FF_OCY (0x74 / 4)
71
#define R_RX_FF_OCY (0x78 / 4)
72
#define R_MAX       (0x7C / 4)
73

    
74
#define FIFO_CAPACITY 256
75

    
76
typedef struct XilinxSPI {
77
    SysBusDevice busdev;
78
    MemoryRegion mmio;
79

    
80
    qemu_irq irq;
81
    int irqline;
82

    
83
    uint8_t num_cs;
84
    qemu_irq *cs_lines;
85

    
86
    SSIBus *spi;
87

    
88
    Fifo8 rx_fifo;
89
    Fifo8 tx_fifo;
90

    
91
    uint32_t regs[R_MAX];
92
} XilinxSPI;
93

    
94
static void txfifo_reset(XilinxSPI *s)
95
{
96
    fifo8_reset(&s->tx_fifo);
97

    
98
    s->regs[R_SPISR] &= ~SR_TX_FULL;
99
    s->regs[R_SPISR] |= SR_TX_EMPTY;
100
}
101

    
102
static void rxfifo_reset(XilinxSPI *s)
103
{
104
    fifo8_reset(&s->rx_fifo);
105

    
106
    s->regs[R_SPISR] |= SR_RX_EMPTY;
107
    s->regs[R_SPISR] &= ~SR_RX_FULL;
108
}
109

    
110
static void xlx_spi_update_cs(XilinxSPI *s)
111
{
112
   int i;
113

    
114
    for (i = 0; i < s->num_cs; ++i) {
115
        qemu_set_irq(s->cs_lines[i], !(~s->regs[R_SPISSR] & 1 << i));
116
    }
117
}
118

    
119
static void xlx_spi_update_irq(XilinxSPI *s)
120
{
121
    uint32_t pending;
122

    
123
    s->regs[R_IPISR] |=
124
            (!fifo8_is_empty(&s->rx_fifo) ? IRQ_DRR_NOT_EMPTY : 0) |
125
            (fifo8_is_full(&s->rx_fifo) ? IRQ_DRR_FULL : 0);
126

    
127
    pending = s->regs[R_IPISR] & s->regs[R_IPIER];
128

    
129
    pending = pending && (s->regs[R_DGIER] & R_DGIER_IE);
130
    pending = !!pending;
131

    
132
    /* This call lies right in the data paths so don't call the
133
       irq chain unless things really changed.  */
134
    if (pending != s->irqline) {
135
        s->irqline = pending;
136
        DB_PRINT("irq_change of state %d ISR:%x IER:%X\n",
137
                    pending, s->regs[R_IPISR], s->regs[R_IPIER]);
138
        qemu_set_irq(s->irq, pending);
139
    }
140

    
141
}
142

    
143
static void xlx_spi_do_reset(XilinxSPI *s)
144
{
145
    memset(s->regs, 0, sizeof s->regs);
146

    
147
    rxfifo_reset(s);
148
    txfifo_reset(s);
149

    
150
    s->regs[R_SPISSR] = ~0;
151
    xlx_spi_update_irq(s);
152
    xlx_spi_update_cs(s);
153
}
154

    
155
static void xlx_spi_reset(DeviceState *d)
156
{
157
    xlx_spi_do_reset(DO_UPCAST(XilinxSPI, busdev.qdev, d));
158
}
159

    
160
static inline int spi_master_enabled(XilinxSPI *s)
161
{
162
    return !(s->regs[R_SPICR] & R_SPICR_MTI);
163
}
164

    
165
static void spi_flush_txfifo(XilinxSPI *s)
166
{
167
    uint32_t tx;
168
    uint32_t rx;
169

