Statistics
| Branch: | Revision:

root / target-i386 / kvm.c @ 9ccfac9e

History | View | Annotate | Download (52.1 kB)

1
/*
2
 * QEMU KVM support
3
 *
4
 * Copyright (C) 2006-2008 Qumranet Technologies
5
 * Copyright IBM, Corp. 2008
6
 *
7
 * Authors:
8
 *  Anthony Liguori   <aliguori@us.ibm.com>
9
 *
10
 * This work is licensed under the terms of the GNU GPL, version 2 or later.
11
 * See the COPYING file in the top-level directory.
12
 *
13
 */
14

    
15
#include <sys/types.h>
16
#include <sys/ioctl.h>
17
#include <sys/mman.h>
18
#include <sys/utsname.h>
19

    
20
#include <linux/kvm.h>
21

    
22
#include "qemu-common.h"
23
#include "sysemu.h"
24
#include "kvm.h"
25
#include "cpu.h"
26
#include "gdbstub.h"
27
#include "host-utils.h"
28
#include "hw/pc.h"
29
#include "hw/apic.h"
30
#include "ioport.h"
31
#include "kvm_x86.h"
32

    
33
#ifdef CONFIG_KVM_PARA
34
#include <linux/kvm_para.h>
35
#endif
36
//
37
//#define DEBUG_KVM
38

    
39
#ifdef DEBUG_KVM
40
#define DPRINTF(fmt, ...) \
41
    do { fprintf(stderr, fmt, ## __VA_ARGS__); } while (0)
42
#else
43
#define DPRINTF(fmt, ...) \
44
    do { } while (0)
45
#endif
46

    
47
#define MSR_KVM_WALL_CLOCK  0x11
48
#define MSR_KVM_SYSTEM_TIME 0x12
49

    
50
#ifndef BUS_MCEERR_AR
51
#define BUS_MCEERR_AR 4
52
#endif
53
#ifndef BUS_MCEERR_AO
54
#define BUS_MCEERR_AO 5
55
#endif
56

    
57
const KVMCapabilityInfo kvm_arch_required_capabilities[] = {
58
    KVM_CAP_INFO(SET_TSS_ADDR),
59
    KVM_CAP_INFO(EXT_CPUID),
60
    KVM_CAP_INFO(MP_STATE),
61
    KVM_CAP_LAST_INFO
62
};
63

    
64
static bool has_msr_star;
65
static bool has_msr_hsave_pa;
66
#if defined(CONFIG_KVM_PARA) && defined(KVM_CAP_ASYNC_PF)
67
static bool has_msr_async_pf_en;
68
#endif
69
static int lm_capable_kernel;
70

    
71
static struct kvm_cpuid2 *try_get_cpuid(KVMState *s, int max)
72
{
73
    struct kvm_cpuid2 *cpuid;
74
    int r, size;
75

    
76
    size = sizeof(*cpuid) + max * sizeof(*cpuid->entries);
77
    cpuid = (struct kvm_cpuid2 *)qemu_mallocz(size);
78
    cpuid->nent = max;
79
    r = kvm_ioctl(s, KVM_GET_SUPPORTED_CPUID, cpuid);
80
    if (r == 0 && cpuid->nent >= max) {
81
        r = -E2BIG;
82
    }
83
    if (r < 0) {
84
        if (r == -E2BIG) {
85
            qemu_free(cpuid);
86
            return NULL;
87
        } else {
88
            fprintf(stderr, "KVM_GET_SUPPORTED_CPUID failed: %s\n",
89
                    strerror(-r));
90
            exit(1);
91
        }
92
    }
93
    return cpuid;
94
}
95

    
96
uint32_t kvm_arch_get_supported_cpuid(CPUState *env, uint32_t function,
97
                                      uint32_t index, int reg)
98
{
99
    struct kvm_cpuid2 *cpuid;
100
    int i, max;
101
    uint32_t ret = 0;
102
    uint32_t cpuid_1_edx;
103

    
104
    max = 1;
105
    while ((cpuid = try_get_cpuid(env->kvm_state, max)) == NULL) {
106
        max *= 2;
107
    }
108

    
109
    for (i = 0; i < cpuid->nent; ++i) {
110
        if (cpuid->entries[i].function == function &&
111
            cpuid->entries[i].index == index) {
112
            switch (reg) {
113
            case R_EAX:
114
                ret = cpuid->entries[i].eax;
115
                break;
116
            case R_EBX:
117
                ret = cpuid->entries[i].ebx;
118
                break;
119
            case R_ECX:
120
                ret = cpuid->entries[i].ecx;
121
                break;
122
            case R_EDX:
123
                ret = cpuid->entries[i].edx;
124
                switch (function) {
125
                case 1:
126
                    /* KVM before 2.6.30 misreports the following features */
127
                    ret |= CPUID_MTRR | CPUID_PAT | CPUID_MCE | CPUID_MCA;
128
                    break;
129
                case 0x80000001:
130
                    /* On Intel, kvm returns cpuid according to the Intel spec,
131
                     * so add missing bits according to the AMD spec:
132
                     */
133
                    cpuid_1_edx = kvm_arch_get_supported_cpuid(env, 1, 0, R_EDX);
134
                    ret |= cpuid_1_edx & 0x183f7ff;
135
                    break;
136
                }
137
                break;
138
            }
139
        }
140
    }
141

    
142
    qemu_free(cpuid);
143

    
144
    return ret;
145
}
146

    
147
#ifdef CONFIG_KVM_PARA
148
struct kvm_para_features {
149
    int cap;
150
    int feature;
151
} para_features[] = {
152
    { KVM_CAP_CLOCKSOURCE, KVM_FEATURE_CLOCKSOURCE },
153
    { KVM_CAP_NOP_IO_DELAY, KVM_FEATURE_NOP_IO_DELAY },
154
    { KVM_CAP_PV_MMU, KVM_FEATURE_MMU_OP },
155
#ifdef KVM_CAP_ASYNC_PF
156
    { KVM_CAP_ASYNC_PF, KVM_FEATURE_ASYNC_PF },
157
#endif
158
    { -1, -1 }
159
};
160

    
161
static int get_para_features(CPUState *env)
162
{
163
    int i, features = 0;
164

    
165
    for (i = 0; i < ARRAY_SIZE(para_features) - 1; i++) {
166
        if (kvm_check_extension(env->kvm_state, para_features[i].cap)) {
167
            features |= (1 << para_features[i].feature);
168
        }
169
    }
170
#ifdef KVM_CAP_ASYNC_PF
171
    has_msr_async_pf_en = features & (1 << KVM_FEATURE_ASYNC_PF);
172
#endif
173
    return features;
174
}
175
#endif
176

    
177
#ifdef KVM_CAP_MCE
178
static int kvm_get_mce_cap_supported(KVMState *s, uint64_t *mce_cap,
179
                                     int *max_banks)
180
{
181
    int r;
182

    
183
    r = kvm_check_extension(s, KVM_CAP_MCE);
184
    if (r > 0) {
185
        *max_banks = r;
186
        return kvm_ioctl(s, KVM_X86_GET_MCE_CAP_SUPPORTED, mce_cap);
187
    }
188
    return -ENOSYS;
189
}
190

    
191
static int kvm_setup_mce(CPUState *env, uint64_t *mcg_cap)
192
{
193
    return kvm_vcpu_ioctl(env, KVM_X86_SETUP_MCE, mcg_cap);
194
}
195

    
196
static int kvm_set_mce(CPUState *env, struct kvm_x86_mce *m)
197
{
198
    return kvm_vcpu_ioctl(env, KVM_X86_SET_MCE, m);
199
}
200

    
201
static int kvm_get_msr(CPUState *env, struct kvm_msr_entry *msrs, int n)
202
{
203
    struct kvm_msrs *kmsrs = qemu_malloc(sizeof *kmsrs + n * sizeof *msrs);
204
    int r;
205

    
206
    kmsrs->nmsrs = n;
207
    memcpy(kmsrs->entries, msrs, n * sizeof *msrs);
208
    r = kvm_vcpu_ioctl(env, KVM_GET_MSRS, kmsrs);
209
    memcpy(msrs, kmsrs->entries, n * sizeof *msrs);
210
    free(kmsrs);
211
    return r;
212
}
213

    
214
/* FIXME: kill this and kvm_get_msr, use env->mcg_status instead */
215
static int kvm_mce_in_progress(CPUState *env)
216
{
217
    struct kvm_msr_entry msr_mcg_status = {
218
        .index = MSR_MCG_STATUS,
219
    };
220
    int r;
221

    
222
    r = kvm_get_msr(env, &msr_mcg_status, 1);
223
    if (r == -1 || r == 0) {
224
        fprintf(stderr, "Failed to get MCE status\n");
225
        return 0;
226
    }
227
    return !!(msr_mcg_status.data & MCG_STATUS_MCIP);
228
}
229

    
230
struct kvm_x86_mce_data
231
{
232
    CPUState *env;
233
    struct kvm_x86_mce *mce;
234
    int abort_on_error;
235
};
236

    
237
static void kvm_do_inject_x86_mce(void *_data)
238
{
239
    struct kvm_x86_mce_data *data = _data;
240
    int r;
241

    
242
    /* If there is an MCE exception being processed, ignore this SRAO MCE */
243
    if ((data->env->mcg_cap & MCG_SER_P) &&
244
        !(data->mce->status & MCI_STATUS_AR)) {
245
        if (kvm_mce_in_progress(data->env)) {
246
            return;
247
        }
248
    }
249

    
250
    r = kvm_set_mce(data->env, data->mce);
251
    if (r < 0) {
252
        perror("kvm_set_mce FAILED");
253
        if (data->abort_on_error) {
254
            abort();
255
        }
256
    }
257
}
258

    
259
static void kvm_inject_x86_mce_on(CPUState *env, struct kvm_x86_mce *mce,
260
                                  int flag)
261
{
262
    struct kvm_x86_mce_data data = {
263
        .env = env,
264
        .mce = mce,
265
        .abort_on_error = (flag & ABORT_ON_ERROR),
266
    };
267

