Statistics
| Branch: | Revision:

root / cpu-exec.c @ 9d05095e

History | View | Annotate | Download (46 kB)

1
/*
2
 *  i386 emulator main execution loop
3
 * 
4
 *  Copyright (c) 2003-2005 Fabrice Bellard
5
 *
6
 * This library is free software; you can redistribute it and/or
7
 * modify it under the terms of the GNU Lesser General Public
8
 * License as published by the Free Software Foundation; either
9
 * version 2 of the License, or (at your option) any later version.
10
 *
11
 * This library is distributed in the hope that it will be useful,
12
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14
 * Lesser General Public License for more details.
15
 *
16
 * You should have received a copy of the GNU Lesser General Public
17
 * License along with this library; if not, write to the Free Software
18
 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
19
 */
20
#include "config.h"
21
#include "exec.h"
22
#include "disas.h"
23

    
24
#if !defined(CONFIG_SOFTMMU)
25
#undef EAX
26
#undef ECX
27
#undef EDX
28
#undef EBX
29
#undef ESP
30
#undef EBP
31
#undef ESI
32
#undef EDI
33
#undef EIP
34
#include <signal.h>
35
#include <sys/ucontext.h>
36
#endif
37

    
38
int tb_invalidated_flag;
39

    
40
//#define DEBUG_EXEC
41
//#define DEBUG_SIGNAL
42

    
43
#if defined(TARGET_ARM) || defined(TARGET_SPARC)
44
/* XXX: unify with i386 target */
45
void cpu_loop_exit(void)
46
{
47
    longjmp(env->jmp_env, 1);
48
}
49
#endif
50
#ifndef TARGET_SPARC
51
#define reg_T2
52
#endif
53

    
54
/* exit the current TB from a signal handler. The host registers are
55
   restored in a state compatible with the CPU emulator
56
 */
57
void cpu_resume_from_signal(CPUState *env1, void *puc) 
58
{
59
#if !defined(CONFIG_SOFTMMU)
60
    struct ucontext *uc = puc;
61
#endif
62

    
63
    env = env1;
64

    
65
    /* XXX: restore cpu registers saved in host registers */
66

    
67
#if !defined(CONFIG_SOFTMMU)
68
    if (puc) {
69
        /* XXX: use siglongjmp ? */
70
        sigprocmask(SIG_SETMASK, &uc->uc_sigmask, NULL);
71
    }
72
#endif
73
    longjmp(env->jmp_env, 1);
74
}
75

    
76

    
77
static TranslationBlock *tb_find_slow(target_ulong pc,
78
                                      target_ulong cs_base,
79
                                      unsigned int flags)
80
{
81
    TranslationBlock *tb, **ptb1;
82
    int code_gen_size;
83
    unsigned int h;
84
    target_ulong phys_pc, phys_page1, phys_page2, virt_page2;
85
    uint8_t *tc_ptr;
86
    
87
    spin_lock(&tb_lock);
88

    
89
    tb_invalidated_flag = 0;
90
    
91
    regs_to_env(); /* XXX: do it just before cpu_gen_code() */
92
    
93
    /* find translated block using physical mappings */
94
    phys_pc = get_phys_addr_code(env, pc);
95
    phys_page1 = phys_pc & TARGET_PAGE_MASK;
96
    phys_page2 = -1;
97
    h = tb_phys_hash_func(phys_pc);
98
    ptb1 = &tb_phys_hash[h];
99
    for(;;) {
100
        tb = *ptb1;
101
        if (!tb)
102
            goto not_found;
103
        if (tb->pc == pc && 
104
            tb->page_addr[0] == phys_page1 &&
105
            tb->cs_base == cs_base && 
106
            tb->flags == flags) {
107
            /* check next page if needed */
108
            if (tb->page_addr[1] != -1) {
109
                virt_page2 = (pc & TARGET_PAGE_MASK) + 
110
                    TARGET_PAGE_SIZE;
111
                phys_page2 = get_phys_addr_code(env, virt_page2);
112
                if (tb->page_addr[1] == phys_page2)
113
                    goto found;
114
            } else {
115
                goto found;
116
            }
117
        }
118
        ptb1 = &tb->phys_hash_next;
119
    }
120
 not_found:
121
    /* if no translated code available, then translate it now */
122
    tb = tb_alloc(pc);
123
    if (!tb) {
124
        /* flush must be done */
125
        tb_flush(env);
126
        /* cannot fail at this point */
127
        tb = tb_alloc(pc);
128
        /* don't forget to invalidate previous TB info */
129
        tb_invalidated_flag = 1;
130
    }
131
    tc_ptr = code_gen_ptr;
132
    tb->tc_ptr = tc_ptr;
133
    tb->cs_base = cs_base;
134
    tb->flags = flags;
135
    cpu_gen_code(env, tb, CODE_GEN_MAX_SIZE, &code_gen_size);
136
    code_gen_ptr = (void *)(((unsigned long)code_gen_ptr + code_gen_size + CODE_GEN_ALIGN - 1) & ~(CODE_GEN_ALIGN - 1));
137
    
138
    /* check next page if needed */
139
    virt_page2 = (pc + tb->size - 1) & TARGET_PAGE_MASK;
140
    phys_page2 = -1;
141
    if ((pc & TARGET_PAGE_MASK) != virt_page2) {
142
        phys_page2 = get_phys_addr_code(env, virt_page2);
143
    }
144
    tb_link_phys(tb, phys_pc, phys_page2);
145
    
146
 found:
147
    /* we add the TB in the virtual pc hash table */
148
    env->tb_jmp_cache[tb_jmp_cache_hash_func(pc)] = tb;
149
    spin_unlock(&tb_lock);
150
    return tb;
151
}
152

    
153
static inline TranslationBlock *tb_find_fast(void)
154
{
155
    TranslationBlock *tb;
156
    target_ulong cs_base, pc;
157
    unsigned int flags;
158

    
159
    /* we record a subset of the CPU state. It will
160
       always be the same before a given translated block
161
       is executed. */
162
#if defined(TARGET_I386)
163
    flags = env->hflags;
164
    flags |= (env->eflags & (IOPL_MASK | TF_MASK | VM_MASK));
165
    cs_base = env->segs[R_CS].base;
166
    pc = cs_base + env->eip;
167
#elif defined(TARGET_ARM)
168
    flags = env->thumb | (env->vfp.vec_len << 1)
169
            | (env->vfp.vec_stride << 4);
170
    if ((env->uncached_cpsr & CPSR_M) != ARM_CPU_MODE_USR)
171
        flags |= (1 << 6);
172
    if (env->vfp.xregs[ARM_VFP_FPEXC] & (1 << 30))
173
        flags |= (1 << 7);
174
    cs_base = 0;
175
    pc = env->regs[15];
176
#elif defined(TARGET_SPARC)
177
#ifdef TARGET_SPARC64
178
    flags = (env->pstate << 2) | ((env->lsu & (DMMU_E | IMMU_E)) >> 2);
179
#else
180
    flags = env->psrs | ((env->mmuregs[0] & (MMU_E | MMU_NF)) << 1);
181
#endif
182
    cs_base = env->npc;
183
    pc = env->pc;
184
#elif defined(TARGET_PPC)
185
    flags = (msr_pr << MSR_PR) | (msr_fp << MSR_FP) |
186
        (msr_se << MSR_SE) | (msr_le << MSR_LE);
187
    cs_base = 0;
188
    pc = env->nip;
189
#elif defined(TARGET_MIPS)
190
    flags = env->hflags & (MIPS_HFLAG_TMASK | MIPS_HFLAG_BMASK);
191
    cs_base = 0;
192
    pc = env->PC;
193
#elif defined(TARGET_SH4)
194
    flags = env->sr & (SR_MD | SR_RB);
195
    cs_base = 0;         /* XXXXX */
196
    pc = env->pc;
197
#else
198
#error unsupported CPU
199
#endif
200
    tb = env->tb_jmp_cache[tb_jmp_cache_hash_func(pc)];
201
    if (__builtin_expect(!tb || tb->pc != pc || tb->cs_base != cs_base ||
202
                         tb->flags != flags, 0)) {
203
        tb = tb_find_slow(pc, cs_base, flags);
204
        /* Note: we do it here to avoid a gcc bug on Mac OS X when
205
           doing it in tb_find_slow */
206
        if (tb_invalidated_flag) {
207
            /* as some TB could have been invalidated because
208
               of memory exceptions while generating the code, we
209
               must recompute the hash index here */
210
            T0 = 0;
211
        }
212
    }
213
    return tb;
214
}
215

