Statistics
| Branch: | Revision:

root / qemu-doc.texi @ 9ee6e8bb

History | View | Annotate | Download (77.8 kB)

1
\input texinfo @c -*- texinfo -*-
2
@c %**start of header
3
@setfilename qemu-doc.info
4
@settitle QEMU Emulator User Documentation
5
@exampleindent 0
6
@paragraphindent 0
7
@c %**end of header
8

    
9
@iftex
10
@titlepage
11
@sp 7
12
@center @titlefont{QEMU Emulator}
13
@sp 1
14
@center @titlefont{User Documentation}
15
@sp 3
16
@end titlepage
17
@end iftex
18

    
19
@ifnottex
20
@node Top
21
@top
22

    
23
@menu
24
* Introduction::
25
* Installation::
26
* QEMU PC System emulator::
27
* QEMU System emulator for non PC targets::
28
* QEMU User space emulator::
29
* compilation:: Compilation from the sources
30
* Index::
31
@end menu
32
@end ifnottex
33

    
34
@contents
35

    
36
@node Introduction
37
@chapter Introduction
38

    
39
@menu
40
* intro_features:: Features
41
@end menu
42

    
43
@node intro_features
44
@section Features
45

    
46
QEMU is a FAST! processor emulator using dynamic translation to
47
achieve good emulation speed.
48

    
49
QEMU has two operating modes:
50

    
51
@itemize @minus
52

    
53
@item
54
Full system emulation. In this mode, QEMU emulates a full system (for
55
example a PC), including one or several processors and various
56
peripherals. It can be used to launch different Operating Systems
57
without rebooting the PC or to debug system code.
58

    
59
@item
60
User mode emulation. In this mode, QEMU can launch
61
processes compiled for one CPU on another CPU. It can be used to
62
launch the Wine Windows API emulator (@url{http://www.winehq.org}) or
63
to ease cross-compilation and cross-debugging.
64

    
65
@end itemize
66

    
67
QEMU can run without an host kernel driver and yet gives acceptable
68
performance.
69

    
70
For system emulation, the following hardware targets are supported:
71
@itemize
72
@item PC (x86 or x86_64 processor)
73
@item ISA PC (old style PC without PCI bus)
74
@item PREP (PowerPC processor)
75
@item G3 BW PowerMac (PowerPC processor)
76
@item Mac99 PowerMac (PowerPC processor, in progress)
77
@item Sun4m (32-bit Sparc processor)
78
@item Sun4u (64-bit Sparc processor, in progress)
79
@item Malta board (32-bit MIPS processor)
80
@item ARM Integrator/CP (ARM)
81
@item ARM Versatile baseboard (ARM)
82
@item ARM RealView Emulation baseboard (ARM)
83
@item Spitz, Akita, Borzoi and Terrier PDAs (PXA270 processor)
84
@item Luminary Micro LM3S811EVB (ARM Cortex-M3)
85
@item Luminary Micro LM3S6965EVB (ARM Cortex-M3)
86
@item Freescale MCF5208EVB (ColdFire V2).
87
@item Arnewsh MCF5206 evaluation board (ColdFire V2).
88
@item Palm Tungsten|E PDA (OMAP310 processor)
89
@end itemize
90

    
91
For user emulation, x86, PowerPC, ARM, MIPS, Sparc32/64 and ColdFire(m68k) CPUs are supported.
92

    
93
@node Installation
94
@chapter Installation
95

    
96
If you want to compile QEMU yourself, see @ref{compilation}.
97

    
98
@menu
99
* install_linux::   Linux
100
* install_windows:: Windows
101
* install_mac::     Macintosh
102
@end menu
103

    
104
@node install_linux
105
@section Linux
106

    
107
If a precompiled package is available for your distribution - you just
108
have to install it. Otherwise, see @ref{compilation}.
109

    
110
@node install_windows
111
@section Windows
112

    
113
Download the experimental binary installer at
114
@url{http://www.free.oszoo.org/@/download.html}.
115

    
116
@node install_mac
117
@section Mac OS X
118

    
119
Download the experimental binary installer at
120
@url{http://www.free.oszoo.org/@/download.html}.
121

    
122
@node QEMU PC System emulator
123
@chapter QEMU PC System emulator
124

    
125
@menu
126
* pcsys_introduction:: Introduction
127
* pcsys_quickstart::   Quick Start
128
* sec_invocation::     Invocation
129
* pcsys_keys::         Keys
130
* pcsys_monitor::      QEMU Monitor
131
* disk_images::        Disk Images
132
* pcsys_network::      Network emulation
133
* direct_linux_boot::  Direct Linux Boot
134
* pcsys_usb::          USB emulation
135
* vnc_security::       VNC security
136
* gdb_usage::          GDB usage
137
* pcsys_os_specific::  Target OS specific information
138
@end menu
139

    
140
@node pcsys_introduction
141
@section Introduction
142

    
143
@c man begin DESCRIPTION
144

    
145
The QEMU PC System emulator simulates the
146
following peripherals:
147

    
148
@itemize @minus
149
@item
150
i440FX host PCI bridge and PIIX3 PCI to ISA bridge
151
@item
152
Cirrus CLGD 5446 PCI VGA card or dummy VGA card with Bochs VESA
153
extensions (hardware level, including all non standard modes).
154
@item
155
PS/2 mouse and keyboard
156
@item
157
2 PCI IDE interfaces with hard disk and CD-ROM support
158
@item
159
Floppy disk
160
@item
161
PCI/ISA PCI network adapters
162
@item
163
Serial ports
164
@item
165
Creative SoundBlaster 16 sound card
166
@item
167
ENSONIQ AudioPCI ES1370 sound card
168
@item
169
Adlib(OPL2) - Yamaha YM3812 compatible chip
170
@item
171
PCI UHCI USB controller and a virtual USB hub.
172
@end itemize
173

    
174
SMP is supported with up to 255 CPUs.
175

    
176
Note that adlib is only available when QEMU was configured with
177
-enable-adlib
178

    
179
QEMU uses the PC BIOS from the Bochs project and the Plex86/Bochs LGPL
180
VGA BIOS.
181

    
182
QEMU uses YM3812 emulation by Tatsuyuki Satoh.
183

    
184
@c man end
185

    
186
@node pcsys_quickstart
187
@section Quick Start
188

    
189
Download and uncompress the linux image (@file{linux.img}) and type:
190

    
191
@example
192
qemu linux.img
193
@end example
194

    
195
Linux should boot and give you a prompt.
196

    
197
@node sec_invocation
198
@section Invocation
199

    
200
@example
201
@c man begin SYNOPSIS
202
usage: qemu [options] [disk_image]
203
@c man end
204
@end example
205

    
206
@c man begin OPTIONS
207
@var{disk_image} is a raw hard disk image for IDE hard disk 0.
208

    
209
General options:
210
@table @option
211
@item -M machine
212
Select the emulated machine (@code{-M ?} for list)
213

    
214
@item -fda file
215
@item -fdb file
216
Use @var{file} as floppy disk 0/1 image (@pxref{disk_images}). You can
217
use the host floppy by using @file{/dev/fd0} as filename (@pxref{host_drives}).
218

    
219
@item -hda file
220
@item -hdb file
221
@item -hdc file
222
@item -hdd file
223
Use @var{file} as hard disk 0, 1, 2 or 3 image (@pxref{disk_images}).
224

    
225
@item -cdrom file
226
Use @var{file} as CD-ROM image (you cannot use @option{-hdc} and and
227
@option{-cdrom} at the same time). You can use the host CD-ROM by
228
using @file{/dev/cdrom} as filename (@pxref{host_drives}).
229

    
230
@item -boot [a|c|d|n]
231
Boot on floppy (a), hard disk (c), CD-ROM (d), or Etherboot (n). Hard disk boot
232
is the default.
233

    
234
@item -snapshot
235
Write to temporary files instead of disk image files. In this case,
236
the raw disk image you use is not written back. You can however force
237
the write back by pressing @key{C-a s} (@pxref{disk_images}).
238

    
239
@item -no-fd-bootchk
240
Disable boot signature checking for floppy disks in Bochs BIOS. It may
241
be needed to boot from old floppy disks.
242

    
243
@item -m megs
244
Set virtual RAM size to @var{megs} megabytes. Default is 128 MB.
245

    
246
@item -smp n
247
Simulate an SMP system with @var{n} CPUs. On the PC target, up to 255
248
CPUs are supported. On Sparc32 target, Linux limits the number of usable CPUs
249
to 4.
250

    
251
@item -audio-help
252

    
253
Will show the audio subsystem help: list of drivers, tunable
254
parameters.
255

    
256
@item -soundhw card1,card2,... or -soundhw all
257

    
258
Enable audio and selected sound hardware. Use ? to print all
259
available sound hardware.
260

    
261
@example
262
qemu -soundhw sb16,adlib hda
263
qemu -soundhw es1370 hda
264
qemu -soundhw all hda
265
qemu -soundhw ?
266
@end example
267

    
268
@item -localtime
269
Set the real time clock to local time (the default is to UTC
270
time). This option is needed to have correct date in MS-DOS or
271
Windows.
272

    
273
@item -startdate date
274
Set the initial date of the real time clock. Valid format for
275
@var{date} are: @code{now} or @code{2006-06-17T16:01:21} or
276
@code{2006-06-17}. The default value is @code{now}.
277

    
278
@item -pidfile file
279
Store the QEMU process PID in @var{file}. It is useful if you launch QEMU
280
from a script.
281

    
282
@item -daemonize
283
Daemonize the QEMU process after initialization.  QEMU will not detach from
284
standard IO until it is ready to receive connections on any of its devices.
285
This option is a useful way for external programs to launch QEMU without having
286
to cope with initialization race conditions.
287

    
288
@item -win2k-hack
289
Use it when installing Windows 2000 to avoid a disk full bug. After
290
Windows 2000 is installed, you no longer need this option (this option
291
slows down the IDE transfers).
292

    
293
@item -option-rom file
294
Load the contents of file as an option ROM.  This option is useful to load
295
things like EtherBoot.
296

    
297
@item -name string
298
Sets the name of the guest.  This name will be display in the SDL window
299
caption.  The name will also be used for the VNC server.
300

    
301
@end table
302

    
303
Display options:
304
@table @option
305

    
306
@item -nographic
307

    
308
Normally, QEMU uses SDL to display the VGA output. With this option,
309
you can totally disable graphical output so that QEMU is a simple
310
command line application. The emulated serial port is redirected on
311
the console. Therefore, you can still use QEMU to debug a Linux kernel
312
with a serial console.
313

    
314
@item -no-frame
315

    
316
Do not use decorations for SDL windows and start them using the whole
317
available screen space. This makes the using QEMU in a dedicated desktop
318
workspace more convenient.
319

    
320
@item -full-screen
321
Start in full screen.
322

    
323
@item -vnc display[,option[,option[,...]]]
324

    
325
Normally, QEMU uses SDL to display the VGA output.  With this option,
326
you can have QEMU listen on VNC display @var{display} and redirect the VGA
327
display over the VNC session.  It is very useful to enable the usb
328
tablet device when using this option (option @option{-usbdevice
329
tablet}). When using the VNC display, you must use the @option{-k}
330
parameter to set the keyboard layout if you are not using en-us. Valid
331
syntax for the @var{display} is
332

    
333
@table @code
334

    
335
@item @var{interface:d}
336

    
337
TCP connections will only be allowed from @var{interface} on display @var{d}.
338
By convention the TCP port is 5900+@var{d}. Optionally, @var{interface} can
339
be omitted in which case the server will bind to all interfaces.
340

    
341
@item @var{unix:path}
342

    
343
Connections will be allowed over UNIX domain sockets where @var{path} is the
344
location of a unix socket to listen for connections on.
345

    
346
@item @var{none}
347

    
348
VNC is initialized by not started. The monitor @code{change} command can be used
349
to later start the VNC server.
350

    
351
@end table
352

    
353
Following the @var{display} value there may be one or more @var{option} flags
354
separated by commas. Valid options are
355

    
356
@table @code
357

    
358
@item @var{password}
359

    
360
Require that password based authentication is used for client connections.
361
The password must be set separately using the @code{change} command in the
362
@ref{pcsys_monitor}
363