    
268
    if (!env->mcg_cap) {
269
        fprintf(stderr, "MCE support is not enabled!\n");
270
        return;
271
    }
272

    
273
    run_on_cpu(env, kvm_do_inject_x86_mce, &data);
274
}
275

    
276
static void kvm_mce_broadcast_rest(CPUState *env);
277
#endif
278

    
279
void kvm_inject_x86_mce(CPUState *cenv, int bank, uint64_t status,
280
                        uint64_t mcg_status, uint64_t addr, uint64_t misc,
281
                        int flag)
282
{
283
#ifdef KVM_CAP_MCE
284
    struct kvm_x86_mce mce = {
285
        .bank = bank,
286
        .status = status,
287
        .mcg_status = mcg_status,
288
        .addr = addr,
289
        .misc = misc,
290
    };
291

    
292
    if (flag & MCE_BROADCAST) {
293
        kvm_mce_broadcast_rest(cenv);
294
    }
295

    
296
    kvm_inject_x86_mce_on(cenv, &mce, flag);
297
#else
298
    if (flag & ABORT_ON_ERROR) {
299
        abort();
300
    }
301
#endif
302
}
303

    
304
int kvm_arch_init_vcpu(CPUState *env)
305
{
306
    struct {
307
        struct kvm_cpuid2 cpuid;
308
        struct kvm_cpuid_entry2 entries[100];
309
    } __attribute__((packed)) cpuid_data;
310
    uint32_t limit, i, j, cpuid_i;
311
    uint32_t unused;
312
    struct kvm_cpuid_entry2 *c;
313
#ifdef CONFIG_KVM_PARA
314
    uint32_t signature[3];
315
#endif
316

    
317
    env->cpuid_features &= kvm_arch_get_supported_cpuid(env, 1, 0, R_EDX);
318

    
319
    i = env->cpuid_ext_features & CPUID_EXT_HYPERVISOR;
320
    env->cpuid_ext_features &= kvm_arch_get_supported_cpuid(env, 1, 0, R_ECX);
321
    env->cpuid_ext_features |= i;
322

    
323
    env->cpuid_ext2_features &= kvm_arch_get_supported_cpuid(env, 0x80000001,
324
                                                             0, R_EDX);
325
    env->cpuid_ext3_features &= kvm_arch_get_supported_cpuid(env, 0x80000001,
326
                                                             0, R_ECX);
327
    env->cpuid_svm_features  &= kvm_arch_get_supported_cpuid(env, 0x8000000A,
328
                                                             0, R_EDX);
329

    
330

    
331
    cpuid_i = 0;
332

    
333
#ifdef CONFIG_KVM_PARA
334
    /* Paravirtualization CPUIDs */
335
    memcpy(signature, "KVMKVMKVM\0\0\0", 12);
336
    c = &cpuid_data.entries[cpuid_i++];
337
    memset(c, 0, sizeof(*c));
338
    c->function = KVM_CPUID_SIGNATURE;
339
    c->eax = 0;
340
    c->ebx = signature[0];
341
    c->ecx = signature[1];
342
    c->edx = signature[2];
343

    
344
    c = &cpuid_data.entries[cpuid_i++];
345
    memset(c, 0, sizeof(*c));
346
    c->function = KVM_CPUID_FEATURES;
347
    c->eax = env->cpuid_kvm_features & get_para_features(env);
348
#endif
349

    
350
    cpu_x86_cpuid(env, 0, 0, &limit, &unused, &unused, &unused);
351

    
352
    for (i = 0; i <= limit; i++) {
353
        c = &cpuid_data.entries[cpuid_i++];
354

    
355
        switch (i) {
356
        case 2: {
357
            /* Keep reading function 2 till all the input is received */
358
            int times;
359

    
360
            c->function = i;
361
            c->flags = KVM_CPUID_FLAG_STATEFUL_FUNC |
362
                       KVM_CPUID_FLAG_STATE_READ_NEXT;
363
            cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
364
            times = c->eax & 0xff;
365

    
366
            for (j = 1; j < times; ++j) {
367
                c = &cpuid_data.entries[cpuid_i++];
368
                c->function = i;
369
                c->flags = KVM_CPUID_FLAG_STATEFUL_FUNC;
370
                cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
371
            }
372
            break;
373
        }
374
        case 4:
375
        case 0xb:
376
        case 0xd:
377
            for (j = 0; ; j++) {
378
                c->function = i;
379
                c->flags = KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
380
                c->index = j;
381
                cpu_x86_cpuid(env, i, j, &c->eax, &c->ebx, &c->ecx, &c->edx);
382

    
383
                if (i == 4 && c->eax == 0) {
384
                    break;
385
                }
386
                if (i == 0xb && !(c->ecx & 0xff00)) {
387
                    break;
388
                }
389
                if (i == 0xd && c->eax == 0) {
390
                    break;
391
                }
392
                c = &cpuid_data.entries[cpuid_i++];
393
            }
394
            break;
395
        default:
396
            c->function = i;
397
            c->flags = 0;
398
            cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
399
            break;
400
        }
401
    }
402
    cpu_x86_cpuid(env, 0x80000000, 0, &limit, &unused, &unused, &unused);
403

    
404
    for (i = 0x80000000; i <= limit; i++) {
405
        c = &cpuid_data.entries[cpuid_i++];
406

    
407
        c->function = i;
408
        c->flags = 0;
409
        cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
410
    }
411

    
412
    cpuid_data.cpuid.nent = cpuid_i;
413

    
414
#ifdef KVM_CAP_MCE
415
    if (((env->cpuid_version >> 8)&0xF) >= 6
416
        && (env->cpuid_features&(CPUID_MCE|CPUID_MCA)) == (CPUID_MCE|CPUID_MCA)
417
        && kvm_check_extension(env->kvm_state, KVM_CAP_MCE) > 0) {
418
        uint64_t mcg_cap;
419
        int banks;
420

    
421
        if (kvm_get_mce_cap_supported(env->kvm_state, &mcg_cap, &banks)) {
422
            perror("kvm_get_mce_cap_supported FAILED");
423
        } else {
424
            if (banks > MCE_BANKS_DEF)
425
                banks = MCE_BANKS_DEF;
426
            mcg_cap &= MCE_CAP_DEF;
427
            mcg_cap |= banks;
428
            if (kvm_setup_mce(env, &mcg_cap)) {
429
                perror("kvm_setup_mce FAILED");
430
            } else {
431
                env->mcg_cap = mcg_cap;
432
            }
433
        }
434
    }
435
#endif
436

    
437
    return kvm_vcpu_ioctl(env, KVM_SET_CPUID2, &cpuid_data);
438
}
439

    
440
void kvm_arch_reset_vcpu(CPUState *env)
441
{
442
    env->exception_injected = -1;
443
    env->interrupt_injected = -1;
444
    env->xcr0 = 1;
445
    if (kvm_irqchip_in_kernel()) {
446
        env->mp_state = cpu_is_bsp(env) ? KVM_MP_STATE_RUNNABLE :
447
                                          KVM_MP_STATE_UNINITIALIZED;
448
    } else {
449
        env->mp_state = KVM_MP_STATE_RUNNABLE;
450
    }
451
}
452

    
453
static int kvm_get_supported_msrs(KVMState *s)
454
{
455
    static int kvm_supported_msrs;
456
    int ret = 0;
457

    
458
    /* first time */
459
    if (kvm_supported_msrs == 0) {
460
        struct kvm_msr_list msr_list, *kvm_msr_list;
461

    
462
        kvm_supported_msrs = -1;
463

    
464
        /* Obtain MSR list from KVM.  These are the MSRs that we must
465
         * save/restore */
466
        msr_list.nmsrs = 0;
467
        ret = kvm_ioctl(s, KVM_GET_MSR_INDEX_LIST, &msr_list);
468
        if (ret < 0 && ret != -E2BIG) {
469
            return ret;
470
        }
471
        /* Old kernel modules had a bug and could write beyond the provided
472
           memory. Allocate at least a safe amount of 1K. */
473
        kvm_msr_list = qemu_mallocz(MAX(1024, sizeof(msr_list) +
474
                                              msr_list.nmsrs *
475
                                              sizeof(msr_list.indices[0])));
476

    
477
        kvm_msr_list->nmsrs = msr_list.nmsrs;
478
        ret = kvm_ioctl(s, KVM_GET_MSR_INDEX_LIST, kvm_msr_list);
479
        if (ret >= 0) {
480
            int i;
481

    
482
            for (i = 0; i < kvm_msr_list->nmsrs; i++) {
483
                if (kvm_msr_list->indices[i] == MSR_STAR) {
484
                    has_msr_star = true;
485
                    continue;
486
                }
487
                if (kvm_msr_list->indices[i] == MSR_VM_HSAVE_PA) {
488
                    has_msr_hsave_pa = true;
489
                    continue;
490
                }
491
            }
492
        }
493

    
494
        free(kvm_msr_list);
495
    }
496

    
497
    return ret;
498
}
499

    
500
int kvm_arch_init(KVMState *s)
501
{
502
    uint64_t identity_base = 0xfffbc000;
503
    int ret;
504
    struct utsname utsname;
505

    
506
    ret = kvm_get_supported_msrs(s);
507
    if (ret < 0) {
508
        return ret;
509
    }
510

    
511
    uname(&utsname);
512
    lm_capable_kernel = strcmp(utsname.machine, "x86_64") == 0;
513

    
514
    /*
515
     * On older Intel CPUs, KVM uses vm86 mode to emulate 16-bit code directly.
516
     * In order to use vm86 mode, an EPT identity map and a TSS  are needed.
517
     * Since these must be part of guest physical memory, we need to allocate
518
     * them, both by setting their start addresses in the kernel and by
519
     * creating a corresponding e820 entry. We need 4 pages before the BIOS.
520
     *
521
     * Older KVM versions may not support setting the identity map base. In
522
     * that case we need to stick with the default, i.e. a 256K maximum BIOS
523
     * size.
524
     */
525
#ifdef KVM_CAP_SET_IDENTITY_MAP_ADDR
526
    if (kvm_check_extension(s, KVM_CAP_SET_IDENTITY_MAP_ADDR)) {
527
        /* Allows up to 16M BIOSes. */
528
        identity_base = 0xfeffc000;
529