    
216

    
217
/* main execution loop */
218

    
219
int cpu_exec(CPUState *env1)
220
{
221
    int saved_T0, saved_T1;
222
#if defined(reg_T2)
223
    int saved_T2;
224
#endif
225
    CPUState *saved_env;
226
#if defined(TARGET_I386)
227
#ifdef reg_EAX
228
    int saved_EAX;
229
#endif
230
#ifdef reg_ECX
231
    int saved_ECX;
232
#endif
233
#ifdef reg_EDX
234
    int saved_EDX;
235
#endif
236
#ifdef reg_EBX
237
    int saved_EBX;
238
#endif
239
#ifdef reg_ESP
240
    int saved_ESP;
241
#endif
242
#ifdef reg_EBP
243
    int saved_EBP;
244
#endif
245
#ifdef reg_ESI
246
    int saved_ESI;
247
#endif
248
#ifdef reg_EDI
249
    int saved_EDI;
250
#endif
251
#elif defined(TARGET_SPARC)
252
#if defined(reg_REGWPTR)
253
    uint32_t *saved_regwptr;
254
#endif
255
#endif
256
#ifdef __sparc__
257
    int saved_i7, tmp_T0;
258
#endif
259
    int ret, interrupt_request;
260
    void (*gen_func)(void);
261
    TranslationBlock *tb;
262
    uint8_t *tc_ptr;
263

    
264
#if defined(TARGET_I386)
265
    /* handle exit of HALTED state */
266
    if (env1->hflags & HF_HALTED_MASK) {
267
        /* disable halt condition */
268
        if ((env1->interrupt_request & CPU_INTERRUPT_HARD) &&
269
            (env1->eflags & IF_MASK)) {
270
            env1->hflags &= ~HF_HALTED_MASK;
271
        } else {
272
            return EXCP_HALTED;
273
        }
274
    }
275
#elif defined(TARGET_PPC)
276
    if (env1->halted) {
277
        if (env1->msr[MSR_EE] && 
278
            (env1->interrupt_request & 
279
             (CPU_INTERRUPT_HARD | CPU_INTERRUPT_TIMER))) {
280
            env1->halted = 0;
281
        } else {
282
            return EXCP_HALTED;
283
        }
284
    }
285
#elif defined(TARGET_SPARC)
286
    if (env1->halted) {
287
        if ((env1->interrupt_request & CPU_INTERRUPT_HARD) &&
288
            (env1->psret != 0)) {
289
            env1->halted = 0;
290
        } else {
291
            return EXCP_HALTED;
292
        }
293
    }
294
#elif defined(TARGET_ARM)
295
    if (env1->halted) {
296
        /* An interrupt wakes the CPU even if the I and F CPSR bits are
297
           set.  */
298
        if (env1->interrupt_request
299
            & (CPU_INTERRUPT_FIQ | CPU_INTERRUPT_HARD)) {
300
            env1->halted = 0;
301
        } else {
302
            return EXCP_HALTED;
303
        }
304
    }
305
#elif defined(TARGET_MIPS)
306
    if (env1->halted) {
307
        if (env1->interrupt_request &
308
            (CPU_INTERRUPT_HARD | CPU_INTERRUPT_TIMER)) {
309
            env1->halted = 0;
310
        } else {
311
            return EXCP_HALTED;
312
        }
313
    }
314
#endif
315

    
316
    cpu_single_env = env1; 
317

    
318
    /* first we save global registers */
319
    saved_env = env;
320
    env = env1;
321
    saved_T0 = T0;
322
    saved_T1 = T1;
323
#if defined(reg_T2)
324
    saved_T2 = T2;
325
#endif
326
#ifdef __sparc__
327
    /* we also save i7 because longjmp may not restore it */
328
    asm volatile ("mov %%i7, %0" : "=r" (saved_i7));
329
#endif
330

    
331
#if defined(TARGET_I386)
332
#ifdef reg_EAX
333
    saved_EAX = EAX;
334
#endif
335
#ifdef reg_ECX
336
    saved_ECX = ECX;
337
#endif
338
#ifdef reg_EDX
339
    saved_EDX = EDX;
340
#endif
341
#ifdef reg_EBX
342
    saved_EBX = EBX;
343
#endif
344
#ifdef reg_ESP
345
    saved_ESP = ESP;
346
#endif
347
#ifdef reg_EBP
348
    saved_EBP = EBP;
349
#endif
350
#ifdef reg_ESI
351
    saved_ESI = ESI;
352
#endif
353
#ifdef reg_EDI
354
    saved_EDI = EDI;
355
#endif
356

    
357
    env_to_regs();
358
    /* put eflags in CPU temporary format */
359
    CC_SRC = env->eflags & (CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C);
360
    DF = 1 - (2 * ((env->eflags >> 10) & 1));
361
    CC_OP = CC_OP_EFLAGS;
362
    env->eflags &= ~(DF_MASK | CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C);
363
#elif defined(TARGET_ARM)
364
#elif defined(TARGET_SPARC)
365
#if defined(reg_REGWPTR)
366
    saved_regwptr = REGWPTR;
367
#endif
368
#elif defined(TARGET_PPC)
369
#elif defined(TARGET_MIPS)
370
#elif defined(TARGET_SH4)
371
    /* XXXXX */
372
#else
373
#error unsupported target CPU
374
#endif
375
    env->exception_index = -1;
376

