Statistics
| Branch: | Revision:

root / vl.c @ 9f7965c7

History | View | Annotate | Download (252.5 kB)

1
/*
2
 * QEMU System Emulator
3
 *
4
 * Copyright (c) 2003-2008 Fabrice Bellard
5
 *
6
 * Permission is hereby granted, free of charge, to any person obtaining a copy
7
 * of this software and associated documentation files (the "Software"), to deal
8
 * in the Software without restriction, including without limitation the rights
9
 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10
 * copies of the Software, and to permit persons to whom the Software is
11
 * furnished to do so, subject to the following conditions:
12
 *
13
 * The above copyright notice and this permission notice shall be included in
14
 * all copies or substantial portions of the Software.
15
 *
16
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21
 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22
 * THE SOFTWARE.
23
 */
24
#include "hw/hw.h"
25
#include "hw/boards.h"
26
#include "hw/usb.h"
27
#include "hw/pcmcia.h"
28
#include "hw/pc.h"
29
#include "hw/audiodev.h"
30
#include "hw/isa.h"
31
#include "hw/baum.h"
32
#include "hw/bt.h"
33
#include "net.h"
34
#include "console.h"
35
#include "sysemu.h"
36
#include "gdbstub.h"
37
#include "qemu-timer.h"
38
#include "qemu-char.h"
39
#include "block.h"
40
#include "audio/audio.h"
41
#include "migration.h"
42

    
43
#include <unistd.h>
44
#include <fcntl.h>
45
#include <signal.h>
46
#include <time.h>
47
#include <errno.h>
48
#include <sys/time.h>
49
#include <zlib.h>
50

    
51
#ifndef _WIN32
52
#include <sys/times.h>
53
#include <sys/wait.h>
54
#include <termios.h>
55
#include <sys/mman.h>
56
#include <sys/ioctl.h>
57
#include <sys/socket.h>
58
#include <netinet/in.h>
59
#include <dirent.h>
60
#include <netdb.h>
61
#include <sys/select.h>
62
#include <arpa/inet.h>
63
#ifdef _BSD
64
#include <sys/stat.h>
65
#if !defined(__APPLE__) && !defined(__OpenBSD__)
66
#include <libutil.h>
67
#endif
68
#ifdef __OpenBSD__
69
#include <net/if.h>
70
#endif
71
#elif defined (__GLIBC__) && defined (__FreeBSD_kernel__)
72
#include <freebsd/stdlib.h>
73
#else
74
#ifdef __linux__
75
#include <linux/if.h>
76
#include <linux/if_tun.h>
77
#include <pty.h>
78
#include <malloc.h>
79
#include <linux/rtc.h>
80

    
81
/* For the benefit of older linux systems which don't supply it,
82
   we use a local copy of hpet.h. */
83
/* #include <linux/hpet.h> */
84
#include "hpet.h"
85

    
86
#include <linux/ppdev.h>
87
#include <linux/parport.h>
88
#endif
89
#ifdef __sun__
90
#include <sys/stat.h>
91
#include <sys/ethernet.h>
92
#include <sys/sockio.h>
93
#include <netinet/arp.h>
94
#include <netinet/in.h>
95
#include <netinet/in_systm.h>
96
#include <netinet/ip.h>
97
#include <netinet/ip_icmp.h> // must come after ip.h
98
#include <netinet/udp.h>
99
#include <netinet/tcp.h>
100
#include <net/if.h>
101
#include <syslog.h>
102
#include <stropts.h>
103
#endif
104
#endif
105
#endif
106

    
107
#include "qemu_socket.h"
108

    
109
#if defined(CONFIG_SLIRP)
110
#include "libslirp.h"
111
#endif
112

    
113
#if defined(__OpenBSD__)
114
#include <util.h>
115
#endif
116

    
117
#if defined(CONFIG_VDE)
118
#include <libvdeplug.h>
119
#endif
120

    
121
#ifdef _WIN32
122
#include <malloc.h>
123
#include <sys/timeb.h>
124
#include <mmsystem.h>
125
#define getopt_long_only getopt_long
126
#define memalign(align, size) malloc(size)
127
#endif
128

    
129
#ifdef CONFIG_SDL
130
#ifdef __APPLE__
131
#include <SDL/SDL.h>
132
#endif
133
#endif /* CONFIG_SDL */
134

    
135
#ifdef CONFIG_COCOA
136
#undef main
137
#define main qemu_main
138
#endif /* CONFIG_COCOA */
139

    
140
#include "disas.h"
141

    
142
#include "exec-all.h"
143

    
144
#define DEFAULT_NETWORK_SCRIPT "/etc/qemu-ifup"
145
#define DEFAULT_NETWORK_DOWN_SCRIPT "/etc/qemu-ifdown"
146
#ifdef __sun__
147
#define SMBD_COMMAND "/usr/sfw/sbin/smbd"
148
#else
149
#define SMBD_COMMAND "/usr/sbin/smbd"
150
#endif
151

    
152
//#define DEBUG_UNUSED_IOPORT
153
//#define DEBUG_IOPORT
154
//#define DEBUG_NET
155
//#define DEBUG_SLIRP
156

    
157
#ifdef TARGET_PPC
158
#define DEFAULT_RAM_SIZE 144
159
#else
160
#define DEFAULT_RAM_SIZE 128
161
#endif
162

    
163
/* Max number of USB devices that can be specified on the commandline.  */
164
#define MAX_USB_CMDLINE 8
165

    
166
/* XXX: use a two level table to limit memory usage */
167
#define MAX_IOPORTS 65536
168

    
169
const char *bios_dir = CONFIG_QEMU_SHAREDIR;
170
const char *bios_name = NULL;
171
static void *ioport_opaque[MAX_IOPORTS];
172
static IOPortReadFunc *ioport_read_table[3][MAX_IOPORTS];
173
static IOPortWriteFunc *ioport_write_table[3][MAX_IOPORTS];
174
/* Note: drives_table[MAX_DRIVES] is a dummy block driver if none available
175
   to store the VM snapshots */
176
DriveInfo drives_table[MAX_DRIVES+1];
177
int nb_drives;
178
/* point to the block driver where the snapshots are managed */
179
static BlockDriverState *bs_snapshots;
180
static int vga_ram_size;
181
enum vga_retrace_method vga_retrace_method = VGA_RETRACE_DUMB;
182
static DisplayState display_state;
183
int nographic;
184
static int curses;
185
const char* keyboard_layout = NULL;
186
int64_t ticks_per_sec;
187
ram_addr_t ram_size;
188
int nb_nics;
189
NICInfo nd_table[MAX_NICS];
190
int vm_running;
191
static int rtc_utc = 1;
192
static int rtc_date_offset = -1; /* -1 means no change */
193
int cirrus_vga_enabled = 1;
194
int vmsvga_enabled = 0;
195
#ifdef TARGET_SPARC
196
int graphic_width = 1024;
197
int graphic_height = 768;
198
int graphic_depth = 8;
199
#else
200
int graphic_width = 800;
201
int graphic_height = 600;
202
int graphic_depth = 15;
203
#endif
204
static int full_screen = 0;
205
static int no_frame = 0;
206
int no_quit = 0;
207
CharDriverState *serial_hds[MAX_SERIAL_PORTS];
208
CharDriverState *parallel_hds[MAX_PARALLEL_PORTS];
209
#ifdef TARGET_I386
210
int win2k_install_hack = 0;
211
#endif
212
int usb_enabled = 0;
213
static VLANState *first_vlan;
214
int smp_cpus = 1;
215
const char *vnc_display;
216
int acpi_enabled = 1;
217
int fd_bootchk = 1;
218
int no_reboot = 0;
219
int no_shutdown = 0;
220
int cursor_hide = 1;
221
int graphic_rotate = 0;
222
int daemonize = 0;
223
const char *option_rom[MAX_OPTION_ROMS];
224
int nb_option_roms;
225
int semihosting_enabled = 0;
226
#ifdef TARGET_ARM
227
int old_param = 0;
228
#endif
229
const char *qemu_name;
230
int alt_grab = 0;
231
#ifdef TARGET_SPARC
232
unsigned int nb_prom_envs = 0;
233
const char *prom_envs[MAX_PROM_ENVS];
234
#endif
235
static int nb_drives_opt;
236
static struct drive_opt {
237
    const char *file;
238
    char opt[1024];
239
} drives_opt[MAX_DRIVES];
240

    
241
static CPUState *cur_cpu;
242
static CPUState *next_cpu;
243
static int event_pending = 1;
244
/* Conversion factor from emulated instructions to virtual clock ticks.  */
245
static int icount_time_shift;
246
/* Arbitrarily pick 1MIPS as the minimum allowable speed.  */
247
#define MAX_ICOUNT_SHIFT 10
248
/* Compensate for varying guest execution speed.  */
249
static int64_t qemu_icount_bias;
250
static QEMUTimer *icount_rt_timer;
251
static QEMUTimer *icount_vm_timer;
252

    
253
uint8_t qemu_uuid[16];
254

    
255
#define TFR(expr) do { if ((expr) != -1) break; } while (errno == EINTR)
256

    
257
/***********************************************************/
258
/* x86 ISA bus support */
259

    
260
target_phys_addr_t isa_mem_base = 0;
261
PicState2 *isa_pic;
262

    
263
static IOPortReadFunc default_ioport_readb, default_ioport_readw, default_ioport_readl;
264
static IOPortWriteFunc default_ioport_writeb, default_ioport_writew, default_ioport_writel;
265