    
364
@item @var{tls}
365

    
366
Require that client use TLS when communicating with the VNC server. This
367
uses anonymous TLS credentials so is susceptible to a man-in-the-middle
368
attack. It is recommended that this option be combined with either the
369
@var{x509} or @var{x509verify} options.
370

    
371
@item @var{x509=/path/to/certificate/dir}
372

    
373
Valid if @var{tls} is specified. Require that x509 credentials are used
374
for negotiating the TLS session. The server will send its x509 certificate
375
to the client. It is recommended that a password be set on the VNC server
376
to provide authentication of the client when this is used. The path following
377
this option specifies where the x509 certificates are to be loaded from.
378
See the @ref{vnc_security} section for details on generating certificates.
379

    
380
@item @var{x509verify=/path/to/certificate/dir}
381

    
382
Valid if @var{tls} is specified. Require that x509 credentials are used
383
for negotiating the TLS session. The server will send its x509 certificate
384
to the client, and request that the client send its own x509 certificate.
385
The server will validate the client's certificate against the CA certificate,
386
and reject clients when validation fails. If the certificate authority is
387
trusted, this is a sufficient authentication mechanism. You may still wish
388
to set a password on the VNC server as a second authentication layer. The
389
path following this option specifies where the x509 certificates are to
390
be loaded from. See the @ref{vnc_security} section for details on generating
391
certificates.
392

    
393
@end table
394

    
395
@item -k language
396

    
397
Use keyboard layout @var{language} (for example @code{fr} for
398
French). This option is only needed where it is not easy to get raw PC
399
keycodes (e.g. on Macs, with some X11 servers or with a VNC
400
display). You don't normally need to use it on PC/Linux or PC/Windows
401
hosts.
402

    
403
The available layouts are:
404
@example
405
ar  de-ch  es  fo     fr-ca  hu  ja  mk     no  pt-br  sv
406
da  en-gb  et  fr     fr-ch  is  lt  nl     pl  ru     th
407
de  en-us  fi  fr-be  hr     it  lv  nl-be  pt  sl     tr
408
@end example
409

    
410
The default is @code{en-us}.
411

    
412
@end table
413

    
414
USB options:
415
@table @option
416

    
417
@item -usb
418
Enable the USB driver (will be the default soon)
419

    
420
@item -usbdevice devname
421
Add the USB device @var{devname}. @xref{usb_devices}.
422
@end table
423

    
424
Network options:
425

    
426
@table @option
427

    
428
@item -net nic[,vlan=n][,macaddr=addr][,model=type]
429
Create a new Network Interface Card and connect it to VLAN @var{n} (@var{n}
430
= 0 is the default). The NIC is an ne2k_pci by default on the PC
431
target. Optionally, the MAC address can be changed. If no
432
@option{-net} option is specified, a single NIC is created.
433
Qemu can emulate several different models of network card.
434
Valid values for @var{type} are
435
@code{i82551}, @code{i82557b}, @code{i82559er},
436
@code{ne2k_pci}, @code{ne2k_isa}, @code{pcnet}, @code{rtl8139},
437
@code{smc91c111}, @code{lance} and @code{mcf_fec}.
438
Not all devices are supported on all targets.  Use -net nic,model=?
439
for a list of available devices for your target.
440

    
441
@item -net user[,vlan=n][,hostname=name]
442
Use the user mode network stack which requires no administrator
443
privilege to run.  @option{hostname=name} can be used to specify the client
444
hostname reported by the builtin DHCP server.
445

    
446
@item -net tap[,vlan=n][,fd=h][,ifname=name][,script=file]
447
Connect the host TAP network interface @var{name} to VLAN @var{n} and
448
use the network script @var{file} to configure it. The default
449
network script is @file{/etc/qemu-ifup}. Use @option{script=no} to
450
disable script execution. If @var{name} is not
451
provided, the OS automatically provides one.  @option{fd=h} can be
452
used to specify the handle of an already opened host TAP interface. Example:
453

    
454
@example
455
qemu linux.img -net nic -net tap
456
@end example
457

    
458
More complicated example (two NICs, each one connected to a TAP device)
459
@example
460
qemu linux.img -net nic,vlan=0 -net tap,vlan=0,ifname=tap0 \
461
               -net nic,vlan=1 -net tap,vlan=1,ifname=tap1
462
@end example
463

    
464

    
465
@item -net socket[,vlan=n][,fd=h][,listen=[host]:port][,connect=host:port]
466

    
467
Connect the VLAN @var{n} to a remote VLAN in another QEMU virtual
468
machine using a TCP socket connection. If @option{listen} is
469
specified, QEMU waits for incoming connections on @var{port}
470
(@var{host} is optional). @option{connect} is used to connect to
471
another QEMU instance using the @option{listen} option. @option{fd=h}
472
specifies an already opened TCP socket.
473

    
474
Example:
475
@example
476
# launch a first QEMU instance
477
qemu linux.img -net nic,macaddr=52:54:00:12:34:56 \
478
               -net socket,listen=:1234
479
# connect the VLAN 0 of this instance to the VLAN 0
480
# of the first instance
481
qemu linux.img -net nic,macaddr=52:54:00:12:34:57 \
482
               -net socket,connect=127.0.0.1:1234
483
@end example
484

    
485
@item -net socket[,vlan=n][,fd=h][,mcast=maddr:port]
486

    
487
Create a VLAN @var{n} shared with another QEMU virtual
488
machines using a UDP multicast socket, effectively making a bus for
489
every QEMU with same multicast address @var{maddr} and @var{port}.
490
NOTES:
491
@enumerate
492
@item
493
Several QEMU can be running on different hosts and share same bus (assuming
494
correct multicast setup for these hosts).
495
@item
496
mcast support is compatible with User Mode Linux (argument @option{eth@var{N}=mcast}), see
497
@url{http://user-mode-linux.sf.net}.
498
@item
499
Use @option{fd=h} to specify an already opened UDP multicast socket.
500
@end enumerate
501

    
502
Example:
503
@example
504
# launch one QEMU instance
505
qemu linux.img -net nic,macaddr=52:54:00:12:34:56 \
506
               -net socket,mcast=230.0.0.1:1234
507
# launch another QEMU instance on same "bus"
508
qemu linux.img -net nic,macaddr=52:54:00:12:34:57 \
509
               -net socket,mcast=230.0.0.1:1234
510
# launch yet another QEMU instance on same "bus"
511
qemu linux.img -net nic,macaddr=52:54:00:12:34:58 \
512
               -net socket,mcast=230.0.0.1:1234
513
@end example
514

    
515
Example (User Mode Linux compat.):
516
@example
517
# launch QEMU instance (note mcast address selected
518
# is UML's default)
519
qemu linux.img -net nic,macaddr=52:54:00:12:34:56 \
520
               -net socket,mcast=239.192.168.1:1102
521
# launch UML
522
/path/to/linux ubd0=/path/to/root_fs eth0=mcast
523
@end example
524

    
525
@item -net none
526
Indicate that no network devices should be configured. It is used to
527
override the default configuration (@option{-net nic -net user}) which
528
is activated if no @option{-net} options are provided.
529

    
530
@item -tftp dir
531
When using the user mode network stack, activate a built-in TFTP
532
server. The files in @var{dir} will be exposed as the root of a TFTP server.
533
The TFTP client on the guest must be configured in binary mode (use the command
534
@code{bin} of the Unix TFTP client). The host IP address on the guest is as
535
usual 10.0.2.2.
536

    
537
@item -bootp file
538
When using the user mode network stack, broadcast @var{file} as the BOOTP
539
filename.  In conjunction with @option{-tftp}, this can be used to network boot
540
a guest from a local directory.
541

    
542
Example (using pxelinux):
543
@example
544
qemu -hda linux.img -boot n -tftp /path/to/tftp/files -bootp /pxelinux.0
545
@end example
546

    
547
@item -smb dir
548
When using the user mode network stack, activate a built-in SMB
549
server so that Windows OSes can access to the host files in @file{dir}
550
transparently.
551

    
552
In the guest Windows OS, the line:
553
@example
554
10.0.2.4 smbserver
555
@end example
556
must be added in the file @file{C:\WINDOWS\LMHOSTS} (for windows 9x/Me)
557
or @file{C:\WINNT\SYSTEM32\DRIVERS\ETC\LMHOSTS} (Windows NT/2000).
558

    
559
Then @file{dir} can be accessed in @file{\\smbserver\qemu}.
560

    
561
Note that a SAMBA server must be installed on the host OS in
562
@file{/usr/sbin/smbd}. QEMU was tested successfully with smbd version
563
2.2.7a from the Red Hat 9 and version 3.0.10-1.fc3 from Fedora Core 3.
564

    
565
@item -redir [tcp|udp]:host-port:[guest-host]:guest-port
566

    
567
When using the user mode network stack, redirect incoming TCP or UDP
568
connections to the host port @var{host-port} to the guest
569
@var{guest-host} on guest port @var{guest-port}. If @var{guest-host}
570
is not specified, its value is 10.0.2.15 (default address given by the
571
built-in DHCP server).
572

    
573
For example, to redirect host X11 connection from screen 1 to guest
574
screen 0, use the following:
575

    
576
@example
577
# on the host
578
qemu -redir tcp:6001::6000 [...]
579
# this host xterm should open in the guest X11 server
580
xterm -display :1
581
@end example
582

    
583
To redirect telnet connections from host port 5555 to telnet port on
584
the guest, use the following:
585

    
586
@example
587
# on the host
588
qemu -redir tcp:5555::23 [...]
589
telnet localhost 5555
590
@end example
591

    
592
Then when you use on the host @code{telnet localhost 5555}, you
593
connect to the guest telnet server.
594

    
595
@end table
596

    
597
Linux boot specific: When using these options, you can use a given
598
Linux kernel without installing it in the disk image. It can be useful
599
for easier testing of various kernels.
600

    
601
@table @option
602

    
603
@item -kernel bzImage
604
Use @var{bzImage} as kernel image.
605

    
606
@item -append cmdline
607
Use @var{cmdline} as kernel command line
608

    
609
@item -initrd file
610
Use @var{file} as initial ram disk.
611

    
612
@end table
613

    
614
Debug/Expert options:
615
@table @option
616

    
617
@item -serial dev
618
Redirect the virtual serial port to host character device
619
@var{dev}. The default device is @code{vc} in graphical mode and
620
@code{stdio} in non graphical mode.
621

    
622
This option can be used several times to simulate up to 4 serials
623
ports.
624

    
625
Use @code{-serial none} to disable all serial ports.
626

    
627
Available character devices are:
628
@table @code
629
@item vc[:WxH]
630
Virtual console. Optionally, a width and height can be given in pixel with
631
@example
632
vc:800x600
633
@end example
634
It is also possible to specify width or height in characters:
635
@example
636
vc:80Cx24C
637
@end example
638
@item pty
639
[Linux only] Pseudo TTY (a new PTY is automatically allocated)
640
@item none
641
No device is allocated.
642
@item null
643
void device
644
@item /dev/XXX
645
[Linux only] Use host tty, e.g. @file{/dev/ttyS0}. The host serial port
646
parameters are set according to the emulated ones.
647
@item /dev/parportN
648
[Linux only, parallel port only] Use host parallel port
649
@var{N}. Currently SPP and EPP parallel port features can be used.
650
@item file:filename
651
Write output to filename. No character can be read.
652
@item stdio
653
[Unix only] standard input/output
654
@item pipe:filename
655
name pipe @var{filename}
656
@item COMn
657
[Windows only] Use host serial port @var{n}
658
@item udp:[remote_host]:remote_port[@@[src_ip]:src_port]
659
This implements UDP Net Console.  When @var{remote_host} or @var{src_ip} are not specified they default to @code{0.0.0.0}.  When not using a specified @var{src_port} a random port is automatically chosen.
660

    
661
If you just want a simple readonly console you can use @code{netcat} or
662
@code{nc}, by starting qemu with: @code{-serial udp::4555} and nc as:
663
@code{nc -u -l -p 4555}. Any time qemu writes something to that port it
664
will appear in the netconsole session.
665