    
377
    /* prepare setjmp context for exception handling */
378
    for(;;) {
379
        if (setjmp(env->jmp_env) == 0) {
380
            env->current_tb = NULL;
381
            /* if an exception is pending, we execute it here */
382
            if (env->exception_index >= 0) {
383
                if (env->exception_index >= EXCP_INTERRUPT) {
384
                    /* exit request from the cpu execution loop */
385
                    ret = env->exception_index;
386
                    break;
387
                } else if (env->user_mode_only) {
388
                    /* if user mode only, we simulate a fake exception
389
                       which will be hanlded outside the cpu execution
390
                       loop */
391
#if defined(TARGET_I386)
392
                    do_interrupt_user(env->exception_index, 
393
                                      env->exception_is_int, 
394
                                      env->error_code, 
395
                                      env->exception_next_eip);
396
#endif
397
                    ret = env->exception_index;
398
                    break;
399
                } else {
400
#if defined(TARGET_I386)
401
                    /* simulate a real cpu exception. On i386, it can
402
                       trigger new exceptions, but we do not handle
403
                       double or triple faults yet. */
404
                    do_interrupt(env->exception_index, 
405
                                 env->exception_is_int, 
406
                                 env->error_code, 
407
                                 env->exception_next_eip, 0);
408
#elif defined(TARGET_PPC)
409
                    do_interrupt(env);
410
#elif defined(TARGET_MIPS)
411
                    do_interrupt(env);
412
#elif defined(TARGET_SPARC)
413
                    do_interrupt(env->exception_index);
414
#elif defined(TARGET_ARM)
415
                    do_interrupt(env);
416
#elif defined(TARGET_SH4)
417
                    do_interrupt(env);
418
#endif
419
                }
420
                env->exception_index = -1;
421
            } 
422
#ifdef USE_KQEMU
423
            if (kqemu_is_ok(env) && env->interrupt_request == 0) {
424
                int ret;
425
                env->eflags = env->eflags | cc_table[CC_OP].compute_all() | (DF & DF_MASK);
426
                ret = kqemu_cpu_exec(env);
427
                /* put eflags in CPU temporary format */
428
                CC_SRC = env->eflags & (CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C);
429
                DF = 1 - (2 * ((env->eflags >> 10) & 1));
430
                CC_OP = CC_OP_EFLAGS;
431
                env->eflags &= ~(DF_MASK | CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C);
432
                if (ret == 1) {
433
                    /* exception */
434
                    longjmp(env->jmp_env, 1);
435
                } else if (ret == 2) {
436
                    /* softmmu execution needed */
437
                } else {
438
                    if (env->interrupt_request != 0) {
439
                        /* hardware interrupt will be executed just after */
440
                    } else {
441
                        /* otherwise, we restart */
442
                        longjmp(env->jmp_env, 1);
443
                    }
444
                }
445
            }
446
#endif
447

    
448
            T0 = 0; /* force lookup of first TB */
449
            for(;;) {
450
#ifdef __sparc__
451
                /* g1 can be modified by some libc? functions */ 
452
                tmp_T0 = T0;
453
#endif            
454
                interrupt_request = env->interrupt_request;
455
                if (__builtin_expect(interrupt_request, 0)) {
456
#if defined(TARGET_I386)
457
                    /* if hardware interrupt pending, we execute it */
458
                    if ((interrupt_request & CPU_INTERRUPT_HARD) &&
459
                        (env->eflags & IF_MASK) && 
460
                        !(env->hflags & HF_INHIBIT_IRQ_MASK)) {
461
                        int intno;
462
                        env->interrupt_request &= ~CPU_INTERRUPT_HARD;
463
                        intno = cpu_get_pic_interrupt(env);
464
                        if (loglevel & CPU_LOG_TB_IN_ASM) {
465
                            fprintf(logfile, "Servicing hardware INT=0x%02x\n", intno);
466
                        }
467
                        do_interrupt(intno, 0, 0, 0, 1);
468
                        /* ensure that no TB jump will be modified as
469
                           the program flow was changed */
470
#ifdef __sparc__
471
                        tmp_T0 = 0;
472
#else
473
                        T0 = 0;
474
#endif
475
                    }
476
#elif defined(TARGET_PPC)
477
#if 0
478
                    if ((interrupt_request & CPU_INTERRUPT_RESET)) {
479
                        cpu_ppc_reset(env);
480
                    }
481
#endif
482
                    if (msr_ee != 0) {
483
                        if ((interrupt_request & CPU_INTERRUPT_HARD)) {
484
                            /* Raise it */
485
                            env->exception_index = EXCP_EXTERNAL;
486
                            env->error_code = 0;
487
                            do_interrupt(env);
488
                            env->interrupt_request &= ~CPU_INTERRUPT_HARD;
489
#ifdef __sparc__
490
                            tmp_T0 = 0;
491
#else
492
                            T0 = 0;
493
#endif
494
                        } else if ((interrupt_request & CPU_INTERRUPT_TIMER)) {
495
                            /* Raise it */
496
                            env->exception_index = EXCP_DECR;
497
                            env->error_code = 0;
498
                            do_interrupt(env);
499
                            env->interrupt_request &= ~CPU_INTERRUPT_TIMER;
500
#ifdef __sparc__
501
                            tmp_T0 = 0;
502
#else
503
                            T0 = 0;
504
#endif
505
                        }
506
                    }
507
#elif defined(TARGET_MIPS)
508
                    if ((interrupt_request & CPU_INTERRUPT_HARD) &&
509
                        (env->CP0_Status & (1 << CP0St_IE)) &&
510
                        (env->CP0_Status & env->CP0_Cause & 0x0000FF00) &&
511
                        !(env->hflags & MIPS_HFLAG_EXL) &&
512
                        !(env->hflags & MIPS_HFLAG_ERL) &&
513
                        !(env->hflags & MIPS_HFLAG_DM)) {
514
                        /* Raise it */
515
                        env->exception_index = EXCP_EXT_INTERRUPT;
516
                        env->error_code = 0;
517
                        do_interrupt(env);
518
                        env->interrupt_request &= ~CPU_INTERRUPT_HARD;
519
#ifdef __sparc__
520
                        tmp_T0 = 0;
521
#else
522
                        T0 = 0;
523
#endif
524
                    }
525
#elif defined(TARGET_SPARC)
526
                    if ((interrupt_request & CPU_INTERRUPT_HARD) &&
527
                        (env->psret != 0)) {
528
                        int pil = env->interrupt_index & 15;
529
                        int type = env->interrupt_index & 0xf0;
530

