Statistics
| Branch: | Revision:

root / target-i386 / kvm.c @ 9c17d615

History | View | Annotate | Download (63.3 kB)

1
/*
2
 * QEMU KVM support
3
 *
4
 * Copyright (C) 2006-2008 Qumranet Technologies
5
 * Copyright IBM, Corp. 2008
6
 *
7
 * Authors:
8
 *  Anthony Liguori   <aliguori@us.ibm.com>
9
 *
10
 * This work is licensed under the terms of the GNU GPL, version 2 or later.
11
 * See the COPYING file in the top-level directory.
12
 *
13
 */
14

    
15
#include <sys/types.h>
16
#include <sys/ioctl.h>
17
#include <sys/mman.h>
18
#include <sys/utsname.h>
19

    
20
#include <linux/kvm.h>
21
#include <linux/kvm_para.h>
22

    
23
#include "qemu-common.h"
24
#include "sysemu/sysemu.h"
25
#include "sysemu/kvm.h"
26
#include "kvm_i386.h"
27
#include "cpu.h"
28
#include "exec/gdbstub.h"
29
#include "qemu/host-utils.h"
30
#include "qemu/config-file.h"
31
#include "hw/pc.h"
32
#include "hw/apic.h"
33
#include "exec/ioport.h"
34
#include "hyperv.h"
35
#include "hw/pci/pci.h"
36

    
37
//#define DEBUG_KVM
38

    
39
#ifdef DEBUG_KVM
40
#define DPRINTF(fmt, ...) \
41
    do { fprintf(stderr, fmt, ## __VA_ARGS__); } while (0)
42
#else
43
#define DPRINTF(fmt, ...) \
44
    do { } while (0)
45
#endif
46

    
47
#define MSR_KVM_WALL_CLOCK  0x11
48
#define MSR_KVM_SYSTEM_TIME 0x12
49

    
50
#ifndef BUS_MCEERR_AR
51
#define BUS_MCEERR_AR 4
52
#endif
53
#ifndef BUS_MCEERR_AO
54
#define BUS_MCEERR_AO 5
55
#endif
56

    
57
const KVMCapabilityInfo kvm_arch_required_capabilities[] = {
58
    KVM_CAP_INFO(SET_TSS_ADDR),
59
    KVM_CAP_INFO(EXT_CPUID),
60
    KVM_CAP_INFO(MP_STATE),
61
    KVM_CAP_LAST_INFO
62
};
63

    
64
static bool has_msr_star;
65
static bool has_msr_hsave_pa;
66
static bool has_msr_tsc_deadline;
67
static bool has_msr_async_pf_en;
68
static bool has_msr_pv_eoi_en;
69
static bool has_msr_misc_enable;
70
static int lm_capable_kernel;
71

    
72
bool kvm_allows_irq0_override(void)
73
{
74
    return !kvm_irqchip_in_kernel() || kvm_has_gsi_routing();
75
}
76

    
77
static struct kvm_cpuid2 *try_get_cpuid(KVMState *s, int max)
78
{
79
    struct kvm_cpuid2 *cpuid;
80
    int r, size;
81

    
82
    size = sizeof(*cpuid) + max * sizeof(*cpuid->entries);
83
    cpuid = (struct kvm_cpuid2 *)g_malloc0(size);
84
    cpuid->nent = max;
85
    r = kvm_ioctl(s, KVM_GET_SUPPORTED_CPUID, cpuid);
86
    if (r == 0 && cpuid->nent >= max) {
87
        r = -E2BIG;
88
    }
89
    if (r < 0) {
90
        if (r == -E2BIG) {
91
            g_free(cpuid);
92
            return NULL;
93
        } else {
94
            fprintf(stderr, "KVM_GET_SUPPORTED_CPUID failed: %s\n",
95
                    strerror(-r));
96
            exit(1);
97
        }
98
    }
99
    return cpuid;
100
}
101

    
102
/* Run KVM_GET_SUPPORTED_CPUID ioctl(), allocating a buffer large enough
103
 * for all entries.
104
 */
105
static struct kvm_cpuid2 *get_supported_cpuid(KVMState *s)
106
{
107
    struct kvm_cpuid2 *cpuid;
108
    int max = 1;
109
    while ((cpuid = try_get_cpuid(s, max)) == NULL) {
110
        max *= 2;
111
    }
112
    return cpuid;
113
}
114

    
115
struct kvm_para_features {
116
    int cap;
117
    int feature;
118
} para_features[] = {
119
    { KVM_CAP_CLOCKSOURCE, KVM_FEATURE_CLOCKSOURCE },
120
    { KVM_CAP_NOP_IO_DELAY, KVM_FEATURE_NOP_IO_DELAY },
121
    { KVM_CAP_PV_MMU, KVM_FEATURE_MMU_OP },
122
    { KVM_CAP_ASYNC_PF, KVM_FEATURE_ASYNC_PF },
123
    { -1, -1 }
124
};
125

    
126
static int get_para_features(KVMState *s)
127
{
128
    int i, features = 0;
129

    
130
    for (i = 0; i < ARRAY_SIZE(para_features) - 1; i++) {
131
        if (kvm_check_extension(s, para_features[i].cap)) {
132
            features |= (1 << para_features[i].feature);
133
        }
134
    }
135

    
136
    return features;
137
}
138

    
139

    
140
/* Returns the value for a specific register on the cpuid entry
141
 */
142
static uint32_t cpuid_entry_get_reg(struct kvm_cpuid_entry2 *entry, int reg)
143
{
144
    uint32_t ret = 0;
145
    switch (reg) {
146
    case R_EAX:
147
        ret = entry->eax;
148
        break;
149
    case R_EBX:
150
        ret = entry->ebx;
151
        break;
152
    case R_ECX:
153
        ret = entry->ecx;
154
        break;
155
    case R_EDX:
156
        ret = entry->edx;
157
        break;
158
    }
159
    return ret;
160
}
161

    
162
/* Find matching entry for function/index on kvm_cpuid2 struct
163
 */
164
static struct kvm_cpuid_entry2 *cpuid_find_entry(struct kvm_cpuid2 *cpuid,
165
                                                 uint32_t function,
166
                                                 uint32_t index)
167
{
168
    int i;
169
    for (i = 0; i < cpuid->nent; ++i) {
170
        if (cpuid->entries[i].function == function &&
171
            cpuid->entries[i].index == index) {
172
            return &cpuid->entries[i];
173
        }
174
    }
175
    /* not found: */
176
    return NULL;
177
}
178

    
179
uint32_t kvm_arch_get_supported_cpuid(KVMState *s, uint32_t function,
180
                                      uint32_t index, int reg)
181
{
182
    struct kvm_cpuid2 *cpuid;
183
    uint32_t ret = 0;
184
    uint32_t cpuid_1_edx;
185
    bool found = false;
186

    
187
    cpuid = get_supported_cpuid(s);
188

    
189
    struct kvm_cpuid_entry2 *entry = cpuid_find_entry(cpuid, function, index);
190
    if (entry) {
191
        found = true;
192
        ret = cpuid_entry_get_reg(entry, reg);
193
    }
194

    
195
    /* Fixups for the data returned by KVM, below */
196

    
197
    if (function == 1 && reg == R_EDX) {
198
        /* KVM before 2.6.30 misreports the following features */
199
        ret |= CPUID_MTRR | CPUID_PAT | CPUID_MCE | CPUID_MCA;
200
    } else if (function == 1 && reg == R_ECX) {
201
        /* We can set the hypervisor flag, even if KVM does not return it on
202
         * GET_SUPPORTED_CPUID
203
         */
204
        ret |= CPUID_EXT_HYPERVISOR;
205
        /* tsc-deadline flag is not returned by GET_SUPPORTED_CPUID, but it
206
         * can be enabled if the kernel has KVM_CAP_TSC_DEADLINE_TIMER,
207
         * and the irqchip is in the kernel.
208
         */
209
        if (kvm_irqchip_in_kernel() &&
210
                kvm_check_extension(s, KVM_CAP_TSC_DEADLINE_TIMER)) {
211
            ret |= CPUID_EXT_TSC_DEADLINE_TIMER;
212
        }
213

    
214
        /* x2apic is reported by GET_SUPPORTED_CPUID, but it can't be enabled
215
         * without the in-kernel irqchip
216
         */
217
        if (!kvm_irqchip_in_kernel()) {
218
            ret &= ~CPUID_EXT_X2APIC;
219
        }
220
    } else if (function == 0x80000001 && reg == R_EDX) {
221
        /* On Intel, kvm returns cpuid according to the Intel spec,
222
         * so add missing bits according to the AMD spec:
223
         */
224
        cpuid_1_edx = kvm_arch_get_supported_cpuid(s, 1, 0, R_EDX);
225
        ret |= cpuid_1_edx & CPUID_EXT2_AMD_ALIASES;
226
    }
227

    
228
    g_free(cpuid);
229

    
230
    /* fallback for older kernels */
231
    if ((function == KVM_CPUID_FEATURES) && !found) {
232
        ret = get_para_features(s);
233
    }
234

    
235
    return ret;
236
}
237

    
238
typedef struct HWPoisonPage {
239
    ram_addr_t ram_addr;
240
    QLIST_ENTRY(HWPoisonPage) list;
241
} HWPoisonPage;
242

    
243
static QLIST_HEAD(, HWPoisonPage) hwpoison_page_list =
244
    QLIST_HEAD_INITIALIZER(hwpoison_page_list);
245

    
246
static void kvm_unpoison_all(void *param)
247
{
248
    HWPoisonPage *page, *next_page;
249

    
250
    QLIST_FOREACH_SAFE(page, &hwpoison_page_list, list, next_page) {
251
        QLIST_REMOVE(page, list);
252
        qemu_ram_remap(page->ram_addr, TARGET_PAGE_SIZE);
253
        g_free(page);
254
    }
255
}
256

    
257
static void kvm_hwpoison_page_add(ram_addr_t ram_addr)
258
{
259
    HWPoisonPage *page;
260

    
261
    QLIST_FOREACH(page, &hwpoison_page_list, list) {
262
        if (page->ram_addr == ram_addr) {
263
            return;
264
        }
265
    }
266
    page = g_malloc(sizeof(HWPoisonPage));
267
    page->ram_addr = ram_addr;
268
    QLIST_INSERT_HEAD(&hwpoison_page_list, page, list);
269
}
270

    
271
static int kvm_get_mce_cap_supported(KVMState *s, uint64_t *mce_cap,
272
                                     int *max_banks)
273
{
274
    int r;
275

    
276
    r = kvm_check_extension(s, KVM_CAP_MCE);
277
    if (r > 0) {
278
        *max_banks = r;
279
        return kvm_ioctl(s, KVM_X86_GET_MCE_CAP_SUPPORTED, mce_cap);
280
    }
281
    return -ENOSYS;
282
}
283

    
284
static void kvm_mce_inject(X86CPU *cpu, hwaddr paddr, int code)
285
{
286
    CPUX86State *env = &cpu->env;
287
    uint64_t status = MCI_STATUS_VAL | MCI_STATUS_UC | MCI_STATUS_EN |
288
                      MCI_STATUS_MISCV | MCI_STATUS_ADDRV | MCI_STATUS_S;
289
    uint64_t mcg_status = MCG_STATUS_MCIP;
290

    
291
    if (code == BUS_MCEERR_AR) {
292
        status |= MCI_STATUS_AR | 0x134;
293
        mcg_status |= MCG_STATUS_EIPV;
294
    } else {
295
        status |= 0xc0;
296
        mcg_status |= MCG_STATUS_RIPV;
297
    }
298
    cpu_x86_inject_mce(NULL, cpu, 9, status, mcg_status, paddr,
299
                       (MCM_ADDR_PHYS << 6) | 0xc,
300
                       cpu_x86_support_mca_broadcast(env) ?
301
                       MCE_INJECT_BROADCAST : 0);
302
}
303

    
304
static void hardware_memory_error(void)
305
{
306
    fprintf(stderr, "Hardware memory error!\n");
307
    exit(1);
308
}
309

