Statistics
| Branch: | Revision:

root / hw / wdt_i6300esb.c @ 9d472d51

History | View | Annotate | Download (14.4 kB)

1
/*
2
 * Virtual hardware watchdog.
3
 *
4
 * Copyright (C) 2009 Red Hat Inc.
5
 *
6
 * This program is free software; you can redistribute it and/or
7
 * modify it under the terms of the GNU General Public License
8
 * as published by the Free Software Foundation; either version 2
9
 * of the License, or (at your option) any later version.
10
 *
11
 * This program is distributed in the hope that it will be useful,
12
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14
 * GNU General Public License for more details.
15
 *
16
 * You should have received a copy of the GNU General Public License
17
 * along with this program; if not, see <http://www.gnu.org/licenses/>.
18
 *
19
 * By Richard W.M. Jones (rjones@redhat.com).
20
 */
21

    
22
#include <inttypes.h>
23

    
24
#include "qemu-common.h"
25
#include "qemu-timer.h"
26
#include "watchdog.h"
27
#include "hw.h"
28
#include "pc.h"
29
#include "pci.h"
30

    
31
/*#define I6300ESB_DEBUG 1*/
32

    
33
#ifdef I6300ESB_DEBUG
34
#define i6300esb_debug(fs,...) \
35
    fprintf(stderr,"i6300esb: %s: "fs,__func__,##__VA_ARGS__)
36
#else
37
#define i6300esb_debug(fs,...)
38
#endif
39

    
40
#ifndef PCI_DEVICE_ID_INTEL_ESB_9
41
#define PCI_DEVICE_ID_INTEL_ESB_9 0x25ab
42
#endif
43

    
44
/* PCI configuration registers */
45
#define ESB_CONFIG_REG  0x60            /* Config register                   */
46
#define ESB_LOCK_REG    0x68            /* WDT lock register                 */
47

    
48
/* Memory mapped registers (offset from base address) */
49
#define ESB_TIMER1_REG  0x00            /* Timer1 value after each reset     */
50
#define ESB_TIMER2_REG  0x04            /* Timer2 value after each reset     */
51
#define ESB_GINTSR_REG  0x08            /* General Interrupt Status Register */
52
#define ESB_RELOAD_REG  0x0c            /* Reload register                   */
53

    
54
/* Lock register bits */
55
#define ESB_WDT_FUNC    (0x01 << 2)   /* Watchdog functionality            */
56
#define ESB_WDT_ENABLE  (0x01 << 1)   /* Enable WDT                        */
57
#define ESB_WDT_LOCK    (0x01 << 0)   /* Lock (nowayout)                   */
58

    
59
/* Config register bits */
60
#define ESB_WDT_REBOOT  (0x01 << 5)   /* Enable reboot on timeout          */
61
#define ESB_WDT_FREQ    (0x01 << 2)   /* Decrement frequency               */
62
#define ESB_WDT_INTTYPE (0x11 << 0)   /* Interrupt type on timer1 timeout  */
63

    
64
/* Reload register bits */
65
#define ESB_WDT_RELOAD  (0x01 << 8)    /* prevent timeout                   */
66

    
67
/* Magic constants */
68
#define ESB_UNLOCK1     0x80            /* Step 1 to unlock reset registers  */
69
#define ESB_UNLOCK2     0x86            /* Step 2 to unlock reset registers  */
70

    
71
/* Device state. */
72
struct I6300State {
73
    PCIDevice dev;
74

    
75
    int reboot_enabled;         /* "Reboot" on timer expiry.  The real action
76
                                 * performed depends on the -watchdog-action
77
                                 * param passed on QEMU command line.
78
                                 */
79
    int clock_scale;            /* Clock scale. */
80
#define CLOCK_SCALE_1KHZ 0
81
#define CLOCK_SCALE_1MHZ 1
82