    
666
If you plan to send characters back via netconsole or you want to stop
667
and start qemu a lot of times, you should have qemu use the same
668
source port each time by using something like @code{-serial
669
udp::4555@@:4556} to qemu. Another approach is to use a patched
670
version of netcat which can listen to a TCP port and send and receive
671
characters via udp.  If you have a patched version of netcat which
672
activates telnet remote echo and single char transfer, then you can
673
use the following options to step up a netcat redirector to allow
674
telnet on port 5555 to access the qemu port.
675
@table @code
676
@item Qemu Options:
677
-serial udp::4555@@:4556
678
@item netcat options:
679
-u -P 4555 -L 0.0.0.0:4556 -t -p 5555 -I -T
680
@item telnet options:
681
localhost 5555
682
@end table
683

    
684

    
685
@item tcp:[host]:port[,server][,nowait][,nodelay]
686
The TCP Net Console has two modes of operation.  It can send the serial
687
I/O to a location or wait for a connection from a location.  By default
688
the TCP Net Console is sent to @var{host} at the @var{port}.  If you use
689
the @var{server} option QEMU will wait for a client socket application
690
to connect to the port before continuing, unless the @code{nowait}
691
option was specified.  The @code{nodelay} option disables the Nagle buffering
692
algorithm.  If @var{host} is omitted, 0.0.0.0 is assumed. Only
693
one TCP connection at a time is accepted. You can use @code{telnet} to
694
connect to the corresponding character device.
695
@table @code
696
@item Example to send tcp console to 192.168.0.2 port 4444
697
-serial tcp:192.168.0.2:4444
698
@item Example to listen and wait on port 4444 for connection
699
-serial tcp::4444,server
700
@item Example to not wait and listen on ip 192.168.0.100 port 4444
701
-serial tcp:192.168.0.100:4444,server,nowait
702
@end table
703

    
704
@item telnet:host:port[,server][,nowait][,nodelay]
705
The telnet protocol is used instead of raw tcp sockets.  The options
706
work the same as if you had specified @code{-serial tcp}.  The
707
difference is that the port acts like a telnet server or client using
708
telnet option negotiation.  This will also allow you to send the
709
MAGIC_SYSRQ sequence if you use a telnet that supports sending the break
710
sequence.  Typically in unix telnet you do it with Control-] and then
711
type "send break" followed by pressing the enter key.
712

    
713
@item unix:path[,server][,nowait]
714
A unix domain socket is used instead of a tcp socket.  The option works the
715
same as if you had specified @code{-serial tcp} except the unix domain socket
716
@var{path} is used for connections.
717

    
718
@item mon:dev_string
719
This is a special option to allow the monitor to be multiplexed onto
720
another serial port.  The monitor is accessed with key sequence of
721
@key{Control-a} and then pressing @key{c}. See monitor access
722
@ref{pcsys_keys} in the -nographic section for more keys.
723
@var{dev_string} should be any one of the serial devices specified
724
above.  An example to multiplex the monitor onto a telnet server
725
listening on port 4444 would be:
726
@table @code
727
@item -serial mon:telnet::4444,server,nowait
728
@end table
729

    
730
@end table
731

    
732
@item -parallel dev
733
Redirect the virtual parallel port to host device @var{dev} (same
734
devices as the serial port). On Linux hosts, @file{/dev/parportN} can
735
be used to use hardware devices connected on the corresponding host
736
parallel port.
737

    
738
This option can be used several times to simulate up to 3 parallel
739
ports.
740

    
741
Use @code{-parallel none} to disable all parallel ports.
742

    
743
@item -monitor dev
744
Redirect the monitor to host device @var{dev} (same devices as the
745
serial port).
746
The default device is @code{vc} in graphical mode and @code{stdio} in
747
non graphical mode.
748

    
749
@item -echr numeric_ascii_value
750
Change the escape character used for switching to the monitor when using
751
monitor and serial sharing.  The default is @code{0x01} when using the
752
@code{-nographic} option.  @code{0x01} is equal to pressing
753
@code{Control-a}.  You can select a different character from the ascii
754
control keys where 1 through 26 map to Control-a through Control-z.  For
755
instance you could use the either of the following to change the escape
756
character to Control-t.
757
@table @code
758
@item -echr 0x14
759
@item -echr 20
760
@end table
761

    
762
@item -s
763
Wait gdb connection to port 1234 (@pxref{gdb_usage}).
764
@item -p port
765
Change gdb connection port.  @var{port} can be either a decimal number
766
to specify a TCP port, or a host device (same devices as the serial port).
767
@item -S
768
Do not start CPU at startup (you must type 'c' in the monitor).
769
@item -d
770
Output log in /tmp/qemu.log
771
@item -hdachs c,h,s,[,t]
772
Force hard disk 0 physical geometry (1 <= @var{c} <= 16383, 1 <=
773
@var{h} <= 16, 1 <= @var{s} <= 63) and optionally force the BIOS
774
translation mode (@var{t}=none, lba or auto). Usually QEMU can guess
775
all those parameters. This option is useful for old MS-DOS disk
776
images.
777

    
778
@item -L path
779
Set the directory for the BIOS, VGA BIOS and keymaps.
780

    
781
@item -std-vga
782
Simulate a standard VGA card with Bochs VBE extensions (default is
783
Cirrus Logic GD5446 PCI VGA). If your guest OS supports the VESA 2.0
784
VBE extensions (e.g. Windows XP) and if you want to use high
785
resolution modes (>= 1280x1024x16) then you should use this option.
786

    
787
@item -no-acpi
788
Disable ACPI (Advanced Configuration and Power Interface) support. Use
789
it if your guest OS complains about ACPI problems (PC target machine
790
only).
791

    
792
@item -no-reboot
793
Exit instead of rebooting.
794

    
795
@item -loadvm file
796
Start right away with a saved state (@code{loadvm} in monitor)
797

    
798
@item -semihosting
799
Enable semihosting syscall emulation (ARM and M68K target machines only).
800

    
801
On ARM this implements the "Angel" interface.
802
On M68K this implements the "ColdFire GDB" interface used by libgloss.
803

    
804
Note that this allows guest direct access to the host filesystem,
805
so should only be used with trusted guest OS.
806
@end table
807

    
808
@c man end
809

    
810
@node pcsys_keys
811
@section Keys
812

    
813
@c man begin OPTIONS
814

    
815
During the graphical emulation, you can use the following keys:
816
@table @key
817
@item Ctrl-Alt-f
818
Toggle full screen
819

    
820
@item Ctrl-Alt-n
821
Switch to virtual console 'n'. Standard console mappings are:
822
@table @emph
823
@item 1
824
Target system display
825
@item 2
826
Monitor
827
@item 3
828
Serial port
829
@end table
830

    
831
@item Ctrl-Alt
832
Toggle mouse and keyboard grab.
833
@end table
834

    
835
In the virtual consoles, you can use @key{Ctrl-Up}, @key{Ctrl-Down},
836
@key{Ctrl-PageUp} and @key{Ctrl-PageDown} to move in the back log.
837

    
838
During emulation, if you are using the @option{-nographic} option, use
839
@key{Ctrl-a h} to get terminal commands:
840

    
841
@table @key
842
@item Ctrl-a h
843
Print this help
844
@item Ctrl-a x
845
Exit emulator
846
@item Ctrl-a s
847
Save disk data back to file (if -snapshot)
848
@item Ctrl-a t
849
toggle console timestamps
850
@item Ctrl-a b
851
Send break (magic sysrq in Linux)
852
@item Ctrl-a c
853
Switch between console and monitor
854
@item Ctrl-a Ctrl-a
855
Send Ctrl-a
856
@end table
857
@c man end
858

    
859
@ignore
860

    
861
@c man begin SEEALSO
862
The HTML documentation of QEMU for more precise information and Linux
863
user mode emulator invocation.
864
@c man end
865

    
866
@c man begin AUTHOR
867
Fabrice Bellard
868
@c man end
869

    
870
@end ignore
871

    
872
@node pcsys_monitor
873
@section QEMU Monitor
874

    
875
The QEMU monitor is used to give complex commands to the QEMU
876
emulator. You can use it to:
877

    
878
@itemize @minus
879

    
880
@item
881
Remove or insert removable media images
882
(such as CD-ROM or floppies)
883

    
884
@item
885
Freeze/unfreeze the Virtual Machine (VM) and save or restore its state
886
from a disk file.
887

    
888
@item Inspect the VM state without an external debugger.
889

    
890
@end itemize
891

    
892
@subsection Commands
893

    
894
The following commands are available:
895

    
896
@table @option
897

    
898
@item help or ? [cmd]
899
Show the help for all commands or just for command @var{cmd}.
900

    
901
@item commit
902
Commit changes to the disk images (if -snapshot is used)
903

    
904
@item info subcommand
905
show various information about the system state
906

    
907
@table @option
908
@item info network
909
show the various VLANs and the associated devices
910
@item info block
911
show the block devices
912
@item info registers
913
show the cpu registers
914
@item info history
915
show the command line history
916
@item info pci
917
show emulated PCI device
918
@item info usb
919
show USB devices plugged on the virtual USB hub
920
@item info usbhost
921
show all USB host devices
922
@item info capture
923
show information about active capturing
924
@item info snapshots
925
show list of VM snapshots
926
@item info mice
927
show which guest mouse is receiving events
928
@end table
929

    
930
@item q or quit
931
Quit the emulator.
932

    
933
@item eject [-f] device
934
Eject a removable medium (use -f to force it).
935

    
936
@item change device setting
937

    
938
Change the configuration of a device
939

    
940
@table @option
941
@item change @var{diskdevice} @var{filename}
942
Change the medium for a removable disk device to point to @var{filename}. eg
943

    
944
@example
945
(qemu) change cdrom /path/to/some.iso
946
@end example
947

    
948
@item change vnc @var{display,options}
949
Change the configuration of the VNC server. The valid syntax for @var{display}
950
and @var{options} are described at @ref{sec_invocation}. eg
951

    
952
@example
953
(qemu) change vnc localhost:1
954
@end example
955

    
956
@item change vnc password
957

    
958
Change the password associated with the VNC server. The monitor will prompt for
959
the new password to be entered. VNC passwords are only significant upto 8 letters.
960
eg.
961

    
962
@example
963
(qemu) change vnc password
964
Password: ********
965
@end example
966

    
967
@end table
968

    
969
@item screendump filename
970
Save screen into PPM image @var{filename}.
971

    
972
@item mouse_move dx dy [dz]
973
Move the active mouse to the specified coordinates @var{dx} @var{dy}
974
with optional scroll axis @var{dz}.
975

    
976
@item mouse_button val
977
Change the active mouse button state @var{val} (1=L, 2=M, 4=R).
978

    
979
@item mouse_set index
980
Set which mouse device receives events at given @var{index}, index
981
can be obtained with
982
@example
983
info mice
984
@end example
985

    
986
@item wavcapture filename [frequency [bits [channels]]]
987
Capture audio into @var{filename}. Using sample rate @var{frequency}
988
bits per sample @var{bits} and number of channels @var{channels}.
989

    
990
Defaults:
991
@itemize @minus
992
@item Sample rate = 44100 Hz - CD quality
993
@item Bits = 16
994
@item Number of channels = 2 - Stereo
995
@end itemize
996

    
997
@item stopcapture index
998
Stop capture with a given @var{index}, index can be obtained with
999
@example
1000
info capture
1001
@end example
1002

    
1003
@item log item1[,...]
1004
Activate logging of the specified items to @file{/tmp/qemu.log}.
1005

    
1006
@item savevm [tag|id]
1007
Create a snapshot of the whole virtual machine. If @var{tag} is
1008
provided, it is used as human readable identifier. If there is already
1009
a snapshot with the same tag or ID, it is replaced. More info at
1010
@ref{vm_snapshots}.
1011

    
1012
@item loadvm tag|id
1013
Set the whole virtual machine to the snapshot identified by the tag
1014
@var{tag} or the unique snapshot ID @var{id}.
1015

    
1016
@item delvm tag|id
1017
Delete the snapshot identified by @var{tag} or @var{id}.
1018

    
1019
@item stop
1020
Stop emulation.
1021

    
1022
@item c or cont
1023
Resume emulation.
1024

    
1025
@item gdbserver [port]
1026
Start gdbserver session (default port=1234)
1027

    
1028
@item x/fmt addr
1029
Virtual memory dump starting at @var{addr}.
1030

    
1031
@item xp /fmt addr
1032
Physical memory dump starting at @var{addr}.
1033

    
1034
@var{fmt} is a format which tells the command how to format the
1035
data. Its syntax is: @option{/@{count@}@{format@}@{size@}}
1036