    
310
int kvm_arch_on_sigbus_vcpu(CPUX86State *env, int code, void *addr)
311
{
312
    X86CPU *cpu = x86_env_get_cpu(env);
313
    ram_addr_t ram_addr;
314
    hwaddr paddr;
315

    
316
    if ((env->mcg_cap & MCG_SER_P) && addr
317
        && (code == BUS_MCEERR_AR || code == BUS_MCEERR_AO)) {
318
        if (qemu_ram_addr_from_host(addr, &ram_addr) ||
319
            !kvm_physical_memory_addr_from_host(env->kvm_state, addr, &paddr)) {
320
            fprintf(stderr, "Hardware memory error for memory used by "
321
                    "QEMU itself instead of guest system!\n");
322
            /* Hope we are lucky for AO MCE */
323
            if (code == BUS_MCEERR_AO) {
324
                return 0;
325
            } else {
326
                hardware_memory_error();
327
            }
328
        }
329
        kvm_hwpoison_page_add(ram_addr);
330
        kvm_mce_inject(cpu, paddr, code);
331
    } else {
332
        if (code == BUS_MCEERR_AO) {
333
            return 0;
334
        } else if (code == BUS_MCEERR_AR) {
335
            hardware_memory_error();
336
        } else {
337
            return 1;
338
        }
339
    }
340
    return 0;
341
}
342

    
343
int kvm_arch_on_sigbus(int code, void *addr)
344
{
345
    if ((first_cpu->mcg_cap & MCG_SER_P) && addr && code == BUS_MCEERR_AO) {
346
        ram_addr_t ram_addr;
347
        hwaddr paddr;
348

    
349
        /* Hope we are lucky for AO MCE */
350
        if (qemu_ram_addr_from_host(addr, &ram_addr) ||
351
            !kvm_physical_memory_addr_from_host(first_cpu->kvm_state, addr,
352
                                                &paddr)) {
353
            fprintf(stderr, "Hardware memory error for memory used by "
354
                    "QEMU itself instead of guest system!: %p\n", addr);
355
            return 0;
356
        }
357
        kvm_hwpoison_page_add(ram_addr);
358
        kvm_mce_inject(x86_env_get_cpu(first_cpu), paddr, code);
359
    } else {
360
        if (code == BUS_MCEERR_AO) {
361
            return 0;
362
        } else if (code == BUS_MCEERR_AR) {
363
            hardware_memory_error();
364
        } else {
365
            return 1;
366
        }
367
    }
368
    return 0;
369
}
370

    
371
static int kvm_inject_mce_oldstyle(CPUX86State *env)
372
{
373
    if (!kvm_has_vcpu_events() && env->exception_injected == EXCP12_MCHK) {
374
        unsigned int bank, bank_num = env->mcg_cap & 0xff;
375
        struct kvm_x86_mce mce;
376

    
377
        env->exception_injected = -1;
378

    
379
        /*
380
         * There must be at least one bank in use if an MCE is pending.
381
         * Find it and use its values for the event injection.
382
         */
383
        for (bank = 0; bank < bank_num; bank++) {
384
            if (env->mce_banks[bank * 4 + 1] & MCI_STATUS_VAL) {
385
                break;
386
            }
387
        }
388
        assert(bank < bank_num);
389

    
390
        mce.bank = bank;
391
        mce.status = env->mce_banks[bank * 4 + 1];
392
        mce.mcg_status = env->mcg_status;
393
        mce.addr = env->mce_banks[bank * 4 + 2];
394
        mce.misc = env->mce_banks[bank * 4 + 3];
395

    
396
        return kvm_vcpu_ioctl(env, KVM_X86_SET_MCE, &mce);
397
    }
398
    return 0;
399
}
400

    
401
static void cpu_update_state(void *opaque, int running, RunState state)
402
{
403
    CPUX86State *env = opaque;
404

    
405
    if (running) {
406
        env->tsc_valid = false;
407
    }
408
}
409

    
410
int kvm_arch_init_vcpu(CPUX86State *env)
411
{
412
    struct {
413
        struct kvm_cpuid2 cpuid;
414
        struct kvm_cpuid_entry2 entries[100];
415
    } QEMU_PACKED cpuid_data;
416
    uint32_t limit, i, j, cpuid_i;
417
    uint32_t unused;
418
    struct kvm_cpuid_entry2 *c;
419
    uint32_t signature[3];
420
    int r;
421

    
422
    cpuid_i = 0;
423

    
424
    /* Paravirtualization CPUIDs */
425
    c = &cpuid_data.entries[cpuid_i++];
426
    memset(c, 0, sizeof(*c));
427
    c->function = KVM_CPUID_SIGNATURE;
428
    if (!hyperv_enabled()) {
429
        memcpy(signature, "KVMKVMKVM\0\0\0", 12);
430
        c->eax = 0;
431
    } else {
432
        memcpy(signature, "Microsoft Hv", 12);
433
        c->eax = HYPERV_CPUID_MIN;
434
    }
435
    c->ebx = signature[0];
436
    c->ecx = signature[1];
437
    c->edx = signature[2];
438

    
439
    c = &cpuid_data.entries[cpuid_i++];
440
    memset(c, 0, sizeof(*c));
441
    c->function = KVM_CPUID_FEATURES;
442
    c->eax = env->cpuid_kvm_features;
443

    
444
    if (hyperv_enabled()) {
445
        memcpy(signature, "Hv#1\0\0\0\0\0\0\0\0", 12);
446
        c->eax = signature[0];
447

    
448
        c = &cpuid_data.entries[cpuid_i++];
449
        memset(c, 0, sizeof(*c));
450
        c->function = HYPERV_CPUID_VERSION;
451
        c->eax = 0x00001bbc;
452
        c->ebx = 0x00060001;
453

    
454
        c = &cpuid_data.entries[cpuid_i++];
455
        memset(c, 0, sizeof(*c));
456
        c->function = HYPERV_CPUID_FEATURES;
457
        if (hyperv_relaxed_timing_enabled()) {
458
            c->eax |= HV_X64_MSR_HYPERCALL_AVAILABLE;
459
        }
460
        if (hyperv_vapic_recommended()) {
461
            c->eax |= HV_X64_MSR_HYPERCALL_AVAILABLE;
462
            c->eax |= HV_X64_MSR_APIC_ACCESS_AVAILABLE;
463
        }
464

    
465
        c = &cpuid_data.entries[cpuid_i++];
466
        memset(c, 0, sizeof(*c));
467
        c->function = HYPERV_CPUID_ENLIGHTMENT_INFO;
468
        if (hyperv_relaxed_timing_enabled()) {
469
            c->eax |= HV_X64_RELAXED_TIMING_RECOMMENDED;
470
        }
471
        if (hyperv_vapic_recommended()) {
472
            c->eax |= HV_X64_APIC_ACCESS_RECOMMENDED;
473
        }
474
        c->ebx = hyperv_get_spinlock_retries();
475

    
476
        c = &cpuid_data.entries[cpuid_i++];
477
        memset(c, 0, sizeof(*c));
478
        c->function = HYPERV_CPUID_IMPLEMENT_LIMITS;
479
        c->eax = 0x40;
480
        c->ebx = 0x40;
481

    
482
        c = &cpuid_data.entries[cpuid_i++];
483
        memset(c, 0, sizeof(*c));
484
        c->function = KVM_CPUID_SIGNATURE_NEXT;
485
        memcpy(signature, "KVMKVMKVM\0\0\0", 12);
486
        c->eax = 0;
487
        c->ebx = signature[0];
488
        c->ecx = signature[1];
489
        c->edx = signature[2];
490
    }
491

    
492
    has_msr_async_pf_en = c->eax & (1 << KVM_FEATURE_ASYNC_PF);
493

    
494
    has_msr_pv_eoi_en = c->eax & (1 << KVM_FEATURE_PV_EOI);
495

    
496
    cpu_x86_cpuid(env, 0, 0, &limit, &unused, &unused, &unused);
497

    
498
    for (i = 0; i <= limit; i++) {
499
        c = &cpuid_data.entries[cpuid_i++];
500

    
501
        switch (i) {
502
        case 2: {
503
            /* Keep reading function 2 till all the input is received */
504
            int times;
505

    
506
            c->function = i;
507
            c->flags = KVM_CPUID_FLAG_STATEFUL_FUNC |
508
                       KVM_CPUID_FLAG_STATE_READ_NEXT;
509
            cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
510
            times = c->eax & 0xff;
511

    
512
            for (j = 1; j < times; ++j) {
513
                c = &cpuid_data.entries[cpuid_i++];
514
                c->function = i;
515
                c->flags = KVM_CPUID_FLAG_STATEFUL_FUNC;
516
                cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
517
            }
518
            break;
519
        }
520
        case 4:
521
        case 0xb:
522
        case 0xd:
523
            for (j = 0; ; j++) {
524
                if (i == 0xd && j == 64) {
525
                    break;
526
                }
527
                c->function = i;
528
                c->flags = KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
529
                c->index = j;
530
                cpu_x86_cpuid(env, i, j, &c->eax, &c->ebx, &c->ecx, &c->edx);
531

    
532
                if (i == 4 && c->eax == 0) {
533
                    break;
534
                }
535
                if (i == 0xb && !(c->ecx & 0xff00)) {
536
                    break;
537
                }
538
                if (i == 0xd && c->eax == 0) {
539
                    continue;
540
                }
541
                c = &cpuid_data.entries[cpuid_i++];
542
            }
543
            break;
544
        default:
545
            c->function = i;
546
            c->flags = 0;
547
            cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
548
            break;
549
        }
550
    }
551
    cpu_x86_cpuid(env, 0x80000000, 0, &limit, &unused, &unused, &unused);
552

    
553
    for (i = 0x80000000; i <= limit; i++) {
554
        c = &cpuid_data.entries[cpuid_i++];
555

    
556
        c->function = i;
557
        c->flags = 0;
558
        cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
559
    }
560

    
561
    /* Call Centaur's CPUID instructions they are supported. */
562
    if (env->cpuid_xlevel2 > 0) {
563
        cpu_x86_cpuid(env, 0xC0000000, 0, &limit, &unused, &unused, &unused);
564

    
565
        for (i = 0xC0000000; i <= limit; i++) {
566
            c = &cpuid_data.entries[cpuid_i++];
567

    
568
            c->function = i;
569
            c->flags = 0;
570
            cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
571
        }
572
    }
573

    
574
    cpuid_data.cpuid.nent = cpuid_i;
575

    
576
    if (((env->cpuid_version >> 8)&0xF) >= 6
577
        && (env->cpuid_features&(CPUID_MCE|CPUID_MCA)) == (CPUID_MCE|CPUID_MCA)
578
        && kvm_check_extension(env->kvm_state, KVM_CAP_MCE) > 0) {
579
        uint64_t mcg_cap;
580
        int banks;
581
        int ret;
582

    
583
        ret = kvm_get_mce_cap_supported(env->kvm_state, &mcg_cap, &banks);
584
        if (ret < 0) {
585
            fprintf(stderr, "kvm_get_mce_cap_supported: %s", strerror(-ret));
586
            return ret;
587
        }
588

    
589
        if (banks > MCE_BANKS_DEF) {
590
            banks = MCE_BANKS_DEF;
591
        }
592
        mcg_cap &= MCE_CAP_DEF;
593
        mcg_cap |= banks;
594
        ret = kvm_vcpu_ioctl(env, KVM_X86_SETUP_MCE, &mcg_cap);
595
        if (ret < 0) {
596
            fprintf(stderr, "KVM_X86_SETUP_MCE: %s", strerror(-ret));
597
            return ret;
598
        }
599

    
600
        env->mcg_cap = mcg_cap;
601
    }
602

    
603
    qemu_add_vm_change_state_handler(cpu_update_state, env);
604

    
605
    cpuid_data.cpuid.padding = 0;
606
    r = kvm_vcpu_ioctl(env, KVM_SET_CPUID2, &cpuid_data);
607
    if (r) {
608
        return r;
609
    }
610