    
266
static uint32_t ioport_read(int index, uint32_t address)
267
{
268
    static IOPortReadFunc *default_func[3] = {
269
        default_ioport_readb,
270
        default_ioport_readw,
271
        default_ioport_readl
272
    };
273
    IOPortReadFunc *func = ioport_read_table[index][address];
274
    if (!func)
275
        func = default_func[index];
276
    return func(ioport_opaque[address], address);
277
}
278

    
279
static void ioport_write(int index, uint32_t address, uint32_t data)
280
{
281
    static IOPortWriteFunc *default_func[3] = {
282
        default_ioport_writeb,
283
        default_ioport_writew,
284
        default_ioport_writel
285
    };
286
    IOPortWriteFunc *func = ioport_write_table[index][address];
287
    if (!func)
288
        func = default_func[index];
289
    func(ioport_opaque[address], address, data);
290
}
291

    
292
static uint32_t default_ioport_readb(void *opaque, uint32_t address)
293
{
294
#ifdef DEBUG_UNUSED_IOPORT
295
    fprintf(stderr, "unused inb: port=0x%04x\n", address);
296
#endif
297
    return 0xff;
298
}
299

    
300
static void default_ioport_writeb(void *opaque, uint32_t address, uint32_t data)
301
{
302
#ifdef DEBUG_UNUSED_IOPORT
303
    fprintf(stderr, "unused outb: port=0x%04x data=0x%02x\n", address, data);
304
#endif
305
}
306

    
307
/* default is to make two byte accesses */
308
static uint32_t default_ioport_readw(void *opaque, uint32_t address)
309
{
310
    uint32_t data;
311
    data = ioport_read(0, address);
312
    address = (address + 1) & (MAX_IOPORTS - 1);
313
    data |= ioport_read(0, address) << 8;
314
    return data;
315
}
316

    
317
static void default_ioport_writew(void *opaque, uint32_t address, uint32_t data)
318
{
319
    ioport_write(0, address, data & 0xff);
320
    address = (address + 1) & (MAX_IOPORTS - 1);
321
    ioport_write(0, address, (data >> 8) & 0xff);
322
}
323

    
324
static uint32_t default_ioport_readl(void *opaque, uint32_t address)
325
{
326
#ifdef DEBUG_UNUSED_IOPORT
327
    fprintf(stderr, "unused inl: port=0x%04x\n", address);
328
#endif
329
    return 0xffffffff;
330
}
331

    
332
static void default_ioport_writel(void *opaque, uint32_t address, uint32_t data)
333
{
334
#ifdef DEBUG_UNUSED_IOPORT
335
    fprintf(stderr, "unused outl: port=0x%04x data=0x%02x\n", address, data);
336
#endif
337
}
338

    
339
/* size is the word size in byte */
340
int register_ioport_read(int start, int length, int size,
341
                         IOPortReadFunc *func, void *opaque)
342
{
343
    int i, bsize;
344

    
345
    if (size == 1) {
346
        bsize = 0;
347
    } else if (size == 2) {
348
        bsize = 1;
349
    } else if (size == 4) {
350
        bsize = 2;
351
    } else {
352
        hw_error("register_ioport_read: invalid size");
353
        return -1;
354
    }
355
    for(i = start; i < start + length; i += size) {
356
        ioport_read_table[bsize][i] = func;
357
        if (ioport_opaque[i] != NULL && ioport_opaque[i] != opaque)
358
            hw_error("register_ioport_read: invalid opaque");
359
        ioport_opaque[i] = opaque;
360
    }
361
    return 0;
362
}
363

    
364
/* size is the word size in byte */
365
int register_ioport_write(int start, int length, int size,
366
                          IOPortWriteFunc *func, void *opaque)
367
{
368
    int i, bsize;
369

    
370
    if (size == 1) {
371
        bsize = 0;
372
    } else if (size == 2) {
373
        bsize = 1;
374
    } else if (size == 4) {
375
        bsize = 2;
376
    } else {
377
        hw_error("register_ioport_write: invalid size");
378
        return -1;
379
    }
380
    for(i = start; i < start + length; i += size) {
381
        ioport_write_table[bsize][i] = func;
382
        if (ioport_opaque[i] != NULL && ioport_opaque[i] != opaque)
383
            hw_error("register_ioport_write: invalid opaque");
384
        ioport_opaque[i] = opaque;
385
    }
386
    return 0;
387
}
388

    
389
void isa_unassign_ioport(int start, int length)
390
{
391
    int i;
392

    
393
    for(i = start; i < start + length; i++) {
394
        ioport_read_table[0][i] = default_ioport_readb;
395
        ioport_read_table[1][i] = default_ioport_readw;
396
        ioport_read_table[2][i] = default_ioport_readl;
397

    
398
        ioport_write_table[0][i] = default_ioport_writeb;
399
        ioport_write_table[1][i] = default_ioport_writew;
400
        ioport_write_table[2][i] = default_ioport_writel;
401
    }
402
}
403

    
404
/***********************************************************/
405

    
406
void cpu_outb(CPUState *env, int addr, int val)
407
{
408
#ifdef DEBUG_IOPORT
409
    if (loglevel & CPU_LOG_IOPORT)
410
        fprintf(logfile, "outb: %04x %02x\n", addr, val);
411
#endif
412
    ioport_write(0, addr, val);
413
#ifdef USE_KQEMU
414
    if (env)
415
        env->last_io_time = cpu_get_time_fast();
416
#endif
417
}
418

    
419
void cpu_outw(CPUState *env, int addr, int val)
420
{
421
#ifdef DEBUG_IOPORT
422
    if (loglevel & CPU_LOG_IOPORT)
423
        fprintf(logfile, "outw: %04x %04x\n", addr, val);
424
#endif
425
    ioport_write(1, addr, val);
426
#ifdef USE_KQEMU
427
    if (env)
428
        env->last_io_time = cpu_get_time_fast();
429
#endif
430
}
431

    
432
void cpu_outl(CPUState *env, int addr, int val)
433
{
434
#ifdef DEBUG_IOPORT
435
    if (loglevel & CPU_LOG_IOPORT)
436
        fprintf(logfile, "outl: %04x %08x\n", addr, val);
437
#endif
438
    ioport_write(2, addr, val);
439
#ifdef USE_KQEMU
440
    if (env)
441
        env->last_io_time = cpu_get_time_fast();
442
#endif
443
}
444

    
445
int cpu_inb(CPUState *env, int addr)
446
{
447
    int val;
448
    val = ioport_read(0, addr);
449
#ifdef DEBUG_IOPORT
450
    if (loglevel & CPU_LOG_IOPORT)
451
        fprintf(logfile, "inb : %04x %02x\n", addr, val);
452
#endif
453
#ifdef USE_KQEMU
454
    if (env)
455
        env->last_io_time = cpu_get_time_fast();
456
#endif
457
    return val;
458
}
459

    
460
int cpu_inw(CPUState *env, int addr)
461
{
462
    int val;
463
    val = ioport_read(1, addr);
464
#ifdef DEBUG_IOPORT
465
    if (loglevel & CPU_LOG_IOPORT)
466
        fprintf(logfile, "inw : %04x %04x\n", addr, val);
467
#endif
468
#ifdef USE_KQEMU
469
    if (env)
470
        env->last_io_time = cpu_get_time_fast();
471
#endif
472
    return val;
473
}
474

    
475
int cpu_inl(CPUState *env, int addr)
476
{
477
    int val;
478
    val = ioport_read(2, addr);
479
#ifdef DEBUG_IOPORT
480
    if (loglevel & CPU_LOG_IOPORT)
481
        fprintf(logfile, "inl : %04x %08x\n", addr, val);
482
#endif
483
#ifdef USE_KQEMU
484
    if (env)
485
        env->last_io_time = cpu_get_time_fast();
486
#endif
487
    return val;
488
}
489

    
490
/***********************************************************/
491
void hw_error(const char *fmt, ...)
492
{
493
    va_list ap;
494
    CPUState *env;
495

    
496
    va_start(ap, fmt);
497
    fprintf(stderr, "qemu: hardware error: ");
498
    vfprintf(stderr, fmt, ap);
499
    fprintf(stderr, "\n");
500
    for(env = first_cpu; env != NULL; env = env->next_cpu) {
501
        fprintf(stderr, "CPU #%d:\n", env->cpu_index);
502
#ifdef TARGET_I386
503
        cpu_dump_state(env, stderr, fprintf, X86_DUMP_FPU);
504
#else
505
        cpu_dump_state(env, stderr, fprintf, 0);
506
#endif
507
    }
508
    va_end(ap);
509
    abort();
510
}
511

    
512
/***********************************************************/
513
/* keyboard/mouse */
514

    
515
static QEMUPutKBDEvent *qemu_put_kbd_event;
516
static void *qemu_put_kbd_event_opaque;
517
static QEMUPutMouseEntry *qemu_put_mouse_event_head;
518
static QEMUPutMouseEntry *qemu_put_mouse_event_current;
519

    
520
void qemu_add_kbd_event_handler(QEMUPutKBDEvent *func, void *opaque)
521
{
522
    qemu_put_kbd_event_opaque = opaque;
523
    qemu_put_kbd_event = func;
524
}
525

    
526
QEMUPutMouseEntry *qemu_add_mouse_event_handler(QEMUPutMouseEvent *func,
527
                                                void *opaque, int absolute,
528
                                                const char *name)
529
{
530
    QEMUPutMouseEntry *s, *cursor;
531

    
532
    s = qemu_mallocz(sizeof(QEMUPutMouseEntry));
533
    if (!s)
534
        return NULL;
535