    
83
    int int_type;               /* Interrupt type generated. */
84
#define INT_TYPE_IRQ 0          /* APIC 1, INT 10 */
85
#define INT_TYPE_SMI 2
86
#define INT_TYPE_DISABLED 3
87

    
88
    int free_run;               /* If true, reload timer on expiry. */
89
    int locked;                 /* If true, enabled field cannot be changed. */
90
    int enabled;                /* If true, watchdog is enabled. */
91

    
92
    QEMUTimer *timer;           /* The actual watchdog timer. */
93

    
94
    uint32_t timer1_preload;    /* Values preloaded into timer1, timer2. */
95
    uint32_t timer2_preload;
96
    int stage;                  /* Stage (1 or 2). */
97

    
98
    int unlock_state;           /* Guest writes 0x80, 0x86 to unlock the
99
                                 * registers, and we transition through
100
                                 * states 0 -> 1 -> 2 when this happens.
101
                                 */
102

    
103
    int previous_reboot_flag;   /* If the watchdog caused the previous
104
                                 * reboot, this flag will be set.
105
                                 */
106
};
107

    
108
typedef struct I6300State I6300State;
109

    
110
/* This function is called when the watchdog has either been enabled
111
 * (hence it starts counting down) or has been keep-alived.
112
 */
113
static void i6300esb_restart_timer(I6300State *d, int stage)
114
{
115
    int64_t timeout;
116

    
117
    if (!d->enabled)
118
        return;
119

    
120
    d->stage = stage;
121

    
122
    if (d->stage <= 1)
123
        timeout = d->timer1_preload;
124
    else
125
        timeout = d->timer2_preload;
126

    
127
    if (d->clock_scale == CLOCK_SCALE_1KHZ)
128
        timeout <<= 15;
129
    else
130
        timeout <<= 5;
131

    
132
    /* Get the timeout in units of ticks_per_sec. */
133
    timeout = ticks_per_sec * timeout / 33000000;
134

    
135
    i6300esb_debug("stage %d, timeout %" PRIi64 "\n", d->stage, timeout);
136

    
137
    qemu_mod_timer(d->timer, qemu_get_clock(vm_clock) + timeout);
138
}
139

    
140
/* This is called when the guest disables the watchdog. */
141
static void i6300esb_disable_timer(I6300State *d)
142
{
143
    i6300esb_debug("timer disabled\n");
144

    
145
    qemu_del_timer(d->timer);
146
}
147

    
148
static void i6300esb_reset(I6300State *d)
149
{
150
    /* XXX We should probably reset other parts of the state here,
151
     * but we should also reset our state on general machine reset
152
     * too.  For now just disable the timer so it doesn't fire
153
     * again after the reboot.
154
     */
155
    i6300esb_disable_timer(d);
156
}
157

    
158
/* This function is called when the watchdog expires.  Note that
159
 * the hardware has two timers, and so expiry happens in two stages.
160
 * If d->stage == 1 then we perform the first stage action (usually,
161
 * sending an interrupt) and then restart the timer again for the
162
 * second stage.  If the second stage expires then the watchdog
163
 * really has run out.
164
 */
165
static void i6300esb_timer_expired(void *vp)
166
{
167
    I6300State *d = (I6300State *) vp;
168

    
169
    i6300esb_debug("stage %d\n", d->stage);
170

    
171
    if (d->stage == 1) {
172
        /* What to do at the end of stage 1? */
173
        switch (d->int_type) {
174
        case INT_TYPE_IRQ:
175
            fprintf(stderr, "i6300esb_timer_expired: I would send APIC 1 INT 10 here if I knew how (XXX)\n");
176
            break;
177
        case INT_TYPE_SMI:
178
            fprintf(stderr, "i6300esb_timer_expired: I would send SMI here if I knew how (XXX)\n");
179
            break;
180
        }
181