    
170
    while (!fifo8_is_empty(&s->tx_fifo)) {
171
        tx = (uint32_t)fifo8_pop(&s->tx_fifo);
172
        DB_PRINT("data tx:%x\n", tx);
173
        rx = ssi_transfer(s->spi, tx);
174
        DB_PRINT("data rx:%x\n", rx);
175
        if (fifo8_is_full(&s->rx_fifo)) {
176
            s->regs[R_IPISR] |= IRQ_DRR_OVERRUN;
177
        } else {
178
            fifo8_push(&s->rx_fifo, (uint8_t)rx);
179
            if (fifo8_is_full(&s->rx_fifo)) {
180
                s->regs[R_SPISR] |= SR_RX_FULL;
181
                s->regs[R_IPISR] |= IRQ_DRR_FULL;
182
            }
183
        }
184

    
185
        s->regs[R_SPISR] &= ~SR_RX_EMPTY;
186
        s->regs[R_SPISR] &= ~SR_TX_FULL;
187
        s->regs[R_SPISR] |= SR_TX_EMPTY;
188

    
189
        s->regs[R_IPISR] |= IRQ_DTR_EMPTY;
190
        s->regs[R_IPISR] |= IRQ_DRR_NOT_EMPTY;
191
    }
192

    
193
}
194

    
195
static uint64_t
196
spi_read(void *opaque, hwaddr addr, unsigned int size)
197
{
198
    XilinxSPI *s = opaque;
199
    uint32_t r = 0;
200

    
201
    addr >>= 2;
202
    switch (addr) {
203
    case R_SPIDRR:
204
        if (fifo8_is_empty(&s->rx_fifo)) {
205
            DB_PRINT("Read from empty FIFO!\n");
206
            return 0xdeadbeef;
207
        }
208

    
209
        s->regs[R_SPISR] &= ~SR_RX_FULL;
210
        r = fifo8_pop(&s->rx_fifo);
211
        if (fifo8_is_empty(&s->rx_fifo)) {
212
            s->regs[R_SPISR] |= SR_RX_EMPTY;
213
        }
214
        break;
215

    
216
    case R_SPISR:
217
        r = s->regs[addr];
218
        break;
219

    
220
    default:
221
        if (addr < ARRAY_SIZE(s->regs)) {
222
            r = s->regs[addr];
223
        }
224
        break;
225

    
226
    }
227
    DB_PRINT("addr=" TARGET_FMT_plx " = %x\n", addr * 4, r);
228
    xlx_spi_update_irq(s);
229
    return r;
230
}
231

    
232
static void
233
spi_write(void *opaque, hwaddr addr,
234
            uint64_t val64, unsigned int size)
235
{
236
    XilinxSPI *s = opaque;
237
    uint32_t value = val64;
238

    
239
    DB_PRINT("addr=" TARGET_FMT_plx " = %x\n", addr, value);
240
    addr >>= 2;
241
    switch (addr) {
242
    case R_SRR:
243
        if (value != 0xa) {
244
            DB_PRINT("Invalid write to SRR %x\n", value);
245
        } else {
246
            xlx_spi_do_reset(s);
247
        }
248
        break;
249

    
250
    case R_SPIDTR:
251
        s->regs[R_SPISR] &= ~SR_TX_EMPTY;
252
        fifo8_push(&s->tx_fifo, (uint8_t)value);
253
        if (fifo8_is_full(&s->tx_fifo)) {
254
            s->regs[R_SPISR] |= SR_TX_FULL;
255
        }
256
        if (!spi_master_enabled(s)) {
257
            goto done;
258
        } else {
259
            DB_PRINT("DTR and master enabled\n");
260
        }
261
        spi_flush_txfifo(s);
262
        break;
263

    
264
    case R_SPISR:
265
        DB_PRINT("Invalid write to SPISR %x\n", value);
266
        break;
267

    
268
    case R_IPISR:
269
        /* Toggle the bits.  */
270
        s->regs[addr] ^= value;
271
        break;
272

    
273
    /* Slave Select Register.  */
274
    case R_SPISSR:
275
        s->regs[addr] = value;
276
        xlx_spi_update_cs(s);
277
        break;
278

    
279
    case R_SPICR:
280
        /* FIXME: reset irq and sr state to empty queues.  */
281
        if (value & R_SPICR_RXFF_RST) {
282
            rxfifo_reset(s);
283
        }
284