    
536
    s->qemu_put_mouse_event = func;
537
    s->qemu_put_mouse_event_opaque = opaque;
538
    s->qemu_put_mouse_event_absolute = absolute;
539
    s->qemu_put_mouse_event_name = qemu_strdup(name);
540
    s->next = NULL;
541

    
542
    if (!qemu_put_mouse_event_head) {
543
        qemu_put_mouse_event_head = qemu_put_mouse_event_current = s;
544
        return s;
545
    }
546

    
547
    cursor = qemu_put_mouse_event_head;
548
    while (cursor->next != NULL)
549
        cursor = cursor->next;
550

    
551
    cursor->next = s;
552
    qemu_put_mouse_event_current = s;
553

    
554
    return s;
555
}
556

    
557
void qemu_remove_mouse_event_handler(QEMUPutMouseEntry *entry)
558
{
559
    QEMUPutMouseEntry *prev = NULL, *cursor;
560

    
561
    if (!qemu_put_mouse_event_head || entry == NULL)
562
        return;
563

    
564
    cursor = qemu_put_mouse_event_head;
565
    while (cursor != NULL && cursor != entry) {
566
        prev = cursor;
567
        cursor = cursor->next;
568
    }
569

    
570
    if (cursor == NULL) // does not exist or list empty
571
        return;
572
    else if (prev == NULL) { // entry is head
573
        qemu_put_mouse_event_head = cursor->next;
574
        if (qemu_put_mouse_event_current == entry)
575
            qemu_put_mouse_event_current = cursor->next;
576
        qemu_free(entry->qemu_put_mouse_event_name);
577
        qemu_free(entry);
578
        return;
579
    }
580

    
581
    prev->next = entry->next;
582

    
583
    if (qemu_put_mouse_event_current == entry)
584
        qemu_put_mouse_event_current = prev;
585

    
586
    qemu_free(entry->qemu_put_mouse_event_name);
587
    qemu_free(entry);
588
}
589

    
590
void kbd_put_keycode(int keycode)
591
{
592
    if (qemu_put_kbd_event) {
593
        qemu_put_kbd_event(qemu_put_kbd_event_opaque, keycode);
594
    }
595
}
596

    
597
void kbd_mouse_event(int dx, int dy, int dz, int buttons_state)
598
{
599
    QEMUPutMouseEvent *mouse_event;
600
    void *mouse_event_opaque;
601
    int width;
602

    
603
    if (!qemu_put_mouse_event_current) {
604
        return;
605
    }
606

    
607
    mouse_event =
608
        qemu_put_mouse_event_current->qemu_put_mouse_event;
609
    mouse_event_opaque =
610
        qemu_put_mouse_event_current->qemu_put_mouse_event_opaque;
611

    
612
    if (mouse_event) {
613
        if (graphic_rotate) {
614
            if (qemu_put_mouse_event_current->qemu_put_mouse_event_absolute)
615
                width = 0x7fff;
616
            else
617
                width = graphic_width - 1;
618
            mouse_event(mouse_event_opaque,
619
                                 width - dy, dx, dz, buttons_state);
620
        } else
621
            mouse_event(mouse_event_opaque,
622
                                 dx, dy, dz, buttons_state);
623
    }
624
}
625

    
626
int kbd_mouse_is_absolute(void)
627
{
628
    if (!qemu_put_mouse_event_current)
629
        return 0;
630

    
631
    return qemu_put_mouse_event_current->qemu_put_mouse_event_absolute;
632
}
633

    
634
void do_info_mice(void)
635
{
636
    QEMUPutMouseEntry *cursor;
637
    int index = 0;
638

    
639
    if (!qemu_put_mouse_event_head) {
640
        term_printf("No mouse devices connected\n");
641
        return;
642
    }
643

    
644
    term_printf("Mouse devices available:\n");
645
    cursor = qemu_put_mouse_event_head;
646
    while (cursor != NULL) {
647
        term_printf("%c Mouse #%d: %s\n",
648
                    (cursor == qemu_put_mouse_event_current ? '*' : ' '),
649
                    index, cursor->qemu_put_mouse_event_name);
650
        index++;
651
        cursor = cursor->next;
652
    }
653
}
654

    
655
void do_mouse_set(int index)
656
{
657
    QEMUPutMouseEntry *cursor;
658
    int i = 0;
659

    
660
    if (!qemu_put_mouse_event_head) {
661
        term_printf("No mouse devices connected\n");
662
        return;
663
    }
664

    
665
    cursor = qemu_put_mouse_event_head;
666
    while (cursor != NULL && index != i) {
667
        i++;
668
        cursor = cursor->next;
669
    }
670

    
671
    if (cursor != NULL)
672
        qemu_put_mouse_event_current = cursor;
673
    else
674
        term_printf("Mouse at given index not found\n");
675
}
676

    
677
/* compute with 96 bit intermediate result: (a*b)/c */
678
uint64_t muldiv64(uint64_t a, uint32_t b, uint32_t c)
679
{
680
    union {
681
        uint64_t ll;
682
        struct {
683
#ifdef WORDS_BIGENDIAN
684
            uint32_t high, low;
685
#else
686
            uint32_t low, high;
687
#endif
688
        } l;
689
    } u, res;
690
    uint64_t rl, rh;
691

    
692
    u.ll = a;
693
    rl = (uint64_t)u.l.low * (uint64_t)b;
694
    rh = (uint64_t)u.l.high * (uint64_t)b;
695
    rh += (rl >> 32);
696
    res.l.high = rh / c;
697
    res.l.low = (((rh % c) << 32) + (rl & 0xffffffff)) / c;
698
    return res.ll;
699
}
700

    
701
/***********************************************************/
702
/* real time host monotonic timer */
703

    
704
#define QEMU_TIMER_BASE 1000000000LL
705

    
706
#ifdef WIN32
707

    
708
static int64_t clock_freq;
709

    
710
static void init_get_clock(void)
711
{
712
    LARGE_INTEGER freq;
713
    int ret;
714
    ret = QueryPerformanceFrequency(&freq);
715
    if (ret == 0) {
716
        fprintf(stderr, "Could not calibrate ticks\n");
717
        exit(1);
718
    }
719
    clock_freq = freq.QuadPart;
720
}
721

    
722
static int64_t get_clock(void)
723
{
724
    LARGE_INTEGER ti;
725
    QueryPerformanceCounter(&ti);
726
    return muldiv64(ti.QuadPart, QEMU_TIMER_BASE, clock_freq);
727
}
728

    
729
#else
730

    
731
static int use_rt_clock;
732

    
733
static void init_get_clock(void)
734
{
735
    use_rt_clock = 0;
736
#if defined(__linux__) || (defined(__FreeBSD__) && __FreeBSD_version >= 500000)
737
    {
738
        struct timespec ts;
739
        if (clock_gettime(CLOCK_MONOTONIC, &ts) == 0) {
740
            use_rt_clock = 1;
741
        }
742
    }
743
#endif
744
}
745

    
746
static int64_t get_clock(void)
747
{
748
#if defined(__linux__) || (defined(__FreeBSD__) && __FreeBSD_version >= 500000)
749
    if (use_rt_clock) {
750
        struct timespec ts;
751
        clock_gettime(CLOCK_MONOTONIC, &ts);
752
        return ts.tv_sec * 1000000000LL + ts.tv_nsec;
753
    } else
754
#endif
755
    {
756
        /* XXX: using gettimeofday leads to problems if the date
757
           changes, so it should be avoided. */
758
        struct timeval tv;
759
        gettimeofday(&tv, NULL);
760
        return tv.tv_sec * 1000000000LL + (tv.tv_usec * 1000);
761
    }
762
}
763
#endif
764

    
765
/* Return the virtual CPU time, based on the instruction counter.  */
766
static int64_t cpu_get_icount(void)
767
{
768
    int64_t icount;
769
    CPUState *env = cpu_single_env;;
770
    icount = qemu_icount;
771
    if (env) {
772
        if (!can_do_io(env))
773
            fprintf(stderr, "Bad clock read\n");
774
        icount -= (env->icount_decr.u16.low + env->icount_extra);
775
    }
776
    return qemu_icount_bias + (icount << icount_time_shift);
777
}
778

    
779
/***********************************************************/
780
/* guest cycle counter */
781

    
782
static int64_t cpu_ticks_prev;
783
static int64_t cpu_ticks_offset;
784
static int64_t cpu_clock_offset;
785
static int cpu_ticks_enabled;
786

    
787
/* return the host CPU cycle counter and handle stop/restart */
788
int64_t cpu_get_ticks(void)
789
{
790
    if (use_icount) {
791
        return cpu_get_icount();
792
    }
793
    if (!cpu_ticks_enabled) {
794
        return cpu_ticks_offset;
795
    } else {
796
        int64_t ticks;
797
        ticks = cpu_get_real_ticks();
798
        if (cpu_ticks_prev > ticks) {
799
            /* Note: non increasing ticks may happen if the host uses
800
               software suspend */
801
            cpu_ticks_offset += cpu_ticks_prev - ticks;
802
        }
803
        cpu_ticks_prev = ticks;
804
        return ticks + cpu_ticks_offset;
805
    }
806
}
807

    
808
/* return the host CPU monotonic timer and handle stop/restart */
809
static int64_t cpu_get_clock(void)
810
{
811
    int64_t ti;
812
    if (!cpu_ticks_enabled) {
813
        return cpu_clock_offset;
814
    } else {
815
        ti = get_clock();
816
        return ti + cpu_clock_offset;
817
    }
818
}
819