    
611
    r = kvm_check_extension(env->kvm_state, KVM_CAP_TSC_CONTROL);
612
    if (r && env->tsc_khz) {
613
        r = kvm_vcpu_ioctl(env, KVM_SET_TSC_KHZ, env->tsc_khz);
614
        if (r < 0) {
615
            fprintf(stderr, "KVM_SET_TSC_KHZ failed\n");
616
            return r;
617
        }
618
    }
619

    
620
    if (kvm_has_xsave()) {
621
        env->kvm_xsave_buf = qemu_memalign(4096, sizeof(struct kvm_xsave));
622
    }
623

    
624
    return 0;
625
}
626

    
627
void kvm_arch_reset_vcpu(CPUX86State *env)
628
{
629
    X86CPU *cpu = x86_env_get_cpu(env);
630

    
631
    env->exception_injected = -1;
632
    env->interrupt_injected = -1;
633
    env->xcr0 = 1;
634
    if (kvm_irqchip_in_kernel()) {
635
        env->mp_state = cpu_is_bsp(cpu) ? KVM_MP_STATE_RUNNABLE :
636
                                          KVM_MP_STATE_UNINITIALIZED;
637
    } else {
638
        env->mp_state = KVM_MP_STATE_RUNNABLE;
639
    }
640
}
641

    
642
static int kvm_get_supported_msrs(KVMState *s)
643
{
644
    static int kvm_supported_msrs;
645
    int ret = 0;
646

    
647
    /* first time */
648
    if (kvm_supported_msrs == 0) {
649
        struct kvm_msr_list msr_list, *kvm_msr_list;
650

    
651
        kvm_supported_msrs = -1;
652

    
653
        /* Obtain MSR list from KVM.  These are the MSRs that we must
654
         * save/restore */
655
        msr_list.nmsrs = 0;
656
        ret = kvm_ioctl(s, KVM_GET_MSR_INDEX_LIST, &msr_list);
657
        if (ret < 0 && ret != -E2BIG) {
658
            return ret;
659
        }
660
        /* Old kernel modules had a bug and could write beyond the provided
661
           memory. Allocate at least a safe amount of 1K. */
662
        kvm_msr_list = g_malloc0(MAX(1024, sizeof(msr_list) +
663
                                              msr_list.nmsrs *
664
                                              sizeof(msr_list.indices[0])));
665

    
666
        kvm_msr_list->nmsrs = msr_list.nmsrs;
667
        ret = kvm_ioctl(s, KVM_GET_MSR_INDEX_LIST, kvm_msr_list);
668
        if (ret >= 0) {
669
            int i;
670

    
671
            for (i = 0; i < kvm_msr_list->nmsrs; i++) {
672
                if (kvm_msr_list->indices[i] == MSR_STAR) {
673
                    has_msr_star = true;
674
                    continue;
675
                }
676
                if (kvm_msr_list->indices[i] == MSR_VM_HSAVE_PA) {
677
                    has_msr_hsave_pa = true;
678
                    continue;
679
                }
680
                if (kvm_msr_list->indices[i] == MSR_IA32_TSCDEADLINE) {
681
                    has_msr_tsc_deadline = true;
682
                    continue;
683
                }
684
                if (kvm_msr_list->indices[i] == MSR_IA32_MISC_ENABLE) {
685
                    has_msr_misc_enable = true;
686
                    continue;
687
                }
688
            }
689
        }
690

    
691
        g_free(kvm_msr_list);
692
    }
693

    
694
    return ret;
695
}
696

    
697
int kvm_arch_init(KVMState *s)
698
{
699
    QemuOptsList *list = qemu_find_opts("machine");
700
    uint64_t identity_base = 0xfffbc000;
701
    uint64_t shadow_mem;
702
    int ret;
703
    struct utsname utsname;
704

    
705
    ret = kvm_get_supported_msrs(s);
706
    if (ret < 0) {
707
        return ret;
708
    }
709

    
710
    uname(&utsname);
711
    lm_capable_kernel = strcmp(utsname.machine, "x86_64") == 0;
712

    
713
    /*
714
     * On older Intel CPUs, KVM uses vm86 mode to emulate 16-bit code directly.
715
     * In order to use vm86 mode, an EPT identity map and a TSS  are needed.
716
     * Since these must be part of guest physical memory, we need to allocate
717
     * them, both by setting their start addresses in the kernel and by
718
     * creating a corresponding e820 entry. We need 4 pages before the BIOS.
719
     *
720
     * Older KVM versions may not support setting the identity map base. In
721
     * that case we need to stick with the default, i.e. a 256K maximum BIOS
722
     * size.
723
     */
724
    if (kvm_check_extension(s, KVM_CAP_SET_IDENTITY_MAP_ADDR)) {
725
        /* Allows up to 16M BIOSes. */
726
        identity_base = 0xfeffc000;
727

    
728
        ret = kvm_vm_ioctl(s, KVM_SET_IDENTITY_MAP_ADDR, &identity_base);
729
        if (ret < 0) {
730
            return ret;
731
        }
732
    }
733

    
734
    /* Set TSS base one page after EPT identity map. */
735
    ret = kvm_vm_ioctl(s, KVM_SET_TSS_ADDR, identity_base + 0x1000);
736
    if (ret < 0) {
737
        return ret;
738
    }
739

    
740
    /* Tell fw_cfg to notify the BIOS to reserve the range. */
741
    ret = e820_add_entry(identity_base, 0x4000, E820_RESERVED);
742
    if (ret < 0) {
743
        fprintf(stderr, "e820_add_entry() table is full\n");
744
        return ret;
745
    }
746
    qemu_register_reset(kvm_unpoison_all, NULL);
747

    
748
    if (!QTAILQ_EMPTY(&list->head)) {
749
        shadow_mem = qemu_opt_get_size(QTAILQ_FIRST(&list->head),
750
                                       "kvm_shadow_mem", -1);
751
        if (shadow_mem != -1) {
752
            shadow_mem /= 4096;
753
            ret = kvm_vm_ioctl(s, KVM_SET_NR_MMU_PAGES, shadow_mem);
754
            if (ret < 0) {
755
                return ret;
756
            }
757
        }
758
    }
759
    return 0;
760
}
761

    
762
static void set_v8086_seg(struct kvm_segment *lhs, const SegmentCache *rhs)
763
{
764
    lhs->selector = rhs->selector;
765
    lhs->base = rhs->base;
766
    lhs->limit = rhs->limit;
767
    lhs->type = 3;
768
    lhs->present = 1;
769
    lhs->dpl = 3;
770
    lhs->db = 0;
771
    lhs->s = 1;
772
    lhs->l = 0;
773
    lhs->g = 0;
774
    lhs->avl = 0;
775
    lhs->unusable = 0;
776
}
777

    
778
static void set_seg(struct kvm_segment *lhs, const SegmentCache *rhs)
779
{
780
    unsigned flags = rhs->flags;
781
    lhs->selector = rhs->selector;
782
    lhs->base = rhs->base;
783
    lhs->limit = rhs->limit;
784
    lhs->type = (flags >> DESC_TYPE_SHIFT) & 15;
785
    lhs->present = (flags & DESC_P_MASK) != 0;
786
    lhs->dpl = (flags >> DESC_DPL_SHIFT) & 3;
787
    lhs->db = (flags >> DESC_B_SHIFT) & 1;
788
    lhs->s = (flags & DESC_S_MASK) != 0;
789
    lhs->l = (flags >> DESC_L_SHIFT) & 1;
790
    lhs->g = (flags & DESC_G_MASK) != 0;
791
    lhs->avl = (flags & DESC_AVL_MASK) != 0;
792
    lhs->unusable = 0;
793
    lhs->padding = 0;
794
}
795

    
796
static void get_seg(SegmentCache *lhs, const struct kvm_segment *rhs)
797
{
798
    lhs->selector = rhs->selector;
799
    lhs->base = rhs->base;
800
    lhs->limit = rhs->limit;
801
    lhs->flags = (rhs->type << DESC_TYPE_SHIFT) |
802
                 (rhs->present * DESC_P_MASK) |
803
                 (rhs->dpl << DESC_DPL_SHIFT) |
804
                 (rhs->db << DESC_B_SHIFT) |
805
                 (rhs->s * DESC_S_MASK) |
806
                 (rhs->l << DESC_L_SHIFT) |
807
                 (rhs->g * DESC_G_MASK) |
808
                 (rhs->avl * DESC_AVL_MASK);
809
}
810

    
811
static void kvm_getput_reg(__u64 *kvm_reg, target_ulong *qemu_reg, int set)
812
{
813
    if (set) {
814
        *kvm_reg = *qemu_reg;
815
    } else {
816
        *qemu_reg = *kvm_reg;
817
    }
818
}
819

    
820
static int kvm_getput_regs(CPUX86State *env, int set)
821
{
822
    struct kvm_regs regs;
823
    int ret = 0;
824

    
825
    if (!set) {
826
        ret = kvm_vcpu_ioctl(env, KVM_GET_REGS, &regs);
827
        if (ret < 0) {
828
            return ret;
829
        }
830
    }
831

    
832
    kvm_getput_reg(&regs.rax, &env->regs[R_EAX], set);
833
    kvm_getput_reg(&regs.rbx, &env->regs[R_EBX], set);
834
    kvm_getput_reg(&regs.rcx, &env->regs[R_ECX], set);
835
    kvm_getput_reg(&regs.rdx, &env->regs[R_EDX], set);
836
    kvm_getput_reg(&regs.rsi, &env->regs[R_ESI], set);
837
    kvm_getput_reg(&regs.rdi, &env->regs[R_EDI], set);
838
    kvm_getput_reg(&regs.rsp, &env->regs[R_ESP], set);
839
    kvm_getput_reg(&regs.rbp, &env->regs[R_EBP], set);
840
#ifdef TARGET_X86_64
841
    kvm_getput_reg(&regs.r8, &env->regs[8], set);
842
    kvm_getput_reg(&regs.r9, &env->regs[9], set);
843
    kvm_getput_reg(&regs.r10, &env->regs[10], set);
844
    kvm_getput_reg(&regs.r11, &env->regs[11], set);
845
    kvm_getput_reg(&regs.r12, &env->regs[12], set);
846
    kvm_getput_reg(&regs.r13, &env->regs[13], set);
847
    kvm_getput_reg(&regs.r14, &env->regs[14], set);
848
    kvm_getput_reg(&regs.r15, &env->regs[15], set);
849
#endif
850

    
851
    kvm_getput_reg(&regs.rflags, &env->eflags, set);
852
    kvm_getput_reg(&regs.rip, &env->eip, set);
853

    
854
    if (set) {
855
        ret = kvm_vcpu_ioctl(env, KVM_SET_REGS, &regs);
856
    }
857

    
858
    return ret;
859
}
860

    
861
static int kvm_put_fpu(CPUX86State *env)
862
{
863
    struct kvm_fpu fpu;
864
    int i;
865

    
866
    memset(&fpu, 0, sizeof fpu);
867
    fpu.fsw = env->fpus & ~(7 << 11);
868
    fpu.fsw |= (env->fpstt & 7) << 11;
869
    fpu.fcw = env->fpuc;
870
    fpu.last_opcode = env->fpop;
871
    fpu.last_ip = env->fpip;
872
    fpu.last_dp = env->fpdp;
873
    for (i = 0; i < 8; ++i) {
874
        fpu.ftwx |= (!env->fptags[i]) << i;
875
    }
876
    memcpy(fpu.fpr, env->fpregs, sizeof env->fpregs);
877
    memcpy(fpu.xmm, env->xmm_regs, sizeof env->xmm_regs);
878
    fpu.mxcsr = env->mxcsr;
879