    
531
                        if (((type == TT_EXTINT) &&
532
                             (pil == 15 || pil > env->psrpil)) ||
533
                            type != TT_EXTINT) {
534
                            env->interrupt_request &= ~CPU_INTERRUPT_HARD;
535
                            do_interrupt(env->interrupt_index);
536
                            env->interrupt_index = 0;
537
#ifdef __sparc__
538
                            tmp_T0 = 0;
539
#else
540
                            T0 = 0;
541
#endif
542
                        }
543
                    } else if (interrupt_request & CPU_INTERRUPT_TIMER) {
544
                        //do_interrupt(0, 0, 0, 0, 0);
545
                        env->interrupt_request &= ~CPU_INTERRUPT_TIMER;
546
                    } else if (interrupt_request & CPU_INTERRUPT_HALT) {
547
                        env1->halted = 1;
548
                        return EXCP_HALTED;
549
                    }
550
#elif defined(TARGET_ARM)
551
                    if (interrupt_request & CPU_INTERRUPT_FIQ
552
                        && !(env->uncached_cpsr & CPSR_F)) {
553
                        env->exception_index = EXCP_FIQ;
554
                        do_interrupt(env);
555
                    }
556
                    if (interrupt_request & CPU_INTERRUPT_HARD
557
                        && !(env->uncached_cpsr & CPSR_I)) {
558
                        env->exception_index = EXCP_IRQ;
559
                        do_interrupt(env);
560
                    }
561
#elif defined(TARGET_SH4)
562
                    /* XXXXX */
563
#endif
564
                   /* Don't use the cached interupt_request value,
565
                      do_interrupt may have updated the EXITTB flag. */
566
                    if (env->interrupt_request & CPU_INTERRUPT_EXITTB) {
567
                        env->interrupt_request &= ~CPU_INTERRUPT_EXITTB;
568
                        /* ensure that no TB jump will be modified as
569
                           the program flow was changed */
570
#ifdef __sparc__
571
                        tmp_T0 = 0;
572
#else
573
                        T0 = 0;
574
#endif
575
                    }
576
                    if (interrupt_request & CPU_INTERRUPT_EXIT) {
577
                        env->interrupt_request &= ~CPU_INTERRUPT_EXIT;
578
                        env->exception_index = EXCP_INTERRUPT;
579
                        cpu_loop_exit();
580
                    }
581
                }
582
#ifdef DEBUG_EXEC
583
                if ((loglevel & CPU_LOG_TB_CPU)) {
584
#if defined(TARGET_I386)
585
                    /* restore flags in standard format */
586
#ifdef reg_EAX
587
                    env->regs[R_EAX] = EAX;
588
#endif
589
#ifdef reg_EBX
590
                    env->regs[R_EBX] = EBX;
591
#endif
592
#ifdef reg_ECX
593
                    env->regs[R_ECX] = ECX;
594
#endif
595
#ifdef reg_EDX
596
                    env->regs[R_EDX] = EDX;
597
#endif
598
#ifdef reg_ESI
599
                    env->regs[R_ESI] = ESI;
600
#endif
601
#ifdef reg_EDI
602
                    env->regs[R_EDI] = EDI;
603
#endif
604
#ifdef reg_EBP
605
                    env->regs[R_EBP] = EBP;
606
#endif
607
#ifdef reg_ESP
608
                    env->regs[R_ESP] = ESP;
609
#endif
610
                    env->eflags = env->eflags | cc_table[CC_OP].compute_all() | (DF & DF_MASK);
611
                    cpu_dump_state(env, logfile, fprintf, X86_DUMP_CCOP);
612
                    env->eflags &= ~(DF_MASK | CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C);
613
#elif defined(TARGET_ARM)
614
                    cpu_dump_state(env, logfile, fprintf, 0);
615
#elif defined(TARGET_SPARC)
616
                    REGWPTR = env->regbase + (env->cwp * 16);
617
                    env->regwptr = REGWPTR;
618
                    cpu_dump_state(env, logfile, fprintf, 0);
619
#elif defined(TARGET_PPC)
620
                    cpu_dump_state(env, logfile, fprintf, 0);
621
#elif defined(TARGET_MIPS)
622
                    cpu_dump_state(env, logfile, fprintf, 0);
623
#elif defined(TARGET_SH4)
624
                    cpu_dump_state(env, logfile, fprintf, 0);
625
#else
626
#error unsupported target CPU 
627
#endif
628
                }
629
#endif
630
                tb = tb_find_fast();
631
#ifdef DEBUG_EXEC
632
                if ((loglevel & CPU_LOG_EXEC)) {
633
                    fprintf(logfile, "Trace 0x%08lx [" TARGET_FMT_lx "] %s\n",
634
                            (long)tb->tc_ptr, tb->pc,
635
                            lookup_symbol(tb->pc));
636
                }
637
#endif
638
#ifdef __sparc__
639
                T0 = tmp_T0;
640
#endif            
641
                /* see if we can patch the calling TB. When the TB
642
                   spans two pages, we cannot safely do a direct
643
                   jump. */
644
                {
645
                    if (T0 != 0 &&
646
#if USE_KQEMU
647
                        (env->kqemu_enabled != 2) &&
648
#endif
649
                        tb->page_addr[1] == -1
650
#if defined(TARGET_I386) && defined(USE_CODE_COPY)
651
                    && (tb->cflags & CF_CODE_COPY) == 
652
                    (((TranslationBlock *)(T0 & ~3))->cflags & CF_CODE_COPY)
653
#endif
654
                    ) {
655
                    spin_lock(&tb_lock);
656
                    tb_add_jump((TranslationBlock *)(long)(T0 & ~3), T0 & 3, tb);
657
#if defined(USE_CODE_COPY)
658
                    /* propagates the FP use info */
659
                    ((TranslationBlock *)(T0 & ~3))->cflags |= 
660
                        (tb->cflags & CF_FP_USED);
661
#endif
662
                    spin_unlock(&tb_lock);
663
                }
664
                }
665
                tc_ptr = tb->tc_ptr;
666
                env->current_tb = tb;
667
                /* execute the generated code */
668
                gen_func = (void *)tc_ptr;
669
#if defined(__sparc__)
670
                __asm__ __volatile__("call        %0\n\t"
671
                                     "mov        %%o7,%%i0"
672
                                     : /* no outputs */
673
                                     : "r" (gen_func) 
674
                                     : "i0", "i1", "i2", "i3", "i4", "i5");
675
#elif defined(__arm__)
676
                asm volatile ("mov pc, %0\n\t"
677
                              ".global exec_loop\n\t"
678
                              "exec_loop:\n\t"
679
                              : /* no outputs */
680
                              : "r" (gen_func)
681
                              : "r1", "r2", "r3", "r8", "r9", "r10", "r12", "r14");
682
#elif defined(TARGET_I386) && defined(USE_CODE_COPY)
683
{
684
    if (!(tb->cflags & CF_CODE_COPY)) {
685
        if ((tb->cflags & CF_FP_USED) && env->native_fp_regs) {
686
            save_native_fp_state(env);
687
        }
688
        gen_func();
689
    } else {
690
        if ((tb->cflags & CF_FP_USED) && !env->native_fp_regs) {
691
            restore_native_fp_state(env);
692
        }
693
        /* we work with native eflags */
694
        CC_SRC = cc_table[CC_OP].compute_all();
695
        CC_OP = CC_OP_EFLAGS;
696
        asm(".globl exec_loop\n"
697
            "\n"
698
            "debug1:\n"
699
            "    pushl %%ebp\n"
700
            "    fs movl %10, %9\n"
701
            "    fs movl %11, %%eax\n"
702
            "    andl $0x400, %%eax\n"
703
            "    fs orl %8, %%eax\n"
704
            "    pushl %%eax\n"
705
            "    popf\n"
706
            "    fs movl %%esp, %12\n"
707
            "    fs movl %0, %%eax\n"
708
            "    fs movl %1, %%ecx\n"
709
            "    fs movl %2, %%edx\n"
710
            "    fs movl %3, %%ebx\n"
711
            "    fs movl %4, %%esp\n"
712
            "    fs movl %5, %%ebp\n"
713
            "    fs movl %6, %%esi\n"
714
            "    fs movl %7, %%edi\n"
715
            "    fs jmp *%9\n"
716
            "exec_loop:\n"
717
            "    fs movl %%esp, %4\n"
718
            "    fs movl %12, %%esp\n"
719
            "    fs movl %%eax, %0\n"
720
            "    fs movl %%ecx, %1\n"
721
            "    fs movl %%edx, %2\n"
722
            "    fs movl %%ebx, %3\n"
723
            "    fs movl %%ebp, %5\n"
724
            "    fs movl %%esi, %6\n"
725
            "    fs movl %%edi, %7\n"
726
            "    pushf\n"
727
            "    popl %%eax\n"
728
            "    movl %%eax, %%ecx\n"
729
            "    andl $0x400, %%ecx\n"
730
            "    shrl $9, %%ecx\n"
731
            "    andl $0x8d5, %%eax\n"
732
            "    fs movl %%eax, %8\n"
733
            "    movl $1, %%eax\n"
734
            "    subl %%ecx, %%eax\n"
735
            "    fs movl %%eax, %11\n"
736
            "    fs movl %9, %%ebx\n" /* get T0 value */
737
            "    popl %%ebp\n"
738
            :
739
            : "m" (*(uint8_t *)offsetof(CPUState, regs[0])),
740
            "m" (*(uint8_t *)offsetof(CPUState, regs[1])),
741
            "m" (*(uint8_t *)offsetof(CPUState, regs[2])),
742
            "m" (*(uint8_t *)offsetof(CPUState, regs[3])),
743
            "m" (*(uint8_t *)offsetof(CPUState, regs[4])),
744
            "m" (*(uint8_t *)offsetof(CPUState, regs[5])),
745
            "m" (*(uint8_t *)offsetof(CPUState, regs[6])),
746
            "m" (*(uint8_t *)offsetof(CPUState, regs[7])),
747
            "m" (*(uint8_t *)offsetof(CPUState, cc_src)),
748
            "m" (*(uint8_t *)offsetof(CPUState, tmp0)),
749
            "a" (gen_func),
750
            "m" (*(uint8_t *)offsetof(CPUState, df)),
751
            "m" (*(uint8_t *)offsetof(CPUState, saved_esp))
752
            : "%ecx", "%edx"
753
            );
754
    }
755
}
756
#elif defined(__ia64)
757
                struct fptr {
758
                        void *ip;
759
                        void *gp;
760
                } fp;
761