    
820
/* enable cpu_get_ticks() */
821
void cpu_enable_ticks(void)
822
{
823
    if (!cpu_ticks_enabled) {
824
        cpu_ticks_offset -= cpu_get_real_ticks();
825
        cpu_clock_offset -= get_clock();
826
        cpu_ticks_enabled = 1;
827
    }
828
}
829

    
830
/* disable cpu_get_ticks() : the clock is stopped. You must not call
831
   cpu_get_ticks() after that.  */
832
void cpu_disable_ticks(void)
833
{
834
    if (cpu_ticks_enabled) {
835
        cpu_ticks_offset = cpu_get_ticks();
836
        cpu_clock_offset = cpu_get_clock();
837
        cpu_ticks_enabled = 0;
838
    }
839
}
840

    
841
/***********************************************************/
842
/* timers */
843

    
844
#define QEMU_TIMER_REALTIME 0
845
#define QEMU_TIMER_VIRTUAL  1
846

    
847
struct QEMUClock {
848
    int type;
849
    /* XXX: add frequency */
850
};
851

    
852
struct QEMUTimer {
853
    QEMUClock *clock;
854
    int64_t expire_time;
855
    QEMUTimerCB *cb;
856
    void *opaque;
857
    struct QEMUTimer *next;
858
};
859

    
860
struct qemu_alarm_timer {
861
    char const *name;
862
    unsigned int flags;
863

    
864
    int (*start)(struct qemu_alarm_timer *t);
865
    void (*stop)(struct qemu_alarm_timer *t);
866
    void (*rearm)(struct qemu_alarm_timer *t);
867
    void *priv;
868
};
869

    
870
#define ALARM_FLAG_DYNTICKS  0x1
871
#define ALARM_FLAG_EXPIRED   0x2
872

    
873
static inline int alarm_has_dynticks(struct qemu_alarm_timer *t)
874
{
875
    return t->flags & ALARM_FLAG_DYNTICKS;
876
}
877

    
878
static void qemu_rearm_alarm_timer(struct qemu_alarm_timer *t)
879
{
880
    if (!alarm_has_dynticks(t))
881
        return;
882

    
883
    t->rearm(t);
884
}
885

    
886
/* TODO: MIN_TIMER_REARM_US should be optimized */
887
#define MIN_TIMER_REARM_US 250
888

    
889
static struct qemu_alarm_timer *alarm_timer;
890

    
891
#ifdef _WIN32
892

    
893
struct qemu_alarm_win32 {
894
    MMRESULT timerId;
895
    HANDLE host_alarm;
896
    unsigned int period;
897
} alarm_win32_data = {0, NULL, -1};
898

    
899
static int win32_start_timer(struct qemu_alarm_timer *t);
900
static void win32_stop_timer(struct qemu_alarm_timer *t);
901
static void win32_rearm_timer(struct qemu_alarm_timer *t);
902

    
903
#else
904

    
905
static int unix_start_timer(struct qemu_alarm_timer *t);
906
static void unix_stop_timer(struct qemu_alarm_timer *t);
907

    
908
#ifdef __linux__
909

    
910
static int dynticks_start_timer(struct qemu_alarm_timer *t);
911
static void dynticks_stop_timer(struct qemu_alarm_timer *t);
912
static void dynticks_rearm_timer(struct qemu_alarm_timer *t);
913

    
914
static int hpet_start_timer(struct qemu_alarm_timer *t);
915
static void hpet_stop_timer(struct qemu_alarm_timer *t);
916

    
917
static int rtc_start_timer(struct qemu_alarm_timer *t);
918
static void rtc_stop_timer(struct qemu_alarm_timer *t);
919

    
920
#endif /* __linux__ */
921

    
922
#endif /* _WIN32 */
923

    
924
/* Correlation between real and virtual time is always going to be
925
   fairly approximate, so ignore small variation.
926
   When the guest is idle real and virtual time will be aligned in
927
   the IO wait loop.  */
928
#define ICOUNT_WOBBLE (QEMU_TIMER_BASE / 10)
929

    
930
static void icount_adjust(void)
931
{
932
    int64_t cur_time;
933
    int64_t cur_icount;
934
    int64_t delta;
935
    static int64_t last_delta;
936
    /* If the VM is not running, then do nothing.  */
937
    if (!vm_running)
938
        return;
939

    
940
    cur_time = cpu_get_clock();
941
    cur_icount = qemu_get_clock(vm_clock);
942
    delta = cur_icount - cur_time;
943
    /* FIXME: This is a very crude algorithm, somewhat prone to oscillation.  */
944
    if (delta > 0
945
        && last_delta + ICOUNT_WOBBLE < delta * 2
946
        && icount_time_shift > 0) {
947
        /* The guest is getting too far ahead.  Slow time down.  */
948
        icount_time_shift--;
949
    }
950
    if (delta < 0
951
        && last_delta - ICOUNT_WOBBLE > delta * 2
952
        && icount_time_shift < MAX_ICOUNT_SHIFT) {
953
        /* The guest is getting too far behind.  Speed time up.  */
954
        icount_time_shift++;
955
    }
956
    last_delta = delta;
957
    qemu_icount_bias = cur_icount - (qemu_icount << icount_time_shift);
958
}
959

    
960
static void icount_adjust_rt(void * opaque)
961
{
962
    qemu_mod_timer(icount_rt_timer,
963
                   qemu_get_clock(rt_clock) + 1000);
964
    icount_adjust();
965
}
966

    
967
static void icount_adjust_vm(void * opaque)
968
{
969
    qemu_mod_timer(icount_vm_timer,
970
                   qemu_get_clock(vm_clock) + QEMU_TIMER_BASE / 10);
971
    icount_adjust();
972
}
973

    
974
static void init_icount_adjust(void)
975
{
976
    /* Have both realtime and virtual time triggers for speed adjustment.
977
       The realtime trigger catches emulated time passing too slowly,
978
       the virtual time trigger catches emulated time passing too fast.
979
       Realtime triggers occur even when idle, so use them less frequently
980
       than VM triggers.  */
981
    icount_rt_timer = qemu_new_timer(rt_clock, icount_adjust_rt, NULL);
982
    qemu_mod_timer(icount_rt_timer,
983
                   qemu_get_clock(rt_clock) + 1000);
984
    icount_vm_timer = qemu_new_timer(vm_clock, icount_adjust_vm, NULL);
985
    qemu_mod_timer(icount_vm_timer,
986
                   qemu_get_clock(vm_clock) + QEMU_TIMER_BASE / 10);
987
}
988

    
989
static struct qemu_alarm_timer alarm_timers[] = {
990
#ifndef _WIN32
991
#ifdef __linux__
992
    {"dynticks", ALARM_FLAG_DYNTICKS, dynticks_start_timer,
993
     dynticks_stop_timer, dynticks_rearm_timer, NULL},
994
    /* HPET - if available - is preferred */
995
    {"hpet", 0, hpet_start_timer, hpet_stop_timer, NULL, NULL},
996
    /* ...otherwise try RTC */
997
    {"rtc", 0, rtc_start_timer, rtc_stop_timer, NULL, NULL},
998
#endif
999
    {"unix", 0, unix_start_timer, unix_stop_timer, NULL, NULL},
1000
#else
1001
    {"dynticks", ALARM_FLAG_DYNTICKS, win32_start_timer,
1002
     win32_stop_timer, win32_rearm_timer, &alarm_win32_data},
1003
    {"win32", 0, win32_start_timer,
1004
     win32_stop_timer, NULL, &alarm_win32_data},
1005
#endif
1006
    {NULL, }
1007
};
1008

    
1009
static void show_available_alarms(void)
1010
{
1011
    int i;
1012

    
1013
    printf("Available alarm timers, in order of precedence:\n");
1014
    for (i = 0; alarm_timers[i].name; i++)
1015
        printf("%s\n", alarm_timers[i].name);
1016
}
1017

    
1018
static void configure_alarms(char const *opt)
1019
{
1020
    int i;
1021
    int cur = 0;
1022
    int count = (sizeof(alarm_timers) / sizeof(*alarm_timers)) - 1;
1023
    char *arg;
1024
    char *name;
1025
    struct qemu_alarm_timer tmp;
1026

    
1027
    if (!strcmp(opt, "?")) {
1028
        show_available_alarms();
1029
        exit(0);
1030
    }
1031

    
1032
    arg = strdup(opt);
1033

    
1034
    /* Reorder the array */
1035
    name = strtok(arg, ",");
1036
    while (name) {
1037
        for (i = 0; i < count && alarm_timers[i].name; i++) {
1038
            if (!strcmp(alarm_timers[i].name, name))
1039
                break;
1040
        }
1041

    
1042
        if (i == count) {
1043
            fprintf(stderr, "Unknown clock %s\n", name);
1044
            goto next;
1045
        }
1046

    
1047
        if (i < cur)
1048
            /* Ignore */
1049
            goto next;
1050

    
1051
        /* Swap */
1052
        tmp = alarm_timers[i];
1053
        alarm_timers[i] = alarm_timers[cur];
1054
        alarm_timers[cur] = tmp;
1055

    
1056
        cur++;
1057
next:
1058
        name = strtok(NULL, ",");
1059
    }
1060

    
1061
    free(arg);
1062

    
1063
    if (cur) {
1064
        /* Disable remaining timers */
1065
        for (i = cur; i < count; i++)
1066
            alarm_timers[i].name = NULL;
1067
    } else {
1068
        show_available_alarms();
1069
        exit(1);
1070
    }
1071
}
1072