    
530
        ret = kvm_vm_ioctl(s, KVM_SET_IDENTITY_MAP_ADDR, &identity_base);
531
        if (ret < 0) {
532
            return ret;
533
        }
534
    }
535
#endif
536
    /* Set TSS base one page after EPT identity map. */
537
    ret = kvm_vm_ioctl(s, KVM_SET_TSS_ADDR, identity_base + 0x1000);
538
    if (ret < 0) {
539
        return ret;
540
    }
541

    
542
    /* Tell fw_cfg to notify the BIOS to reserve the range. */
543
    ret = e820_add_entry(identity_base, 0x4000, E820_RESERVED);
544
    if (ret < 0) {
545
        fprintf(stderr, "e820_add_entry() table is full\n");
546
        return ret;
547
    }
548

    
549
    return 0;
550
}
551

    
552
static void set_v8086_seg(struct kvm_segment *lhs, const SegmentCache *rhs)
553
{
554
    lhs->selector = rhs->selector;
555
    lhs->base = rhs->base;
556
    lhs->limit = rhs->limit;
557
    lhs->type = 3;
558
    lhs->present = 1;
559
    lhs->dpl = 3;
560
    lhs->db = 0;
561
    lhs->s = 1;
562
    lhs->l = 0;
563
    lhs->g = 0;
564
    lhs->avl = 0;
565
    lhs->unusable = 0;
566
}
567

    
568
static void set_seg(struct kvm_segment *lhs, const SegmentCache *rhs)
569
{
570
    unsigned flags = rhs->flags;
571
    lhs->selector = rhs->selector;
572
    lhs->base = rhs->base;
573
    lhs->limit = rhs->limit;
574
    lhs->type = (flags >> DESC_TYPE_SHIFT) & 15;
575
    lhs->present = (flags & DESC_P_MASK) != 0;
576
    lhs->dpl = (flags >> DESC_DPL_SHIFT) & 3;
577
    lhs->db = (flags >> DESC_B_SHIFT) & 1;
578
    lhs->s = (flags & DESC_S_MASK) != 0;
579
    lhs->l = (flags >> DESC_L_SHIFT) & 1;
580
    lhs->g = (flags & DESC_G_MASK) != 0;
581
    lhs->avl = (flags & DESC_AVL_MASK) != 0;
582
    lhs->unusable = 0;
583
}
584

    
585
static void get_seg(SegmentCache *lhs, const struct kvm_segment *rhs)
586
{
587
    lhs->selector = rhs->selector;
588
    lhs->base = rhs->base;
589
    lhs->limit = rhs->limit;
590
    lhs->flags = (rhs->type << DESC_TYPE_SHIFT) |
591
                 (rhs->present * DESC_P_MASK) |
592
                 (rhs->dpl << DESC_DPL_SHIFT) |
593
                 (rhs->db << DESC_B_SHIFT) |
594
                 (rhs->s * DESC_S_MASK) |
595
                 (rhs->l << DESC_L_SHIFT) |
596
                 (rhs->g * DESC_G_MASK) |
597
                 (rhs->avl * DESC_AVL_MASK);
598
}
599

    
600
static void kvm_getput_reg(__u64 *kvm_reg, target_ulong *qemu_reg, int set)
601
{
602
    if (set) {
603
        *kvm_reg = *qemu_reg;
604
    } else {
605
        *qemu_reg = *kvm_reg;
606
    }
607
}
608

    
609
static int kvm_getput_regs(CPUState *env, int set)
610
{
611
    struct kvm_regs regs;
612
    int ret = 0;
613

    
614
    if (!set) {
615
        ret = kvm_vcpu_ioctl(env, KVM_GET_REGS, &regs);
616
        if (ret < 0) {
617
            return ret;
618
        }
619
    }
620

    
621
    kvm_getput_reg(&regs.rax, &env->regs[R_EAX], set);
622
    kvm_getput_reg(&regs.rbx, &env->regs[R_EBX], set);
623
    kvm_getput_reg(&regs.rcx, &env->regs[R_ECX], set);
624
    kvm_getput_reg(&regs.rdx, &env->regs[R_EDX], set);
625
    kvm_getput_reg(&regs.rsi, &env->regs[R_ESI], set);
626
    kvm_getput_reg(&regs.rdi, &env->regs[R_EDI], set);
627
    kvm_getput_reg(&regs.rsp, &env->regs[R_ESP], set);
628
    kvm_getput_reg(&regs.rbp, &env->regs[R_EBP], set);
629
#ifdef TARGET_X86_64
630
    kvm_getput_reg(&regs.r8, &env->regs[8], set);
631
    kvm_getput_reg(&regs.r9, &env->regs[9], set);
632
    kvm_getput_reg(&regs.r10, &env->regs[10], set);
633
    kvm_getput_reg(&regs.r11, &env->regs[11], set);
634
    kvm_getput_reg(&regs.r12, &env->regs[12], set);
635
    kvm_getput_reg(&regs.r13, &env->regs[13], set);
636
    kvm_getput_reg(&regs.r14, &env->regs[14], set);
637
    kvm_getput_reg(&regs.r15, &env->regs[15], set);
638
#endif
639

    
640
    kvm_getput_reg(&regs.rflags, &env->eflags, set);
641
    kvm_getput_reg(&regs.rip, &env->eip, set);
642

    
643
    if (set) {
644
        ret = kvm_vcpu_ioctl(env, KVM_SET_REGS, &regs);
645
    }
646

    
647
    return ret;
648
}
649

    
650
static int kvm_put_fpu(CPUState *env)
651
{
652
    struct kvm_fpu fpu;
653
    int i;
654

    
655
    memset(&fpu, 0, sizeof fpu);
656
    fpu.fsw = env->fpus & ~(7 << 11);
657
    fpu.fsw |= (env->fpstt & 7) << 11;
658
    fpu.fcw = env->fpuc;
659
    for (i = 0; i < 8; ++i) {
660
        fpu.ftwx |= (!env->fptags[i]) << i;
661
    }
662
    memcpy(fpu.fpr, env->fpregs, sizeof env->fpregs);
663
    memcpy(fpu.xmm, env->xmm_regs, sizeof env->xmm_regs);
664
    fpu.mxcsr = env->mxcsr;
665

    
666
    return kvm_vcpu_ioctl(env, KVM_SET_FPU, &fpu);
667
}
668

    
669
#ifdef KVM_CAP_XSAVE
670
#define XSAVE_CWD_RIP     2
671
#define XSAVE_CWD_RDP     4
672
#define XSAVE_MXCSR       6
673
#define XSAVE_ST_SPACE    8
674
#define XSAVE_XMM_SPACE   40
675
#define XSAVE_XSTATE_BV   128
676
#define XSAVE_YMMH_SPACE  144
677
#endif
678

    
679
static int kvm_put_xsave(CPUState *env)
680
{
681
#ifdef KVM_CAP_XSAVE
682
    int i, r;
683
    struct kvm_xsave* xsave;
684
    uint16_t cwd, swd, twd, fop;
685

    
686
    if (!kvm_has_xsave()) {
687
        return kvm_put_fpu(env);
688
    }
689

    
690
    xsave = qemu_memalign(4096, sizeof(struct kvm_xsave));
691
    memset(xsave, 0, sizeof(struct kvm_xsave));
692
    cwd = swd = twd = fop = 0;
693
    swd = env->fpus & ~(7 << 11);
694
    swd |= (env->fpstt & 7) << 11;
695
    cwd = env->fpuc;
696
    for (i = 0; i < 8; ++i) {
697
        twd |= (!env->fptags[i]) << i;
698
    }
699
    xsave->region[0] = (uint32_t)(swd << 16) + cwd;
700
    xsave->region[1] = (uint32_t)(fop << 16) + twd;
701
    memcpy(&xsave->region[XSAVE_ST_SPACE], env->fpregs,
702
            sizeof env->fpregs);
703
    memcpy(&xsave->region[XSAVE_XMM_SPACE], env->xmm_regs,
704
            sizeof env->xmm_regs);
705
    xsave->region[XSAVE_MXCSR] = env->mxcsr;
706
    *(uint64_t *)&xsave->region[XSAVE_XSTATE_BV] = env->xstate_bv;
707
    memcpy(&xsave->region[XSAVE_YMMH_SPACE], env->ymmh_regs,
708
            sizeof env->ymmh_regs);
709
    r = kvm_vcpu_ioctl(env, KVM_SET_XSAVE, xsave);
710
    qemu_free(xsave);
711
    return r;
712
#else
713
    return kvm_put_fpu(env);
714
#endif
715
}
716

    
717
static int kvm_put_xcrs(CPUState *env)
718
{
719
#ifdef KVM_CAP_XCRS
720
    struct kvm_xcrs xcrs;
721

    
722
    if (!kvm_has_xcrs()) {
723
        return 0;
724
    }
725

    
726
    xcrs.nr_xcrs = 1;
727
    xcrs.flags = 0;
728
    xcrs.xcrs[0].xcr = 0;
729
    xcrs.xcrs[0].value = env->xcr0;
730
    return kvm_vcpu_ioctl(env, KVM_SET_XCRS, &xcrs);
731
#else
732
    return 0;
733
#endif
734
}
735

    
736
static int kvm_put_sregs(CPUState *env)
737
{
738
    struct kvm_sregs sregs;
739

    
740
    memset(sregs.interrupt_bitmap, 0, sizeof(sregs.interrupt_bitmap));
741
    if (env->interrupt_injected >= 0) {
742
        sregs.interrupt_bitmap[env->interrupt_injected / 64] |=
743
                (uint64_t)1 << (env->interrupt_injected % 64);
744
    }
745