    
762
                fp.ip = tc_ptr;
763
                fp.gp = code_gen_buffer + 2 * (1 << 20);
764
                (*(void (*)(void)) &fp)();
765
#else
766
                gen_func();
767
#endif
768
                env->current_tb = NULL;
769
                /* reset soft MMU for next block (it can currently
770
                   only be set by a memory fault) */
771
#if defined(TARGET_I386) && !defined(CONFIG_SOFTMMU)
772
                if (env->hflags & HF_SOFTMMU_MASK) {
773
                    env->hflags &= ~HF_SOFTMMU_MASK;
774
                    /* do not allow linking to another block */
775
                    T0 = 0;
776
                }
777
#endif
778
#if defined(USE_KQEMU)
779
#define MIN_CYCLE_BEFORE_SWITCH (100 * 1000)
780
                if (kqemu_is_ok(env) &&
781
                    (cpu_get_time_fast() - env->last_io_time) >= MIN_CYCLE_BEFORE_SWITCH) {
782
                    cpu_loop_exit();
783
                }
784
#endif
785
            }
786
        } else {
787
            env_to_regs();
788
        }
789
    } /* for(;;) */
790

    
791

    
792
#if defined(TARGET_I386)
793
#if defined(USE_CODE_COPY)
794
    if (env->native_fp_regs) {
795
        save_native_fp_state(env);
796
    }
797
#endif
798
    /* restore flags in standard format */
799
    env->eflags = env->eflags | cc_table[CC_OP].compute_all() | (DF & DF_MASK);
800

    
801
    /* restore global registers */
802
#ifdef reg_EAX
803
    EAX = saved_EAX;
804
#endif
805
#ifdef reg_ECX
806
    ECX = saved_ECX;
807
#endif
808
#ifdef reg_EDX
809
    EDX = saved_EDX;
810
#endif
811
#ifdef reg_EBX
812
    EBX = saved_EBX;
813
#endif
814
#ifdef reg_ESP
815
    ESP = saved_ESP;
816
#endif
817
#ifdef reg_EBP
818
    EBP = saved_EBP;
819
#endif
820
#ifdef reg_ESI
821
    ESI = saved_ESI;
822
#endif
823
#ifdef reg_EDI
824
    EDI = saved_EDI;
825
#endif
826
#elif defined(TARGET_ARM)
827
    /* XXX: Save/restore host fpu exception state?.  */
828
#elif defined(TARGET_SPARC)
829
#if defined(reg_REGWPTR)
830
    REGWPTR = saved_regwptr;
831
#endif
832
#elif defined(TARGET_PPC)
833
#elif defined(TARGET_MIPS)
834
#elif defined(TARGET_SH4)
835
    /* XXXXX */
836
#else
837
#error unsupported target CPU
838
#endif
839
#ifdef __sparc__
840
    asm volatile ("mov %0, %%i7" : : "r" (saved_i7));
841
#endif
842
    T0 = saved_T0;
843
    T1 = saved_T1;
844
#if defined(reg_T2)
845
    T2 = saved_T2;
846
#endif
847
    env = saved_env;
848
    /* fail safe : never use cpu_single_env outside cpu_exec() */
849
    cpu_single_env = NULL; 
850
    return ret;
851
}
852

    
853
/* must only be called from the generated code as an exception can be
854
   generated */
855
void tb_invalidate_page_range(target_ulong start, target_ulong end)
856
{
857
    /* XXX: cannot enable it yet because it yields to MMU exception
858
       where NIP != read address on PowerPC */
859
#if 0
860
    target_ulong phys_addr;
861
    phys_addr = get_phys_addr_code(env, start);
862
    tb_invalidate_phys_page_range(phys_addr, phys_addr + end - start, 0);
863
#endif
864
}
865

    
866
#if defined(TARGET_I386) && defined(CONFIG_USER_ONLY)
867

    
868
void cpu_x86_load_seg(CPUX86State *s, int seg_reg, int selector)
869
{
870
    CPUX86State *saved_env;
871

    
872
    saved_env = env;
873
    env = s;
874
    if (!(env->cr[0] & CR0_PE_MASK) || (env->eflags & VM_MASK)) {
875
        selector &= 0xffff;
876
        cpu_x86_load_seg_cache(env, seg_reg, selector, 
877
                               (selector << 4), 0xffff, 0);
878
    } else {
879
        load_seg(seg_reg, selector);
880
    }
881
    env = saved_env;
882
}
883

    
884
void cpu_x86_fsave(CPUX86State *s, uint8_t *ptr, int data32)
885
{
886
    CPUX86State *saved_env;
887

    
888
    saved_env = env;
889
    env = s;
890
    
891
    helper_fsave((target_ulong)ptr, data32);
892

    
893
    env = saved_env;
894
}
895

    
896
void cpu_x86_frstor(CPUX86State *s, uint8_t *ptr, int data32)
897
{
898
    CPUX86State *saved_env;
899

    
900
    saved_env = env;
901
    env = s;
902
    
903
    helper_frstor((target_ulong)ptr, data32);
904

    
905
    env = saved_env;
906
}
907

    
908
#endif /* TARGET_I386 */
909

    
910
#if !defined(CONFIG_SOFTMMU)
911

    
912
#if defined(TARGET_I386)
913

    
914
/* 'pc' is the host PC at which the exception was raised. 'address' is
915
   the effective address of the memory exception. 'is_write' is 1 if a
916
   write caused the exception and otherwise 0'. 'old_set' is the
917
   signal set which should be restored */
918
static inline int handle_cpu_signal(unsigned long pc, unsigned long address,
919
                                    int is_write, sigset_t *old_set, 
920
                                    void *puc)
921
{
922
    TranslationBlock *tb;
923
    int ret;
924

    
925
    if (cpu_single_env)
926
        env = cpu_single_env; /* XXX: find a correct solution for multithread */
927
#if defined(DEBUG_SIGNAL)
928
    qemu_printf("qemu: SIGSEGV pc=0x%08lx address=%08lx w=%d oldset=0x%08lx\n", 
929
                pc, address, is_write, *(unsigned long *)old_set);
930
#endif
931
    /* XXX: locking issue */
932
    if (is_write && page_unprotect(h2g(address), pc, puc)) {
933
        return 1;
934
    }
935

    
936
    /* see if it is an MMU fault */
937
    ret = cpu_x86_handle_mmu_fault(env, address, is_write, 
938
                                   ((env->hflags & HF_CPL_MASK) == 3), 0);
939
    if (ret < 0)
940
        return 0; /* not an MMU fault */
941
    if (ret == 0)
942
        return 1; /* the MMU fault was handled without causing real CPU fault */
943
    /* now we have a real cpu fault */
944
    tb = tb_find_pc(pc);
945
    if (tb) {
946
        /* the PC is inside the translated code. It means that we have
947
           a virtual CPU fault */
948
        cpu_restore_state(tb, env, pc, puc);
949
    }
950
    if (ret == 1) {
951
#if 0
952
        printf("PF exception: EIP=0x%08x CR2=0x%08x error=0x%x\n", 
953
               env->eip, env->cr[2], env->error_code);
954
#endif
955
        /* we restore the process signal mask as the sigreturn should
956
           do it (XXX: use sigsetjmp) */
957
        sigprocmask(SIG_SETMASK, old_set, NULL);
958
        raise_exception_err(env->exception_index, env->error_code);
959
    } else {
960
        /* activate soft MMU for this block */
961
        env->hflags |= HF_SOFTMMU_MASK;
962
        cpu_resume_from_signal(env, puc);
963
    }
964
    /* never comes here */
965
    return 1;
966
}
967