    
1073
QEMUClock *rt_clock;
1074
QEMUClock *vm_clock;
1075

    
1076
static QEMUTimer *active_timers[2];
1077

    
1078
static QEMUClock *qemu_new_clock(int type)
1079
{
1080
    QEMUClock *clock;
1081
    clock = qemu_mallocz(sizeof(QEMUClock));
1082
    if (!clock)
1083
        return NULL;
1084
    clock->type = type;
1085
    return clock;
1086
}
1087

    
1088
QEMUTimer *qemu_new_timer(QEMUClock *clock, QEMUTimerCB *cb, void *opaque)
1089
{
1090
    QEMUTimer *ts;
1091

    
1092
    ts = qemu_mallocz(sizeof(QEMUTimer));
1093
    ts->clock = clock;
1094
    ts->cb = cb;
1095
    ts->opaque = opaque;
1096
    return ts;
1097
}
1098

    
1099
void qemu_free_timer(QEMUTimer *ts)
1100
{
1101
    qemu_free(ts);
1102
}
1103

    
1104
/* stop a timer, but do not dealloc it */
1105
void qemu_del_timer(QEMUTimer *ts)
1106
{
1107
    QEMUTimer **pt, *t;
1108

    
1109
    /* NOTE: this code must be signal safe because
1110
       qemu_timer_expired() can be called from a signal. */
1111
    pt = &active_timers[ts->clock->type];
1112
    for(;;) {
1113
        t = *pt;
1114
        if (!t)
1115
            break;
1116
        if (t == ts) {
1117
            *pt = t->next;
1118
            break;
1119
        }
1120
        pt = &t->next;
1121
    }
1122
}
1123

    
1124
/* modify the current timer so that it will be fired when current_time
1125
   >= expire_time. The corresponding callback will be called. */
1126
void qemu_mod_timer(QEMUTimer *ts, int64_t expire_time)
1127
{
1128
    QEMUTimer **pt, *t;
1129

    
1130
    qemu_del_timer(ts);
1131

    
1132
    /* add the timer in the sorted list */
1133
    /* NOTE: this code must be signal safe because
1134
       qemu_timer_expired() can be called from a signal. */
1135
    pt = &active_timers[ts->clock->type];
1136
    for(;;) {
1137
        t = *pt;
1138
        if (!t)
1139
            break;
1140
        if (t->expire_time > expire_time)
1141
            break;
1142
        pt = &t->next;
1143
    }
1144
    ts->expire_time = expire_time;
1145
    ts->next = *pt;
1146
    *pt = ts;
1147

    
1148
    /* Rearm if necessary  */
1149
    if (pt == &active_timers[ts->clock->type]) {
1150
        if ((alarm_timer->flags & ALARM_FLAG_EXPIRED) == 0) {
1151
            qemu_rearm_alarm_timer(alarm_timer);
1152
        }
1153
        /* Interrupt execution to force deadline recalculation.  */
1154
        if (use_icount && cpu_single_env) {
1155
            cpu_interrupt(cpu_single_env, CPU_INTERRUPT_EXIT);
1156
        }
1157
    }
1158
}
1159

    
1160
int qemu_timer_pending(QEMUTimer *ts)
1161
{
1162
    QEMUTimer *t;
1163
    for(t = active_timers[ts->clock->type]; t != NULL; t = t->next) {
1164
        if (t == ts)
1165
            return 1;
1166
    }
1167
    return 0;
1168
}
1169

    
1170
static inline int qemu_timer_expired(QEMUTimer *timer_head, int64_t current_time)
1171
{
1172
    if (!timer_head)
1173
        return 0;
1174
    return (timer_head->expire_time <= current_time);
1175
}
1176

    
1177
static void qemu_run_timers(QEMUTimer **ptimer_head, int64_t current_time)
1178
{
1179
    QEMUTimer *ts;
1180

    
1181
    for(;;) {
1182
        ts = *ptimer_head;
1183
        if (!ts || ts->expire_time > current_time)
1184
            break;
1185
        /* remove timer from the list before calling the callback */
1186
        *ptimer_head = ts->next;
1187
        ts->next = NULL;
1188

    
1189
        /* run the callback (the timer list can be modified) */
1190
        ts->cb(ts->opaque);
1191
    }
1192
}
1193

    
1194
int64_t qemu_get_clock(QEMUClock *clock)
1195
{
1196
    switch(clock->type) {
1197
    case QEMU_TIMER_REALTIME:
1198
        return get_clock() / 1000000;
1199
    default:
1200
    case QEMU_TIMER_VIRTUAL:
1201
        if (use_icount) {
1202
            return cpu_get_icount();
1203
        } else {
1204
            return cpu_get_clock();
1205
        }
1206
    }
1207
}
1208

    
1209
static void init_timers(void)
1210
{
1211
    init_get_clock();
1212
    ticks_per_sec = QEMU_TIMER_BASE;
1213
    rt_clock = qemu_new_clock(QEMU_TIMER_REALTIME);
1214
    vm_clock = qemu_new_clock(QEMU_TIMER_VIRTUAL);
1215
}
1216

    
1217
/* save a timer */
1218
void qemu_put_timer(QEMUFile *f, QEMUTimer *ts)
1219
{
1220
    uint64_t expire_time;
1221

    
1222
    if (qemu_timer_pending(ts)) {
1223
        expire_time = ts->expire_time;
1224
    } else {
1225
        expire_time = -1;
1226
    }
1227
    qemu_put_be64(f, expire_time);
1228
}
1229

    
1230
void qemu_get_timer(QEMUFile *f, QEMUTimer *ts)
1231
{
1232
    uint64_t expire_time;
1233

    
1234
    expire_time = qemu_get_be64(f);
1235
    if (expire_time != -1) {
1236
        qemu_mod_timer(ts, expire_time);
1237
    } else {
1238
        qemu_del_timer(ts);
1239
    }
1240
}
1241

    
1242
static void timer_save(QEMUFile *f, void *opaque)
1243
{
1244
    if (cpu_ticks_enabled) {
1245
        hw_error("cannot save state if virtual timers are running");
1246
    }
1247
    qemu_put_be64(f, cpu_ticks_offset);
1248
    qemu_put_be64(f, ticks_per_sec);
1249
    qemu_put_be64(f, cpu_clock_offset);
1250
}
1251

    
1252
static int timer_load(QEMUFile *f, void *opaque, int version_id)
1253
{
1254
    if (version_id != 1 && version_id != 2)
1255
        return -EINVAL;
1256
    if (cpu_ticks_enabled) {
1257
        return -EINVAL;
1258
    }
1259
    cpu_ticks_offset=qemu_get_be64(f);
1260
    ticks_per_sec=qemu_get_be64(f);
1261
    if (version_id == 2) {
1262
        cpu_clock_offset=qemu_get_be64(f);
1263
    }
1264
    return 0;
1265
}
1266

    
1267
#ifdef _WIN32
1268
void CALLBACK host_alarm_handler(UINT uTimerID, UINT uMsg,
1269
                                 DWORD_PTR dwUser, DWORD_PTR dw1, DWORD_PTR dw2)
1270
#else
1271
static void host_alarm_handler(int host_signum)
1272
#endif
1273
{
1274
#if 0
1275
#define DISP_FREQ 1000
1276
    {
1277
        static int64_t delta_min = INT64_MAX;
1278
        static int64_t delta_max, delta_cum, last_clock, delta, ti;
1279
        static int count;
1280
        ti = qemu_get_clock(vm_clock);
1281
        if (last_clock != 0) {
1282
            delta = ti - last_clock;
1283
            if (delta < delta_min)
1284
                delta_min = delta;
1285
            if (delta > delta_max)
1286
                delta_max = delta;
1287
            delta_cum += delta;
1288
            if (++count == DISP_FREQ) {
1289
                printf("timer: min=%" PRId64 " us max=%" PRId64 " us avg=%" PRId64 " us avg_freq=%0.3f Hz\n",
1290
                       muldiv64(delta_min, 1000000, ticks_per_sec),
1291
                       muldiv64(delta_max, 1000000, ticks_per_sec),
1292
                       muldiv64(delta_cum, 1000000 / DISP_FREQ, ticks_per_sec),
1293
                       (double)ticks_per_sec / ((double)delta_cum / DISP_FREQ));
1294
                count = 0;
1295
                delta_min = INT64_MAX;
1296
                delta_max = 0;
1297
                delta_cum = 0;
1298
            }
1299
        }
1300
        last_clock = ti;
1301
    }
1302
#endif
1303
    if (alarm_has_dynticks(alarm_timer) ||
1304
        (!use_icount &&
1305
            qemu_timer_expired(active_timers[QEMU_TIMER_VIRTUAL],
1306
                               qemu_get_clock(vm_clock))) ||
1307
        qemu_timer_expired(active_timers[QEMU_TIMER_REALTIME],
1308
                           qemu_get_clock(rt_clock))) {
1309
#ifdef _WIN32
1310
        struct qemu_alarm_win32 *data = ((struct qemu_alarm_timer*)dwUser)->priv;
1311
        SetEvent(data->host_alarm);
1312
#endif
1313
        CPUState *env = next_cpu;
1314

    
1315
        alarm_timer->flags |= ALARM_FLAG_EXPIRED;
1316

    
1317
        if (env) {
1318
            /* stop the currently executing cpu because a timer occured */
1319
            cpu_interrupt(env, CPU_INTERRUPT_EXIT);
1320
#ifdef USE_KQEMU
1321
            if (env->kqemu_enabled) {
1322
                kqemu_cpu_interrupt(env);
1323
            }
1324
#endif
1325
        }
1326
        event_pending = 1;
1327
    }
1328
}
1329