    
746
    if ((env->eflags & VM_MASK)) {
747
        set_v8086_seg(&sregs.cs, &env->segs[R_CS]);
748
        set_v8086_seg(&sregs.ds, &env->segs[R_DS]);
749
        set_v8086_seg(&sregs.es, &env->segs[R_ES]);
750
        set_v8086_seg(&sregs.fs, &env->segs[R_FS]);
751
        set_v8086_seg(&sregs.gs, &env->segs[R_GS]);
752
        set_v8086_seg(&sregs.ss, &env->segs[R_SS]);
753
    } else {
754
        set_seg(&sregs.cs, &env->segs[R_CS]);
755
        set_seg(&sregs.ds, &env->segs[R_DS]);
756
        set_seg(&sregs.es, &env->segs[R_ES]);
757
        set_seg(&sregs.fs, &env->segs[R_FS]);
758
        set_seg(&sregs.gs, &env->segs[R_GS]);
759
        set_seg(&sregs.ss, &env->segs[R_SS]);
760
    }
761

    
762
    set_seg(&sregs.tr, &env->tr);
763
    set_seg(&sregs.ldt, &env->ldt);
764

    
765
    sregs.idt.limit = env->idt.limit;
766
    sregs.idt.base = env->idt.base;
767
    sregs.gdt.limit = env->gdt.limit;
768
    sregs.gdt.base = env->gdt.base;
769

    
770
    sregs.cr0 = env->cr[0];
771
    sregs.cr2 = env->cr[2];
772
    sregs.cr3 = env->cr[3];
773
    sregs.cr4 = env->cr[4];
774

    
775
    sregs.cr8 = cpu_get_apic_tpr(env->apic_state);
776
    sregs.apic_base = cpu_get_apic_base(env->apic_state);
777

    
778
    sregs.efer = env->efer;
779

    
780
    return kvm_vcpu_ioctl(env, KVM_SET_SREGS, &sregs);
781
}
782

    
783
static void kvm_msr_entry_set(struct kvm_msr_entry *entry,
784
                              uint32_t index, uint64_t value)
785
{
786
    entry->index = index;
787
    entry->data = value;
788
}
789

    
790
static int kvm_put_msrs(CPUState *env, int level)
791
{
792
    struct {
793
        struct kvm_msrs info;
794
        struct kvm_msr_entry entries[100];
795
    } msr_data;
796
    struct kvm_msr_entry *msrs = msr_data.entries;
797
    int n = 0;
798

    
799
    kvm_msr_entry_set(&msrs[n++], MSR_IA32_SYSENTER_CS, env->sysenter_cs);
800
    kvm_msr_entry_set(&msrs[n++], MSR_IA32_SYSENTER_ESP, env->sysenter_esp);
801
    kvm_msr_entry_set(&msrs[n++], MSR_IA32_SYSENTER_EIP, env->sysenter_eip);
802
    if (has_msr_star) {
803
        kvm_msr_entry_set(&msrs[n++], MSR_STAR, env->star);
804
    }
805
    if (has_msr_hsave_pa) {
806
        kvm_msr_entry_set(&msrs[n++], MSR_VM_HSAVE_PA, env->vm_hsave);
807
    }
808
#ifdef TARGET_X86_64
809
    if (lm_capable_kernel) {
810
        kvm_msr_entry_set(&msrs[n++], MSR_CSTAR, env->cstar);
811
        kvm_msr_entry_set(&msrs[n++], MSR_KERNELGSBASE, env->kernelgsbase);
812
        kvm_msr_entry_set(&msrs[n++], MSR_FMASK, env->fmask);
813
        kvm_msr_entry_set(&msrs[n++], MSR_LSTAR, env->lstar);
814
    }
815
#endif
816
    if (level == KVM_PUT_FULL_STATE) {
817
        /*
818
         * KVM is yet unable to synchronize TSC values of multiple VCPUs on
819
         * writeback. Until this is fixed, we only write the offset to SMP
820
         * guests after migration, desynchronizing the VCPUs, but avoiding
821
         * huge jump-backs that would occur without any writeback at all.
822
         */
823
        if (smp_cpus == 1 || env->tsc != 0) {
824
            kvm_msr_entry_set(&msrs[n++], MSR_IA32_TSC, env->tsc);
825
        }
826
    }
827
    /*
828
     * The following paravirtual MSRs have side effects on the guest or are
829
     * too heavy for normal writeback. Limit them to reset or full state
830
     * updates.
831
     */
832
    if (level >= KVM_PUT_RESET_STATE) {
833
        kvm_msr_entry_set(&msrs[n++], MSR_KVM_SYSTEM_TIME,
834
                          env->system_time_msr);
835
        kvm_msr_entry_set(&msrs[n++], MSR_KVM_WALL_CLOCK, env->wall_clock_msr);
836
#if defined(CONFIG_KVM_PARA) && defined(KVM_CAP_ASYNC_PF)
837
        if (has_msr_async_pf_en) {
838
            kvm_msr_entry_set(&msrs[n++], MSR_KVM_ASYNC_PF_EN,
839
                              env->async_pf_en_msr);
840
        }
841
#endif
842
    }
843
#ifdef KVM_CAP_MCE
844
    if (env->mcg_cap) {
845
        int i;
846

    
847
        if (level == KVM_PUT_RESET_STATE) {
848
            kvm_msr_entry_set(&msrs[n++], MSR_MCG_STATUS, env->mcg_status);
849
        } else if (level == KVM_PUT_FULL_STATE) {
850
            kvm_msr_entry_set(&msrs[n++], MSR_MCG_STATUS, env->mcg_status);
851
            kvm_msr_entry_set(&msrs[n++], MSR_MCG_CTL, env->mcg_ctl);
852
            for (i = 0; i < (env->mcg_cap & 0xff) * 4; i++) {
853
                kvm_msr_entry_set(&msrs[n++], MSR_MC0_CTL + i, env->mce_banks[i]);
854
            }
855
        }
856
    }
857
#endif
858

    
859
    msr_data.info.nmsrs = n;
860

    
861
    return kvm_vcpu_ioctl(env, KVM_SET_MSRS, &msr_data);
862

    
863
}
864

    
865

    
866
static int kvm_get_fpu(CPUState *env)
867
{
868
    struct kvm_fpu fpu;
869
    int i, ret;
870

    
871
    ret = kvm_vcpu_ioctl(env, KVM_GET_FPU, &fpu);
872
    if (ret < 0) {
873
        return ret;
874
    }
875

    
876
    env->fpstt = (fpu.fsw >> 11) & 7;
877
    env->fpus = fpu.fsw;
878
    env->fpuc = fpu.fcw;
879
    for (i = 0; i < 8; ++i) {
880
        env->fptags[i] = !((fpu.ftwx >> i) & 1);
881
    }
882
    memcpy(env->fpregs, fpu.fpr, sizeof env->fpregs);
883
    memcpy(env->xmm_regs, fpu.xmm, sizeof env->xmm_regs);
884
    env->mxcsr = fpu.mxcsr;
885

    
886
    return 0;
887
}
888

    
889
static int kvm_get_xsave(CPUState *env)
890
{
891
#ifdef KVM_CAP_XSAVE
892
    struct kvm_xsave* xsave;
893
    int ret, i;
894
    uint16_t cwd, swd, twd, fop;
895

    
896
    if (!kvm_has_xsave()) {
897
        return kvm_get_fpu(env);
898
    }
899

    
900
    xsave = qemu_memalign(4096, sizeof(struct kvm_xsave));
901
    ret = kvm_vcpu_ioctl(env, KVM_GET_XSAVE, xsave);
902
    if (ret < 0) {
903
        qemu_free(xsave);
904
        return ret;
905
    }
906

    
907
    cwd = (uint16_t)xsave->region[0];
908
    swd = (uint16_t)(xsave->region[0] >> 16);
909
    twd = (uint16_t)xsave->region[1];
910
    fop = (uint16_t)(xsave->region[1] >> 16);
911
    env->fpstt = (swd >> 11) & 7;
912
    env->fpus = swd;
913
    env->fpuc = cwd;
914
    for (i = 0; i < 8; ++i) {
915
        env->fptags[i] = !((twd >> i) & 1);
916
    }
917
    env->mxcsr = xsave->region[XSAVE_MXCSR];
918
    memcpy(env->fpregs, &xsave->region[XSAVE_ST_SPACE],
919
            sizeof env->fpregs);
920
    memcpy(env->xmm_regs, &xsave->region[XSAVE_XMM_SPACE],
921
            sizeof env->xmm_regs);
922
    env->xstate_bv = *(uint64_t *)&xsave->region[XSAVE_XSTATE_BV];
923
    memcpy(env->ymmh_regs, &xsave->region[XSAVE_YMMH_SPACE],
924
            sizeof env->ymmh_regs);
925
    qemu_free(xsave);
926
    return 0;
927
#else
928
    return kvm_get_fpu(env);
929
#endif
930
}
931

    
932
static int kvm_get_xcrs(CPUState *env)
933
{
934
#ifdef KVM_CAP_XCRS
935
    int i, ret;
936
    struct kvm_xcrs xcrs;
937

    
938
    if (!kvm_has_xcrs()) {
939
        return 0;
940
    }
941

    
942
    ret = kvm_vcpu_ioctl(env, KVM_GET_XCRS, &xcrs);
943
    if (ret < 0) {
944
        return ret;
945
    }
946

    
947
    for (i = 0; i < xcrs.nr_xcrs; i++) {
948
        /* Only support xcr0 now */
949
        if (xcrs.xcrs[0].xcr == 0) {
950
            env->xcr0 = xcrs.xcrs[0].value;
951
            break;
952
        }
953
    }
954
    return 0;
955
#else
956
    return 0;
957
#endif
958
}
959

    
960
static int kvm_get_sregs(CPUState *env)
961
{
962
    struct kvm_sregs sregs;
963
    uint32_t hflags;
964
    int bit, i, ret;
965