    
968
#elif defined(TARGET_ARM)
969
static inline int handle_cpu_signal(unsigned long pc, unsigned long address,
970
                                    int is_write, sigset_t *old_set,
971
                                    void *puc)
972
{
973
    TranslationBlock *tb;
974
    int ret;
975

    
976
    if (cpu_single_env)
977
        env = cpu_single_env; /* XXX: find a correct solution for multithread */
978
#if defined(DEBUG_SIGNAL)
979
    printf("qemu: SIGSEGV pc=0x%08lx address=%08lx w=%d oldset=0x%08lx\n", 
980
           pc, address, is_write, *(unsigned long *)old_set);
981
#endif
982
    /* XXX: locking issue */
983
    if (is_write && page_unprotect(h2g(address), pc, puc)) {
984
        return 1;
985
    }
986
    /* see if it is an MMU fault */
987
    ret = cpu_arm_handle_mmu_fault(env, address, is_write, 1, 0);
988
    if (ret < 0)
989
        return 0; /* not an MMU fault */
990
    if (ret == 0)
991
        return 1; /* the MMU fault was handled without causing real CPU fault */
992
    /* now we have a real cpu fault */
993
    tb = tb_find_pc(pc);
994
    if (tb) {
995
        /* the PC is inside the translated code. It means that we have
996
           a virtual CPU fault */
997
        cpu_restore_state(tb, env, pc, puc);
998
    }
999
    /* we restore the process signal mask as the sigreturn should
1000
       do it (XXX: use sigsetjmp) */
1001
    sigprocmask(SIG_SETMASK, old_set, NULL);
1002
    cpu_loop_exit();
1003
}
1004
#elif defined(TARGET_SPARC)
1005
static inline int handle_cpu_signal(unsigned long pc, unsigned long address,
1006
                                    int is_write, sigset_t *old_set,
1007
                                    void *puc)
1008
{
1009
    TranslationBlock *tb;
1010
    int ret;
1011

    
1012
    if (cpu_single_env)
1013
        env = cpu_single_env; /* XXX: find a correct solution for multithread */
1014
#if defined(DEBUG_SIGNAL)
1015
    printf("qemu: SIGSEGV pc=0x%08lx address=%08lx w=%d oldset=0x%08lx\n", 
1016
           pc, address, is_write, *(unsigned long *)old_set);
1017
#endif
1018
    /* XXX: locking issue */
1019
    if (is_write && page_unprotect(h2g(address), pc, puc)) {
1020
        return 1;
1021
    }
1022
    /* see if it is an MMU fault */
1023
    ret = cpu_sparc_handle_mmu_fault(env, address, is_write, 1, 0);
1024
    if (ret < 0)
1025
        return 0; /* not an MMU fault */
1026
    if (ret == 0)
1027
        return 1; /* the MMU fault was handled without causing real CPU fault */
1028
    /* now we have a real cpu fault */
1029
    tb = tb_find_pc(pc);
1030
    if (tb) {
1031
        /* the PC is inside the translated code. It means that we have
1032
           a virtual CPU fault */
1033
        cpu_restore_state(tb, env, pc, puc);
1034
    }
1035
    /* we restore the process signal mask as the sigreturn should
1036
       do it (XXX: use sigsetjmp) */
1037
    sigprocmask(SIG_SETMASK, old_set, NULL);
1038
    cpu_loop_exit();
1039
}
1040
#elif defined (TARGET_PPC)
1041
static inline int handle_cpu_signal(unsigned long pc, unsigned long address,
1042
                                    int is_write, sigset_t *old_set,
1043
                                    void *puc)
1044
{
1045
    TranslationBlock *tb;
1046
    int ret;
1047
    
1048
    if (cpu_single_env)
1049
        env = cpu_single_env; /* XXX: find a correct solution for multithread */
1050
#if defined(DEBUG_SIGNAL)
1051
    printf("qemu: SIGSEGV pc=0x%08lx address=%08lx w=%d oldset=0x%08lx\n", 
1052
           pc, address, is_write, *(unsigned long *)old_set);
1053
#endif
1054
    /* XXX: locking issue */
1055
    if (is_write && page_unprotect(h2g(address), pc, puc)) {
1056
        return 1;
1057
    }
1058

    
1059
    /* see if it is an MMU fault */
1060
    ret = cpu_ppc_handle_mmu_fault(env, address, is_write, msr_pr, 0);
1061
    if (ret < 0)
1062
        return 0; /* not an MMU fault */
1063
    if (ret == 0)
1064
        return 1; /* the MMU fault was handled without causing real CPU fault */
1065

    
1066
    /* now we have a real cpu fault */
1067
    tb = tb_find_pc(pc);
1068
    if (tb) {
1069
        /* the PC is inside the translated code. It means that we have
1070
           a virtual CPU fault */
1071
        cpu_restore_state(tb, env, pc, puc);
1072
    }
1073
    if (ret == 1) {
1074
#if 0
1075
        printf("PF exception: NIP=0x%08x error=0x%x %p\n", 
1076
               env->nip, env->error_code, tb);
1077
#endif
1078
    /* we restore the process signal mask as the sigreturn should
1079
       do it (XXX: use sigsetjmp) */
1080
        sigprocmask(SIG_SETMASK, old_set, NULL);
1081
        do_raise_exception_err(env->exception_index, env->error_code);
1082
    } else {
1083
        /* activate soft MMU for this block */
1084
        cpu_resume_from_signal(env, puc);
1085
    }
1086
    /* never comes here */
1087
    return 1;
1088
}
1089

    
1090
#elif defined (TARGET_MIPS)
1091
static inline int handle_cpu_signal(unsigned long pc, unsigned long address,
1092
                                    int is_write, sigset_t *old_set,
1093
                                    void *puc)
1094
{
1095
    TranslationBlock *tb;
1096
    int ret;
1097
    
1098
    if (cpu_single_env)
1099
        env = cpu_single_env; /* XXX: find a correct solution for multithread */
1100
#if defined(DEBUG_SIGNAL)
1101
    printf("qemu: SIGSEGV pc=0x%08lx address=%08lx w=%d oldset=0x%08lx\n", 
1102
           pc, address, is_write, *(unsigned long *)old_set);
1103
#endif
1104
    /* XXX: locking issue */
1105
    if (is_write && page_unprotect(h2g(address), pc, puc)) {
1106
        return 1;
1107
    }
1108

    
1109
    /* see if it is an MMU fault */
1110
    ret = cpu_mips_handle_mmu_fault(env, address, is_write, 1, 0);
1111
    if (ret < 0)
1112
        return 0; /* not an MMU fault */
1113
    if (ret == 0)
1114
        return 1; /* the MMU fault was handled without causing real CPU fault */
1115

    
1116
    /* now we have a real cpu fault */
1117
    tb = tb_find_pc(pc);
1118
    if (tb) {
1119
        /* the PC is inside the translated code. It means that we have
1120
           a virtual CPU fault */
1121
        cpu_restore_state(tb, env, pc, puc);
1122
    }
1123
    if (ret == 1) {
1124
#if 0
1125
        printf("PF exception: NIP=0x%08x error=0x%x %p\n", 
1126
               env->nip, env->error_code, tb);
1127
#endif
1128
    /* we restore the process signal mask as the sigreturn should
1129
       do it (XXX: use sigsetjmp) */
1130
        sigprocmask(SIG_SETMASK, old_set, NULL);
1131
        do_raise_exception_err(env->exception_index, env->error_code);
1132
    } else {
1133
        /* activate soft MMU for this block */
1134
        cpu_resume_from_signal(env, puc);
1135
    }
1136
    /* never comes here */
1137
    return 1;
1138
}
1139