    
182
        /* Start the second stage. */
183
        i6300esb_restart_timer(d, 2);
184
    } else {
185
        /* Second stage expired, reboot for real. */
186
        if (d->reboot_enabled) {
187
            d->previous_reboot_flag = 1;
188
            watchdog_perform_action(); /* This reboots, exits, etc */
189
            i6300esb_reset(d);
190
        }
191

    
192
        /* In "free running mode" we start stage 1 again. */
193
        if (d->free_run)
194
            i6300esb_restart_timer(d, 1);
195
    }
196
}
197

    
198
static void i6300esb_config_write(PCIDevice *dev, uint32_t addr,
199
                                  uint32_t data, int len)
200
{
201
    I6300State *d = container_of(dev, I6300State, dev);
202
    int old;
203

    
204
    i6300esb_debug("addr = %x, data = %x, len = %d\n", addr, data, len);
205

    
206
    if (addr == ESB_CONFIG_REG && len == 2) {
207
        d->reboot_enabled = (data & ESB_WDT_REBOOT) == 0;
208
        d->clock_scale =
209
            (data & ESB_WDT_FREQ) != 0 ? CLOCK_SCALE_1MHZ : CLOCK_SCALE_1KHZ;
210
        d->int_type = (data & ESB_WDT_INTTYPE);
211
    } else if (addr == ESB_LOCK_REG && len == 1) {
212
        if (!d->locked) {
213
            d->locked = (data & ESB_WDT_LOCK) != 0;
214
            d->free_run = (data & ESB_WDT_FUNC) != 0;
215
            old = d->enabled;
216
            d->enabled = (data & ESB_WDT_ENABLE) != 0;
217
            if (!old && d->enabled) /* Enabled transitioned from 0 -> 1 */
218
                i6300esb_restart_timer(d, 1);
219
            else if (!d->enabled)
220
                i6300esb_disable_timer(d);
221
        }
222
    } else {
223
        pci_default_write_config(dev, addr, data, len);
224
    }
225
}
226

    
227
static uint32_t i6300esb_config_read(PCIDevice *dev, uint32_t addr, int len)
228
{
229
    I6300State *d = container_of(dev, I6300State, dev);
230
    uint32_t data;
231

    
232
    i6300esb_debug ("addr = %x, len = %d\n", addr, len);
233

    
234
    if (addr == ESB_CONFIG_REG && len == 2) {
235
        data =
236
            (d->reboot_enabled ? 0 : ESB_WDT_REBOOT) |
237
            (d->clock_scale == CLOCK_SCALE_1MHZ ? ESB_WDT_FREQ : 0) |
238
            d->int_type;
239
        return data;
240
    } else if (addr == ESB_LOCK_REG && len == 1) {
241
        data =
242
            (d->free_run ? ESB_WDT_FUNC : 0) |
243
            (d->locked ? ESB_WDT_LOCK : 0) |
244
            (d->enabled ? ESB_WDT_ENABLE : 0);
245
        return data;
246
    } else {
247
        return pci_default_read_config(dev, addr, len);
248
    }
249
}
250

    
251
static uint32_t i6300esb_mem_readb(void *vp, target_phys_addr_t addr)
252
{
253
    i6300esb_debug ("addr = %x\n", (int) addr);
254

    
255
    return 0;
256
}
257

    
258
static uint32_t i6300esb_mem_readw(void *vp, target_phys_addr_t addr)
259
{
260
    uint32_t data = 0;
261
    I6300State *d = (I6300State *) vp;
262

    
263
    i6300esb_debug("addr = %x\n", (int) addr);
264

    
265
    if (addr == 0xc) {
266
        /* The previous reboot flag is really bit 9, but there is
267
         * a bug in the Linux driver where it thinks it's bit 12.
268
         * Set both.
269
         */
270
        data = d->previous_reboot_flag ? 0x1200 : 0;
271
    }
272

    
273
    return data;
274
}
275

    
276
static uint32_t i6300esb_mem_readl(void *vp, target_phys_addr_t addr)
277
{
278
    i6300esb_debug("addr = %x\n", (int) addr);
279