    
1037
@table @var
1038
@item count
1039
is the number of items to be dumped.
1040

    
1041
@item format
1042
can be x (hex), d (signed decimal), u (unsigned decimal), o (octal),
1043
c (char) or i (asm instruction).
1044

    
1045
@item size
1046
can be b (8 bits), h (16 bits), w (32 bits) or g (64 bits). On x86,
1047
@code{h} or @code{w} can be specified with the @code{i} format to
1048
respectively select 16 or 32 bit code instruction size.
1049

    
1050
@end table
1051

    
1052
Examples:
1053
@itemize
1054
@item
1055
Dump 10 instructions at the current instruction pointer:
1056
@example
1057
(qemu) x/10i $eip
1058
0x90107063:  ret
1059
0x90107064:  sti
1060
0x90107065:  lea    0x0(%esi,1),%esi
1061
0x90107069:  lea    0x0(%edi,1),%edi
1062
0x90107070:  ret
1063
0x90107071:  jmp    0x90107080
1064
0x90107073:  nop
1065
0x90107074:  nop
1066
0x90107075:  nop
1067
0x90107076:  nop
1068
@end example
1069

    
1070
@item
1071
Dump 80 16 bit values at the start of the video memory.
1072
@smallexample
1073
(qemu) xp/80hx 0xb8000
1074
0x000b8000: 0x0b50 0x0b6c 0x0b65 0x0b78 0x0b38 0x0b36 0x0b2f 0x0b42
1075
0x000b8010: 0x0b6f 0x0b63 0x0b68 0x0b73 0x0b20 0x0b56 0x0b47 0x0b41
1076
0x000b8020: 0x0b42 0x0b69 0x0b6f 0x0b73 0x0b20 0x0b63 0x0b75 0x0b72
1077
0x000b8030: 0x0b72 0x0b65 0x0b6e 0x0b74 0x0b2d 0x0b63 0x0b76 0x0b73
1078
0x000b8040: 0x0b20 0x0b30 0x0b35 0x0b20 0x0b4e 0x0b6f 0x0b76 0x0b20
1079
0x000b8050: 0x0b32 0x0b30 0x0b30 0x0b33 0x0720 0x0720 0x0720 0x0720
1080
0x000b8060: 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720
1081
0x000b8070: 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720
1082
0x000b8080: 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720
1083
0x000b8090: 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720
1084
@end smallexample
1085
@end itemize
1086

    
1087
@item p or print/fmt expr
1088

    
1089
Print expression value. Only the @var{format} part of @var{fmt} is
1090
used.
1091

    
1092
@item sendkey keys
1093

    
1094
Send @var{keys} to the emulator. Use @code{-} to press several keys
1095
simultaneously. Example:
1096
@example
1097
sendkey ctrl-alt-f1
1098
@end example
1099

    
1100
This command is useful to send keys that your graphical user interface
1101
intercepts at low level, such as @code{ctrl-alt-f1} in X Window.
1102

    
1103
@item system_reset
1104

    
1105
Reset the system.
1106

    
1107
@item usb_add devname
1108

    
1109
Add the USB device @var{devname}.  For details of available devices see
1110
@ref{usb_devices}
1111

    
1112
@item usb_del devname
1113

    
1114
Remove the USB device @var{devname} from the QEMU virtual USB
1115
hub. @var{devname} has the syntax @code{bus.addr}. Use the monitor
1116
command @code{info usb} to see the devices you can remove.
1117

    
1118
@end table
1119

    
1120
@subsection Integer expressions
1121

    
1122
The monitor understands integers expressions for every integer
1123
argument. You can use register names to get the value of specifics
1124
CPU registers by prefixing them with @emph{$}.
1125

    
1126
@node disk_images
1127
@section Disk Images
1128

    
1129
Since version 0.6.1, QEMU supports many disk image formats, including
1130
growable disk images (their size increase as non empty sectors are
1131
written), compressed and encrypted disk images. Version 0.8.3 added
1132
the new qcow2 disk image format which is essential to support VM
1133
snapshots.
1134

    
1135
@menu
1136
* disk_images_quickstart::    Quick start for disk image creation
1137
* disk_images_snapshot_mode:: Snapshot mode
1138
* vm_snapshots::              VM snapshots
1139
* qemu_img_invocation::       qemu-img Invocation
1140
* host_drives::               Using host drives
1141
* disk_images_fat_images::    Virtual FAT disk images
1142
@end menu
1143

    
1144
@node disk_images_quickstart
1145
@subsection Quick start for disk image creation
1146

    
1147
You can create a disk image with the command:
1148
@example
1149
qemu-img create myimage.img mysize
1150
@end example
1151
where @var{myimage.img} is the disk image filename and @var{mysize} is its
1152
size in kilobytes. You can add an @code{M} suffix to give the size in
1153
megabytes and a @code{G} suffix for gigabytes.
1154

    
1155
See @ref{qemu_img_invocation} for more information.
1156

    
1157
@node disk_images_snapshot_mode
1158
@subsection Snapshot mode
1159

    
1160
If you use the option @option{-snapshot}, all disk images are
1161
considered as read only. When sectors in written, they are written in
1162
a temporary file created in @file{/tmp}. You can however force the
1163
write back to the raw disk images by using the @code{commit} monitor
1164
command (or @key{C-a s} in the serial console).
1165

    
1166
@node vm_snapshots
1167
@subsection VM snapshots
1168

    
1169
VM snapshots are snapshots of the complete virtual machine including
1170
CPU state, RAM, device state and the content of all the writable
1171
disks. In order to use VM snapshots, you must have at least one non
1172
removable and writable block device using the @code{qcow2} disk image
1173
format. Normally this device is the first virtual hard drive.
1174

    
1175
Use the monitor command @code{savevm} to create a new VM snapshot or
1176
replace an existing one. A human readable name can be assigned to each
1177
snapshot in addition to its numerical ID.
1178

    
1179
Use @code{loadvm} to restore a VM snapshot and @code{delvm} to remove
1180
a VM snapshot. @code{info snapshots} lists the available snapshots
1181
with their associated information:
1182

    
1183
@example
1184
(qemu) info snapshots
1185
Snapshot devices: hda
1186
Snapshot list (from hda):
1187
ID        TAG                 VM SIZE                DATE       VM CLOCK
1188
1         start                   41M 2006-08-06 12:38:02   00:00:14.954
1189
2                                 40M 2006-08-06 12:43:29   00:00:18.633
1190
3         msys                    40M 2006-08-06 12:44:04   00:00:23.514
1191
@end example
1192

    
1193
A VM snapshot is made of a VM state info (its size is shown in
1194
@code{info snapshots}) and a snapshot of every writable disk image.
1195
The VM state info is stored in the first @code{qcow2} non removable
1196
and writable block device. The disk image snapshots are stored in
1197
every disk image. The size of a snapshot in a disk image is difficult
1198
to evaluate and is not shown by @code{info snapshots} because the
1199
associated disk sectors are shared among all the snapshots to save
1200
disk space (otherwise each snapshot would need a full copy of all the
1201
disk images).
1202

    
1203
When using the (unrelated) @code{-snapshot} option
1204
(@ref{disk_images_snapshot_mode}), you can always make VM snapshots,
1205
but they are deleted as soon as you exit QEMU.
1206

    
1207
VM snapshots currently have the following known limitations:
1208
@itemize
1209
@item
1210
They cannot cope with removable devices if they are removed or
1211
inserted after a snapshot is done.
1212
@item
1213
A few device drivers still have incomplete snapshot support so their
1214
state is not saved or restored properly (in particular USB).
1215
@end itemize
1216

    
1217
@node qemu_img_invocation
1218
@subsection @code{qemu-img} Invocation
1219

    
1220
@include qemu-img.texi
1221

    
1222
@node host_drives
1223
@subsection Using host drives
1224

    
1225
In addition to disk image files, QEMU can directly access host
1226
devices. We describe here the usage for QEMU version >= 0.8.3.
1227

    
1228
@subsubsection Linux
1229

    
1230
On Linux, you can directly use the host device filename instead of a
1231
disk image filename provided you have enough privileges to access
1232
it. For example, use @file{/dev/cdrom} to access to the CDROM or
1233
@file{/dev/fd0} for the floppy.
1234

    
1235
@table @code
1236
@item CD
1237
You can specify a CDROM device even if no CDROM is loaded. QEMU has
1238
specific code to detect CDROM insertion or removal. CDROM ejection by
1239
the guest OS is supported. Currently only data CDs are supported.
1240
@item Floppy
1241
You can specify a floppy device even if no floppy is loaded. Floppy
1242
removal is currently not detected accurately (if you change floppy
1243
without doing floppy access while the floppy is not loaded, the guest
1244
OS will think that the same floppy is loaded).
1245
@item Hard disks
1246
Hard disks can be used. Normally you must specify the whole disk
1247
(@file{/dev/hdb} instead of @file{/dev/hdb1}) so that the guest OS can
1248
see it as a partitioned disk. WARNING: unless you know what you do, it
1249
is better to only make READ-ONLY accesses to the hard disk otherwise
1250
you may corrupt your host data (use the @option{-snapshot} command
1251
line option or modify the device permissions accordingly).
1252
@end table
1253

    
1254
@subsubsection Windows
1255

    
1256
@table @code
1257
@item CD
1258
The preferred syntax is the drive letter (e.g. @file{d:}). The
1259
alternate syntax @file{\\.\d:} is supported. @file{/dev/cdrom} is
1260
supported as an alias to the first CDROM drive.
1261

    
1262
Currently there is no specific code to handle removable media, so it
1263
is better to use the @code{change} or @code{eject} monitor commands to
1264
change or eject media.
1265
@item Hard disks
1266
Hard disks can be used with the syntax: @file{\\.\PhysicalDriveN}
1267
where @var{N} is the drive number (0 is the first hard disk).
1268

    
1269
WARNING: unless you know what you do, it is better to only make
1270
READ-ONLY accesses to the hard disk otherwise you may corrupt your
1271
host data (use the @option{-snapshot} command line so that the
1272
modifications are written in a temporary file).
1273
@end table
1274

    
1275

    
1276
@subsubsection Mac OS X
1277

    
1278
@file{/dev/cdrom} is an alias to the first CDROM.
1279

    
1280
Currently there is no specific code to handle removable media, so it
1281
is better to use the @code{change} or @code{eject} monitor commands to
1282
change or eject media.
1283

    
1284
@node disk_images_fat_images
1285
@subsection Virtual FAT disk images
1286

    
1287
QEMU can automatically create a virtual FAT disk image from a
1288
directory tree. In order to use it, just type:
1289

    
1290
@example
1291
qemu linux.img -hdb fat:/my_directory
1292
@end example
1293

    
1294
Then you access access to all the files in the @file{/my_directory}
1295
directory without having to copy them in a disk image or to export
1296
them via SAMBA or NFS. The default access is @emph{read-only}.
1297

    
1298
Floppies can be emulated with the @code{:floppy:} option:
1299

    
1300
@example
1301
qemu linux.img -fda fat:floppy:/my_directory
1302
@end example
1303

    
1304
A read/write support is available for testing (beta stage) with the
1305
@code{:rw:} option:
1306

    
1307
@example
1308
qemu linux.img -fda fat:floppy:rw:/my_directory
1309
@end example
1310

    
1311
What you should @emph{never} do:
1312
@itemize
1313
@item use non-ASCII filenames ;
1314
@item use "-snapshot" together with ":rw:" ;
1315
@item expect it to work when loadvm'ing ;
1316
@item write to the FAT directory on the host system while accessing it with the guest system.
1317
@end itemize
1318

    
1319
@node pcsys_network
1320
@section Network emulation
1321

    
1322
QEMU can simulate several network cards (PCI or ISA cards on the PC
1323
target) and can connect them to an arbitrary number of Virtual Local
1324
Area Networks (VLANs). Host TAP devices can be connected to any QEMU
1325
VLAN. VLAN can be connected between separate instances of QEMU to
1326
simulate large networks. For simpler usage, a non privileged user mode
1327
network stack can replace the TAP device to have a basic network
1328
connection.
1329