    
880
    return kvm_vcpu_ioctl(env, KVM_SET_FPU, &fpu);
881
}
882

    
883
#define XSAVE_FCW_FSW     0
884
#define XSAVE_FTW_FOP     1
885
#define XSAVE_CWD_RIP     2
886
#define XSAVE_CWD_RDP     4
887
#define XSAVE_MXCSR       6
888
#define XSAVE_ST_SPACE    8
889
#define XSAVE_XMM_SPACE   40
890
#define XSAVE_XSTATE_BV   128
891
#define XSAVE_YMMH_SPACE  144
892

    
893
static int kvm_put_xsave(CPUX86State *env)
894
{
895
    struct kvm_xsave* xsave = env->kvm_xsave_buf;
896
    uint16_t cwd, swd, twd;
897
    int i, r;
898

    
899
    if (!kvm_has_xsave()) {
900
        return kvm_put_fpu(env);
901
    }
902

    
903
    memset(xsave, 0, sizeof(struct kvm_xsave));
904
    twd = 0;
905
    swd = env->fpus & ~(7 << 11);
906
    swd |= (env->fpstt & 7) << 11;
907
    cwd = env->fpuc;
908
    for (i = 0; i < 8; ++i) {
909
        twd |= (!env->fptags[i]) << i;
910
    }
911
    xsave->region[XSAVE_FCW_FSW] = (uint32_t)(swd << 16) + cwd;
912
    xsave->region[XSAVE_FTW_FOP] = (uint32_t)(env->fpop << 16) + twd;
913
    memcpy(&xsave->region[XSAVE_CWD_RIP], &env->fpip, sizeof(env->fpip));
914
    memcpy(&xsave->region[XSAVE_CWD_RDP], &env->fpdp, sizeof(env->fpdp));
915
    memcpy(&xsave->region[XSAVE_ST_SPACE], env->fpregs,
916
            sizeof env->fpregs);
917
    memcpy(&xsave->region[XSAVE_XMM_SPACE], env->xmm_regs,
918
            sizeof env->xmm_regs);
919
    xsave->region[XSAVE_MXCSR] = env->mxcsr;
920
    *(uint64_t *)&xsave->region[XSAVE_XSTATE_BV] = env->xstate_bv;
921
    memcpy(&xsave->region[XSAVE_YMMH_SPACE], env->ymmh_regs,
922
            sizeof env->ymmh_regs);
923
    r = kvm_vcpu_ioctl(env, KVM_SET_XSAVE, xsave);
924
    return r;
925
}
926

    
927
static int kvm_put_xcrs(CPUX86State *env)
928
{
929
    struct kvm_xcrs xcrs;
930

    
931
    if (!kvm_has_xcrs()) {
932
        return 0;
933
    }
934

    
935
    xcrs.nr_xcrs = 1;
936
    xcrs.flags = 0;
937
    xcrs.xcrs[0].xcr = 0;
938
    xcrs.xcrs[0].value = env->xcr0;
939
    return kvm_vcpu_ioctl(env, KVM_SET_XCRS, &xcrs);
940
}
941

    
942
static int kvm_put_sregs(CPUX86State *env)
943
{
944
    struct kvm_sregs sregs;
945

    
946
    memset(sregs.interrupt_bitmap, 0, sizeof(sregs.interrupt_bitmap));
947
    if (env->interrupt_injected >= 0) {
948
        sregs.interrupt_bitmap[env->interrupt_injected / 64] |=
949
                (uint64_t)1 << (env->interrupt_injected % 64);
950
    }
951

    
952
    if ((env->eflags & VM_MASK)) {
953
        set_v8086_seg(&sregs.cs, &env->segs[R_CS]);
954
        set_v8086_seg(&sregs.ds, &env->segs[R_DS]);
955
        set_v8086_seg(&sregs.es, &env->segs[R_ES]);
956
        set_v8086_seg(&sregs.fs, &env->segs[R_FS]);
957
        set_v8086_seg(&sregs.gs, &env->segs[R_GS]);
958
        set_v8086_seg(&sregs.ss, &env->segs[R_SS]);
959
    } else {
960
        set_seg(&sregs.cs, &env->segs[R_CS]);
961
        set_seg(&sregs.ds, &env->segs[R_DS]);
962
        set_seg(&sregs.es, &env->segs[R_ES]);
963
        set_seg(&sregs.fs, &env->segs[R_FS]);
964
        set_seg(&sregs.gs, &env->segs[R_GS]);
965
        set_seg(&sregs.ss, &env->segs[R_SS]);
966
    }
967

    
968
    set_seg(&sregs.tr, &env->tr);
969
    set_seg(&sregs.ldt, &env->ldt);
970

    
971
    sregs.idt.limit = env->idt.limit;
972
    sregs.idt.base = env->idt.base;
973
    memset(sregs.idt.padding, 0, sizeof sregs.idt.padding);
974
    sregs.gdt.limit = env->gdt.limit;
975
    sregs.gdt.base = env->gdt.base;
976
    memset(sregs.gdt.padding, 0, sizeof sregs.gdt.padding);
977

    
978
    sregs.cr0 = env->cr[0];
979
    sregs.cr2 = env->cr[2];
980
    sregs.cr3 = env->cr[3];
981
    sregs.cr4 = env->cr[4];
982

    
983
    sregs.cr8 = cpu_get_apic_tpr(env->apic_state);
984
    sregs.apic_base = cpu_get_apic_base(env->apic_state);
985

    
986
    sregs.efer = env->efer;
987

    
988
    return kvm_vcpu_ioctl(env, KVM_SET_SREGS, &sregs);
989
}
990

    
991
static void kvm_msr_entry_set(struct kvm_msr_entry *entry,
992
                              uint32_t index, uint64_t value)
993
{
994
    entry->index = index;
995
    entry->data = value;
996
}
997

    
998
static int kvm_put_msrs(CPUX86State *env, int level)
999
{
1000
    struct {
1001
        struct kvm_msrs info;
1002
        struct kvm_msr_entry entries[100];
1003
    } msr_data;
1004
    struct kvm_msr_entry *msrs = msr_data.entries;
1005
    int n = 0;
1006

    
1007
    kvm_msr_entry_set(&msrs[n++], MSR_IA32_SYSENTER_CS, env->sysenter_cs);
1008
    kvm_msr_entry_set(&msrs[n++], MSR_IA32_SYSENTER_ESP, env->sysenter_esp);
1009
    kvm_msr_entry_set(&msrs[n++], MSR_IA32_SYSENTER_EIP, env->sysenter_eip);
1010
    kvm_msr_entry_set(&msrs[n++], MSR_PAT, env->pat);
1011
    if (has_msr_star) {
1012
        kvm_msr_entry_set(&msrs[n++], MSR_STAR, env->star);
1013
    }
1014
    if (has_msr_hsave_pa) {
1015
        kvm_msr_entry_set(&msrs[n++], MSR_VM_HSAVE_PA, env->vm_hsave);
1016
    }
1017
    if (has_msr_tsc_deadline) {
1018
        kvm_msr_entry_set(&msrs[n++], MSR_IA32_TSCDEADLINE, env->tsc_deadline);
1019
    }
1020
    if (has_msr_misc_enable) {
1021
        kvm_msr_entry_set(&msrs[n++], MSR_IA32_MISC_ENABLE,
1022
                          env->msr_ia32_misc_enable);
1023
    }
1024
#ifdef TARGET_X86_64
1025
    if (lm_capable_kernel) {
1026
        kvm_msr_entry_set(&msrs[n++], MSR_CSTAR, env->cstar);
1027
        kvm_msr_entry_set(&msrs[n++], MSR_KERNELGSBASE, env->kernelgsbase);
1028
        kvm_msr_entry_set(&msrs[n++], MSR_FMASK, env->fmask);
1029
        kvm_msr_entry_set(&msrs[n++], MSR_LSTAR, env->lstar);
1030
    }
1031
#endif
1032
    if (level == KVM_PUT_FULL_STATE) {
1033
        /*
1034
         * KVM is yet unable to synchronize TSC values of multiple VCPUs on
1035
         * writeback. Until this is fixed, we only write the offset to SMP
1036
         * guests after migration, desynchronizing the VCPUs, but avoiding
1037
         * huge jump-backs that would occur without any writeback at all.
1038
         */
1039
        if (smp_cpus == 1 || env->tsc != 0) {
1040
            kvm_msr_entry_set(&msrs[n++], MSR_IA32_TSC, env->tsc);
1041
        }
1042
    }
1043
    /*
1044
     * The following paravirtual MSRs have side effects on the guest or are
1045
     * too heavy for normal writeback. Limit them to reset or full state
1046
     * updates.
1047
     */
1048
    if (level >= KVM_PUT_RESET_STATE) {
1049
        kvm_msr_entry_set(&msrs[n++], MSR_KVM_SYSTEM_TIME,
1050
                          env->system_time_msr);
1051
        kvm_msr_entry_set(&msrs[n++], MSR_KVM_WALL_CLOCK, env->wall_clock_msr);
1052
        if (has_msr_async_pf_en) {
1053
            kvm_msr_entry_set(&msrs[n++], MSR_KVM_ASYNC_PF_EN,
1054
                              env->async_pf_en_msr);
1055
        }
1056
        if (has_msr_pv_eoi_en) {
1057
            kvm_msr_entry_set(&msrs[n++], MSR_KVM_PV_EOI_EN,
1058
                              env->pv_eoi_en_msr);
1059
        }
1060
        if (hyperv_hypercall_available()) {
1061
            kvm_msr_entry_set(&msrs[n++], HV_X64_MSR_GUEST_OS_ID, 0);
1062
            kvm_msr_entry_set(&msrs[n++], HV_X64_MSR_HYPERCALL, 0);
1063
        }
1064
        if (hyperv_vapic_recommended()) {
1065
            kvm_msr_entry_set(&msrs[n++], HV_X64_MSR_APIC_ASSIST_PAGE, 0);
1066
        }
1067
    }
1068
    if (env->mcg_cap) {
1069
        int i;
1070

    
1071
        kvm_msr_entry_set(&msrs[n++], MSR_MCG_STATUS, env->mcg_status);
1072
        kvm_msr_entry_set(&msrs[n++], MSR_MCG_CTL, env->mcg_ctl);
1073
        for (i = 0; i < (env->mcg_cap & 0xff) * 4; i++) {
1074
            kvm_msr_entry_set(&msrs[n++], MSR_MC0_CTL + i, env->mce_banks[i]);
1075
        }
1076
    }
1077

    
1078
    msr_data.info.nmsrs = n;
1079

    
1080
    return kvm_vcpu_ioctl(env, KVM_SET_MSRS, &msr_data);
1081

    
1082
}
1083

    
1084

    
1085
static int kvm_get_fpu(CPUX86State *env)
1086
{
1087
    struct kvm_fpu fpu;
1088
    int i, ret;
1089

    
1090
    ret = kvm_vcpu_ioctl(env, KVM_GET_FPU, &fpu);
1091
    if (ret < 0) {
1092
        return ret;
1093
    }
1094

    
1095
    env->fpstt = (fpu.fsw >> 11) & 7;
1096
    env->fpus = fpu.fsw;
1097
    env->fpuc = fpu.fcw;
1098
    env->fpop = fpu.last_opcode;
1099
    env->fpip = fpu.last_ip;
1100
    env->fpdp = fpu.last_dp;
1101
    for (i = 0; i < 8; ++i) {
1102
        env->fptags[i] = !((fpu.ftwx >> i) & 1);
1103
    }
1104
    memcpy(env->fpregs, fpu.fpr, sizeof env->fpregs);
1105
    memcpy(env->xmm_regs, fpu.xmm, sizeof env->xmm_regs);
1106
    env->mxcsr = fpu.mxcsr;
1107

    
1108
    return 0;
1109
}
1110

    
1111
static int kvm_get_xsave(CPUX86State *env)
1112
{
1113
    struct kvm_xsave* xsave = env->kvm_xsave_buf;
1114
    int ret, i;
1115
    uint16_t cwd, swd, twd;
1116

    
1117
    if (!kvm_has_xsave()) {
1118
        return kvm_get_fpu(env);
1119
    }
1120

    
1121
    ret = kvm_vcpu_ioctl(env, KVM_GET_XSAVE, xsave);
1122
    if (ret < 0) {
1123
        return ret;
1124
    }
1125