    
1330
static int64_t qemu_next_deadline(void)
1331
{
1332
    int64_t delta;
1333

    
1334
    if (active_timers[QEMU_TIMER_VIRTUAL]) {
1335
        delta = active_timers[QEMU_TIMER_VIRTUAL]->expire_time -
1336
                     qemu_get_clock(vm_clock);
1337
    } else {
1338
        /* To avoid problems with overflow limit this to 2^32.  */
1339
        delta = INT32_MAX;
1340
    }
1341

    
1342
    if (delta < 0)
1343
        delta = 0;
1344

    
1345
    return delta;
1346
}
1347

    
1348
#if defined(__linux__) || defined(_WIN32)
1349
static uint64_t qemu_next_deadline_dyntick(void)
1350
{
1351
    int64_t delta;
1352
    int64_t rtdelta;
1353

    
1354
    if (use_icount)
1355
        delta = INT32_MAX;
1356
    else
1357
        delta = (qemu_next_deadline() + 999) / 1000;
1358

    
1359
    if (active_timers[QEMU_TIMER_REALTIME]) {
1360
        rtdelta = (active_timers[QEMU_TIMER_REALTIME]->expire_time -
1361
                 qemu_get_clock(rt_clock))*1000;
1362
        if (rtdelta < delta)
1363
            delta = rtdelta;
1364
    }
1365

    
1366
    if (delta < MIN_TIMER_REARM_US)
1367
        delta = MIN_TIMER_REARM_US;
1368

    
1369
    return delta;
1370
}
1371
#endif
1372

    
1373
#ifndef _WIN32
1374

    
1375
#if defined(__linux__)
1376

    
1377
#define RTC_FREQ 1024
1378

    
1379
static void enable_sigio_timer(int fd)
1380
{
1381
    struct sigaction act;
1382

    
1383
    /* timer signal */
1384
    sigfillset(&act.sa_mask);
1385
    act.sa_flags = 0;
1386
    act.sa_handler = host_alarm_handler;
1387

    
1388
    sigaction(SIGIO, &act, NULL);
1389
    fcntl(fd, F_SETFL, O_ASYNC);
1390
    fcntl(fd, F_SETOWN, getpid());
1391
}
1392

    
1393
static int hpet_start_timer(struct qemu_alarm_timer *t)
1394
{
1395
    struct hpet_info info;
1396
    int r, fd;
1397

    
1398
    fd = open("/dev/hpet", O_RDONLY);
1399
    if (fd < 0)
1400
        return -1;
1401

    
1402
    /* Set frequency */
1403
    r = ioctl(fd, HPET_IRQFREQ, RTC_FREQ);
1404
    if (r < 0) {
1405
        fprintf(stderr, "Could not configure '/dev/hpet' to have a 1024Hz timer. This is not a fatal\n"
1406
                "error, but for better emulation accuracy type:\n"
1407
                "'echo 1024 > /proc/sys/dev/hpet/max-user-freq' as root.\n");
1408
        goto fail;
1409
    }
1410

    
1411
    /* Check capabilities */
1412
    r = ioctl(fd, HPET_INFO, &info);
1413
    if (r < 0)
1414
        goto fail;
1415

    
1416
    /* Enable periodic mode */
1417
    r = ioctl(fd, HPET_EPI, 0);
1418
    if (info.hi_flags && (r < 0))
1419
        goto fail;
1420

    
1421
    /* Enable interrupt */
1422
    r = ioctl(fd, HPET_IE_ON, 0);
1423
    if (r < 0)
1424
        goto fail;
1425

    
1426
    enable_sigio_timer(fd);
1427
    t->priv = (void *)(long)fd;
1428

    
1429
    return 0;
1430
fail:
1431
    close(fd);
1432
    return -1;
1433
}
1434

    
1435
static void hpet_stop_timer(struct qemu_alarm_timer *t)
1436
{
1437
    int fd = (long)t->priv;
1438

    
1439
    close(fd);
1440
}
1441

    
1442
static int rtc_start_timer(struct qemu_alarm_timer *t)
1443
{
1444
    int rtc_fd;
1445
    unsigned long current_rtc_freq = 0;
1446

    
1447
    TFR(rtc_fd = open("/dev/rtc", O_RDONLY));
1448
    if (rtc_fd < 0)
1449
        return -1;
1450
    ioctl(rtc_fd, RTC_IRQP_READ, &current_rtc_freq);
1451
    if (current_rtc_freq != RTC_FREQ &&
1452
        ioctl(rtc_fd, RTC_IRQP_SET, RTC_FREQ) < 0) {
1453
        fprintf(stderr, "Could not configure '/dev/rtc' to have a 1024 Hz timer. This is not a fatal\n"
1454
                "error, but for better emulation accuracy either use a 2.6 host Linux kernel or\n"
1455
                "type 'echo 1024 > /proc/sys/dev/rtc/max-user-freq' as root.\n");
1456
        goto fail;
1457
    }
1458
    if (ioctl(rtc_fd, RTC_PIE_ON, 0) < 0) {
1459
    fail:
1460
        close(rtc_fd);
1461
        return -1;
1462
    }
1463

    
1464
    enable_sigio_timer(rtc_fd);
1465

    
1466
    t->priv = (void *)(long)rtc_fd;
1467

    
1468
    return 0;
1469
}
1470

    
1471
static void rtc_stop_timer(struct qemu_alarm_timer *t)
1472
{
1473
    int rtc_fd = (long)t->priv;
1474

    
1475
    close(rtc_fd);
1476
}
1477

    
1478
static int dynticks_start_timer(struct qemu_alarm_timer *t)
1479
{
1480
    struct sigevent ev;
1481
    timer_t host_timer;
1482
    struct sigaction act;
1483

    
1484
    sigfillset(&act.sa_mask);
1485
    act.sa_flags = 0;
1486
    act.sa_handler = host_alarm_handler;
1487

    
1488
    sigaction(SIGALRM, &act, NULL);
1489

    
1490
    ev.sigev_value.sival_int = 0;
1491
    ev.sigev_notify = SIGEV_SIGNAL;
1492
    ev.sigev_signo = SIGALRM;
1493

    
1494
    if (timer_create(CLOCK_REALTIME, &ev, &host_timer)) {
1495
        perror("timer_create");
1496

    
1497
        /* disable dynticks */
1498
        fprintf(stderr, "Dynamic Ticks disabled\n");
1499

    
1500
        return -1;
1501
    }
1502

    
1503
    t->priv = (void *)host_timer;
1504

    
1505
    return 0;
1506
}
1507

    
1508
static void dynticks_stop_timer(struct qemu_alarm_timer *t)
1509
{
1510
    timer_t host_timer = (timer_t)t->priv;
1511

    
1512
    timer_delete(host_timer);
1513
}
1514

    
1515
static void dynticks_rearm_timer(struct qemu_alarm_timer *t)
1516
{
1517
    timer_t host_timer = (timer_t)t->priv;
1518
    struct itimerspec timeout;
1519
    int64_t nearest_delta_us = INT64_MAX;
1520
    int64_t current_us;
1521

    
1522
    if (!active_timers[QEMU_TIMER_REALTIME] &&
1523
                !active_timers[QEMU_TIMER_VIRTUAL])
1524
        return;
1525

    
1526
    nearest_delta_us = qemu_next_deadline_dyntick();
1527

    
1528
    /* check whether a timer is already running */
1529
    if (timer_gettime(host_timer, &timeout)) {
1530
        perror("gettime");
1531
        fprintf(stderr, "Internal timer error: aborting\n");
1532
        exit(1);
1533
    }
1534
    current_us = timeout.it_value.tv_sec * 1000000 + timeout.it_value.tv_nsec/1000;
1535
    if (current_us && current_us <= nearest_delta_us)
1536
        return;
1537

    
1538
    timeout.it_interval.tv_sec = 0;
1539
    timeout.it_interval.tv_nsec = 0; /* 0 for one-shot timer */
1540
    timeout.it_value.tv_sec =  nearest_delta_us / 1000000;
1541
    timeout.it_value.tv_nsec = (nearest_delta_us % 1000000) * 1000;
1542
    if (timer_settime(host_timer, 0 /* RELATIVE */, &timeout, NULL)) {
1543
        perror("settime");
1544
        fprintf(stderr, "Internal timer error: aborting\n");
1545
        exit(1);
1546
    }
1547
}
1548

    
1549
#endif /* defined(__linux__) */
1550

    
1551
static int unix_start_timer(struct qemu_alarm_timer *t)
1552
{
1553
    struct sigaction act;
1554
    struct itimerval itv;
1555
    int err;
1556

    
1557
    /* timer signal */
1558
    sigfillset(&act.sa_mask);
1559
    act.sa_flags = 0;
1560
    act.sa_handler = host_alarm_handler;
1561

    
1562
    sigaction(SIGALRM, &act, NULL);
1563

    
1564
    itv.it_interval.tv_sec = 0;
1565
    /* for i386 kernel 2.6 to get 1 ms */
1566
    itv.it_interval.tv_usec = 999;
1567
    itv.it_value.tv_sec = 0;
1568
    itv.it_value.tv_usec = 10 * 1000;
1569

    
1570
    err = setitimer(ITIMER_REAL, &itv, NULL);
1571
    if (err)
1572
        return -1;
1573

    
1574
    return 0;
1575
}
1576

    
1577
static void unix_stop_timer(struct qemu_alarm_timer *t)
1578
{
1579
    struct itimerval itv;
1580

    
1581
    memset(&itv, 0, sizeof(itv));
1582
    setitimer(ITIMER_REAL, &itv, NULL);
1583
}
1584