    
280
    return 0;
281
}
282

    
283
static void i6300esb_mem_writeb(void *vp, target_phys_addr_t addr, uint32_t val)
284
{
285
    I6300State *d = (I6300State *) vp;
286

    
287
    i6300esb_debug("addr = %x, val = %x\n", (int) addr, val);
288

    
289
    if (addr == 0xc && val == 0x80)
290
        d->unlock_state = 1;
291
    else if (addr == 0xc && val == 0x86 && d->unlock_state == 1)
292
        d->unlock_state = 2;
293
}
294

    
295
static void i6300esb_mem_writew(void *vp, target_phys_addr_t addr, uint32_t val)
296
{
297
    I6300State *d = (I6300State *) vp;
298

    
299
    i6300esb_debug("addr = %x, val = %x\n", (int) addr, val);
300

    
301
    if (addr == 0xc && val == 0x80)
302
        d->unlock_state = 1;
303
    else if (addr == 0xc && val == 0x86 && d->unlock_state == 1)
304
        d->unlock_state = 2;
305
    else {
306
        if (d->unlock_state == 2) {
307
            if (addr == 0xc) {
308
                if ((val & 0x100) != 0)
309
                    /* This is the "ping" from the userspace watchdog in
310
                     * the guest ...
311
                     */
312
                    i6300esb_restart_timer(d, 1);
313

    
314
                /* Setting bit 9 resets the previous reboot flag.
315
                 * There's a bug in the Linux driver where it sets
316
                 * bit 12 instead.
317
                 */
318
                if ((val & 0x200) != 0 || (val & 0x1000) != 0) {
319
                    d->previous_reboot_flag = 0;
320
                }
321
            }
322

    
323
            d->unlock_state = 0;
324
        }
325
    }
326
}
327

    
328
static void i6300esb_mem_writel(void *vp, target_phys_addr_t addr, uint32_t val)
329
{
330
    I6300State *d = (I6300State *) vp;
331

    
332
    i6300esb_debug ("addr = %x, val = %x\n", (int) addr, val);
333

    
334
    if (addr == 0xc && val == 0x80)
335
        d->unlock_state = 1;
336
    else if (addr == 0xc && val == 0x86 && d->unlock_state == 1)
337
        d->unlock_state = 2;
338
    else {
339
        if (d->unlock_state == 2) {
340
            if (addr == 0)
341
                d->timer1_preload = val & 0xfffff;
342
            else if (addr == 4)
343
                d->timer2_preload = val & 0xfffff;
344

    
345
            d->unlock_state = 0;
346
        }
347
    }
348
}
349

    
350
static void i6300esb_map(PCIDevice *dev, int region_num,
351
                         uint32_t addr, uint32_t size, int type)
352
{
353
    static CPUReadMemoryFunc * const mem_read[3] = {
354
        i6300esb_mem_readb,
355
        i6300esb_mem_readw,
356
        i6300esb_mem_readl,
357
    };
358
    static CPUWriteMemoryFunc * const mem_write[3] = {
359
        i6300esb_mem_writeb,
360
        i6300esb_mem_writew,
361
        i6300esb_mem_writel,
362
    };
363
    I6300State *d = container_of(dev, I6300State, dev);
364
    int io_mem;
365

    
366
    i6300esb_debug("addr = %x, size = %x, type = %d\n", addr, size, type);
367

    
368
    io_mem = cpu_register_io_memory(mem_read, mem_write, d);
369
    cpu_register_physical_memory (addr, 0x10, io_mem);
370
    /* qemu_register_coalesced_mmio (addr, 0x10); ? */
371
}
372

    
373
static void i6300esb_save(QEMUFile *f, void *vp)
374
{
375
    I6300State *d = (I6300State *) vp;
376