    
966
    ret = kvm_vcpu_ioctl(env, KVM_GET_SREGS, &sregs);
967
    if (ret < 0) {
968
        return ret;
969
    }
970

    
971
    /* There can only be one pending IRQ set in the bitmap at a time, so try
972
       to find it and save its number instead (-1 for none). */
973
    env->interrupt_injected = -1;
974
    for (i = 0; i < ARRAY_SIZE(sregs.interrupt_bitmap); i++) {
975
        if (sregs.interrupt_bitmap[i]) {
976
            bit = ctz64(sregs.interrupt_bitmap[i]);
977
            env->interrupt_injected = i * 64 + bit;
978
            break;
979
        }
980
    }
981

    
982
    get_seg(&env->segs[R_CS], &sregs.cs);
983
    get_seg(&env->segs[R_DS], &sregs.ds);
984
    get_seg(&env->segs[R_ES], &sregs.es);
985
    get_seg(&env->segs[R_FS], &sregs.fs);
986
    get_seg(&env->segs[R_GS], &sregs.gs);
987
    get_seg(&env->segs[R_SS], &sregs.ss);
988

    
989
    get_seg(&env->tr, &sregs.tr);
990
    get_seg(&env->ldt, &sregs.ldt);
991

    
992
    env->idt.limit = sregs.idt.limit;
993
    env->idt.base = sregs.idt.base;
994
    env->gdt.limit = sregs.gdt.limit;
995
    env->gdt.base = sregs.gdt.base;
996

    
997
    env->cr[0] = sregs.cr0;
998
    env->cr[2] = sregs.cr2;
999
    env->cr[3] = sregs.cr3;
1000
    env->cr[4] = sregs.cr4;
1001

    
1002
    cpu_set_apic_base(env->apic_state, sregs.apic_base);
1003

    
1004
    env->efer = sregs.efer;
1005
    //cpu_set_apic_tpr(env->apic_state, sregs.cr8);
1006

    
1007
#define HFLAG_COPY_MASK \
1008
    ~( HF_CPL_MASK | HF_PE_MASK | HF_MP_MASK | HF_EM_MASK | \
1009
       HF_TS_MASK | HF_TF_MASK | HF_VM_MASK | HF_IOPL_MASK | \
1010
       HF_OSFXSR_MASK | HF_LMA_MASK | HF_CS32_MASK | \
1011
       HF_SS32_MASK | HF_CS64_MASK | HF_ADDSEG_MASK)
1012

    
1013
    hflags = (env->segs[R_CS].flags >> DESC_DPL_SHIFT) & HF_CPL_MASK;
1014
    hflags |= (env->cr[0] & CR0_PE_MASK) << (HF_PE_SHIFT - CR0_PE_SHIFT);
1015
    hflags |= (env->cr[0] << (HF_MP_SHIFT - CR0_MP_SHIFT)) &
1016
                (HF_MP_MASK | HF_EM_MASK | HF_TS_MASK);
1017
    hflags |= (env->eflags & (HF_TF_MASK | HF_VM_MASK | HF_IOPL_MASK));
1018
    hflags |= (env->cr[4] & CR4_OSFXSR_MASK) <<
1019
                (HF_OSFXSR_SHIFT - CR4_OSFXSR_SHIFT);
1020

    
1021
    if (env->efer & MSR_EFER_LMA) {
1022
        hflags |= HF_LMA_MASK;
1023
    }
1024

    
1025
    if ((hflags & HF_LMA_MASK) && (env->segs[R_CS].flags & DESC_L_MASK)) {
1026
        hflags |= HF_CS32_MASK | HF_SS32_MASK | HF_CS64_MASK;
1027
    } else {
1028
        hflags |= (env->segs[R_CS].flags & DESC_B_MASK) >>
1029
                    (DESC_B_SHIFT - HF_CS32_SHIFT);
1030
        hflags |= (env->segs[R_SS].flags & DESC_B_MASK) >>
1031
                    (DESC_B_SHIFT - HF_SS32_SHIFT);
1032
        if (!(env->cr[0] & CR0_PE_MASK) || (env->eflags & VM_MASK) ||
1033
            !(hflags & HF_CS32_MASK)) {
1034
            hflags |= HF_ADDSEG_MASK;
1035
        } else {
1036
            hflags |= ((env->segs[R_DS].base | env->segs[R_ES].base |
1037
                        env->segs[R_SS].base) != 0) << HF_ADDSEG_SHIFT;
1038
        }
1039
    }
1040
    env->hflags = (env->hflags & HFLAG_COPY_MASK) | hflags;
1041

    
1042
    return 0;
1043
}
1044

    
1045
static int kvm_get_msrs(CPUState *env)
1046
{
1047
    struct {
1048
        struct kvm_msrs info;
1049
        struct kvm_msr_entry entries[100];
1050
    } msr_data;
1051
    struct kvm_msr_entry *msrs = msr_data.entries;
1052
    int ret, i, n;
1053

    
1054
    n = 0;
1055
    msrs[n++].index = MSR_IA32_SYSENTER_CS;
1056
    msrs[n++].index = MSR_IA32_SYSENTER_ESP;
1057
    msrs[n++].index = MSR_IA32_SYSENTER_EIP;
1058
    if (has_msr_star) {
1059
        msrs[n++].index = MSR_STAR;
1060
    }
1061
    if (has_msr_hsave_pa) {
1062
        msrs[n++].index = MSR_VM_HSAVE_PA;
1063
    }
1064
    msrs[n++].index = MSR_IA32_TSC;
1065
#ifdef TARGET_X86_64
1066
    if (lm_capable_kernel) {
1067
        msrs[n++].index = MSR_CSTAR;
1068
        msrs[n++].index = MSR_KERNELGSBASE;
1069
        msrs[n++].index = MSR_FMASK;
1070
        msrs[n++].index = MSR_LSTAR;
1071
    }
1072
#endif
1073
    msrs[n++].index = MSR_KVM_SYSTEM_TIME;
1074
    msrs[n++].index = MSR_KVM_WALL_CLOCK;
1075
#if defined(CONFIG_KVM_PARA) && defined(KVM_CAP_ASYNC_PF)
1076
    if (has_msr_async_pf_en) {
1077
        msrs[n++].index = MSR_KVM_ASYNC_PF_EN;
1078
    }
1079
#endif
1080

    
1081
#ifdef KVM_CAP_MCE
1082
    if (env->mcg_cap) {
1083
        msrs[n++].index = MSR_MCG_STATUS;
1084
        msrs[n++].index = MSR_MCG_CTL;
1085
        for (i = 0; i < (env->mcg_cap & 0xff) * 4; i++) {
1086
            msrs[n++].index = MSR_MC0_CTL + i;
1087
        }
1088
    }
1089
#endif
1090

    
1091
    msr_data.info.nmsrs = n;
1092
    ret = kvm_vcpu_ioctl(env, KVM_GET_MSRS, &msr_data);
1093
    if (ret < 0) {
1094
        return ret;
1095
    }
1096

    
1097
    for (i = 0; i < ret; i++) {
1098
        switch (msrs[i].index) {
1099
        case MSR_IA32_SYSENTER_CS:
1100
            env->sysenter_cs = msrs[i].data;
1101
            break;
1102
        case MSR_IA32_SYSENTER_ESP:
1103
            env->sysenter_esp = msrs[i].data;
1104
            break;
1105
        case MSR_IA32_SYSENTER_EIP:
1106
            env->sysenter_eip = msrs[i].data;
1107
            break;
1108
        case MSR_STAR:
1109
            env->star = msrs[i].data;
1110
            break;
1111
#ifdef TARGET_X86_64
1112
        case MSR_CSTAR:
1113
            env->cstar = msrs[i].data;
1114
            break;
1115
        case MSR_KERNELGSBASE:
1116
            env->kernelgsbase = msrs[i].data;
1117
            break;
1118
        case MSR_FMASK:
1119
            env->fmask = msrs[i].data;
1120
            break;
1121
        case MSR_LSTAR:
1122
            env->lstar = msrs[i].data;
1123
            break;
1124
#endif
1125
        case MSR_IA32_TSC:
1126
            env->tsc = msrs[i].data;
1127
            break;
1128
        case MSR_VM_HSAVE_PA:
1129
            env->vm_hsave = msrs[i].data;
1130
            break;
1131
        case MSR_KVM_SYSTEM_TIME:
1132
            env->system_time_msr = msrs[i].data;
1133
            break;
1134
        case MSR_KVM_WALL_CLOCK:
1135
            env->wall_clock_msr = msrs[i].data;
1136
            break;
1137
#ifdef KVM_CAP_MCE
1138
        case MSR_MCG_STATUS:
1139
            env->mcg_status = msrs[i].data;
1140
            break;
1141
        case MSR_MCG_CTL:
1142
            env->mcg_ctl = msrs[i].data;
1143
            break;
1144
#endif
1145
        default:
1146
#ifdef KVM_CAP_MCE
1147
            if (msrs[i].index >= MSR_MC0_CTL &&
1148
                msrs[i].index < MSR_MC0_CTL + (env->mcg_cap & 0xff) * 4) {
1149
                env->mce_banks[msrs[i].index - MSR_MC0_CTL] = msrs[i].data;
1150
            }
1151
#endif
1152
            break;
1153
#if defined(CONFIG_KVM_PARA) && defined(KVM_CAP_ASYNC_PF)
1154
        case MSR_KVM_ASYNC_PF_EN:
1155
            env->async_pf_en_msr = msrs[i].data;
1156
            break;
1157
#endif
1158
        }
1159
    }
1160

    
1161
    return 0;
1162
}
1163

    
1164
static int kvm_put_mp_state(CPUState *env)
1165
{
1166
    struct kvm_mp_state mp_state = { .mp_state = env->mp_state };
1167

    
1168
    return kvm_vcpu_ioctl(env, KVM_SET_MP_STATE, &mp_state);
1169
}
1170

    
1171
static int kvm_get_mp_state(CPUState *env)
1172
{
1173
    struct kvm_mp_state mp_state;
1174
    int ret;
1175