    
1330
@subsection VLANs
1331

    
1332
QEMU simulates several VLANs. A VLAN can be symbolised as a virtual
1333
connection between several network devices. These devices can be for
1334
example QEMU virtual Ethernet cards or virtual Host ethernet devices
1335
(TAP devices).
1336

    
1337
@subsection Using TAP network interfaces
1338

    
1339
This is the standard way to connect QEMU to a real network. QEMU adds
1340
a virtual network device on your host (called @code{tapN}), and you
1341
can then configure it as if it was a real ethernet card.
1342

    
1343
@subsubsection Linux host
1344

    
1345
As an example, you can download the @file{linux-test-xxx.tar.gz}
1346
archive and copy the script @file{qemu-ifup} in @file{/etc} and
1347
configure properly @code{sudo} so that the command @code{ifconfig}
1348
contained in @file{qemu-ifup} can be executed as root. You must verify
1349
that your host kernel supports the TAP network interfaces: the
1350
device @file{/dev/net/tun} must be present.
1351

    
1352
See @ref{sec_invocation} to have examples of command lines using the
1353
TAP network interfaces.
1354

    
1355
@subsubsection Windows host
1356

    
1357
There is a virtual ethernet driver for Windows 2000/XP systems, called
1358
TAP-Win32. But it is not included in standard QEMU for Windows,
1359
so you will need to get it separately. It is part of OpenVPN package,
1360
so download OpenVPN from : @url{http://openvpn.net/}.
1361

    
1362
@subsection Using the user mode network stack
1363

    
1364
By using the option @option{-net user} (default configuration if no
1365
@option{-net} option is specified), QEMU uses a completely user mode
1366
network stack (you don't need root privilege to use the virtual
1367
network). The virtual network configuration is the following:
1368

    
1369
@example
1370

    
1371
         QEMU VLAN      <------>  Firewall/DHCP server <-----> Internet
1372
                           |          (10.0.2.2)
1373
                           |
1374
                           ---->  DNS server (10.0.2.3)
1375
                           |
1376
                           ---->  SMB server (10.0.2.4)
1377
@end example
1378

    
1379
The QEMU VM behaves as if it was behind a firewall which blocks all
1380
incoming connections. You can use a DHCP client to automatically
1381
configure the network in the QEMU VM. The DHCP server assign addresses
1382
to the hosts starting from 10.0.2.15.
1383

    
1384
In order to check that the user mode network is working, you can ping
1385
the address 10.0.2.2 and verify that you got an address in the range
1386
10.0.2.x from the QEMU virtual DHCP server.
1387

    
1388
Note that @code{ping} is not supported reliably to the internet as it
1389
would require root privileges. It means you can only ping the local
1390
router (10.0.2.2).
1391

    
1392
When using the built-in TFTP server, the router is also the TFTP
1393
server.
1394

    
1395
When using the @option{-redir} option, TCP or UDP connections can be
1396
redirected from the host to the guest. It allows for example to
1397
redirect X11, telnet or SSH connections.
1398

    
1399
@subsection Connecting VLANs between QEMU instances
1400

    
1401
Using the @option{-net socket} option, it is possible to make VLANs
1402
that span several QEMU instances. See @ref{sec_invocation} to have a
1403
basic example.
1404

    
1405
@node direct_linux_boot
1406
@section Direct Linux Boot
1407

    
1408
This section explains how to launch a Linux kernel inside QEMU without
1409
having to make a full bootable image. It is very useful for fast Linux
1410
kernel testing.
1411

    
1412
The syntax is:
1413
@example
1414
qemu -kernel arch/i386/boot/bzImage -hda root-2.4.20.img -append "root=/dev/hda"
1415
@end example
1416

    
1417
Use @option{-kernel} to provide the Linux kernel image and
1418
@option{-append} to give the kernel command line arguments. The
1419
@option{-initrd} option can be used to provide an INITRD image.
1420

    
1421
When using the direct Linux boot, a disk image for the first hard disk
1422
@file{hda} is required because its boot sector is used to launch the
1423
Linux kernel.
1424

    
1425
If you do not need graphical output, you can disable it and redirect
1426
the virtual serial port and the QEMU monitor to the console with the
1427
@option{-nographic} option. The typical command line is:
1428
@example
1429
qemu -kernel arch/i386/boot/bzImage -hda root-2.4.20.img \
1430
     -append "root=/dev/hda console=ttyS0" -nographic
1431
@end example
1432

    
1433
Use @key{Ctrl-a c} to switch between the serial console and the
1434
monitor (@pxref{pcsys_keys}).
1435

    
1436
@node pcsys_usb
1437
@section USB emulation
1438

    
1439
QEMU emulates a PCI UHCI USB controller. You can virtually plug
1440
virtual USB devices or real host USB devices (experimental, works only
1441
on Linux hosts).  Qemu will automatically create and connect virtual USB hubs
1442
as necessary to connect multiple USB devices.
1443

    
1444
@menu
1445
* usb_devices::
1446
* host_usb_devices::
1447
@end menu
1448
@node usb_devices
1449
@subsection Connecting USB devices
1450

    
1451
USB devices can be connected with the @option{-usbdevice} commandline option
1452
or the @code{usb_add} monitor command.  Available devices are:
1453

    
1454
@table @var
1455
@item @code{mouse}
1456
Virtual Mouse.  This will override the PS/2 mouse emulation when activated.
1457
@item @code{tablet}
1458
Pointer device that uses absolute coordinates (like a touchscreen).
1459
This means qemu is able to report the mouse position without having
1460
to grab the mouse.  Also overrides the PS/2 mouse emulation when activated.
1461
@item @code{disk:file}
1462
Mass storage device based on @var{file} (@pxref{disk_images})
1463
@item @code{host:bus.addr}
1464
Pass through the host device identified by @var{bus.addr}
1465
(Linux only)
1466
@item @code{host:vendor_id:product_id}
1467
Pass through the host device identified by @var{vendor_id:product_id}
1468
(Linux only)
1469
@item @code{wacom-tablet}
1470
Virtual Wacom PenPartner tablet.  This device is similar to the @code{tablet}
1471
above but it can be used with the tslib library because in addition to touch
1472
coordinates it reports touch pressure.
1473
@item @code{keyboard}
1474
Standard USB keyboard.  Will override the PS/2 keyboard (if present).
1475
@end table
1476

    
1477
@node host_usb_devices
1478
@subsection Using host USB devices on a Linux host
1479

    
1480
WARNING: this is an experimental feature. QEMU will slow down when
1481
using it. USB devices requiring real time streaming (i.e. USB Video
1482
Cameras) are not supported yet.
1483

    
1484
@enumerate
1485
@item If you use an early Linux 2.4 kernel, verify that no Linux driver
1486
is actually using the USB device. A simple way to do that is simply to
1487
disable the corresponding kernel module by renaming it from @file{mydriver.o}
1488
to @file{mydriver.o.disabled}.
1489

    
1490
@item Verify that @file{/proc/bus/usb} is working (most Linux distributions should enable it by default). You should see something like that:
1491
@example
1492
ls /proc/bus/usb
1493
001  devices  drivers
1494
@end example
1495

    
1496
@item Since only root can access to the USB devices directly, you can either launch QEMU as root or change the permissions of the USB devices you want to use. For testing, the following suffices:
1497
@example
1498
chown -R myuid /proc/bus/usb
1499
@end example
1500

    
1501
@item Launch QEMU and do in the monitor:
1502
@example
1503
info usbhost
1504
  Device 1.2, speed 480 Mb/s
1505
    Class 00: USB device 1234:5678, USB DISK
1506
@end example
1507
You should see the list of the devices you can use (Never try to use
1508
hubs, it won't work).
1509

    
1510
@item Add the device in QEMU by using:
1511
@example
1512
usb_add host:1234:5678
1513
@end example
1514

    
1515
Normally the guest OS should report that a new USB device is
1516
plugged. You can use the option @option{-usbdevice} to do the same.
1517

    
1518
@item Now you can try to use the host USB device in QEMU.
1519

    
1520
@end enumerate
1521

    
1522
When relaunching QEMU, you may have to unplug and plug again the USB
1523
device to make it work again (this is a bug).
1524

    
1525
@node vnc_security
1526
@section VNC security
1527

    
1528
The VNC server capability provides access to the graphical console
1529
of the guest VM across the network. This has a number of security
1530
considerations depending on the deployment scenarios.
1531

    
1532
@menu
1533
* vnc_sec_none::
1534
* vnc_sec_password::
1535
* vnc_sec_certificate::
1536
* vnc_sec_certificate_verify::
1537
* vnc_sec_certificate_pw::
1538
* vnc_generate_cert::
1539
@end menu
1540
@node vnc_sec_none
1541
@subsection Without passwords
1542

    
1543
The simplest VNC server setup does not include any form of authentication.
1544
For this setup it is recommended to restrict it to listen on a UNIX domain
1545
socket only. For example
1546

    
1547
@example
1548
qemu [...OPTIONS...] -vnc unix:/home/joebloggs/.qemu-myvm-vnc
1549
@end example
1550

    
1551
This ensures that only users on local box with read/write access to that
1552
path can access the VNC server. To securely access the VNC server from a
1553
remote machine, a combination of netcat+ssh can be used to provide a secure
1554
tunnel.
1555

    
1556
@node vnc_sec_password
1557
@subsection With passwords
1558

    
1559
The VNC protocol has limited support for password based authentication. Since
1560
the protocol limits passwords to 8 characters it should not be considered
1561
to provide high security. The password can be fairly easily brute-forced by
1562
a client making repeat connections. For this reason, a VNC server using password
1563
authentication should be restricted to only listen on the loopback interface
1564
or UNIX domain sockets. Password ayuthentication is requested with the @code{password}
1565
option, and then once QEMU is running the password is set with the monitor. Until
1566
the monitor is used to set the password all clients will be rejected.
1567

    
1568
@example
1569
qemu [...OPTIONS...] -vnc :1,password -monitor stdio
1570
(qemu) change vnc password
1571
Password: ********
1572
(qemu)
1573
@end example
1574

    
1575
@node vnc_sec_certificate
1576
@subsection With x509 certificates
1577

    
1578
The QEMU VNC server also implements the VeNCrypt extension allowing use of
1579
TLS for encryption of the session, and x509 certificates for authentication.
1580
The use of x509 certificates is strongly recommended, because TLS on its
1581
own is susceptible to man-in-the-middle attacks. Basic x509 certificate
1582
support provides a secure session, but no authentication. This allows any
1583
client to connect, and provides an encrypted session.
1584

    
1585
@example
1586
qemu [...OPTIONS...] -vnc :1,tls,x509=/etc/pki/qemu -monitor stdio
1587
@end example
1588

    
1589
In the above example @code{/etc/pki/qemu} should contain at least three files,
1590
@code{ca-cert.pem}, @code{server-cert.pem} and @code{server-key.pem}. Unprivileged
1591
users will want to use a private directory, for example @code{$HOME/.pki/qemu}.
1592
NB the @code{server-key.pem} file should be protected with file mode 0600 to
1593
only be readable by the user owning it.
1594

    
1595
@node vnc_sec_certificate_verify
1596
@subsection With x509 certificates and client verification
1597

    
1598
Certificates can also provide a means to authenticate the client connecting.
1599
The server will request that the client provide a certificate, which it will
1600
then validate against the CA certificate. This is a good choice if deploying
1601
in an environment with a private internal certificate authority.
1602

    
1603
@example
1604
qemu [...OPTIONS...] -vnc :1,tls,x509verify=/etc/pki/qemu -monitor stdio
1605
@end example
1606

    
1607

    
1608
@node vnc_sec_certificate_pw
1609
@subsection With x509 certificates, client verification and passwords
1610

    
1611
Finally, the previous method can be combined with VNC password authentication
1612
to provide two layers of authentication for clients.
1613

    
1614
@example
1615
qemu [...OPTIONS...] -vnc :1,password,tls,x509verify=/etc/pki/qemu -monitor stdio
1616
(qemu) change vnc password
1617
Password: ********
1618
(qemu)
1619
@end example
1620

    
1621
@node vnc_generate_cert
1622
@subsection Generating certificates for VNC
1623