    
1126
    cwd = (uint16_t)xsave->region[XSAVE_FCW_FSW];
1127
    swd = (uint16_t)(xsave->region[XSAVE_FCW_FSW] >> 16);
1128
    twd = (uint16_t)xsave->region[XSAVE_FTW_FOP];
1129
    env->fpop = (uint16_t)(xsave->region[XSAVE_FTW_FOP] >> 16);
1130
    env->fpstt = (swd >> 11) & 7;
1131
    env->fpus = swd;
1132
    env->fpuc = cwd;
1133
    for (i = 0; i < 8; ++i) {
1134
        env->fptags[i] = !((twd >> i) & 1);
1135
    }
1136
    memcpy(&env->fpip, &xsave->region[XSAVE_CWD_RIP], sizeof(env->fpip));
1137
    memcpy(&env->fpdp, &xsave->region[XSAVE_CWD_RDP], sizeof(env->fpdp));
1138
    env->mxcsr = xsave->region[XSAVE_MXCSR];
1139
    memcpy(env->fpregs, &xsave->region[XSAVE_ST_SPACE],
1140
            sizeof env->fpregs);
1141
    memcpy(env->xmm_regs, &xsave->region[XSAVE_XMM_SPACE],
1142
            sizeof env->xmm_regs);
1143
    env->xstate_bv = *(uint64_t *)&xsave->region[XSAVE_XSTATE_BV];
1144
    memcpy(env->ymmh_regs, &xsave->region[XSAVE_YMMH_SPACE],
1145
            sizeof env->ymmh_regs);
1146
    return 0;
1147
}
1148

    
1149
static int kvm_get_xcrs(CPUX86State *env)
1150
{
1151
    int i, ret;
1152
    struct kvm_xcrs xcrs;
1153

    
1154
    if (!kvm_has_xcrs()) {
1155
        return 0;
1156
    }
1157

    
1158
    ret = kvm_vcpu_ioctl(env, KVM_GET_XCRS, &xcrs);
1159
    if (ret < 0) {
1160
        return ret;
1161
    }
1162

    
1163
    for (i = 0; i < xcrs.nr_xcrs; i++) {
1164
        /* Only support xcr0 now */
1165
        if (xcrs.xcrs[0].xcr == 0) {
1166
            env->xcr0 = xcrs.xcrs[0].value;
1167
            break;
1168
        }
1169
    }
1170
    return 0;
1171
}
1172

    
1173
static int kvm_get_sregs(CPUX86State *env)
1174
{
1175
    struct kvm_sregs sregs;
1176
    uint32_t hflags;
1177
    int bit, i, ret;
1178

    
1179
    ret = kvm_vcpu_ioctl(env, KVM_GET_SREGS, &sregs);
1180
    if (ret < 0) {
1181
        return ret;
1182
    }
1183

    
1184
    /* There can only be one pending IRQ set in the bitmap at a time, so try
1185
       to find it and save its number instead (-1 for none). */
1186
    env->interrupt_injected = -1;
1187
    for (i = 0; i < ARRAY_SIZE(sregs.interrupt_bitmap); i++) {
1188
        if (sregs.interrupt_bitmap[i]) {
1189
            bit = ctz64(sregs.interrupt_bitmap[i]);
1190
            env->interrupt_injected = i * 64 + bit;
1191
            break;
1192
        }
1193
    }
1194

    
1195
    get_seg(&env->segs[R_CS], &sregs.cs);
1196
    get_seg(&env->segs[R_DS], &sregs.ds);
1197
    get_seg(&env->segs[R_ES], &sregs.es);
1198
    get_seg(&env->segs[R_FS], &sregs.fs);
1199
    get_seg(&env->segs[R_GS], &sregs.gs);
1200
    get_seg(&env->segs[R_SS], &sregs.ss);
1201

    
1202
    get_seg(&env->tr, &sregs.tr);
1203
    get_seg(&env->ldt, &sregs.ldt);
1204

    
1205
    env->idt.limit = sregs.idt.limit;
1206
    env->idt.base = sregs.idt.base;
1207
    env->gdt.limit = sregs.gdt.limit;
1208
    env->gdt.base = sregs.gdt.base;
1209

    
1210
    env->cr[0] = sregs.cr0;
1211
    env->cr[2] = sregs.cr2;
1212
    env->cr[3] = sregs.cr3;
1213
    env->cr[4] = sregs.cr4;
1214

    
1215
    env->efer = sregs.efer;
1216

    
1217
    /* changes to apic base and cr8/tpr are read back via kvm_arch_post_run */
1218

    
1219
#define HFLAG_COPY_MASK \
1220
    ~( HF_CPL_MASK | HF_PE_MASK | HF_MP_MASK | HF_EM_MASK | \
1221
       HF_TS_MASK | HF_TF_MASK | HF_VM_MASK | HF_IOPL_MASK | \
1222
       HF_OSFXSR_MASK | HF_LMA_MASK | HF_CS32_MASK | \
1223
       HF_SS32_MASK | HF_CS64_MASK | HF_ADDSEG_MASK)
1224

    
1225
    hflags = (env->segs[R_CS].flags >> DESC_DPL_SHIFT) & HF_CPL_MASK;
1226
    hflags |= (env->cr[0] & CR0_PE_MASK) << (HF_PE_SHIFT - CR0_PE_SHIFT);
1227
    hflags |= (env->cr[0] << (HF_MP_SHIFT - CR0_MP_SHIFT)) &
1228
                (HF_MP_MASK | HF_EM_MASK | HF_TS_MASK);
1229
    hflags |= (env->eflags & (HF_TF_MASK | HF_VM_MASK | HF_IOPL_MASK));
1230
    hflags |= (env->cr[4] & CR4_OSFXSR_MASK) <<
1231
                (HF_OSFXSR_SHIFT - CR4_OSFXSR_SHIFT);
1232

    
1233
    if (env->efer & MSR_EFER_LMA) {
1234
        hflags |= HF_LMA_MASK;
1235
    }
1236

    
1237
    if ((hflags & HF_LMA_MASK) && (env->segs[R_CS].flags & DESC_L_MASK)) {
1238
        hflags |= HF_CS32_MASK | HF_SS32_MASK | HF_CS64_MASK;
1239
    } else {
1240
        hflags |= (env->segs[R_CS].flags & DESC_B_MASK) >>
1241
                    (DESC_B_SHIFT - HF_CS32_SHIFT);
1242
        hflags |= (env->segs[R_SS].flags & DESC_B_MASK) >>
1243
                    (DESC_B_SHIFT - HF_SS32_SHIFT);
1244
        if (!(env->cr[0] & CR0_PE_MASK) || (env->eflags & VM_MASK) ||
1245
            !(hflags & HF_CS32_MASK)) {
1246
            hflags |= HF_ADDSEG_MASK;
1247
        } else {
1248
            hflags |= ((env->segs[R_DS].base | env->segs[R_ES].base |
1249
                        env->segs[R_SS].base) != 0) << HF_ADDSEG_SHIFT;
1250
        }
1251
    }
1252
    env->hflags = (env->hflags & HFLAG_COPY_MASK) | hflags;
1253

    
1254
    return 0;
1255
}
1256

    
1257
static int kvm_get_msrs(CPUX86State *env)
1258
{
1259
    struct {
1260
        struct kvm_msrs info;
1261
        struct kvm_msr_entry entries[100];
1262
    } msr_data;
1263
    struct kvm_msr_entry *msrs = msr_data.entries;
1264
    int ret, i, n;
1265

    
1266
    n = 0;
1267
    msrs[n++].index = MSR_IA32_SYSENTER_CS;
1268
    msrs[n++].index = MSR_IA32_SYSENTER_ESP;
1269
    msrs[n++].index = MSR_IA32_SYSENTER_EIP;
1270
    msrs[n++].index = MSR_PAT;
1271
    if (has_msr_star) {
1272
        msrs[n++].index = MSR_STAR;
1273
    }
1274
    if (has_msr_hsave_pa) {
1275
        msrs[n++].index = MSR_VM_HSAVE_PA;
1276
    }
1277
    if (has_msr_tsc_deadline) {
1278
        msrs[n++].index = MSR_IA32_TSCDEADLINE;
1279
    }
1280
    if (has_msr_misc_enable) {
1281
        msrs[n++].index = MSR_IA32_MISC_ENABLE;
1282
    }
1283

    
1284
    if (!env->tsc_valid) {
1285
        msrs[n++].index = MSR_IA32_TSC;
1286
        env->tsc_valid = !runstate_is_running();
1287
    }
1288

    
1289
#ifdef TARGET_X86_64
1290
    if (lm_capable_kernel) {
1291
        msrs[n++].index = MSR_CSTAR;
1292
        msrs[n++].index = MSR_KERNELGSBASE;
1293
        msrs[n++].index = MSR_FMASK;
1294
        msrs[n++].index = MSR_LSTAR;
1295
    }
1296
#endif
1297
    msrs[n++].index = MSR_KVM_SYSTEM_TIME;
1298
    msrs[n++].index = MSR_KVM_WALL_CLOCK;
1299
    if (has_msr_async_pf_en) {
1300
        msrs[n++].index = MSR_KVM_ASYNC_PF_EN;
1301
    }
1302
    if (has_msr_pv_eoi_en) {
1303
        msrs[n++].index = MSR_KVM_PV_EOI_EN;
1304
    }
1305

    
1306
    if (env->mcg_cap) {
1307
        msrs[n++].index = MSR_MCG_STATUS;
1308
        msrs[n++].index = MSR_MCG_CTL;
1309
        for (i = 0; i < (env->mcg_cap & 0xff) * 4; i++) {
1310
            msrs[n++].index = MSR_MC0_CTL + i;
1311
        }
1312
    }
1313

    
1314
    msr_data.info.nmsrs = n;
1315
    ret = kvm_vcpu_ioctl(env, KVM_GET_MSRS, &msr_data);
1316
    if (ret < 0) {
1317
        return ret;
1318
    }
1319

    
1320
    for (i = 0; i < ret; i++) {
1321
        switch (msrs[i].index) {
1322
        case MSR_IA32_SYSENTER_CS:
1323
            env->sysenter_cs = msrs[i].data;
1324
            break;
1325
        case MSR_IA32_SYSENTER_ESP:
1326
            env->sysenter_esp = msrs[i].data;
1327
            break;
1328
        case MSR_IA32_SYSENTER_EIP:
1329
            env->sysenter_eip = msrs[i].data;
1330
            break;
1331
        case MSR_PAT:
1332
            env->pat = msrs[i].data;
1333
            break;
1334
        case MSR_STAR:
1335
            env->star = msrs[i].data;
1336
            break;
1337
#ifdef TARGET_X86_64
1338
        case MSR_CSTAR:
1339
            env->cstar = msrs[i].data;
1340
            break;
1341
        case MSR_KERNELGSBASE:
1342
            env->kernelgsbase = msrs[i].data;
1343
            break;
1344
        case MSR_FMASK:
1345
            env->fmask = msrs[i].data;
1346
            break;
1347
        case MSR_LSTAR:
1348
            env->lstar = msrs[i].data;
1349
            break;
1350
#endif
1351
        case MSR_IA32_TSC:
1352
            env->tsc = msrs[i].data;
1353
            break;
1354
        case MSR_IA32_TSCDEADLINE:
1355
            env->tsc_deadline = msrs[i].data;
1356
            break;
1357
        case MSR_VM_HSAVE_PA:
1358
            env->vm_hsave = msrs[i].data;
1359
            break;
1360
        case MSR_KVM_SYSTEM_TIME:
1361
            env->system_time_msr = msrs[i].data;
1362
            break;
1363
        case MSR_KVM_WALL_CLOCK:
1364
            env->wall_clock_msr = msrs[i].data;
1365
            break;
1366
        case MSR_MCG_STATUS:
1367
            env->mcg_status = msrs[i].data;
1368
            break;
1369
        case MSR_MCG_CTL:
1370
            env->mcg_ctl = msrs[i].data;
1371
            break;
1372
        case MSR_IA32_MISC_ENABLE:
1373
            env->msr_ia32_misc_enable = msrs[i].data;
1374
            break;
1375
        default:
1376
            if (msrs[i].index >= MSR_MC0_CTL &&
1377
                msrs[i].index < MSR_MC0_CTL + (env->mcg_cap & 0xff) * 4) {
1378
                env->mce_banks[msrs[i].index - MSR_MC0_CTL] = msrs[i].data;
1379
            }
1380
            break;
1381
        case MSR_KVM_ASYNC_PF_EN:
1382
            env->async_pf_en_msr = msrs[i].data;
1383
            break;
1384
        case MSR_KVM_PV_EOI_EN:
1385
            env->pv_eoi_en_msr = msrs[i].data;
1386
            break;
1387
        }
1388
    }
1389