    
1176
    ret = kvm_vcpu_ioctl(env, KVM_GET_MP_STATE, &mp_state);
1177
    if (ret < 0) {
1178
        return ret;
1179
    }
1180
    env->mp_state = mp_state.mp_state;
1181
    if (kvm_irqchip_in_kernel()) {
1182
        env->halted = (mp_state.mp_state == KVM_MP_STATE_HALTED);
1183
    }
1184
    return 0;
1185
}
1186

    
1187
static int kvm_put_vcpu_events(CPUState *env, int level)
1188
{
1189
#ifdef KVM_CAP_VCPU_EVENTS
1190
    struct kvm_vcpu_events events;
1191

    
1192
    if (!kvm_has_vcpu_events()) {
1193
        return 0;
1194
    }
1195

    
1196
    events.exception.injected = (env->exception_injected >= 0);
1197
    events.exception.nr = env->exception_injected;
1198
    events.exception.has_error_code = env->has_error_code;
1199
    events.exception.error_code = env->error_code;
1200

    
1201
    events.interrupt.injected = (env->interrupt_injected >= 0);
1202
    events.interrupt.nr = env->interrupt_injected;
1203
    events.interrupt.soft = env->soft_interrupt;
1204

    
1205
    events.nmi.injected = env->nmi_injected;
1206
    events.nmi.pending = env->nmi_pending;
1207
    events.nmi.masked = !!(env->hflags2 & HF2_NMI_MASK);
1208

    
1209
    events.sipi_vector = env->sipi_vector;
1210

    
1211
    events.flags = 0;
1212
    if (level >= KVM_PUT_RESET_STATE) {
1213
        events.flags |=
1214
            KVM_VCPUEVENT_VALID_NMI_PENDING | KVM_VCPUEVENT_VALID_SIPI_VECTOR;
1215
    }
1216

    
1217
    return kvm_vcpu_ioctl(env, KVM_SET_VCPU_EVENTS, &events);
1218
#else
1219
    return 0;
1220
#endif
1221
}
1222

    
1223
static int kvm_get_vcpu_events(CPUState *env)
1224
{
1225
#ifdef KVM_CAP_VCPU_EVENTS
1226
    struct kvm_vcpu_events events;
1227
    int ret;
1228

    
1229
    if (!kvm_has_vcpu_events()) {
1230
        return 0;
1231
    }
1232

    
1233
    ret = kvm_vcpu_ioctl(env, KVM_GET_VCPU_EVENTS, &events);
1234
    if (ret < 0) {
1235
       return ret;
1236
    }
1237
    env->exception_injected =
1238
       events.exception.injected ? events.exception.nr : -1;
1239
    env->has_error_code = events.exception.has_error_code;
1240
    env->error_code = events.exception.error_code;
1241

    
1242
    env->interrupt_injected =
1243
        events.interrupt.injected ? events.interrupt.nr : -1;
1244
    env->soft_interrupt = events.interrupt.soft;
1245

    
1246
    env->nmi_injected = events.nmi.injected;
1247
    env->nmi_pending = events.nmi.pending;
1248
    if (events.nmi.masked) {
1249
        env->hflags2 |= HF2_NMI_MASK;
1250
    } else {
1251
        env->hflags2 &= ~HF2_NMI_MASK;
1252
    }
1253

    
1254
    env->sipi_vector = events.sipi_vector;
1255
#endif
1256

    
1257
    return 0;
1258
}
1259

    
1260
static int kvm_guest_debug_workarounds(CPUState *env)
1261
{
1262
    int ret = 0;
1263
#ifdef KVM_CAP_SET_GUEST_DEBUG
1264
    unsigned long reinject_trap = 0;
1265

    
1266
    if (!kvm_has_vcpu_events()) {
1267
        if (env->exception_injected == 1) {
1268
            reinject_trap = KVM_GUESTDBG_INJECT_DB;
1269
        } else if (env->exception_injected == 3) {
1270
            reinject_trap = KVM_GUESTDBG_INJECT_BP;
1271
        }
1272
        env->exception_injected = -1;
1273
    }
1274

    
1275
    /*
1276
     * Kernels before KVM_CAP_X86_ROBUST_SINGLESTEP overwrote flags.TF
1277
     * injected via SET_GUEST_DEBUG while updating GP regs. Work around this
1278
     * by updating the debug state once again if single-stepping is on.
1279
     * Another reason to call kvm_update_guest_debug here is a pending debug
1280
     * trap raise by the guest. On kernels without SET_VCPU_EVENTS we have to
1281
     * reinject them via SET_GUEST_DEBUG.
1282
     */
1283
    if (reinject_trap ||
1284
        (!kvm_has_robust_singlestep() && env->singlestep_enabled)) {
1285
        ret = kvm_update_guest_debug(env, reinject_trap);
1286
    }
1287
#endif /* KVM_CAP_SET_GUEST_DEBUG */
1288
    return ret;
1289
}
1290

    
1291
static int kvm_put_debugregs(CPUState *env)
1292
{
1293
#ifdef KVM_CAP_DEBUGREGS
1294
    struct kvm_debugregs dbgregs;
1295
    int i;
1296

    
1297
    if (!kvm_has_debugregs()) {
1298
        return 0;
1299
    }
1300

    
1301
    for (i = 0; i < 4; i++) {
1302
        dbgregs.db[i] = env->dr[i];
1303
    }
1304
    dbgregs.dr6 = env->dr[6];
1305
    dbgregs.dr7 = env->dr[7];
1306
    dbgregs.flags = 0;
1307

    
1308
    return kvm_vcpu_ioctl(env, KVM_SET_DEBUGREGS, &dbgregs);
1309
#else
1310
    return 0;
1311
#endif
1312
}
1313

    
1314
static int kvm_get_debugregs(CPUState *env)
1315
{
1316
#ifdef KVM_CAP_DEBUGREGS
1317
    struct kvm_debugregs dbgregs;
1318
    int i, ret;
1319

    
1320
    if (!kvm_has_debugregs()) {
1321
        return 0;
1322
    }
1323

    
1324
    ret = kvm_vcpu_ioctl(env, KVM_GET_DEBUGREGS, &dbgregs);
1325
    if (ret < 0) {
1326
        return ret;
1327
    }
1328
    for (i = 0; i < 4; i++) {
1329
        env->dr[i] = dbgregs.db[i];
1330
    }
1331
    env->dr[4] = env->dr[6] = dbgregs.dr6;
1332
    env->dr[5] = env->dr[7] = dbgregs.dr7;
1333
#endif
1334

    
1335
    return 0;
1336
}
1337

    
1338
int kvm_arch_put_registers(CPUState *env, int level)
1339
{
1340
    int ret;
1341

    
1342
    assert(cpu_is_stopped(env) || qemu_cpu_self(env));
1343

    
1344
    ret = kvm_getput_regs(env, 1);
1345
    if (ret < 0) {
1346
        return ret;
1347
    }
1348
    ret = kvm_put_xsave(env);
1349
    if (ret < 0) {
1350
        return ret;
1351
    }
1352
    ret = kvm_put_xcrs(env);
1353
    if (ret < 0) {
1354
        return ret;
1355
    }
1356
    ret = kvm_put_sregs(env);
1357
    if (ret < 0) {
1358
        return ret;
1359
    }
1360
    ret = kvm_put_msrs(env, level);
1361
    if (ret < 0) {
1362
        return ret;
1363
    }
1364
    if (level >= KVM_PUT_RESET_STATE) {
1365
        ret = kvm_put_mp_state(env);
1366
        if (ret < 0) {
1367
            return ret;
1368
        }
1369
    }
1370
    ret = kvm_put_vcpu_events(env, level);
1371
    if (ret < 0) {
1372
        return ret;
1373
    }
1374
    ret = kvm_put_debugregs(env);
1375
    if (ret < 0) {
1376
        return ret;
1377
    }
1378
    /* must be last */
1379
    ret = kvm_guest_debug_workarounds(env);
1380
    if (ret < 0) {
1381
        return ret;
1382
    }
1383
    return 0;
1384
}
1385

    
1386
int kvm_arch_get_registers(CPUState *env)
1387
{
1388
    int ret;
1389

    
1390
    assert(cpu_is_stopped(env) || qemu_cpu_self(env));
1391

    
1392
    ret = kvm_getput_regs(env, 0);
1393
    if (ret < 0) {
1394
        return ret;
1395
    }
1396
    ret = kvm_get_xsave(env);
1397
    if (ret < 0) {
1398
        return ret;
1399
    }
1400
    ret = kvm_get_xcrs(env);
1401
    if (ret < 0) {
1402
        return ret;
1403
    }
1404
    ret = kvm_get_sregs(env);
1405
    if (ret < 0) {
1406
        return ret;
1407
    }
1408
    ret = kvm_get_msrs(env);
1409
    if (ret < 0) {
1410
        return ret;
1411
    }
1412
    ret = kvm_get_mp_state(env);
1413
    if (ret < 0) {
1414
        return ret;
1415
    }
1416
    ret = kvm_get_vcpu_events(env);
1417
    if (ret < 0) {
1418
        return ret;
1419
    }
1420
    ret = kvm_get_debugregs(env);
1421
    if (ret < 0) {
1422
        return ret;
1423
    }
1424
    return 0;
1425
}
1426

    
1427
int kvm_arch_pre_run(CPUState *env, struct kvm_run *run)
1428
{
1429
    /* Force the VCPU out of its inner loop to process the INIT request */
1430
    if (env->interrupt_request & CPU_INTERRUPT_INIT) {
1431
        env->exit_request = 1;
1432
    }
1433

    
1434
    /* Inject NMI */
1435
    if (env->interrupt_request & CPU_INTERRUPT_NMI) {
1436
        env->interrupt_request &= ~CPU_INTERRUPT_NMI;
1437
        DPRINTF("injected NMI\n");
1438
        kvm_vcpu_ioctl(env, KVM_NMI);
1439
    }
1440