    
1624
The GNU TLS packages provides a command called @code{certtool} which can
1625
be used to generate certificates and keys in PEM format. At a minimum it
1626
is neccessary to setup a certificate authority, and issue certificates to
1627
each server. If using certificates for authentication, then each client
1628
will also need to be issued a certificate. The recommendation is for the
1629
server to keep its certificates in either @code{/etc/pki/qemu} or for
1630
unprivileged users in @code{$HOME/.pki/qemu}.
1631

    
1632
@menu
1633
* vnc_generate_ca::
1634
* vnc_generate_server::
1635
* vnc_generate_client::
1636
@end menu
1637
@node vnc_generate_ca
1638
@subsubsection Setup the Certificate Authority
1639

    
1640
This step only needs to be performed once per organization / organizational
1641
unit. First the CA needs a private key. This key must be kept VERY secret
1642
and secure. If this key is compromised the entire trust chain of the certificates
1643
issued with it is lost.
1644

    
1645
@example
1646
# certtool --generate-privkey > ca-key.pem
1647
@end example
1648

    
1649
A CA needs to have a public certificate. For simplicity it can be a self-signed
1650
certificate, or one issue by a commercial certificate issuing authority. To
1651
generate a self-signed certificate requires one core piece of information, the
1652
name of the organization.
1653

    
1654
@example
1655
# cat > ca.info <<EOF
1656
cn = Name of your organization
1657
ca
1658
cert_signing_key
1659
EOF
1660
# certtool --generate-self-signed \
1661
           --load-privkey ca-key.pem
1662
           --template ca.info \
1663
           --outfile ca-cert.pem
1664
@end example
1665

    
1666
The @code{ca-cert.pem} file should be copied to all servers and clients wishing to utilize
1667
TLS support in the VNC server. The @code{ca-key.pem} must not be disclosed/copied at all.
1668

    
1669
@node vnc_generate_server
1670
@subsubsection Issuing server certificates
1671

    
1672
Each server (or host) needs to be issued with a key and certificate. When connecting
1673
the certificate is sent to the client which validates it against the CA certificate.
1674
The core piece of information for a server certificate is the hostname. This should
1675
be the fully qualified hostname that the client will connect with, since the client
1676
will typically also verify the hostname in the certificate. On the host holding the
1677
secure CA private key:
1678

    
1679
@example
1680
# cat > server.info <<EOF
1681
organization = Name  of your organization
1682
cn = server.foo.example.com
1683
tls_www_server
1684
encryption_key
1685
signing_key
1686
EOF
1687
# certtool --generate-privkey > server-key.pem
1688
# certtool --generate-certificate \
1689
           --load-ca-certificate ca-cert.pem \
1690
           --load-ca-privkey ca-key.pem \
1691
           --load-privkey server server-key.pem \
1692
           --template server.info \
1693
           --outfile server-cert.pem
1694
@end example
1695

    
1696
The @code{server-key.pem} and @code{server-cert.pem} files should now be securely copied
1697
to the server for which they were generated. The @code{server-key.pem} is security
1698
sensitive and should be kept protected with file mode 0600 to prevent disclosure.
1699

    
1700
@node vnc_generate_client
1701
@subsubsection Issuing client certificates
1702

    
1703
If the QEMU VNC server is to use the @code{x509verify} option to validate client
1704
certificates as its authentication mechanism, each client also needs to be issued
1705
a certificate. The client certificate contains enough metadata to uniquely identify
1706
the client, typically organization, state, city, building, etc. On the host holding
1707
the secure CA private key:
1708

    
1709
@example
1710
# cat > client.info <<EOF
1711
country = GB
1712
state = London
1713
locality = London
1714
organiazation = Name of your organization
1715
cn = client.foo.example.com
1716
tls_www_client
1717
encryption_key
1718
signing_key
1719
EOF
1720
# certtool --generate-privkey > client-key.pem
1721
# certtool --generate-certificate \
1722
           --load-ca-certificate ca-cert.pem \
1723
           --load-ca-privkey ca-key.pem \
1724
           --load-privkey client-key.pem \
1725
           --template client.info \
1726
           --outfile client-cert.pem
1727
@end example
1728

    
1729
The @code{client-key.pem} and @code{client-cert.pem} files should now be securely
1730
copied to the client for which they were generated.
1731

    
1732
@node gdb_usage
1733
@section GDB usage
1734

    
1735
QEMU has a primitive support to work with gdb, so that you can do
1736
'Ctrl-C' while the virtual machine is running and inspect its state.
1737

    
1738
In order to use gdb, launch qemu with the '-s' option. It will wait for a
1739
gdb connection:
1740
@example
1741
> qemu -s -kernel arch/i386/boot/bzImage -hda root-2.4.20.img \
1742
       -append "root=/dev/hda"
1743
Connected to host network interface: tun0
1744
Waiting gdb connection on port 1234
1745
@end example
1746

    
1747
Then launch gdb on the 'vmlinux' executable:
1748
@example
1749
> gdb vmlinux
1750
@end example
1751

    
1752
In gdb, connect to QEMU:
1753
@example
1754
(gdb) target remote localhost:1234
1755
@end example
1756

    
1757
Then you can use gdb normally. For example, type 'c' to launch the kernel:
1758
@example
1759
(gdb) c
1760
@end example
1761

    
1762
Here are some useful tips in order to use gdb on system code:
1763

    
1764
@enumerate
1765
@item
1766
Use @code{info reg} to display all the CPU registers.
1767
@item
1768
Use @code{x/10i $eip} to display the code at the PC position.
1769
@item
1770
Use @code{set architecture i8086} to dump 16 bit code. Then use
1771
@code{x/10i $cs*16+$eip} to dump the code at the PC position.
1772
@end enumerate
1773

    
1774
@node pcsys_os_specific
1775
@section Target OS specific information
1776

    
1777
@subsection Linux
1778

    
1779
To have access to SVGA graphic modes under X11, use the @code{vesa} or
1780
the @code{cirrus} X11 driver. For optimal performances, use 16 bit
1781
color depth in the guest and the host OS.
1782

    
1783
When using a 2.6 guest Linux kernel, you should add the option
1784
@code{clock=pit} on the kernel command line because the 2.6 Linux
1785
kernels make very strict real time clock checks by default that QEMU
1786
cannot simulate exactly.
1787

    
1788
When using a 2.6 guest Linux kernel, verify that the 4G/4G patch is
1789
not activated because QEMU is slower with this patch. The QEMU
1790
Accelerator Module is also much slower in this case. Earlier Fedora
1791
Core 3 Linux kernel (< 2.6.9-1.724_FC3) were known to incorporate this
1792
patch by default. Newer kernels don't have it.
1793

    
1794
@subsection Windows
1795

    
1796
If you have a slow host, using Windows 95 is better as it gives the
1797
best speed. Windows 2000 is also a good choice.
1798

    
1799
@subsubsection SVGA graphic modes support
1800

    
1801
QEMU emulates a Cirrus Logic GD5446 Video
1802
card. All Windows versions starting from Windows 95 should recognize
1803
and use this graphic card. For optimal performances, use 16 bit color
1804
depth in the guest and the host OS.
1805

    
1806
If you are using Windows XP as guest OS and if you want to use high
1807
resolution modes which the Cirrus Logic BIOS does not support (i.e. >=
1808
1280x1024x16), then you should use the VESA VBE virtual graphic card
1809
(option @option{-std-vga}).
1810

    
1811
@subsubsection CPU usage reduction
1812

    
1813
Windows 9x does not correctly use the CPU HLT
1814
instruction. The result is that it takes host CPU cycles even when
1815
idle. You can install the utility from
1816
@url{http://www.user.cityline.ru/~maxamn/amnhltm.zip} to solve this
1817
problem. Note that no such tool is needed for NT, 2000 or XP.
1818

    
1819
@subsubsection Windows 2000 disk full problem
1820

    
1821
Windows 2000 has a bug which gives a disk full problem during its
1822
installation. When installing it, use the @option{-win2k-hack} QEMU
1823
option to enable a specific workaround. After Windows 2000 is
1824
installed, you no longer need this option (this option slows down the
1825
IDE transfers).
1826

    
1827
@subsubsection Windows 2000 shutdown
1828

    
1829
Windows 2000 cannot automatically shutdown in QEMU although Windows 98
1830
can. It comes from the fact that Windows 2000 does not automatically
1831
use the APM driver provided by the BIOS.
1832

    
1833
In order to correct that, do the following (thanks to Struan
1834
Bartlett): go to the Control Panel => Add/Remove Hardware & Next =>
1835
Add/Troubleshoot a device => Add a new device & Next => No, select the
1836
hardware from a list & Next => NT Apm/Legacy Support & Next => Next
1837
(again) a few times. Now the driver is installed and Windows 2000 now
1838
correctly instructs QEMU to shutdown at the appropriate moment.
1839

    
1840
@subsubsection Share a directory between Unix and Windows
1841

    
1842
See @ref{sec_invocation} about the help of the option @option{-smb}.
1843

    
1844
@subsubsection Windows XP security problem
1845

    
1846
Some releases of Windows XP install correctly but give a security
1847
error when booting:
1848
@example
1849
A problem is preventing Windows from accurately checking the
1850
license for this computer. Error code: 0x800703e6.
1851
@end example
1852

    
1853
The workaround is to install a service pack for XP after a boot in safe
1854
mode. Then reboot, and the problem should go away. Since there is no
1855
network while in safe mode, its recommended to download the full
1856
installation of SP1 or SP2 and transfer that via an ISO or using the
1857
vvfat block device ("-hdb fat:directory_which_holds_the_SP").
1858

    
1859
@subsection MS-DOS and FreeDOS
1860

    
1861
@subsubsection CPU usage reduction
1862

    
1863
DOS does not correctly use the CPU HLT instruction. The result is that
1864
it takes host CPU cycles even when idle. You can install the utility
1865
from @url{http://www.vmware.com/software/dosidle210.zip} to solve this
1866
problem.
1867

    
1868
@node QEMU System emulator for non PC targets
1869
@chapter QEMU System emulator for non PC targets
1870

    
1871
QEMU is a generic emulator and it emulates many non PC
1872
machines. Most of the options are similar to the PC emulator. The
1873
differences are mentioned in the following sections.
1874

    
1875
@menu
1876
* QEMU PowerPC System emulator::
1877
* Sparc32 System emulator::
1878
* Sparc64 System emulator::
1879
* MIPS System emulator::
1880
* ARM System emulator::
1881
* ColdFire System emulator::
1882
@end menu
1883

    
1884
@node QEMU PowerPC System emulator
1885
@section QEMU PowerPC System emulator
1886

    
1887
Use the executable @file{qemu-system-ppc} to simulate a complete PREP
1888
or PowerMac PowerPC system.
1889

    
1890
QEMU emulates the following PowerMac peripherals:
1891

    
1892
@itemize @minus
1893
@item
1894
UniNorth PCI Bridge
1895
@item
1896
PCI VGA compatible card with VESA Bochs Extensions
1897
@item
1898
2 PMAC IDE interfaces with hard disk and CD-ROM support
1899
@item
1900
NE2000 PCI adapters
1901
@item
1902
Non Volatile RAM
1903
@item
1904
VIA-CUDA with ADB keyboard and mouse.
1905
@end itemize
1906

    
1907
QEMU emulates the following PREP peripherals:
1908

    
1909
@itemize @minus
1910
@item
1911
PCI Bridge
1912
@item
1913
PCI VGA compatible card with VESA Bochs Extensions
1914
@item
1915
2 IDE interfaces with hard disk and CD-ROM support
1916
@item
1917
Floppy disk
1918
@item
1919
NE2000 network adapters
1920
@item
1921
Serial port
1922
@item
1923
PREP Non Volatile RAM
1924
@item
1925
PC compatible keyboard and mouse.
1926
@end itemize
1927

    
1928
QEMU uses the Open Hack'Ware Open Firmware Compatible BIOS available at
1929
@url{http://perso.magic.fr/l_indien/OpenHackWare/index.htm}.
1930