    
1140
#elif defined (TARGET_SH4)
1141
static inline int handle_cpu_signal(unsigned long pc, unsigned long address,
1142
                                    int is_write, sigset_t *old_set,
1143
                                    void *puc)
1144
{
1145
    TranslationBlock *tb;
1146
    int ret;
1147
    
1148
    if (cpu_single_env)
1149
        env = cpu_single_env; /* XXX: find a correct solution for multithread */
1150
#if defined(DEBUG_SIGNAL)
1151
    printf("qemu: SIGSEGV pc=0x%08lx address=%08lx w=%d oldset=0x%08lx\n", 
1152
           pc, address, is_write, *(unsigned long *)old_set);
1153
#endif
1154
    /* XXX: locking issue */
1155
    if (is_write && page_unprotect(h2g(address), pc, puc)) {
1156
        return 1;
1157
    }
1158

    
1159
    /* see if it is an MMU fault */
1160
    ret = cpu_sh4_handle_mmu_fault(env, address, is_write, 1, 0);
1161
    if (ret < 0)
1162
        return 0; /* not an MMU fault */
1163
    if (ret == 0)
1164
        return 1; /* the MMU fault was handled without causing real CPU fault */
1165

    
1166
    /* now we have a real cpu fault */
1167
    tb = tb_find_pc(pc);
1168
    if (tb) {
1169
        /* the PC is inside the translated code. It means that we have
1170
           a virtual CPU fault */
1171
        cpu_restore_state(tb, env, pc, puc);
1172
    }
1173
    if (ret == 1) {
1174
#if 0
1175
        printf("PF exception: NIP=0x%08x error=0x%x %p\n", 
1176
               env->nip, env->error_code, tb);
1177
#endif
1178
    /* we restore the process signal mask as the sigreturn should
1179
       do it (XXX: use sigsetjmp) */
1180
        sigprocmask(SIG_SETMASK, old_set, NULL);
1181
        //        do_raise_exception_err(env->exception_index, env->error_code);
1182
    } else {
1183
        /* activate soft MMU for this block */
1184
        cpu_resume_from_signal(env, puc);
1185
    }
1186
    /* never comes here */
1187
    return 1;
1188
}
1189
#else
1190
#error unsupported target CPU
1191
#endif
1192

    
1193
#if defined(__i386__)
1194

    
1195
#if defined(USE_CODE_COPY)
1196
static void cpu_send_trap(unsigned long pc, int trap, 
1197
                          struct ucontext *uc)
1198
{
1199
    TranslationBlock *tb;
1200

    
1201
    if (cpu_single_env)
1202
        env = cpu_single_env; /* XXX: find a correct solution for multithread */
1203
    /* now we have a real cpu fault */
1204
    tb = tb_find_pc(pc);
1205
    if (tb) {
1206
        /* the PC is inside the translated code. It means that we have
1207
           a virtual CPU fault */
1208
        cpu_restore_state(tb, env, pc, uc);
1209
    }
1210
    sigprocmask(SIG_SETMASK, &uc->uc_sigmask, NULL);
1211
    raise_exception_err(trap, env->error_code);
1212
}
1213
#endif
1214

    
1215
int cpu_signal_handler(int host_signum, struct siginfo *info, 
1216
                       void *puc)
1217
{
1218
    struct ucontext *uc = puc;
1219
    unsigned long pc;
1220
    int trapno;
1221

    
1222
#ifndef REG_EIP
1223
/* for glibc 2.1 */
1224
#define REG_EIP    EIP
1225
#define REG_ERR    ERR
1226
#define REG_TRAPNO TRAPNO
1227
#endif
1228
    pc = uc->uc_mcontext.gregs[REG_EIP];
1229
    trapno = uc->uc_mcontext.gregs[REG_TRAPNO];
1230
#if defined(TARGET_I386) && defined(USE_CODE_COPY)
1231
    if (trapno == 0x00 || trapno == 0x05) {
1232
        /* send division by zero or bound exception */
1233
        cpu_send_trap(pc, trapno, uc);
1234
        return 1;
1235
    } else
1236
#endif
1237
        return handle_cpu_signal(pc, (unsigned long)info->si_addr, 
1238
                                 trapno == 0xe ? 
1239
                                 (uc->uc_mcontext.gregs[REG_ERR] >> 1) & 1 : 0,
1240
                                 &uc->uc_sigmask, puc);
1241
}
1242

    
1243
#elif defined(__x86_64__)
1244

    
1245
int cpu_signal_handler(int host_signum, struct siginfo *info,
1246
                       void *puc)
1247
{
1248
    struct ucontext *uc = puc;
1249
    unsigned long pc;
1250

    
1251
    pc = uc->uc_mcontext.gregs[REG_RIP];
1252
    return handle_cpu_signal(pc, (unsigned long)info->si_addr, 
1253
                             uc->uc_mcontext.gregs[REG_TRAPNO] == 0xe ? 
1254
                             (uc->uc_mcontext.gregs[REG_ERR] >> 1) & 1 : 0,
1255
                             &uc->uc_sigmask, puc);
1256
}
1257

    
1258
#elif defined(__powerpc__)
1259

    
1260
/***********************************************************************
1261
 * signal context platform-specific definitions
1262
 * From Wine
1263
 */
1264
#ifdef linux
1265
/* All Registers access - only for local access */
1266
# define REG_sig(reg_name, context)                ((context)->uc_mcontext.regs->reg_name)
1267
/* Gpr Registers access  */
1268
# define GPR_sig(reg_num, context)                REG_sig(gpr[reg_num], context)
1269
# define IAR_sig(context)                        REG_sig(nip, context)        /* Program counter */
1270
# define MSR_sig(context)                        REG_sig(msr, context)   /* Machine State Register (Supervisor) */
1271
# define CTR_sig(context)                        REG_sig(ctr, context)   /* Count register */
1272
# define XER_sig(context)                        REG_sig(xer, context) /* User's integer exception register */
1273
# define LR_sig(context)                        REG_sig(link, context) /* Link register */
1274
# define CR_sig(context)                        REG_sig(ccr, context) /* Condition register */
1275
/* Float Registers access  */
1276
# define FLOAT_sig(reg_num, context)                (((double*)((char*)((context)->uc_mcontext.regs+48*4)))[reg_num])
1277
# define FPSCR_sig(context)                        (*(int*)((char*)((context)->uc_mcontext.regs+(48+32*2)*4)))
1278
/* Exception Registers access */
1279
# define DAR_sig(context)                        REG_sig(dar, context)
1280
# define DSISR_sig(context)                        REG_sig(dsisr, context)
1281
# define TRAP_sig(context)                        REG_sig(trap, context)
1282
#endif /* linux */
1283