    
1441
    /* Try to inject an interrupt if the guest can accept it */
1442
    if (run->ready_for_interrupt_injection &&
1443
        (env->interrupt_request & CPU_INTERRUPT_HARD) &&
1444
        (env->eflags & IF_MASK)) {
1445
        int irq;
1446

    
1447
        env->interrupt_request &= ~CPU_INTERRUPT_HARD;
1448
        irq = cpu_get_pic_interrupt(env);
1449
        if (irq >= 0) {
1450
            struct kvm_interrupt intr;
1451
            intr.irq = irq;
1452
            /* FIXME: errors */
1453
            DPRINTF("injected interrupt %d\n", irq);
1454
            kvm_vcpu_ioctl(env, KVM_INTERRUPT, &intr);
1455
        }
1456
    }
1457

    
1458
    /* If we have an interrupt but the guest is not ready to receive an
1459
     * interrupt, request an interrupt window exit.  This will
1460
     * cause a return to userspace as soon as the guest is ready to
1461
     * receive interrupts. */
1462
    if ((env->interrupt_request & CPU_INTERRUPT_HARD)) {
1463
        run->request_interrupt_window = 1;
1464
    } else {
1465
        run->request_interrupt_window = 0;
1466
    }
1467

    
1468
    DPRINTF("setting tpr\n");
1469
    run->cr8 = cpu_get_apic_tpr(env->apic_state);
1470

    
1471
    return 0;
1472
}
1473

    
1474
int kvm_arch_post_run(CPUState *env, struct kvm_run *run)
1475
{
1476
    if (run->if_flag) {
1477
        env->eflags |= IF_MASK;
1478
    } else {
1479
        env->eflags &= ~IF_MASK;
1480
    }
1481
    cpu_set_apic_tpr(env->apic_state, run->cr8);
1482
    cpu_set_apic_base(env->apic_state, run->apic_base);
1483

    
1484
    return 0;
1485
}
1486

    
1487
int kvm_arch_process_irqchip_events(CPUState *env)
1488
{
1489
    if (env->interrupt_request & CPU_INTERRUPT_INIT) {
1490
        kvm_cpu_synchronize_state(env);
1491
        do_cpu_init(env);
1492
        env->exception_index = EXCP_HALTED;
1493
    }
1494

    
1495
    if (env->interrupt_request & CPU_INTERRUPT_SIPI) {
1496
        kvm_cpu_synchronize_state(env);
1497
        do_cpu_sipi(env);
1498
    }
1499

    
1500
    return env->halted;
1501
}
1502

    
1503
static int kvm_handle_halt(CPUState *env)
1504
{
1505
    if (!((env->interrupt_request & CPU_INTERRUPT_HARD) &&
1506
          (env->eflags & IF_MASK)) &&
1507
        !(env->interrupt_request & CPU_INTERRUPT_NMI)) {
1508
        env->halted = 1;
1509
        env->exception_index = EXCP_HLT;
1510
        return 0;
1511
    }
1512

    
1513
    return 1;
1514
}
1515

    
1516
static bool host_supports_vmx(void)
1517
{
1518
    uint32_t ecx, unused;
1519

    
1520
    host_cpuid(1, 0, &unused, &unused, &ecx, &unused);
1521
    return ecx & CPUID_EXT_VMX;
1522
}
1523

    
1524
#define VMX_INVALID_GUEST_STATE 0x80000021
1525

    
1526
int kvm_arch_handle_exit(CPUState *env, struct kvm_run *run)
1527
{
1528
    uint64_t code;
1529
    int ret = 0;
1530

    
1531
    switch (run->exit_reason) {
1532
    case KVM_EXIT_HLT:
1533
        DPRINTF("handle_hlt\n");
1534
        ret = kvm_handle_halt(env);
1535
        break;
1536
    case KVM_EXIT_SET_TPR:
1537
        ret = 1;
1538
        break;
1539
    case KVM_EXIT_FAIL_ENTRY:
1540
        code = run->fail_entry.hardware_entry_failure_reason;
1541
        fprintf(stderr, "KVM: entry failed, hardware error 0x%" PRIx64 "\n",
1542
                code);
1543
        if (host_supports_vmx() && code == VMX_INVALID_GUEST_STATE) {
1544
            fprintf(stderr,
1545
                    "\nIf you're runnning a guest on an Intel machine without "
1546
                        "unrestricted mode\n"
1547
                    "support, the failure can be most likely due to the guest "
1548
                        "entering an invalid\n"
1549
                    "state for Intel VT. For example, the guest maybe running "
1550
                        "in big real mode\n"
1551
                    "which is not supported on less recent Intel processors."
1552
                        "\n\n");
1553
        }
1554
        ret = -1;
1555
        break;
1556
    case KVM_EXIT_EXCEPTION:
1557
        fprintf(stderr, "KVM: exception %d exit (error code 0x%x)\n",
1558
                run->ex.exception, run->ex.error_code);
1559
        ret = -1;
1560
        break;
1561
    default:
1562
        fprintf(stderr, "KVM: unknown exit reason %d\n", run->exit_reason);
1563
        ret = -1;
1564
        break;
1565
    }
1566

    
1567
    return ret;
1568
}
1569

    
1570
#ifdef KVM_CAP_SET_GUEST_DEBUG
1571
int kvm_arch_insert_sw_breakpoint(CPUState *env, struct kvm_sw_breakpoint *bp)
1572
{
1573
    static const uint8_t int3 = 0xcc;
1574

    
1575
    if (cpu_memory_rw_debug(env, bp->pc, (uint8_t *)&bp->saved_insn, 1, 0) ||
1576
        cpu_memory_rw_debug(env, bp->pc, (uint8_t *)&int3, 1, 1)) {
1577
        return -EINVAL;
1578
    }
1579
    return 0;
1580
}
1581

    
1582
int kvm_arch_remove_sw_breakpoint(CPUState *env, struct kvm_sw_breakpoint *bp)
1583
{
1584
    uint8_t int3;
1585

    
1586
    if (cpu_memory_rw_debug(env, bp->pc, &int3, 1, 0) || int3 != 0xcc ||
1587
        cpu_memory_rw_debug(env, bp->pc, (uint8_t *)&bp->saved_insn, 1, 1)) {
1588
        return -EINVAL;
1589
    }
1590
    return 0;
1591
}
1592

    
1593
static struct {
1594
    target_ulong addr;
1595
    int len;
1596
    int type;
1597
} hw_breakpoint[4];
1598

    
1599
static int nb_hw_breakpoint;
1600

    
1601
static int find_hw_breakpoint(target_ulong addr, int len, int type)
1602
{
1603
    int n;
1604

    
1605
    for (n = 0; n < nb_hw_breakpoint; n++) {
1606
        if (hw_breakpoint[n].addr == addr && hw_breakpoint[n].type == type &&
1607
            (hw_breakpoint[n].len == len || len == -1)) {
1608
            return n;
1609
        }
1610
    }
1611
    return -1;
1612
}
1613

    
1614
int kvm_arch_insert_hw_breakpoint(target_ulong addr,
1615
                                  target_ulong len, int type)
1616
{
1617
    switch (type) {
1618
    case GDB_BREAKPOINT_HW:
1619
        len = 1;
1620
        break;
1621
    case GDB_WATCHPOINT_WRITE:
1622
    case GDB_WATCHPOINT_ACCESS:
1623
        switch (len) {
1624
        case 1:
1625
            break;
1626
        case 2:
1627
        case 4:
1628
        case 8:
1629
            if (addr & (len - 1)) {
1630
                return -EINVAL;
1631
            }
1632
            break;
1633
        default:
1634
            return -EINVAL;
1635
        }
1636
        break;
1637
    default:
1638
        return -ENOSYS;
1639
    }
1640

    
1641
    if (nb_hw_breakpoint == 4) {
1642
        return -ENOBUFS;
1643
    }
1644
    if (find_hw_breakpoint(addr, len, type) >= 0) {
1645
        return -EEXIST;
1646
    }
1647
    hw_breakpoint[nb_hw_breakpoint].addr = addr;
1648
    hw_breakpoint[nb_hw_breakpoint].len = len;
1649
    hw_breakpoint[nb_hw_breakpoint].type = type;
1650
    nb_hw_breakpoint++;
1651

    
1652
    return 0;
1653
}
1654

    
1655
int kvm_arch_remove_hw_breakpoint(target_ulong addr,
1656
                                  target_ulong len, int type)
1657
{
1658
    int n;
1659

    
1660
    n = find_hw_breakpoint(addr, (type == GDB_BREAKPOINT_HW) ? 1 : len, type);
1661
    if (n < 0) {
1662
        return -ENOENT;
1663
    }
1664
    nb_hw_breakpoint--;
1665
    hw_breakpoint[n] = hw_breakpoint[nb_hw_breakpoint];
1666

    
1667
    return 0;
1668
}
1669

    
1670
void kvm_arch_remove_all_hw_breakpoints(void)
1671
{
1672
    nb_hw_breakpoint = 0;
1673
}
1674

    
1675
static CPUWatchpoint hw_watchpoint;
1676

    
1677
int kvm_arch_debug(struct kvm_debug_exit_arch *arch_info)
1678
{
1679
    int handle = 0;
1680
    int n;
1681