    
285
        if (value & R_SPICR_TXFF_RST) {
286
            txfifo_reset(s);
287
        }
288
        value &= ~(R_SPICR_RXFF_RST | R_SPICR_TXFF_RST);
289
        s->regs[addr] = value;
290

    
291
        if (!(value & R_SPICR_MTI)) {
292
            spi_flush_txfifo(s);
293
        }
294
        break;
295

    
296
    default:
297
        if (addr < ARRAY_SIZE(s->regs)) {
298
            s->regs[addr] = value;
299
        }
300
        break;
301
    }
302

    
303
done:
304
    xlx_spi_update_irq(s);
305
}
306

    
307
static const MemoryRegionOps spi_ops = {
308
    .read = spi_read,
309
    .write = spi_write,
310
    .endianness = DEVICE_NATIVE_ENDIAN,
311
    .valid = {
312
        .min_access_size = 4,
313
        .max_access_size = 4
314
    }
315
};
316

    
317
static int xilinx_spi_init(SysBusDevice *dev)
318
{
319
    int i;
320
    XilinxSPI *s = FROM_SYSBUS(typeof(*s), dev);
321

    
322
    DB_PRINT("\n");
323

    
324
    s->spi = ssi_create_bus(&dev->qdev, "spi");
325

    
326
    sysbus_init_irq(dev, &s->irq);
327
    s->cs_lines = g_new(qemu_irq, s->num_cs);
328
    ssi_auto_connect_slaves(DEVICE(s), s->cs_lines, s->spi);
329
    for (i = 0; i < s->num_cs; ++i) {
330
        sysbus_init_irq(dev, &s->cs_lines[i]);
331
    }
332

    
333
    memory_region_init_io(&s->mmio, &spi_ops, s, "xilinx-spi", R_MAX * 4);
334
    sysbus_init_mmio(dev, &s->mmio);
335

    
336
    s->irqline = -1;
337

    
338
    fifo8_create(&s->tx_fifo, FIFO_CAPACITY);
339
    fifo8_create(&s->rx_fifo, FIFO_CAPACITY);
340

    
341
    return 0;
342
}
343

    
344
static const VMStateDescription vmstate_xilinx_spi = {
345
    .name = "xilinx_spi",
346
    .version_id = 1,
347
    .minimum_version_id = 1,
348
    .minimum_version_id_old = 1,
349
    .fields = (VMStateField[]) {
350
        VMSTATE_FIFO8(tx_fifo, XilinxSPI),
351
        VMSTATE_FIFO8(rx_fifo, XilinxSPI),
352
        VMSTATE_UINT32_ARRAY(regs, XilinxSPI, R_MAX),
353
        VMSTATE_END_OF_LIST()
354
    }
355
};
356

    
357
static Property xilinx_spi_properties[] = {
358
    DEFINE_PROP_UINT8("num-ss-bits", XilinxSPI, num_cs, 1),
359
    DEFINE_PROP_END_OF_LIST(),
360
};
361

    
362
static void xilinx_spi_class_init(ObjectClass *klass, void *data)
363
{
364
    DeviceClass *dc = DEVICE_CLASS(klass);
365
    SysBusDeviceClass *k = SYS_BUS_DEVICE_CLASS(klass);
366

    
367
    k->init = xilinx_spi_init;
368
    dc->reset = xlx_spi_reset;
369
    dc->props = xilinx_spi_properties;
370
    dc->vmsd = &vmstate_xilinx_spi;
371
}
372

    
373
static TypeInfo xilinx_spi_info = {
374
    .name           = "xlnx.xps-spi",
375
    .parent         = TYPE_SYS_BUS_DEVICE,
376
    .instance_size  = sizeof(XilinxSPI),
377
    .class_init     = xilinx_spi_class_init,
378
};
379

    
380
static void xilinx_spi_register_types(void)
381
{
382
    type_register_static(&xilinx_spi_info);
383
}
384

    
385
type_init(xilinx_spi_register_types)