    
1931
@c man begin OPTIONS
1932

    
1933
The following options are specific to the PowerPC emulation:
1934

    
1935
@table @option
1936

    
1937
@item -g WxH[xDEPTH]
1938

    
1939
Set the initial VGA graphic mode. The default is 800x600x15.
1940

    
1941
@end table
1942

    
1943
@c man end
1944

    
1945

    
1946
More information is available at
1947
@url{http://perso.magic.fr/l_indien/qemu-ppc/}.
1948

    
1949
@node Sparc32 System emulator
1950
@section Sparc32 System emulator
1951

    
1952
Use the executable @file{qemu-system-sparc} to simulate a SparcStation 5
1953
or SparcStation 10 (sun4m architecture). The emulation is somewhat complete.
1954
SMP up to 16 CPUs is supported, but Linux limits the number of usable CPUs
1955
to 4.
1956

    
1957
QEMU emulates the following sun4m peripherals:
1958

    
1959
@itemize @minus
1960
@item
1961
IOMMU
1962
@item
1963
TCX Frame buffer
1964
@item
1965
Lance (Am7990) Ethernet
1966
@item
1967
Non Volatile RAM M48T08
1968
@item
1969
Slave I/O: timers, interrupt controllers, Zilog serial ports, keyboard
1970
and power/reset logic
1971
@item
1972
ESP SCSI controller with hard disk and CD-ROM support
1973
@item
1974
Floppy drive
1975
@item
1976
CS4231 sound device (only on SS-5, not working yet)
1977
@end itemize
1978

    
1979
The number of peripherals is fixed in the architecture.  Maximum memory size
1980
depends on the machine type, for SS-5 it is 256MB and for SS-10 2047MB.
1981

    
1982
Since version 0.8.2, QEMU uses OpenBIOS
1983
@url{http://www.openbios.org/}. OpenBIOS is a free (GPL v2) portable
1984
firmware implementation. The goal is to implement a 100% IEEE
1985
1275-1994 (referred to as Open Firmware) compliant firmware.
1986

    
1987
A sample Linux 2.6 series kernel and ram disk image are available on
1988
the QEMU web site. Please note that currently NetBSD, OpenBSD or
1989
Solaris kernels don't work.
1990

    
1991
@c man begin OPTIONS
1992

    
1993
The following options are specific to the Sparc32 emulation:
1994

    
1995
@table @option
1996

    
1997
@item -g WxHx[xDEPTH]
1998

    
1999
Set the initial TCX graphic mode. The default is 1024x768x8, currently
2000
the only other possible mode is 1024x768x24.
2001

    
2002
@item -prom-env string
2003

    
2004
Set OpenBIOS variables in NVRAM, for example:
2005

    
2006
@example
2007
qemu-system-sparc -prom-env 'auto-boot?=false' \
2008
 -prom-env 'boot-device=sd(0,2,0):d' -prom-env 'boot-args=linux single'
2009
@end example
2010

    
2011
@item -M [SS-5|SS-10]
2012

    
2013
Set the emulated machine type. Default is SS-5.
2014

    
2015
@end table
2016

    
2017
@c man end
2018

    
2019
@node Sparc64 System emulator
2020
@section Sparc64 System emulator
2021

    
2022
Use the executable @file{qemu-system-sparc64} to simulate a Sun4u machine.
2023
The emulator is not usable for anything yet.
2024

    
2025
QEMU emulates the following sun4u peripherals:
2026

    
2027
@itemize @minus
2028
@item
2029
UltraSparc IIi APB PCI Bridge
2030
@item
2031
PCI VGA compatible card with VESA Bochs Extensions
2032
@item
2033
Non Volatile RAM M48T59
2034
@item
2035
PC-compatible serial ports
2036
@end itemize
2037

    
2038
@node MIPS System emulator
2039
@section MIPS System emulator
2040

    
2041
Use the executable @file{qemu-system-mips} to simulate a MIPS machine.
2042
Three different machine types are emulated:
2043

    
2044
@itemize @minus
2045
@item
2046
A generic ISA PC-like machine "mips"
2047
@item
2048
The MIPS Malta prototype board "malta"
2049
@item
2050
An ACER Pica "pica61"
2051
@item
2052
MIPS emulator pseudo board "mipssim"
2053
@end itemize
2054

    
2055
The generic emulation is supported by Debian 'Etch' and is able to
2056
install Debian into a virtual disk image. The following devices are
2057
emulated:
2058

    
2059
@itemize @minus
2060
@item
2061
A range of MIPS CPUs, default is the 24Kf
2062
@item
2063
PC style serial port
2064
@item
2065
PC style IDE disk
2066
@item
2067
NE2000 network card
2068
@end itemize
2069

    
2070
The Malta emulation supports the following devices:
2071

    
2072
@itemize @minus
2073
@item
2074
Core board with MIPS 24Kf CPU and Galileo system controller
2075
@item
2076
PIIX4 PCI/USB/SMbus controller
2077
@item
2078
The Multi-I/O chip's serial device
2079
@item
2080
PCnet32 PCI network card
2081
@item
2082
Malta FPGA serial device
2083
@item
2084
Cirrus VGA graphics card
2085
@end itemize
2086

    
2087
The ACER Pica emulation supports:
2088

    
2089
@itemize @minus
2090
@item
2091
MIPS R4000 CPU
2092
@item
2093
PC-style IRQ and DMA controllers
2094
@item
2095
PC Keyboard
2096
@item
2097
IDE controller
2098
@end itemize
2099

    
2100
The mipssim pseudo board emulation provides an environment similiar
2101
to what the proprietary MIPS emulator uses for running Linux.
2102
It supports:
2103

    
2104
@itemize @minus
2105
@item
2106
A range of MIPS CPUs, default is the 24Kf
2107
@item
2108
PC style serial port
2109
@item
2110
MIPSnet network emulation
2111
@end itemize
2112

    
2113
@node ARM System emulator
2114
@section ARM System emulator
2115

    
2116
Use the executable @file{qemu-system-arm} to simulate a ARM
2117
machine. The ARM Integrator/CP board is emulated with the following
2118
devices:
2119

    
2120
@itemize @minus
2121
@item
2122
ARM926E, ARM1026E, ARM946E, ARM1136 or Cortex-A8 CPU
2123
@item
2124
Two PL011 UARTs
2125
@item
2126
SMC 91c111 Ethernet adapter
2127
@item
2128
PL110 LCD controller
2129
@item
2130
PL050 KMI with PS/2 keyboard and mouse.
2131
@item
2132
PL181 MultiMedia Card Interface with SD card.
2133
@end itemize
2134

    
2135
The ARM Versatile baseboard is emulated with the following devices:
2136

    
2137
@itemize @minus
2138
@item
2139
ARM926E, ARM1136 or Cortex-A8 CPU
2140
@item
2141
PL190 Vectored Interrupt Controller
2142
@item
2143
Four PL011 UARTs
2144
@item
2145
SMC 91c111 Ethernet adapter
2146
@item
2147
PL110 LCD controller
2148
@item
2149
PL050 KMI with PS/2 keyboard and mouse.
2150
@item
2151
PCI host bridge.  Note the emulated PCI bridge only provides access to
2152
PCI memory space.  It does not provide access to PCI IO space.
2153
This means some devices (eg. ne2k_pci NIC) are not usable, and others
2154
(eg. rtl8139 NIC) are only usable when the guest drivers use the memory
2155
mapped control registers.
2156
@item
2157
PCI OHCI USB controller.
2158
@item
2159
LSI53C895A PCI SCSI Host Bus Adapter with hard disk and CD-ROM devices.
2160
@item
2161
PL181 MultiMedia Card Interface with SD card.
2162
@end itemize
2163

    
2164
The ARM RealView Emulation baseboard is emulated with the following devices:
2165

    
2166
@itemize @minus
2167
@item
2168
ARM926E, ARM1136, ARM11MPCORE(x4) or Cortex-A8 CPU
2169
@item
2170
ARM AMBA Generic/Distributed Interrupt Controller
2171
@item
2172
Four PL011 UARTs
2173
@item
2174
SMC 91c111 Ethernet adapter
2175
@item
2176
PL110 LCD controller
2177
@item
2178
PL050 KMI with PS/2 keyboard and mouse
2179
@item
2180
PCI host bridge
2181
@item
2182
PCI OHCI USB controller
2183
@item
2184
LSI53C895A PCI SCSI Host Bus Adapter with hard disk and CD-ROM devices
2185
@item
2186
PL181 MultiMedia Card Interface with SD card.
2187
@end itemize
2188

    
2189
The XScale-based clamshell PDA models ("Spitz", "Akita", "Borzoi"
2190
and "Terrier") emulation includes the following peripherals:
2191

    
2192
@itemize @minus
2193
@item
2194
Intel PXA270 System-on-chip (ARM V5TE core)
2195
@item
2196
NAND Flash memory
2197
@item
2198
IBM/Hitachi DSCM microdrive in a PXA PCMCIA slot - not in "Akita"
2199
@item
2200
On-chip OHCI USB controller
2201
@item
2202
On-chip LCD controller
2203
@item
2204
On-chip Real Time Clock
2205
@item
2206
TI ADS7846 touchscreen controller on SSP bus
2207
@item
2208
Maxim MAX1111 analog-digital converter on I@math{^2}C bus
2209
@item
2210
GPIO-connected keyboard controller and LEDs
2211
@item
2212
Secure Digital card connected to PXA MMC/SD host
2213
@item
2214
Three on-chip UARTs
2215
@item
2216
WM8750 audio CODEC on I@math{^2}C and I@math{^2}S busses
2217
@end itemize
2218

    
2219
The Palm Tungsten|E PDA (codename "Cheetah") emulation includes the
2220
following elements:
2221

    
2222
@itemize @minus
2223
@item
2224
Texas Instruments OMAP310 System-on-chip (ARM 925T core)
2225
@item
2226
ROM and RAM memories (ROM firmware image can be loaded with -option-rom)
2227
@item
2228
On-chip LCD controller
2229
@item
2230
On-chip Real Time Clock
2231
@item
2232
TI TSC2102i touchscreen controller / analog-digital converter / Audio
2233
CODEC, connected through MicroWire and I@math{^2}S busses
2234
@item
2235
GPIO-connected matrix keypad
2236
@item
2237
Secure Digital card connected to OMAP MMC/SD host
2238
@item
2239
Three on-chip UARTs
2240
@end itemize
2241

    
2242
The Luminary Micro Stellaris LM3S811EVB emulation includes the following
2243
devices:
2244

    
2245
@itemize @minus
2246
@item
2247
Cortex-M3 CPU core.
2248
@item
2249
64k Flash and 8k SRAM.
2250
@item
2251
Timers, UARTs, ADC and I@math{^2}C interface.
2252
@item
2253
OSRAM Pictiva 96x16 OLED with SSD0303 controller on I@math{^2}C bus.
2254
@end itemize
2255

    
2256
The Luminary Micro Stellaris LM3S6965EVB emulation includes the following
2257
devices:
2258

    
2259
@itemize @minus
2260
@item
2261
Cortex-M3 CPU core.
2262
@item
2263
256k Flash and 64k SRAM.
2264
@item
2265
Timers, UARTs, ADC, I@math{^2}C and SSI interfaces.
2266
@item
2267
OSRAM Pictiva 128x64 OLED with SSD0323 controller connected via SSI.
2268
@end itemize
2269

    
2270
A Linux 2.6 test image is available on the QEMU web site. More
2271
information is available in the QEMU mailing-list archive.
2272

    
2273
@node ColdFire System emulator
2274
@section ColdFire System emulator
2275

    
2276
Use the executable @file{qemu-system-m68k} to simulate a ColdFire machine.
2277
The emulator is able to boot a uClinux kernel.
2278

    
2279
The M5208EVB emulation includes the following devices:
2280

    
2281
@itemize @minus
2282
@item
2283
MCF5208 ColdFire V2 Microprocessor (ISA A+ with EMAC).
2284
@item
2285
Three Two on-chip UARTs.
2286
@item
2287
Fast Ethernet Controller (FEC)
2288
@end itemize
2289

    
2290
The AN5206 emulation includes the following devices:
2291

    
2292
@itemize @minus
2293
@item
2294
MCF5206 ColdFire V2 Microprocessor.
2295
@item
2296
Two on-chip UARTs.
2297
@end itemize
2298

    
2299
@node QEMU User space emulator
2300
@chapter QEMU User space emulator
2301

    
2302
@menu
2303
* Supported Operating Systems ::
2304
* Linux User space emulator::
2305
* Mac OS X/Darwin User space emulator ::
2306
@end menu
2307

    
2308
@node Supported Operating Systems
2309
@section Supported Operating Systems
2310