    
377
    pci_device_save(&d->dev, f);
378
    qemu_put_be32(f, d->reboot_enabled);
379
    qemu_put_be32(f, d->clock_scale);
380
    qemu_put_be32(f, d->int_type);
381
    qemu_put_be32(f, d->free_run);
382
    qemu_put_be32(f, d->locked);
383
    qemu_put_be32(f, d->enabled);
384
    qemu_put_timer(f, d->timer);
385
    qemu_put_be32(f, d->timer1_preload);
386
    qemu_put_be32(f, d->timer2_preload);
387
    qemu_put_be32(f, d->stage);
388
    qemu_put_be32(f, d->unlock_state);
389
    qemu_put_be32(f, d->previous_reboot_flag);
390
}
391

    
392
static int i6300esb_load(QEMUFile *f, void *vp, int version)
393
{
394
    I6300State *d = (I6300State *) vp;
395

    
396
    if (version != sizeof (I6300State))
397
        return -EINVAL;
398

    
399
    pci_device_load(&d->dev, f);
400
    d->reboot_enabled = qemu_get_be32(f);
401
    d->clock_scale = qemu_get_be32(f);
402
    d->int_type = qemu_get_be32(f);
403
    d->free_run = qemu_get_be32(f);
404
    d->locked = qemu_get_be32(f);
405
    d->enabled = qemu_get_be32(f);
406
    qemu_get_timer(f, d->timer);
407
    d->timer1_preload = qemu_get_be32(f);
408
    d->timer2_preload = qemu_get_be32(f);
409
    d->stage = qemu_get_be32(f);
410
    d->unlock_state = qemu_get_be32(f);
411
    d->previous_reboot_flag = qemu_get_be32(f);
412

    
413
    return 0;
414
}
415

    
416
/* Create and initialize a virtual Intel 6300ESB during PC creation. */
417
static void i6300esb_pc_init(PCIBus *pci_bus)
418
{
419
    I6300State *d;
420
    uint8_t *pci_conf;
421

    
422
    if (!pci_bus) {
423
        fprintf(stderr, "wdt_i6300esb: no PCI bus in this machine\n");
424
        return;
425
    }
426

    
427
    d = (I6300State *)
428
        pci_register_device (pci_bus, "i6300esb_wdt", sizeof (I6300State),
429
                             -1,
430
                             i6300esb_config_read, i6300esb_config_write);
431

    
432
    d->reboot_enabled = 1;
433
    d->clock_scale = CLOCK_SCALE_1KHZ;
434
    d->int_type = INT_TYPE_IRQ;
435
    d->free_run = 0;
436
    d->locked = 0;
437
    d->enabled = 0;
438
    d->timer = qemu_new_timer(vm_clock, i6300esb_timer_expired, d);
439
    d->timer1_preload = 0xfffff;
440
    d->timer2_preload = 0xfffff;
441
    d->stage = 1;
442
    d->unlock_state = 0;
443
    d->previous_reboot_flag = 0;
444

    
445
    pci_conf = d->dev.config;
446
    pci_config_set_vendor_id(pci_conf, PCI_VENDOR_ID_INTEL);
447
    pci_config_set_device_id(pci_conf, PCI_DEVICE_ID_INTEL_ESB_9);
448
    pci_config_set_class(pci_conf, PCI_CLASS_SYSTEM_OTHER);
449
    pci_conf[0x0e] = 0x00;
450

    
451
    pci_register_bar(&d->dev, 0, 0x10,
452
                            PCI_ADDRESS_SPACE_MEM, i6300esb_map);
453

    
454
    register_savevm("i6300esb_wdt", -1, sizeof(I6300State),
455
                     i6300esb_save, i6300esb_load, d);
456
}
457

    
458
static WatchdogTimerModel model = {
459
    .wdt_name = "i6300esb",
460
    .wdt_description = "Intel 6300ESB",
461
    .wdt_pc_init = i6300esb_pc_init,
462
};
463

    
464
void wdt_i6300esb_init(void)
465
{
466
    watchdog_add_model(&model);
467
}