    
1390
    return 0;
1391
}
1392

    
1393
static int kvm_put_mp_state(CPUX86State *env)
1394
{
1395
    struct kvm_mp_state mp_state = { .mp_state = env->mp_state };
1396

    
1397
    return kvm_vcpu_ioctl(env, KVM_SET_MP_STATE, &mp_state);
1398
}
1399

    
1400
static int kvm_get_mp_state(X86CPU *cpu)
1401
{
1402
    CPUX86State *env = &cpu->env;
1403
    struct kvm_mp_state mp_state;
1404
    int ret;
1405

    
1406
    ret = kvm_vcpu_ioctl(env, KVM_GET_MP_STATE, &mp_state);
1407
    if (ret < 0) {
1408
        return ret;
1409
    }
1410
    env->mp_state = mp_state.mp_state;
1411
    if (kvm_irqchip_in_kernel()) {
1412
        env->halted = (mp_state.mp_state == KVM_MP_STATE_HALTED);
1413
    }
1414
    return 0;
1415
}
1416

    
1417
static int kvm_get_apic(CPUX86State *env)
1418
{
1419
    DeviceState *apic = env->apic_state;
1420
    struct kvm_lapic_state kapic;
1421
    int ret;
1422

    
1423
    if (apic && kvm_irqchip_in_kernel()) {
1424
        ret = kvm_vcpu_ioctl(env, KVM_GET_LAPIC, &kapic);
1425
        if (ret < 0) {
1426
            return ret;
1427
        }
1428

    
1429
        kvm_get_apic_state(apic, &kapic);
1430
    }
1431
    return 0;
1432
}
1433

    
1434
static int kvm_put_apic(CPUX86State *env)
1435
{
1436
    DeviceState *apic = env->apic_state;
1437
    struct kvm_lapic_state kapic;
1438

    
1439
    if (apic && kvm_irqchip_in_kernel()) {
1440
        kvm_put_apic_state(apic, &kapic);
1441

    
1442
        return kvm_vcpu_ioctl(env, KVM_SET_LAPIC, &kapic);
1443
    }
1444
    return 0;
1445
}
1446

    
1447
static int kvm_put_vcpu_events(CPUX86State *env, int level)
1448
{
1449
    struct kvm_vcpu_events events;
1450

    
1451
    if (!kvm_has_vcpu_events()) {
1452
        return 0;
1453
    }
1454

    
1455
    events.exception.injected = (env->exception_injected >= 0);
1456
    events.exception.nr = env->exception_injected;
1457
    events.exception.has_error_code = env->has_error_code;
1458
    events.exception.error_code = env->error_code;
1459
    events.exception.pad = 0;
1460

    
1461
    events.interrupt.injected = (env->interrupt_injected >= 0);
1462
    events.interrupt.nr = env->interrupt_injected;
1463
    events.interrupt.soft = env->soft_interrupt;
1464

    
1465
    events.nmi.injected = env->nmi_injected;
1466
    events.nmi.pending = env->nmi_pending;
1467
    events.nmi.masked = !!(env->hflags2 & HF2_NMI_MASK);
1468
    events.nmi.pad = 0;
1469

    
1470
    events.sipi_vector = env->sipi_vector;
1471

    
1472
    events.flags = 0;
1473
    if (level >= KVM_PUT_RESET_STATE) {
1474
        events.flags |=
1475
            KVM_VCPUEVENT_VALID_NMI_PENDING | KVM_VCPUEVENT_VALID_SIPI_VECTOR;
1476
    }
1477

    
1478
    return kvm_vcpu_ioctl(env, KVM_SET_VCPU_EVENTS, &events);
1479
}
1480

    
1481
static int kvm_get_vcpu_events(CPUX86State *env)
1482
{
1483
    struct kvm_vcpu_events events;
1484
    int ret;
1485

    
1486
    if (!kvm_has_vcpu_events()) {
1487
        return 0;
1488
    }
1489

    
1490
    ret = kvm_vcpu_ioctl(env, KVM_GET_VCPU_EVENTS, &events);
1491
    if (ret < 0) {
1492
       return ret;
1493
    }
1494
    env->exception_injected =
1495
       events.exception.injected ? events.exception.nr : -1;
1496
    env->has_error_code = events.exception.has_error_code;
1497
    env->error_code = events.exception.error_code;
1498

    
1499
    env->interrupt_injected =
1500
        events.interrupt.injected ? events.interrupt.nr : -1;
1501
    env->soft_interrupt = events.interrupt.soft;
1502

    
1503
    env->nmi_injected = events.nmi.injected;
1504
    env->nmi_pending = events.nmi.pending;
1505
    if (events.nmi.masked) {
1506
        env->hflags2 |= HF2_NMI_MASK;
1507
    } else {
1508
        env->hflags2 &= ~HF2_NMI_MASK;
1509
    }
1510

    
1511
    env->sipi_vector = events.sipi_vector;
1512

    
1513
    return 0;
1514
}
1515

    
1516
static int kvm_guest_debug_workarounds(CPUX86State *env)
1517
{
1518
    int ret = 0;
1519
    unsigned long reinject_trap = 0;
1520

    
1521
    if (!kvm_has_vcpu_events()) {
1522
        if (env->exception_injected == 1) {
1523
            reinject_trap = KVM_GUESTDBG_INJECT_DB;
1524
        } else if (env->exception_injected == 3) {
1525
            reinject_trap = KVM_GUESTDBG_INJECT_BP;
1526
        }
1527
        env->exception_injected = -1;
1528
    }
1529

    
1530
    /*
1531
     * Kernels before KVM_CAP_X86_ROBUST_SINGLESTEP overwrote flags.TF
1532
     * injected via SET_GUEST_DEBUG while updating GP regs. Work around this
1533
     * by updating the debug state once again if single-stepping is on.
1534
     * Another reason to call kvm_update_guest_debug here is a pending debug
1535
     * trap raise by the guest. On kernels without SET_VCPU_EVENTS we have to
1536
     * reinject them via SET_GUEST_DEBUG.
1537
     */
1538
    if (reinject_trap ||
1539
        (!kvm_has_robust_singlestep() && env->singlestep_enabled)) {
1540
        ret = kvm_update_guest_debug(env, reinject_trap);
1541
    }
1542
    return ret;
1543
}
1544

    
1545
static int kvm_put_debugregs(CPUX86State *env)
1546
{
1547
    struct kvm_debugregs dbgregs;
1548
    int i;
1549

    
1550
    if (!kvm_has_debugregs()) {
1551
        return 0;
1552
    }
1553

    
1554
    for (i = 0; i < 4; i++) {
1555
        dbgregs.db[i] = env->dr[i];
1556
    }
1557
    dbgregs.dr6 = env->dr[6];
1558
    dbgregs.dr7 = env->dr[7];
1559
    dbgregs.flags = 0;
1560

    
1561
    return kvm_vcpu_ioctl(env, KVM_SET_DEBUGREGS, &dbgregs);
1562
}
1563

    
1564
static int kvm_get_debugregs(CPUX86State *env)
1565
{
1566
    struct kvm_debugregs dbgregs;
1567
    int i, ret;
1568

    
1569
    if (!kvm_has_debugregs()) {
1570
        return 0;
1571
    }
1572

    
1573
    ret = kvm_vcpu_ioctl(env, KVM_GET_DEBUGREGS, &dbgregs);
1574
    if (ret < 0) {
1575
        return ret;
1576
    }
1577
    for (i = 0; i < 4; i++) {
1578
        env->dr[i] = dbgregs.db[i];
1579
    }
1580
    env->dr[4] = env->dr[6] = dbgregs.dr6;
1581
    env->dr[5] = env->dr[7] = dbgregs.dr7;
1582

    
1583
    return 0;
1584
}
1585

    
1586
int kvm_arch_put_registers(CPUX86State *env, int level)
1587
{
1588
    CPUState *cpu = ENV_GET_CPU(env);
1589
    int ret;
1590

    
1591
    assert(cpu_is_stopped(cpu) || qemu_cpu_is_self(cpu));
1592

    
1593
    ret = kvm_getput_regs(env, 1);
1594
    if (ret < 0) {
1595
        return ret;
1596
    }
1597
    ret = kvm_put_xsave(env);
1598
    if (ret < 0) {
1599
        return ret;
1600
    }
1601
    ret = kvm_put_xcrs(env);
1602
    if (ret < 0) {
1603
        return ret;
1604
    }
1605
    ret = kvm_put_sregs(env);
1606
    if (ret < 0) {
1607
        return ret;
1608
    }
1609
    /* must be before kvm_put_msrs */
1610
    ret = kvm_inject_mce_oldstyle(env);
1611
    if (ret < 0) {
1612
        return ret;
1613
    }
1614
    ret = kvm_put_msrs(env, level);
1615
    if (ret < 0) {
1616
        return ret;
1617
    }
1618
    if (level >= KVM_PUT_RESET_STATE) {
1619
        ret = kvm_put_mp_state(env);
1620
        if (ret < 0) {
1621
            return ret;
1622
        }
1623
        ret = kvm_put_apic(env);
1624
        if (ret < 0) {
1625
            return ret;
1626
        }
1627
    }
1628
    ret = kvm_put_vcpu_events(env, level);
1629
    if (ret < 0) {
1630
        return ret;
1631
    }
1632
    ret = kvm_put_debugregs(env);
1633
    if (ret < 0) {
1634
        return ret;
1635
    }
1636
    /* must be last */
1637
    ret = kvm_guest_debug_workarounds(env);
1638
    if (ret < 0) {
1639
        return ret;
1640
    }
1641
    return 0;
1642
}
1643

    
1644
int kvm_arch_get_registers(CPUX86State *env)
1645
{
1646
    X86CPU *cpu = x86_env_get_cpu(env);
1647
    int ret;
1648

    
1649
    assert(cpu_is_stopped(CPU(cpu)) || qemu_cpu_is_self(CPU(cpu)));
1650

    
1651
    ret = kvm_getput_regs(env, 0);
1652
    if (ret < 0) {
1653
        return ret;
1654
    }
1655
    ret = kvm_get_xsave(env);
1656
    if (ret < 0) {
1657
        return ret;
1658
    }
1659
    ret = kvm_get_xcrs(env);
1660
    if (ret < 0) {
1661
        return ret;
1662
    }
1663
    ret = kvm_get_sregs(env);
1664
    if (ret < 0) {
1665
        return ret;
1666
    }
1667
    ret = kvm_get_msrs(env);
1668
    if (ret < 0) {
1669
        return ret;
1670
    }
1671
    ret = kvm_get_mp_state(cpu);
1672
    if (ret < 0) {
1673
        return ret;
1674
    }
1675
    ret = kvm_get_apic(env);
1676
    if (ret < 0) {
1677
        return ret;
1678
    }
1679
    ret = kvm_get_vcpu_events(env);
1680
    if (ret < 0) {
1681
        return ret;
1682
    }
1683
    ret = kvm_get_debugregs(env);
1684
    if (ret < 0) {
1685
        return ret;
1686
    }
1687
    return 0;
1688
}
1689