    
1585
#endif /* !defined(_WIN32) */
1586

    
1587
#ifdef _WIN32
1588

    
1589
static int win32_start_timer(struct qemu_alarm_timer *t)
1590
{
1591
    TIMECAPS tc;
1592
    struct qemu_alarm_win32 *data = t->priv;
1593
    UINT flags;
1594

    
1595
    data->host_alarm = CreateEvent(NULL, FALSE, FALSE, NULL);
1596
    if (!data->host_alarm) {
1597
        perror("Failed CreateEvent");
1598
        return -1;
1599
    }
1600

    
1601
    memset(&tc, 0, sizeof(tc));
1602
    timeGetDevCaps(&tc, sizeof(tc));
1603

    
1604
    if (data->period < tc.wPeriodMin)
1605
        data->period = tc.wPeriodMin;
1606

    
1607
    timeBeginPeriod(data->period);
1608

    
1609
    flags = TIME_CALLBACK_FUNCTION;
1610
    if (alarm_has_dynticks(t))
1611
        flags |= TIME_ONESHOT;
1612
    else
1613
        flags |= TIME_PERIODIC;
1614

    
1615
    data->timerId = timeSetEvent(1,         // interval (ms)
1616
                        data->period,       // resolution
1617
                        host_alarm_handler, // function
1618
                        (DWORD)t,           // parameter
1619
                        flags);
1620

    
1621
    if (!data->timerId) {
1622
        perror("Failed to initialize win32 alarm timer");
1623

    
1624
        timeEndPeriod(data->period);
1625
        CloseHandle(data->host_alarm);
1626
        return -1;
1627
    }
1628

    
1629
    qemu_add_wait_object(data->host_alarm, NULL, NULL);
1630

    
1631
    return 0;
1632
}
1633

    
1634
static void win32_stop_timer(struct qemu_alarm_timer *t)
1635
{
1636
    struct qemu_alarm_win32 *data = t->priv;
1637

    
1638
    timeKillEvent(data->timerId);
1639
    timeEndPeriod(data->period);
1640

    
1641
    CloseHandle(data->host_alarm);
1642
}
1643

    
1644
static void win32_rearm_timer(struct qemu_alarm_timer *t)
1645
{
1646
    struct qemu_alarm_win32 *data = t->priv;
1647
    uint64_t nearest_delta_us;
1648

    
1649
    if (!active_timers[QEMU_TIMER_REALTIME] &&
1650
                !active_timers[QEMU_TIMER_VIRTUAL])
1651
        return;
1652

    
1653
    nearest_delta_us = qemu_next_deadline_dyntick();
1654
    nearest_delta_us /= 1000;
1655

    
1656
    timeKillEvent(data->timerId);
1657

    
1658
    data->timerId = timeSetEvent(1,
1659
                        data->period,
1660
                        host_alarm_handler,
1661
                        (DWORD)t,
1662
                        TIME_ONESHOT | TIME_PERIODIC);
1663

    
1664
    if (!data->timerId) {
1665
        perror("Failed to re-arm win32 alarm timer");
1666

    
1667
        timeEndPeriod(data->period);
1668
        CloseHandle(data->host_alarm);
1669
        exit(1);
1670
    }
1671
}
1672

    
1673
#endif /* _WIN32 */
1674

    
1675
static void init_timer_alarm(void)
1676
{
1677
    struct qemu_alarm_timer *t = NULL;
1678
    int i, err = -1;
1679

    
1680
    for (i = 0; alarm_timers[i].name; i++) {
1681
        t = &alarm_timers[i];
1682

    
1683
        err = t->start(t);
1684
        if (!err)
1685
            break;
1686
    }
1687

    
1688
    if (err) {
1689
        fprintf(stderr, "Unable to find any suitable alarm timer.\n");
1690
        fprintf(stderr, "Terminating\n");
1691
        exit(1);
1692
    }
1693

    
1694
    alarm_timer = t;
1695
}
1696

    
1697
static void quit_timers(void)
1698
{
1699
    alarm_timer->stop(alarm_timer);
1700
    alarm_timer = NULL;
1701
}
1702

    
1703
/***********************************************************/
1704
/* host time/date access */
1705
void qemu_get_timedate(struct tm *tm, int offset)
1706
{
1707
    time_t ti;
1708
    struct tm *ret;
1709

    
1710
    time(&ti);
1711
    ti += offset;
1712
    if (rtc_date_offset == -1) {
1713
        if (rtc_utc)
1714
            ret = gmtime(&ti);
1715
        else
1716
            ret = localtime(&ti);
1717
    } else {
1718
        ti -= rtc_date_offset;
1719
        ret = gmtime(&ti);
1720
    }
1721

    
1722
    memcpy(tm, ret, sizeof(struct tm));
1723
}
1724

    
1725
int qemu_timedate_diff(struct tm *tm)
1726
{
1727
    time_t seconds;
1728

    
1729
    if (rtc_date_offset == -1)
1730
        if (rtc_utc)
1731
            seconds = mktimegm(tm);
1732
        else
1733
            seconds = mktime(tm);
1734
    else
1735
        seconds = mktimegm(tm) + rtc_date_offset;
1736

    
1737
    return seconds - time(NULL);
1738
}
1739

    
1740
/***********************************************************/
1741
/* character device */
1742

    
1743
static void qemu_chr_event(CharDriverState *s, int event)
1744
{
1745
    if (!s->chr_event)
1746
        return;
1747
    s->chr_event(s->handler_opaque, event);
1748
}
1749

    
1750
static void qemu_chr_reset_bh(void *opaque)
1751
{
1752
    CharDriverState *s = opaque;
1753
    qemu_chr_event(s, CHR_EVENT_RESET);
1754
    qemu_bh_delete(s->bh);
1755
    s->bh = NULL;
1756
}
1757

    
1758
void qemu_chr_reset(CharDriverState *s)
1759
{
1760
    if (s->bh == NULL) {
1761
        s->bh = qemu_bh_new(qemu_chr_reset_bh, s);
1762
        qemu_bh_schedule(s->bh);
1763
    }
1764
}
1765

    
1766
int qemu_chr_write(CharDriverState *s, const uint8_t *buf, int len)
1767
{
1768
    return s->chr_write(s, buf, len);
1769
}
1770

    
1771
int qemu_chr_ioctl(CharDriverState *s, int cmd, void *arg)
1772
{
1773
    if (!s->chr_ioctl)
1774
        return -ENOTSUP;
1775
    return s->chr_ioctl(s, cmd, arg);
1776
}
1777

    
1778
int qemu_chr_can_read(CharDriverState *s)
1779
{
1780
    if (!s->chr_can_read)
1781
        return 0;
1782
    return s->chr_can_read(s->handler_opaque);
1783
}
1784

    
1785
void qemu_chr_read(CharDriverState *s, uint8_t *buf, int len)
1786
{
1787
    s->chr_read(s->handler_opaque, buf, len);
1788
}
1789

    
1790
void qemu_chr_accept_input(CharDriverState *s)
1791
{
1792
    if (s->chr_accept_input)
1793
        s->chr_accept_input(s);
1794
}
1795

    
1796
void qemu_chr_printf(CharDriverState *s, const char *fmt, ...)
1797
{
1798
    char buf[4096];
1799
    va_list ap;
1800
    va_start(ap, fmt);
1801
    vsnprintf(buf, sizeof(buf), fmt, ap);
1802
    qemu_chr_write(s, (uint8_t *)buf, strlen(buf));
1803
    va_end(ap);
1804
}
1805

    
1806
void qemu_chr_send_event(CharDriverState *s, int event)
1807
{
1808
    if (s->chr_send_event)
1809
        s->chr_send_event(s, event);
1810
}
1811

    
1812
void qemu_chr_add_handlers(CharDriverState *s,
1813
                           IOCanRWHandler *fd_can_read,
1814
                           IOReadHandler *fd_read,
1815
                           IOEventHandler *fd_event,
1816
                           void *opaque)
1817
{
1818
    s->chr_can_read = fd_can_read;
1819
    s->chr_read = fd_read;
1820
    s->chr_event = fd_event;
1821
    s->handler_opaque = opaque;
1822
    if (s->chr_update_read_handler)
1823
        s->chr_update_read_handler(s);
1824
}
1825

    
1826
static int null_chr_write(CharDriverState *chr, const uint8_t *buf, int len)
1827
{
1828
    return len;
1829
}
1830

    
1831
static CharDriverState *qemu_chr_open_null(void)
1832
{
1833
    CharDriverState *chr;
1834

    
1835
    chr = qemu_mallocz(sizeof(CharDriverState));
1836
    if (!chr)
1837
        return NULL;
1838
    chr->chr_write = null_chr_write;
1839
    return chr;
1840
}
1841

    
1842
/* MUX driver for serial I/O splitting */
1843
static int term_timestamps;
1844
static int64_t term_timestamps_start;
1845
#define MAX_MUX 4
1846
#define MUX_BUFFER_SIZE 32        /* Must be a power of 2.  */
1847
#define MUX_BUFFER_MASK (MUX_BUFFER_SIZE - 1)
1848
typedef struct {
1849
    IOCanRWHandler *chr_can_read[MAX_MUX];
1850
    IOReadHandler *chr_read[MAX_MUX];
1851
    IOEventHandler *chr_event[MAX_MUX];
1852
    void *ext_opaque[MAX_MUX];
1853
    CharDriverState *drv;
1854
    unsigned char buffer[MUX_BUFFER_SIZE];
1855
    int prod;
1856
    int cons;
1857
    int mux_cnt;
1858
    int term_got_escape;
1859
    int max_size;
1860
} MuxDriver;
1861