    
1682
    if (arch_info->exception == 1) {
1683
        if (arch_info->dr6 & (1 << 14)) {
1684
            if (cpu_single_env->singlestep_enabled) {
1685
                handle = 1;
1686
            }
1687
        } else {
1688
            for (n = 0; n < 4; n++) {
1689
                if (arch_info->dr6 & (1 << n)) {
1690
                    switch ((arch_info->dr7 >> (16 + n*4)) & 0x3) {
1691
                    case 0x0:
1692
                        handle = 1;
1693
                        break;
1694
                    case 0x1:
1695
                        handle = 1;
1696
                        cpu_single_env->watchpoint_hit = &hw_watchpoint;
1697
                        hw_watchpoint.vaddr = hw_breakpoint[n].addr;
1698
                        hw_watchpoint.flags = BP_MEM_WRITE;
1699
                        break;
1700
                    case 0x3:
1701
                        handle = 1;
1702
                        cpu_single_env->watchpoint_hit = &hw_watchpoint;
1703
                        hw_watchpoint.vaddr = hw_breakpoint[n].addr;
1704
                        hw_watchpoint.flags = BP_MEM_ACCESS;
1705
                        break;
1706
                    }
1707
                }
1708
            }
1709
        }
1710
    } else if (kvm_find_sw_breakpoint(cpu_single_env, arch_info->pc)) {
1711
        handle = 1;
1712
    }
1713
    if (!handle) {
1714
        cpu_synchronize_state(cpu_single_env);
1715
        assert(cpu_single_env->exception_injected == -1);
1716

    
1717
        cpu_single_env->exception_injected = arch_info->exception;
1718
        cpu_single_env->has_error_code = 0;
1719
    }
1720

    
1721
    return handle;
1722
}
1723

    
1724
void kvm_arch_update_guest_debug(CPUState *env, struct kvm_guest_debug *dbg)
1725
{
1726
    const uint8_t type_code[] = {
1727
        [GDB_BREAKPOINT_HW] = 0x0,
1728
        [GDB_WATCHPOINT_WRITE] = 0x1,
1729
        [GDB_WATCHPOINT_ACCESS] = 0x3
1730
    };
1731
    const uint8_t len_code[] = {
1732
        [1] = 0x0, [2] = 0x1, [4] = 0x3, [8] = 0x2
1733
    };
1734
    int n;
1735

    
1736
    if (kvm_sw_breakpoints_active(env)) {
1737
        dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP;
1738
    }
1739
    if (nb_hw_breakpoint > 0) {
1740
        dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_HW_BP;
1741
        dbg->arch.debugreg[7] = 0x0600;
1742
        for (n = 0; n < nb_hw_breakpoint; n++) {
1743
            dbg->arch.debugreg[n] = hw_breakpoint[n].addr;
1744
            dbg->arch.debugreg[7] |= (2 << (n * 2)) |
1745
                (type_code[hw_breakpoint[n].type] << (16 + n*4)) |
1746
                ((uint32_t)len_code[hw_breakpoint[n].len] << (18 + n*4));
1747
        }
1748
    }
1749
}
1750
#endif /* KVM_CAP_SET_GUEST_DEBUG */
1751

    
1752
bool kvm_arch_stop_on_emulation_error(CPUState *env)
1753
{
1754
    return !(env->cr[0] & CR0_PE_MASK) ||
1755
           ((env->segs[R_CS].selector  & 3) != 3);
1756
}
1757

    
1758
static void hardware_memory_error(void)
1759
{
1760
    fprintf(stderr, "Hardware memory error!\n");
1761
    exit(1);
1762
}
1763

    
1764
#ifdef KVM_CAP_MCE
1765
static void kvm_mce_broadcast_rest(CPUState *env)
1766
{
1767
    struct kvm_x86_mce mce = {
1768
        .bank = 1,
1769
        .status = MCI_STATUS_VAL | MCI_STATUS_UC,
1770
        .mcg_status = MCG_STATUS_MCIP | MCG_STATUS_RIPV,
1771
        .addr = 0,
1772
        .misc = 0,
1773
    };
1774
    CPUState *cenv;
1775

    
1776
    /* Broadcast MCA signal for processor version 06H_EH and above */
1777
    if (cpu_x86_support_mca_broadcast(env)) {
1778
        for (cenv = first_cpu; cenv != NULL; cenv = cenv->next_cpu) {
1779
            if (cenv == env) {
1780
                continue;
1781
            }
1782
            kvm_inject_x86_mce_on(cenv, &mce, ABORT_ON_ERROR);
1783
        }
1784
    }
1785
}
1786

    
1787
static void kvm_mce_inj_srar_dataload(CPUState *env, target_phys_addr_t paddr)
1788
{
1789
    struct kvm_x86_mce mce = {
1790
        .bank = 9,
1791
        .status = MCI_STATUS_VAL | MCI_STATUS_UC | MCI_STATUS_EN
1792
                  | MCI_STATUS_MISCV | MCI_STATUS_ADDRV | MCI_STATUS_S
1793
                  | MCI_STATUS_AR | 0x134,
1794
        .mcg_status = MCG_STATUS_MCIP | MCG_STATUS_EIPV,
1795
        .addr = paddr,
1796
        .misc = (MCM_ADDR_PHYS << 6) | 0xc,
1797
    };
1798
    int r;
1799

    
1800
    r = kvm_set_mce(env, &mce);
1801
    if (r < 0) {
1802
        fprintf(stderr, "kvm_set_mce: %s\n", strerror(errno));
1803
        abort();
1804
    }
1805
    kvm_mce_broadcast_rest(env);
1806
}
1807

    
1808
static void kvm_mce_inj_srao_memscrub(CPUState *env, target_phys_addr_t paddr)
1809
{
1810
    struct kvm_x86_mce mce = {
1811
        .bank = 9,
1812
        .status = MCI_STATUS_VAL | MCI_STATUS_UC | MCI_STATUS_EN
1813
                  | MCI_STATUS_MISCV | MCI_STATUS_ADDRV | MCI_STATUS_S
1814
                  | 0xc0,
1815
        .mcg_status = MCG_STATUS_MCIP | MCG_STATUS_RIPV,
1816
        .addr = paddr,
1817
        .misc = (MCM_ADDR_PHYS << 6) | 0xc,
1818
    };
1819
    int r;
1820

    
1821
    r = kvm_set_mce(env, &mce);
1822
    if (r < 0) {
1823
        fprintf(stderr, "kvm_set_mce: %s\n", strerror(errno));
1824
        abort();
1825
    }
1826
    kvm_mce_broadcast_rest(env);
1827
}
1828

    
1829
static void kvm_mce_inj_srao_memscrub2(CPUState *env, target_phys_addr_t paddr)
1830
{
1831
    struct kvm_x86_mce mce = {
1832
        .bank = 9,
1833
        .status = MCI_STATUS_VAL | MCI_STATUS_UC | MCI_STATUS_EN
1834
                  | MCI_STATUS_MISCV | MCI_STATUS_ADDRV | MCI_STATUS_S
1835
                  | 0xc0,
1836
        .mcg_status = MCG_STATUS_MCIP | MCG_STATUS_RIPV,
1837
        .addr = paddr,
1838
        .misc = (MCM_ADDR_PHYS << 6) | 0xc,
1839
    };
1840

    
1841
    kvm_inject_x86_mce_on(env, &mce, ABORT_ON_ERROR);
1842
    kvm_mce_broadcast_rest(env);
1843
}
1844

    
1845
#endif
1846

    
1847
int kvm_arch_on_sigbus_vcpu(CPUState *env, int code, void *addr)
1848
{
1849
#if defined(KVM_CAP_MCE)
1850
    void *vaddr;
1851
    ram_addr_t ram_addr;
1852
    target_phys_addr_t paddr;
1853

    
1854
    if ((env->mcg_cap & MCG_SER_P) && addr
1855
        && (code == BUS_MCEERR_AR
1856
            || code == BUS_MCEERR_AO)) {
1857
        vaddr = (void *)addr;
1858
        if (qemu_ram_addr_from_host(vaddr, &ram_addr) ||
1859
            !kvm_physical_memory_addr_from_ram(env->kvm_state, ram_addr, &paddr)) {
1860
            fprintf(stderr, "Hardware memory error for memory used by "
1861
                    "QEMU itself instead of guest system!\n");
1862
            /* Hope we are lucky for AO MCE */
1863
            if (code == BUS_MCEERR_AO) {
1864
                return 0;
1865
            } else {
1866
                hardware_memory_error();
1867
            }
1868
        }
1869

    
1870
        if (code == BUS_MCEERR_AR) {
1871
            /* Fake an Intel architectural Data Load SRAR UCR */
1872
            kvm_mce_inj_srar_dataload(env, paddr);
1873
        } else {
1874
            /*
1875
             * If there is an MCE excpetion being processed, ignore
1876
             * this SRAO MCE
1877
             */
1878
            if (!kvm_mce_in_progress(env)) {
1879
                /* Fake an Intel architectural Memory scrubbing UCR */
1880
                kvm_mce_inj_srao_memscrub(env, paddr);
1881
            }
1882
        }
1883
    } else
1884
#endif
1885
    {
1886
        if (code == BUS_MCEERR_AO) {
1887
            return 0;
1888
        } else if (code == BUS_MCEERR_AR) {
1889
            hardware_memory_error();
1890
        } else {
1891
            return 1;
1892
        }
1893
    }
1894
    return 0;
1895
}
1896

    
1897
int kvm_arch_on_sigbus(int code, void *addr)
1898
{
1899
#if defined(KVM_CAP_MCE)
1900
    if ((first_cpu->mcg_cap & MCG_SER_P) && addr && code == BUS_MCEERR_AO) {
1901
        void *vaddr;
1902
        ram_addr_t ram_addr;
1903
        target_phys_addr_t paddr;
1904

    
1905
        /* Hope we are lucky for AO MCE */
1906
        vaddr = addr;
1907
        if (qemu_ram_addr_from_host(vaddr, &ram_addr) ||
1908
            !kvm_physical_memory_addr_from_ram(first_cpu->kvm_state, ram_addr, &paddr)) {
1909
            fprintf(stderr, "Hardware memory error for memory used by "
1910
                    "QEMU itself instead of guest system!: %p\n", addr);
1911
            return 0;
1912
        }
1913
        kvm_mce_inj_srao_memscrub2(first_cpu, paddr);
1914
    } else
1915
#endif
1916
    {
1917
        if (code == BUS_MCEERR_AO) {
1918
            return 0;
1919
        } else if (code == BUS_MCEERR_AR) {
1920
            hardware_memory_error();
1921
        } else {
1922
            return 1;
1923
        }
1924
    }
1925
    return 0;
1926
}