    
1690
void kvm_arch_pre_run(CPUX86State *env, struct kvm_run *run)
1691
{
1692
    int ret;
1693

    
1694
    /* Inject NMI */
1695
    if (env->interrupt_request & CPU_INTERRUPT_NMI) {
1696
        env->interrupt_request &= ~CPU_INTERRUPT_NMI;
1697
        DPRINTF("injected NMI\n");
1698
        ret = kvm_vcpu_ioctl(env, KVM_NMI);
1699
        if (ret < 0) {
1700
            fprintf(stderr, "KVM: injection failed, NMI lost (%s)\n",
1701
                    strerror(-ret));
1702
        }
1703
    }
1704

    
1705
    if (!kvm_irqchip_in_kernel()) {
1706
        /* Force the VCPU out of its inner loop to process any INIT requests
1707
         * or pending TPR access reports. */
1708
        if (env->interrupt_request &
1709
            (CPU_INTERRUPT_INIT | CPU_INTERRUPT_TPR)) {
1710
            env->exit_request = 1;
1711
        }
1712

    
1713
        /* Try to inject an interrupt if the guest can accept it */
1714
        if (run->ready_for_interrupt_injection &&
1715
            (env->interrupt_request & CPU_INTERRUPT_HARD) &&
1716
            (env->eflags & IF_MASK)) {
1717
            int irq;
1718

    
1719
            env->interrupt_request &= ~CPU_INTERRUPT_HARD;
1720
            irq = cpu_get_pic_interrupt(env);
1721
            if (irq >= 0) {
1722
                struct kvm_interrupt intr;
1723

    
1724
                intr.irq = irq;
1725
                DPRINTF("injected interrupt %d\n", irq);
1726
                ret = kvm_vcpu_ioctl(env, KVM_INTERRUPT, &intr);
1727
                if (ret < 0) {
1728
                    fprintf(stderr,
1729
                            "KVM: injection failed, interrupt lost (%s)\n",
1730
                            strerror(-ret));
1731
                }
1732
            }
1733
        }
1734

    
1735
        /* If we have an interrupt but the guest is not ready to receive an
1736
         * interrupt, request an interrupt window exit.  This will
1737
         * cause a return to userspace as soon as the guest is ready to
1738
         * receive interrupts. */
1739
        if ((env->interrupt_request & CPU_INTERRUPT_HARD)) {
1740
            run->request_interrupt_window = 1;
1741
        } else {
1742
            run->request_interrupt_window = 0;
1743
        }
1744

    
1745
        DPRINTF("setting tpr\n");
1746
        run->cr8 = cpu_get_apic_tpr(env->apic_state);
1747
    }
1748
}
1749

    
1750
void kvm_arch_post_run(CPUX86State *env, struct kvm_run *run)
1751
{
1752
    if (run->if_flag) {
1753
        env->eflags |= IF_MASK;
1754
    } else {
1755
        env->eflags &= ~IF_MASK;
1756
    }
1757
    cpu_set_apic_tpr(env->apic_state, run->cr8);
1758
    cpu_set_apic_base(env->apic_state, run->apic_base);
1759
}
1760

    
1761
int kvm_arch_process_async_events(CPUX86State *env)
1762
{
1763
    X86CPU *cpu = x86_env_get_cpu(env);
1764

    
1765
    if (env->interrupt_request & CPU_INTERRUPT_MCE) {
1766
        /* We must not raise CPU_INTERRUPT_MCE if it's not supported. */
1767
        assert(env->mcg_cap);
1768

    
1769
        env->interrupt_request &= ~CPU_INTERRUPT_MCE;
1770

    
1771
        kvm_cpu_synchronize_state(env);
1772

    
1773
        if (env->exception_injected == EXCP08_DBLE) {
1774
            /* this means triple fault */
1775
            qemu_system_reset_request();
1776
            env->exit_request = 1;
1777
            return 0;
1778
        }
1779
        env->exception_injected = EXCP12_MCHK;
1780
        env->has_error_code = 0;
1781

    
1782
        env->halted = 0;
1783
        if (kvm_irqchip_in_kernel() && env->mp_state == KVM_MP_STATE_HALTED) {
1784
            env->mp_state = KVM_MP_STATE_RUNNABLE;
1785
        }
1786
    }
1787

    
1788
    if (kvm_irqchip_in_kernel()) {
1789
        return 0;
1790
    }
1791

    
1792
    if (env->interrupt_request & CPU_INTERRUPT_POLL) {
1793
        env->interrupt_request &= ~CPU_INTERRUPT_POLL;
1794
        apic_poll_irq(env->apic_state);
1795
    }
1796
    if (((env->interrupt_request & CPU_INTERRUPT_HARD) &&
1797
         (env->eflags & IF_MASK)) ||
1798
        (env->interrupt_request & CPU_INTERRUPT_NMI)) {
1799
        env->halted = 0;
1800
    }
1801
    if (env->interrupt_request & CPU_INTERRUPT_INIT) {
1802
        kvm_cpu_synchronize_state(env);
1803
        do_cpu_init(cpu);
1804
    }
1805
    if (env->interrupt_request & CPU_INTERRUPT_SIPI) {
1806
        kvm_cpu_synchronize_state(env);
1807
        do_cpu_sipi(cpu);
1808
    }
1809
    if (env->interrupt_request & CPU_INTERRUPT_TPR) {
1810
        env->interrupt_request &= ~CPU_INTERRUPT_TPR;
1811
        kvm_cpu_synchronize_state(env);
1812
        apic_handle_tpr_access_report(env->apic_state, env->eip,
1813
                                      env->tpr_access_type);
1814
    }
1815

    
1816
    return env->halted;
1817
}
1818

    
1819
static int kvm_handle_halt(X86CPU *cpu)
1820
{
1821
    CPUX86State *env = &cpu->env;
1822

    
1823
    if (!((env->interrupt_request & CPU_INTERRUPT_HARD) &&
1824
          (env->eflags & IF_MASK)) &&
1825
        !(env->interrupt_request & CPU_INTERRUPT_NMI)) {
1826
        env->halted = 1;
1827
        return EXCP_HLT;
1828
    }
1829

    
1830
    return 0;
1831
}
1832

    
1833
static int kvm_handle_tpr_access(CPUX86State *env)
1834
{
1835
    struct kvm_run *run = env->kvm_run;
1836

    
1837
    apic_handle_tpr_access_report(env->apic_state, run->tpr_access.rip,
1838
                                  run->tpr_access.is_write ? TPR_ACCESS_WRITE
1839
                                                           : TPR_ACCESS_READ);
1840
    return 1;
1841
}
1842

    
1843
int kvm_arch_insert_sw_breakpoint(CPUX86State *env, struct kvm_sw_breakpoint *bp)
1844
{
1845
    static const uint8_t int3 = 0xcc;
1846

    
1847
    if (cpu_memory_rw_debug(env, bp->pc, (uint8_t *)&bp->saved_insn, 1, 0) ||
1848
        cpu_memory_rw_debug(env, bp->pc, (uint8_t *)&int3, 1, 1)) {
1849
        return -EINVAL;
1850
    }
1851
    return 0;
1852
}
1853

    
1854
int kvm_arch_remove_sw_breakpoint(CPUX86State *env, struct kvm_sw_breakpoint *bp)
1855
{
1856
    uint8_t int3;
1857

    
1858
    if (cpu_memory_rw_debug(env, bp->pc, &int3, 1, 0) || int3 != 0xcc ||
1859
        cpu_memory_rw_debug(env, bp->pc, (uint8_t *)&bp->saved_insn, 1, 1)) {
1860
        return -EINVAL;
1861
    }
1862
    return 0;
1863
}
1864

    
1865
static struct {
1866
    target_ulong addr;
1867
    int len;
1868
    int type;
1869
} hw_breakpoint[4];
1870

    
1871
static int nb_hw_breakpoint;
1872

    
1873
static int find_hw_breakpoint(target_ulong addr, int len, int type)
1874
{
1875
    int n;
1876

    
1877
    for (n = 0; n < nb_hw_breakpoint; n++) {
1878
        if (hw_breakpoint[n].addr == addr && hw_breakpoint[n].type == type &&
1879
            (hw_breakpoint[n].len == len || len == -1)) {
1880
            return n;
1881
        }
1882
    }
1883
    return -1;
1884
}
1885

    
1886
int kvm_arch_insert_hw_breakpoint(target_ulong addr,
1887
                                  target_ulong len, int type)
1888
{
1889
    switch (type) {
1890
    case GDB_BREAKPOINT_HW:
1891
        len = 1;
1892
        break;
1893
    case GDB_WATCHPOINT_WRITE:
1894
    case GDB_WATCHPOINT_ACCESS:
1895
        switch (len) {
1896
        case 1:
1897
            break;
1898
        case 2:
1899
        case 4:
1900
        case 8:
1901
            if (addr & (len - 1)) {
1902
                return -EINVAL;
1903
            }
1904
            break;
1905
        default:
1906
            return -EINVAL;
1907
        }
1908
        break;
1909
    default:
1910
        return -ENOSYS;
1911
    }
1912

    
1913
    if (nb_hw_breakpoint == 4) {
1914
        return -ENOBUFS;
1915
    }
1916
    if (find_hw_breakpoint(addr, len, type) >= 0) {
1917
        return -EEXIST;
1918
    }
1919
    hw_breakpoint[nb_hw_breakpoint].addr = addr;
1920
    hw_breakpoint[nb_hw_breakpoint].len = len;
1921
    hw_breakpoint[nb_hw_breakpoint].type = type;
1922
    nb_hw_breakpoint++;
1923

    
1924
    return 0;
1925
}
1926

    
1927
int kvm_arch_remove_hw_breakpoint(target_ulong addr,
1928
                                  target_ulong len, int type)
1929
{
1930
    int n;
1931

    
1932
    n = find_hw_breakpoint(addr, (type == GDB_BREAKPOINT_HW) ? 1 : len, type);
1933
    if (n < 0) {
1934
        return -ENOENT;
1935
    }
1936
    nb_hw_breakpoint--;
1937
    hw_breakpoint[n] = hw_breakpoint[nb_hw_breakpoint];
1938

    
1939
    return 0;
1940
}
1941

    
1942
void kvm_arch_remove_all_hw_breakpoints(void)
1943
{
1944
    nb_hw_breakpoint = 0;
1945
}
1946

    
1947
static CPUWatchpoint hw_watchpoint;
1948

    
1949
static int kvm_handle_debug(CPUX86State *env,
1950
                            struct kvm_debug_exit_arch *arch_info)
1951
{
1952
    int ret = 0;
1953
    int n;
1954

    
1955
    if (arch_info->exception == 1) {
1956
        if (arch_info->dr6 & (1 << 14)) {
1957
            if (env->singlestep_enabled) {
1958
                ret = EXCP_DEBUG;
1959
            }
1960
        } else {
1961
            for (n = 0; n < 4; n++) {
1962
                if (arch_info->dr6 & (1 << n)) {
1963
                    switch ((arch_info->dr7 >> (16 + n*4)) & 0x3) {
1964
                    case 0x0:
1965
                        ret = EXCP_DEBUG;
1966
                        break;
1967
                    case 0x1:
1968
                        ret = EXCP_DEBUG;
1969
                        env->watchpoint_hit = &hw_watchpoint;
1970
                        hw_watchpoint.vaddr = hw_breakpoint[n].addr;
1971
                        hw_watchpoint.flags = BP_MEM_WRITE;
1972
                        break;
1973
                    case 0x3:
1974
                        ret = EXCP_DEBUG;
1975
                        env->watchpoint_hit = &hw_watchpoint;
1976
                        hw_watchpoint.vaddr = hw_breakpoint[n].addr;
1977
                        hw_watchpoint.flags = BP_MEM_ACCESS;
1978
                        break;
1979
                    }
1980
                }
1981
            }
1982
        }
1983
    } else if (kvm_find_sw_breakpoint(env, arch_info->pc)) {
1984
        ret = EXCP_DEBUG;
1985
    }
1986
    if (ret == 0) {
1987
        cpu_synchronize_state(env);
1988
        assert(env->exception_injected == -1);
1989