    
1284
#ifdef __APPLE__
1285
# include <sys/ucontext.h>
1286
typedef struct ucontext SIGCONTEXT;
1287
/* All Registers access - only for local access */
1288
# define REG_sig(reg_name, context)                ((context)->uc_mcontext->ss.reg_name)
1289
# define FLOATREG_sig(reg_name, context)        ((context)->uc_mcontext->fs.reg_name)
1290
# define EXCEPREG_sig(reg_name, context)        ((context)->uc_mcontext->es.reg_name)
1291
# define VECREG_sig(reg_name, context)                ((context)->uc_mcontext->vs.reg_name)
1292
/* Gpr Registers access */
1293
# define GPR_sig(reg_num, context)                REG_sig(r##reg_num, context)
1294
# define IAR_sig(context)                        REG_sig(srr0, context)        /* Program counter */
1295
# define MSR_sig(context)                        REG_sig(srr1, context)  /* Machine State Register (Supervisor) */
1296
# define CTR_sig(context)                        REG_sig(ctr, context)
1297
# define XER_sig(context)                        REG_sig(xer, context) /* Link register */
1298
# define LR_sig(context)                        REG_sig(lr, context)  /* User's integer exception register */
1299
# define CR_sig(context)                        REG_sig(cr, context)  /* Condition register */
1300
/* Float Registers access */
1301
# define FLOAT_sig(reg_num, context)                FLOATREG_sig(fpregs[reg_num], context)
1302
# define FPSCR_sig(context)                        ((double)FLOATREG_sig(fpscr, context))
1303
/* Exception Registers access */
1304
# define DAR_sig(context)                        EXCEPREG_sig(dar, context)     /* Fault registers for coredump */
1305
# define DSISR_sig(context)                        EXCEPREG_sig(dsisr, context)
1306
# define TRAP_sig(context)                        EXCEPREG_sig(exception, context) /* number of powerpc exception taken */
1307
#endif /* __APPLE__ */
1308

    
1309
int cpu_signal_handler(int host_signum, struct siginfo *info, 
1310
                       void *puc)
1311
{
1312
    struct ucontext *uc = puc;
1313
    unsigned long pc;
1314
    int is_write;
1315

    
1316
    pc = IAR_sig(uc);
1317
    is_write = 0;
1318
#if 0
1319
    /* ppc 4xx case */
1320
    if (DSISR_sig(uc) & 0x00800000)
1321
        is_write = 1;
1322
#else
1323
    if (TRAP_sig(uc) != 0x400 && (DSISR_sig(uc) & 0x02000000))
1324
        is_write = 1;
1325
#endif
1326
    return handle_cpu_signal(pc, (unsigned long)info->si_addr, 
1327
                             is_write, &uc->uc_sigmask, puc);
1328
}
1329

    
1330
#elif defined(__alpha__)
1331

    
1332
int cpu_signal_handler(int host_signum, struct siginfo *info, 
1333
                           void *puc)
1334
{
1335
    struct ucontext *uc = puc;
1336
    uint32_t *pc = uc->uc_mcontext.sc_pc;
1337
    uint32_t insn = *pc;
1338
    int is_write = 0;
1339

    
1340
    /* XXX: need kernel patch to get write flag faster */
1341
    switch (insn >> 26) {
1342
    case 0x0d: // stw
1343
    case 0x0e: // stb
1344
    case 0x0f: // stq_u
1345
    case 0x24: // stf
1346
    case 0x25: // stg
1347
    case 0x26: // sts
1348
    case 0x27: // stt
1349
    case 0x2c: // stl
1350
    case 0x2d: // stq
1351
    case 0x2e: // stl_c
1352
    case 0x2f: // stq_c
1353
        is_write = 1;
1354
    }
1355

    
1356
    return handle_cpu_signal(pc, (unsigned long)info->si_addr, 
1357
                             is_write, &uc->uc_sigmask, puc);
1358
}
1359
#elif defined(__sparc__)
1360

    
1361
int cpu_signal_handler(int host_signum, struct siginfo *info, 
1362
                       void *puc)
1363
{
1364
    uint32_t *regs = (uint32_t *)(info + 1);
1365
    void *sigmask = (regs + 20);
1366
    unsigned long pc;
1367
    int is_write;
1368
    uint32_t insn;
1369
    
1370
    /* XXX: is there a standard glibc define ? */
1371
    pc = regs[1];
1372
    /* XXX: need kernel patch to get write flag faster */
1373
    is_write = 0;
1374
    insn = *(uint32_t *)pc;
1375
    if ((insn >> 30) == 3) {
1376
      switch((insn >> 19) & 0x3f) {
1377
      case 0x05: // stb
1378
      case 0x06: // sth
1379
      case 0x04: // st
1380
      case 0x07: // std
1381
      case 0x24: // stf
1382
      case 0x27: // stdf
1383
      case 0x25: // stfsr
1384
        is_write = 1;
1385
        break;
1386
      }
1387
    }
1388
    return handle_cpu_signal(pc, (unsigned long)info->si_addr, 
1389
                             is_write, sigmask, NULL);
1390
}
1391

    
1392
#elif defined(__arm__)
1393

    
1394
int cpu_signal_handler(int host_signum, struct siginfo *info, 
1395
                       void *puc)
1396
{
1397
    struct ucontext *uc = puc;
1398
    unsigned long pc;
1399
    int is_write;
1400
    
1401
    pc = uc->uc_mcontext.gregs[R15];
1402
    /* XXX: compute is_write */
1403
    is_write = 0;
1404
    return handle_cpu_signal(pc, (unsigned long)info->si_addr, 
1405
                             is_write,
1406
                             &uc->uc_sigmask);
1407
}
1408

    
1409
#elif defined(__mc68000)
1410

    
1411
int cpu_signal_handler(int host_signum, struct siginfo *info, 
1412
                       void *puc)
1413
{
1414
    struct ucontext *uc = puc;
1415
    unsigned long pc;
1416
    int is_write;
1417
    
1418
    pc = uc->uc_mcontext.gregs[16];
1419
    /* XXX: compute is_write */
1420
    is_write = 0;
1421
    return handle_cpu_signal(pc, (unsigned long)info->si_addr, 
1422
                             is_write,
1423
                             &uc->uc_sigmask, puc);
1424
}
1425

    
1426
#elif defined(__ia64)
1427

    
1428
#ifndef __ISR_VALID
1429
  /* This ought to be in <bits/siginfo.h>... */
1430
# define __ISR_VALID        1
1431
#endif
1432

    
1433
int cpu_signal_handler(int host_signum, struct siginfo *info, void *puc)
1434
{
1435
    struct ucontext *uc = puc;
1436
    unsigned long ip;
1437
    int is_write = 0;
1438

    
1439
    ip = uc->uc_mcontext.sc_ip;
1440
    switch (host_signum) {
1441
      case SIGILL:
1442
      case SIGFPE:
1443
      case SIGSEGV:
1444
      case SIGBUS:
1445
      case SIGTRAP:
1446
          if (info->si_code && (info->si_segvflags & __ISR_VALID))
1447
              /* ISR.W (write-access) is bit 33:  */
1448
              is_write = (info->si_isr >> 33) & 1;
1449
          break;
1450

    
1451
      default:
1452
          break;
1453
    }
1454
    return handle_cpu_signal(ip, (unsigned long)info->si_addr,
1455
                             is_write,
1456
                             &uc->uc_sigmask, puc);
1457
}
1458

    
1459
#elif defined(__s390__)
1460

    
1461
int cpu_signal_handler(int host_signum, struct siginfo *info, 
1462
                       void *puc)
1463
{
1464
    struct ucontext *uc = puc;
1465
    unsigned long pc;
1466
    int is_write;
1467
    
1468
    pc = uc->uc_mcontext.psw.addr;
1469
    /* XXX: compute is_write */
1470
    is_write = 0;
1471
    return handle_cpu_signal(pc, (unsigned long)info->si_addr, 
1472
                             is_write,
1473
                             &uc->uc_sigmask, puc);
1474
}
1475

    
1476
#else
1477

    
1478
#error host CPU specific signal handler needed
1479

    
1480
#endif
1481

    
1482
#endif /* !defined(CONFIG_SOFTMMU) */