    
2311
The following OS are supported in user space emulation:
2312

    
2313
@itemize @minus
2314
@item
2315
Linux (referred as qemu-linux-user)
2316
@item
2317
Mac OS X/Darwin (referred as qemu-darwin-user)
2318
@end itemize
2319

    
2320
@node Linux User space emulator
2321
@section Linux User space emulator
2322

    
2323
@menu
2324
* Quick Start::
2325
* Wine launch::
2326
* Command line options::
2327
* Other binaries::
2328
@end menu
2329

    
2330
@node Quick Start
2331
@subsection Quick Start
2332

    
2333
In order to launch a Linux process, QEMU needs the process executable
2334
itself and all the target (x86) dynamic libraries used by it.
2335

    
2336
@itemize
2337

    
2338
@item On x86, you can just try to launch any process by using the native
2339
libraries:
2340

    
2341
@example
2342
qemu-i386 -L / /bin/ls
2343
@end example
2344

    
2345
@code{-L /} tells that the x86 dynamic linker must be searched with a
2346
@file{/} prefix.
2347

    
2348
@item Since QEMU is also a linux process, you can launch qemu with
2349
qemu (NOTE: you can only do that if you compiled QEMU from the sources):
2350

    
2351
@example
2352
qemu-i386 -L / qemu-i386 -L / /bin/ls
2353
@end example
2354

    
2355
@item On non x86 CPUs, you need first to download at least an x86 glibc
2356
(@file{qemu-runtime-i386-XXX-.tar.gz} on the QEMU web page). Ensure that
2357
@code{LD_LIBRARY_PATH} is not set:
2358

    
2359
@example
2360
unset LD_LIBRARY_PATH
2361
@end example
2362

    
2363
Then you can launch the precompiled @file{ls} x86 executable:
2364

    
2365
@example
2366
qemu-i386 tests/i386/ls
2367
@end example
2368
You can look at @file{qemu-binfmt-conf.sh} so that
2369
QEMU is automatically launched by the Linux kernel when you try to
2370
launch x86 executables. It requires the @code{binfmt_misc} module in the
2371
Linux kernel.
2372

    
2373
@item The x86 version of QEMU is also included. You can try weird things such as:
2374
@example
2375
qemu-i386 /usr/local/qemu-i386/bin/qemu-i386 \
2376
          /usr/local/qemu-i386/bin/ls-i386
2377
@end example
2378

    
2379
@end itemize
2380

    
2381
@node Wine launch
2382
@subsection Wine launch
2383

    
2384
@itemize
2385

    
2386
@item Ensure that you have a working QEMU with the x86 glibc
2387
distribution (see previous section). In order to verify it, you must be
2388
able to do:
2389

    
2390
@example
2391
qemu-i386 /usr/local/qemu-i386/bin/ls-i386
2392
@end example
2393

    
2394
@item Download the binary x86 Wine install
2395
(@file{qemu-XXX-i386-wine.tar.gz} on the QEMU web page).
2396

    
2397
@item Configure Wine on your account. Look at the provided script
2398
@file{/usr/local/qemu-i386/@/bin/wine-conf.sh}. Your previous
2399
@code{$@{HOME@}/.wine} directory is saved to @code{$@{HOME@}/.wine.org}.
2400

    
2401
@item Then you can try the example @file{putty.exe}:
2402

    
2403
@example
2404
qemu-i386 /usr/local/qemu-i386/wine/bin/wine \
2405
          /usr/local/qemu-i386/wine/c/Program\ Files/putty.exe
2406
@end example
2407

    
2408
@end itemize
2409

    
2410
@node Command line options
2411
@subsection Command line options
2412

    
2413
@example
2414
usage: qemu-i386 [-h] [-d] [-L path] [-s size] program [arguments...]
2415
@end example
2416

    
2417
@table @option
2418
@item -h
2419
Print the help
2420
@item -L path
2421
Set the x86 elf interpreter prefix (default=/usr/local/qemu-i386)
2422
@item -s size
2423
Set the x86 stack size in bytes (default=524288)
2424
@end table
2425

    
2426
Debug options:
2427

    
2428
@table @option
2429
@item -d
2430
Activate log (logfile=/tmp/qemu.log)
2431
@item -p pagesize
2432
Act as if the host page size was 'pagesize' bytes
2433
@end table
2434

    
2435
@node Other binaries
2436
@subsection Other binaries
2437

    
2438
@command{qemu-arm} is also capable of running ARM "Angel" semihosted ELF
2439
binaries (as implemented by the arm-elf and arm-eabi Newlib/GDB
2440
configurations), and arm-uclinux bFLT format binaries.
2441

    
2442
@command{qemu-m68k} is capable of running semihosted binaries using the BDM
2443
(m5xxx-ram-hosted.ld) or m68k-sim (sim.ld) syscall interfaces, and
2444
coldfire uClinux bFLT format binaries.
2445

    
2446
The binary format is detected automatically.
2447

    
2448
@command{qemu-sparc32plus} can execute Sparc32 and SPARC32PLUS binaries
2449
(Sparc64 CPU, 32 bit ABI).
2450

    
2451
@command{qemu-sparc64} can execute some Sparc64 (Sparc64 CPU, 64 bit ABI) and
2452
SPARC32PLUS binaries (Sparc64 CPU, 32 bit ABI).
2453

    
2454
@node Mac OS X/Darwin User space emulator
2455
@section Mac OS X/Darwin User space emulator
2456

    
2457
@menu
2458
* Mac OS X/Darwin Status::
2459
* Mac OS X/Darwin Quick Start::
2460
* Mac OS X/Darwin Command line options::
2461
@end menu
2462

    
2463
@node Mac OS X/Darwin Status
2464
@subsection Mac OS X/Darwin Status
2465

    
2466
@itemize @minus
2467
@item
2468
target x86 on x86: Most apps (Cocoa and Carbon too) works. [1]
2469
@item
2470
target PowerPC on x86: Not working as the ppc commpage can't be mapped (yet!)
2471
@item
2472
target PowerPC on PowerPC: Most apps (Cocoa and Carbon too) works. [1]
2473
@item
2474
target x86 on PowerPC: most utilities work. Cocoa and Carbon apps are not yet supported.
2475
@end itemize
2476

    
2477
[1] If you're host commpage can be executed by qemu.
2478

    
2479
@node Mac OS X/Darwin Quick Start
2480
@subsection Quick Start
2481

    
2482
In order to launch a Mac OS X/Darwin process, QEMU needs the process executable
2483
itself and all the target dynamic libraries used by it. If you don't have the FAT
2484
libraries (you're running Mac OS X/ppc) you'll need to obtain it from a Mac OS X
2485
CD or compile them by hand.
2486

    
2487
@itemize
2488

    
2489
@item On x86, you can just try to launch any process by using the native
2490
libraries:
2491

    
2492
@example
2493
qemu-i386 /bin/ls
2494
@end example
2495

    
2496
or to run the ppc version of the executable:
2497

    
2498
@example
2499
qemu-ppc /bin/ls
2500
@end example
2501

    
2502
@item On ppc, you'll have to tell qemu where your x86 libraries (and dynamic linker)
2503
are installed:
2504

    
2505
@example
2506
qemu-i386 -L /opt/x86_root/ /bin/ls
2507
@end example
2508

    
2509
@code{-L /opt/x86_root/} tells that the dynamic linker (dyld) path is in
2510
@file{/opt/x86_root/usr/bin/dyld}.
2511

    
2512
@end itemize
2513

    
2514
@node Mac OS X/Darwin Command line options
2515
@subsection Command line options
2516

    
2517
@example
2518
usage: qemu-i386 [-h] [-d] [-L path] [-s size] program [arguments...]
2519
@end example
2520

    
2521
@table @option
2522
@item -h
2523
Print the help
2524
@item -L path
2525
Set the library root path (default=/)
2526
@item -s size
2527
Set the stack size in bytes (default=524288)
2528
@end table
2529

    
2530
Debug options:
2531

    
2532
@table @option
2533
@item -d
2534
Activate log (logfile=/tmp/qemu.log)
2535
@item -p pagesize
2536
Act as if the host page size was 'pagesize' bytes
2537
@end table
2538

    
2539
@node compilation
2540
@chapter Compilation from the sources
2541

    
2542
@menu
2543
* Linux/Unix::
2544
* Windows::
2545
* Cross compilation for Windows with Linux::
2546
* Mac OS X::
2547
@end menu
2548

    
2549
@node Linux/Unix
2550
@section Linux/Unix
2551

    
2552
@subsection Compilation
2553

    
2554
First you must decompress the sources:
2555
@example
2556
cd /tmp
2557
tar zxvf qemu-x.y.z.tar.gz
2558
cd qemu-x.y.z
2559
@end example
2560

    
2561
Then you configure QEMU and build it (usually no options are needed):
2562
@example
2563
./configure
2564
make
2565
@end example
2566

    
2567
Then type as root user:
2568
@example
2569
make install
2570
@end example
2571
to install QEMU in @file{/usr/local}.
2572

    
2573
@subsection GCC version
2574

    
2575
In order to compile QEMU successfully, it is very important that you
2576
have the right tools. The most important one is gcc. On most hosts and
2577
in particular on x86 ones, @emph{gcc 4.x is not supported}. If your
2578
Linux distribution includes a gcc 4.x compiler, you can usually
2579
install an older version (it is invoked by @code{gcc32} or
2580
@code{gcc34}). The QEMU configure script automatically probes for
2581
these older versions so that usually you don't have to do anything.
2582

    
2583
@node Windows
2584
@section Windows
2585

    
2586
@itemize
2587
@item Install the current versions of MSYS and MinGW from
2588
@url{http://www.mingw.org/}. You can find detailed installation
2589
instructions in the download section and the FAQ.
2590

    
2591
@item Download
2592
the MinGW development library of SDL 1.2.x
2593
(@file{SDL-devel-1.2.x-@/mingw32.tar.gz}) from
2594
@url{http://www.libsdl.org}. Unpack it in a temporary place, and
2595
unpack the archive @file{i386-mingw32msvc.tar.gz} in the MinGW tool
2596
directory. Edit the @file{sdl-config} script so that it gives the
2597
correct SDL directory when invoked.
2598

    
2599
@item Extract the current version of QEMU.
2600

    
2601
@item Start the MSYS shell (file @file{msys.bat}).
2602

    
2603
@item Change to the QEMU directory. Launch @file{./configure} and
2604
@file{make}.  If you have problems using SDL, verify that
2605
@file{sdl-config} can be launched from the MSYS command line.
2606

    
2607
@item You can install QEMU in @file{Program Files/Qemu} by typing
2608
@file{make install}. Don't forget to copy @file{SDL.dll} in
2609
@file{Program Files/Qemu}.
2610

    
2611
@end itemize
2612

    
2613
@node Cross compilation for Windows with Linux
2614
@section Cross compilation for Windows with Linux
2615

    
2616
@itemize
2617
@item
2618
Install the MinGW cross compilation tools available at
2619
@url{http://www.mingw.org/}.
2620

    
2621
@item
2622
Install the Win32 version of SDL (@url{http://www.libsdl.org}) by
2623
unpacking @file{i386-mingw32msvc.tar.gz}. Set up the PATH environment
2624
variable so that @file{i386-mingw32msvc-sdl-config} can be launched by
2625
the QEMU configuration script.
2626

    
2627
@item
2628
Configure QEMU for Windows cross compilation:
2629
@example
2630
./configure --enable-mingw32
2631
@end example
2632
If necessary, you can change the cross-prefix according to the prefix
2633
chosen for the MinGW tools with --cross-prefix. You can also use
2634
--prefix to set the Win32 install path.
2635

    
2636
@item You can install QEMU in the installation directory by typing
2637
@file{make install}. Don't forget to copy @file{SDL.dll} in the
2638
installation directory.
2639

    
2640
@end itemize
2641

    
2642
Note: Currently, Wine does not seem able to launch
2643
QEMU for Win32.
2644

    
2645
@node Mac OS X
2646
@section Mac OS X
2647

    
2648
The Mac OS X patches are not fully merged in QEMU, so you should look
2649
at the QEMU mailing list archive to have all the necessary
2650
information.
2651

    
2652
@node Index
2653
@chapter Index
2654
@printindex cp
2655

    
2656
@bye