    
1990
        /* pass to guest */
1991
        env->exception_injected = arch_info->exception;
1992
        env->has_error_code = 0;
1993
    }
1994

    
1995
    return ret;
1996
}
1997

    
1998
void kvm_arch_update_guest_debug(CPUX86State *env, struct kvm_guest_debug *dbg)
1999
{
2000
    const uint8_t type_code[] = {
2001
        [GDB_BREAKPOINT_HW] = 0x0,
2002
        [GDB_WATCHPOINT_WRITE] = 0x1,
2003
        [GDB_WATCHPOINT_ACCESS] = 0x3
2004
    };
2005
    const uint8_t len_code[] = {
2006
        [1] = 0x0, [2] = 0x1, [4] = 0x3, [8] = 0x2
2007
    };
2008
    int n;
2009

    
2010
    if (kvm_sw_breakpoints_active(env)) {
2011
        dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP;
2012
    }
2013
    if (nb_hw_breakpoint > 0) {
2014
        dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_HW_BP;
2015
        dbg->arch.debugreg[7] = 0x0600;
2016
        for (n = 0; n < nb_hw_breakpoint; n++) {
2017
            dbg->arch.debugreg[n] = hw_breakpoint[n].addr;
2018
            dbg->arch.debugreg[7] |= (2 << (n * 2)) |
2019
                (type_code[hw_breakpoint[n].type] << (16 + n*4)) |
2020
                ((uint32_t)len_code[hw_breakpoint[n].len] << (18 + n*4));
2021
        }
2022
    }
2023
}
2024

    
2025
static bool host_supports_vmx(void)
2026
{
2027
    uint32_t ecx, unused;
2028

    
2029
    host_cpuid(1, 0, &unused, &unused, &ecx, &unused);
2030
    return ecx & CPUID_EXT_VMX;
2031
}
2032

    
2033
#define VMX_INVALID_GUEST_STATE 0x80000021
2034

    
2035
int kvm_arch_handle_exit(CPUX86State *env, struct kvm_run *run)
2036
{
2037
    X86CPU *cpu = x86_env_get_cpu(env);
2038
    uint64_t code;
2039
    int ret;
2040

    
2041
    switch (run->exit_reason) {
2042
    case KVM_EXIT_HLT:
2043
        DPRINTF("handle_hlt\n");
2044
        ret = kvm_handle_halt(cpu);
2045
        break;
2046
    case KVM_EXIT_SET_TPR:
2047
        ret = 0;
2048
        break;
2049
    case KVM_EXIT_TPR_ACCESS:
2050
        ret = kvm_handle_tpr_access(env);
2051
        break;
2052
    case KVM_EXIT_FAIL_ENTRY:
2053
        code = run->fail_entry.hardware_entry_failure_reason;
2054
        fprintf(stderr, "KVM: entry failed, hardware error 0x%" PRIx64 "\n",
2055
                code);
2056
        if (host_supports_vmx() && code == VMX_INVALID_GUEST_STATE) {
2057
            fprintf(stderr,
2058
                    "\nIf you're running a guest on an Intel machine without "
2059
                        "unrestricted mode\n"
2060
                    "support, the failure can be most likely due to the guest "
2061
                        "entering an invalid\n"
2062
                    "state for Intel VT. For example, the guest maybe running "
2063
                        "in big real mode\n"
2064
                    "which is not supported on less recent Intel processors."
2065
                        "\n\n");
2066
        }
2067
        ret = -1;
2068
        break;
2069
    case KVM_EXIT_EXCEPTION:
2070
        fprintf(stderr, "KVM: exception %d exit (error code 0x%x)\n",
2071
                run->ex.exception, run->ex.error_code);
2072
        ret = -1;
2073
        break;
2074
    case KVM_EXIT_DEBUG:
2075
        DPRINTF("kvm_exit_debug\n");
2076
        ret = kvm_handle_debug(env, &run->debug.arch);
2077
        break;
2078
    default:
2079
        fprintf(stderr, "KVM: unknown exit reason %d\n", run->exit_reason);
2080
        ret = -1;
2081
        break;
2082
    }
2083

    
2084
    return ret;
2085
}
2086

    
2087
bool kvm_arch_stop_on_emulation_error(CPUX86State *env)
2088
{
2089
    kvm_cpu_synchronize_state(env);
2090
    return !(env->cr[0] & CR0_PE_MASK) ||
2091
           ((env->segs[R_CS].selector  & 3) != 3);
2092
}
2093

    
2094
void kvm_arch_init_irq_routing(KVMState *s)
2095
{
2096
    if (!kvm_check_extension(s, KVM_CAP_IRQ_ROUTING)) {
2097
        /* If kernel can't do irq routing, interrupt source
2098
         * override 0->2 cannot be set up as required by HPET.
2099
         * So we have to disable it.
2100
         */
2101
        no_hpet = 1;
2102
    }
2103
    /* We know at this point that we're using the in-kernel
2104
     * irqchip, so we can use irqfds, and on x86 we know
2105
     * we can use msi via irqfd and GSI routing.
2106
     */
2107
    kvm_irqfds_allowed = true;
2108
    kvm_msi_via_irqfd_allowed = true;
2109
    kvm_gsi_routing_allowed = true;
2110
}
2111

    
2112
/* Classic KVM device assignment interface. Will remain x86 only. */
2113
int kvm_device_pci_assign(KVMState *s, PCIHostDeviceAddress *dev_addr,
2114
                          uint32_t flags, uint32_t *dev_id)
2115
{
2116
    struct kvm_assigned_pci_dev dev_data = {
2117
        .segnr = dev_addr->domain,
2118
        .busnr = dev_addr->bus,
2119
        .devfn = PCI_DEVFN(dev_addr->slot, dev_addr->function),
2120
        .flags = flags,
2121
    };
2122
    int ret;
2123

    
2124
    dev_data.assigned_dev_id =
2125
        (dev_addr->domain << 16) | (dev_addr->bus << 8) | dev_data.devfn;
2126

    
2127
    ret = kvm_vm_ioctl(s, KVM_ASSIGN_PCI_DEVICE, &dev_data);
2128
    if (ret < 0) {
2129
        return ret;
2130
    }
2131

    
2132
    *dev_id = dev_data.assigned_dev_id;
2133

    
2134
    return 0;
2135
}
2136

    
2137
int kvm_device_pci_deassign(KVMState *s, uint32_t dev_id)
2138
{
2139
    struct kvm_assigned_pci_dev dev_data = {
2140
        .assigned_dev_id = dev_id,
2141
    };
2142

    
2143
    return kvm_vm_ioctl(s, KVM_DEASSIGN_PCI_DEVICE, &dev_data);
2144
}
2145

    
2146
static int kvm_assign_irq_internal(KVMState *s, uint32_t dev_id,
2147
                                   uint32_t irq_type, uint32_t guest_irq)
2148
{
2149
    struct kvm_assigned_irq assigned_irq = {
2150
        .assigned_dev_id = dev_id,
2151
        .guest_irq = guest_irq,
2152
        .flags = irq_type,
2153
    };
2154

    
2155
    if (kvm_check_extension(s, KVM_CAP_ASSIGN_DEV_IRQ)) {
2156
        return kvm_vm_ioctl(s, KVM_ASSIGN_DEV_IRQ, &assigned_irq);
2157
    } else {
2158
        return kvm_vm_ioctl(s, KVM_ASSIGN_IRQ, &assigned_irq);
2159
    }
2160
}
2161

    
2162
int kvm_device_intx_assign(KVMState *s, uint32_t dev_id, bool use_host_msi,
2163
                           uint32_t guest_irq)
2164
{
2165
    uint32_t irq_type = KVM_DEV_IRQ_GUEST_INTX |
2166
        (use_host_msi ? KVM_DEV_IRQ_HOST_MSI : KVM_DEV_IRQ_HOST_INTX);
2167

    
2168
    return kvm_assign_irq_internal(s, dev_id, irq_type, guest_irq);
2169
}
2170

    
2171
int kvm_device_intx_set_mask(KVMState *s, uint32_t dev_id, bool masked)
2172
{
2173
    struct kvm_assigned_pci_dev dev_data = {
2174
        .assigned_dev_id = dev_id,
2175
        .flags = masked ? KVM_DEV_ASSIGN_MASK_INTX : 0,
2176
    };
2177

    
2178
    return kvm_vm_ioctl(s, KVM_ASSIGN_SET_INTX_MASK, &dev_data);
2179
}
2180

    
2181
static int kvm_deassign_irq_internal(KVMState *s, uint32_t dev_id,
2182
                                     uint32_t type)
2183
{
2184
    struct kvm_assigned_irq assigned_irq = {
2185
        .assigned_dev_id = dev_id,
2186
        .flags = type,
2187
    };
2188

    
2189
    return kvm_vm_ioctl(s, KVM_DEASSIGN_DEV_IRQ, &assigned_irq);
2190
}
2191

    
2192
int kvm_device_intx_deassign(KVMState *s, uint32_t dev_id, bool use_host_msi)
2193
{
2194
    return kvm_deassign_irq_internal(s, dev_id, KVM_DEV_IRQ_GUEST_INTX |
2195
        (use_host_msi ? KVM_DEV_IRQ_HOST_MSI : KVM_DEV_IRQ_HOST_INTX));
2196
}
2197

    
2198
int kvm_device_msi_assign(KVMState *s, uint32_t dev_id, int virq)
2199
{
2200
    return kvm_assign_irq_internal(s, dev_id, KVM_DEV_IRQ_HOST_MSI |
2201
                                              KVM_DEV_IRQ_GUEST_MSI, virq);
2202
}
2203

    
2204
int kvm_device_msi_deassign(KVMState *s, uint32_t dev_id)
2205
{
2206
    return kvm_deassign_irq_internal(s, dev_id, KVM_DEV_IRQ_GUEST_MSI |
2207
                                                KVM_DEV_IRQ_HOST_MSI);
2208
}
2209

    
2210
bool kvm_device_msix_supported(KVMState *s)
2211
{
2212
    /* The kernel lacks a corresponding KVM_CAP, so we probe by calling
2213
     * KVM_ASSIGN_SET_MSIX_NR with an invalid parameter. */
2214
    return kvm_vm_ioctl(s, KVM_ASSIGN_SET_MSIX_NR, NULL) == -EFAULT;
2215
}
2216

    
2217
int kvm_device_msix_init_vectors(KVMState *s, uint32_t dev_id,
2218
                                 uint32_t nr_vectors)
2219
{
2220
    struct kvm_assigned_msix_nr msix_nr = {
2221
        .assigned_dev_id = dev_id,
2222
        .entry_nr = nr_vectors,
2223
    };
2224

    
2225
    return kvm_vm_ioctl(s, KVM_ASSIGN_SET_MSIX_NR, &msix_nr);
2226
}
2227

    
2228
int kvm_device_msix_set_vector(KVMState *s, uint32_t dev_id, uint32_t vector,
2229
                               int virq)
2230
{
2231
    struct kvm_assigned_msix_entry msix_entry = {
2232
        .assigned_dev_id = dev_id,
2233
        .gsi = virq,
2234
        .entry = vector,
2235
    };
2236

    
2237
    return kvm_vm_ioctl(s, KVM_ASSIGN_SET_MSIX_ENTRY, &msix_entry);
2238
}
2239

    
2240
int kvm_device_msix_assign(KVMState *s, uint32_t dev_id)
2241
{
2242
    return kvm_assign_irq_internal(s, dev_id, KVM_DEV_IRQ_HOST_MSIX |
2243
                                              KVM_DEV_IRQ_GUEST_MSIX, 0);
2244
}
2245

    
2246
int kvm_device_msix_deassign(KVMState *s, uint32_t dev_id)
2247
{
2248
    return kvm_deassign_irq_internal(s, dev_id, KVM_DEV_IRQ_GUEST_MSIX |
2249
                                                KVM_DEV_IRQ_HOST_MSIX);
2250
}