    
1862

    
1863
static int mux_chr_write(CharDriverState *chr, const uint8_t *buf, int len)
1864
{
1865
    MuxDriver *d = chr->opaque;
1866
    int ret;
1867
    if (!term_timestamps) {
1868
        ret = d->drv->chr_write(d->drv, buf, len);
1869
    } else {
1870
        int i;
1871

    
1872
        ret = 0;
1873
        for(i = 0; i < len; i++) {
1874
            ret += d->drv->chr_write(d->drv, buf+i, 1);
1875
            if (buf[i] == '\n') {
1876
                char buf1[64];
1877
                int64_t ti;
1878
                int secs;
1879

    
1880
                ti = get_clock();
1881
                if (term_timestamps_start == -1)
1882
                    term_timestamps_start = ti;
1883
                ti -= term_timestamps_start;
1884
                secs = ti / 1000000000;
1885
                snprintf(buf1, sizeof(buf1),
1886
                         "[%02d:%02d:%02d.%03d] ",
1887
                         secs / 3600,
1888
                         (secs / 60) % 60,
1889
                         secs % 60,
1890
                         (int)((ti / 1000000) % 1000));
1891
                d->drv->chr_write(d->drv, (uint8_t *)buf1, strlen(buf1));
1892
            }
1893
        }
1894
    }
1895
    return ret;
1896
}
1897

    
1898
static const char * const mux_help[] = {
1899
    "% h    print this help\n\r",
1900
    "% x    exit emulator\n\r",
1901
    "% s    save disk data back to file (if -snapshot)\n\r",
1902
    "% t    toggle console timestamps\n\r"
1903
    "% b    send break (magic sysrq)\n\r",
1904
    "% c    switch between console and monitor\n\r",
1905
    "% %  sends %\n\r",
1906
    NULL
1907
};
1908

    
1909
static int term_escape_char = 0x01; /* ctrl-a is used for escape */
1910
static void mux_print_help(CharDriverState *chr)
1911
{
1912
    int i, j;
1913
    char ebuf[15] = "Escape-Char";
1914
    char cbuf[50] = "\n\r";
1915

    
1916
    if (term_escape_char > 0 && term_escape_char < 26) {
1917
        snprintf(cbuf, sizeof(cbuf), "\n\r");
1918
        snprintf(ebuf, sizeof(ebuf), "C-%c", term_escape_char - 1 + 'a');
1919
    } else {
1920
        snprintf(cbuf, sizeof(cbuf),
1921
                 "\n\rEscape-Char set to Ascii: 0x%02x\n\r\n\r",
1922
                 term_escape_char);
1923
    }
1924
    chr->chr_write(chr, (uint8_t *)cbuf, strlen(cbuf));
1925
    for (i = 0; mux_help[i] != NULL; i++) {
1926
        for (j=0; mux_help[i][j] != '\0'; j++) {
1927
            if (mux_help[i][j] == '%')
1928
                chr->chr_write(chr, (uint8_t *)ebuf, strlen(ebuf));
1929
            else
1930
                chr->chr_write(chr, (uint8_t *)&mux_help[i][j], 1);
1931
        }
1932
    }
1933
}
1934

    
1935
static int mux_proc_byte(CharDriverState *chr, MuxDriver *d, int ch)
1936
{
1937
    if (d->term_got_escape) {
1938
        d->term_got_escape = 0;
1939
        if (ch == term_escape_char)
1940
            goto send_char;
1941
        switch(ch) {
1942
        case '?':
1943
        case 'h':
1944
            mux_print_help(chr);
1945
            break;
1946
        case 'x':
1947
            {
1948
                 const char *term =  "QEMU: Terminated\n\r";
1949
                 chr->chr_write(chr,(uint8_t *)term,strlen(term));
1950
                 exit(0);
1951
                 break;
1952
            }
1953
        case 's':
1954
            {
1955
                int i;
1956
                for (i = 0; i < nb_drives; i++) {
1957
                        bdrv_commit(drives_table[i].bdrv);
1958
                }
1959
            }
1960
            break;
1961
        case 'b':
1962
            qemu_chr_event(chr, CHR_EVENT_BREAK);
1963
            break;
1964
        case 'c':
1965
            /* Switch to the next registered device */
1966
            chr->focus++;
1967
            if (chr->focus >= d->mux_cnt)
1968
                chr->focus = 0;
1969
            break;
1970
       case 't':
1971
           term_timestamps = !term_timestamps;
1972
           term_timestamps_start = -1;
1973
           break;
1974
        }
1975
    } else if (ch == term_escape_char) {
1976
        d->term_got_escape = 1;
1977
    } else {
1978
    send_char:
1979
        return 1;
1980
    }
1981
    return 0;
1982
}
1983

    
1984
static void mux_chr_accept_input(CharDriverState *chr)
1985
{
1986
    int m = chr->focus;
1987
    MuxDriver *d = chr->opaque;
1988

    
1989
    while (d->prod != d->cons &&
1990
           d->chr_can_read[m] &&
1991
           d->chr_can_read[m](d->ext_opaque[m])) {
1992
        d->chr_read[m](d->ext_opaque[m],
1993
                       &d->buffer[d->cons++ & MUX_BUFFER_MASK], 1);
1994
    }
1995
}
1996

    
1997
static int mux_chr_can_read(void *opaque)
1998
{
1999
    CharDriverState *chr = opaque;
2000
    MuxDriver *d = chr->opaque;
2001

    
2002
    if ((d->prod - d->cons) < MUX_BUFFER_SIZE)
2003
        return 1;
2004
    if (d->chr_can_read[chr->focus])
2005
        return d->chr_can_read[chr->focus](d->ext_opaque[chr->focus]);
2006
    return 0;
2007
}
2008

    
2009
static void mux_chr_read(void *opaque, const uint8_t *buf, int size)
2010
{
2011
    CharDriverState *chr = opaque;
2012
    MuxDriver *d = chr->opaque;
2013
    int m = chr->focus;
2014
    int i;
2015

    
2016
    mux_chr_accept_input (opaque);
2017

    
2018
    for(i = 0; i < size; i++)
2019
        if (mux_proc_byte(chr, d, buf[i])) {
2020
            if (d->prod == d->cons &&
2021
                d->chr_can_read[m] &&
2022
                d->chr_can_read[m](d->ext_opaque[m]))
2023
                d->chr_read[m](d->ext_opaque[m], &buf[i], 1);
2024
            else
2025
                d->buffer[d->prod++ & MUX_BUFFER_MASK] = buf[i];
2026
        }
2027
}
2028

    
2029
static void mux_chr_event(void *opaque, int event)
2030
{
2031
    CharDriverState *chr = opaque;
2032
    MuxDriver *d = chr->opaque;
2033
    int i;
2034

    
2035
    /* Send the event to all registered listeners */
2036
    for (i = 0; i < d->mux_cnt; i++)
2037
        if (d->chr_event[i])
2038
            d->chr_event[i](d->ext_opaque[i], event);
2039
}
2040

    
2041
static void mux_chr_update_read_handler(CharDriverState *chr)
2042
{
2043
    MuxDriver *d = chr->opaque;
2044

    
2045
    if (d->mux_cnt >= MAX_MUX) {
2046
        fprintf(stderr, "Cannot add I/O handlers, MUX array is full\n");
2047
        return;
2048
    }
2049
    d->ext_opaque[d->mux_cnt] = chr->handler_opaque;
2050
    d->chr_can_read[d->mux_cnt] = chr->chr_can_read;
2051
    d->chr_read[d->mux_cnt] = chr->chr_read;
2052
    d->chr_event[d->mux_cnt] = chr->chr_event;
2053
    /* Fix up the real driver with mux routines */
2054
    if (d->mux_cnt == 0) {
2055
        qemu_chr_add_handlers(d->drv, mux_chr_can_read, mux_chr_read,
2056
                              mux_chr_event, chr);
2057
    }
2058
    chr->focus = d->mux_cnt;
2059
    d->mux_cnt++;
2060
}
2061

    
2062
static CharDriverState *qemu_chr_open_mux(CharDriverState *drv)
2063
{
2064
    CharDriverState *chr;
2065
    MuxDriver *d;
2066

    
2067
    chr = qemu_mallocz(sizeof(CharDriverState));
2068
    if (!chr)
2069
        return NULL;
2070
    d = qemu_mallocz(sizeof(MuxDriver));
2071
    if (!d) {
2072
        free(chr);
2073
        return NULL;
2074
    }
2075

    
2076
    chr->opaque = d;
2077
    d->drv = drv;
2078
    chr->focus = -1;
2079
    chr->chr_write = mux_chr_write;
2080
    chr->chr_update_read_handler = mux_chr_update_read_handler;
2081
    chr->chr_accept_input = mux_chr_accept_input;
2082
    return chr;
2083
}
2084

    
2085

    
2086
#ifdef _WIN32
2087

    
2088
static void socket_cleanup(void)
2089
{
2090
    WSACleanup();
2091
}
2092

    
2093
static int socket_init(void)
2094
{
2095
    WSADATA Data;
2096
    int ret, err;
2097

    
2098
    ret = WSAStartup(MAKEWORD(2,2), &Data);
2099
    if (ret != 0) {
2100
        err = WSAGetLastError();
2101
        fprintf(stderr, "WSAStartup: %d\n", err);
2102
        return -1;
2103
    }
2104
    atexit(socket_cleanup);
2105
    return 0;
2106
}
2107

    
2108
static int send_all(int fd, const uint8_t *buf, int len1)
2109
{
2110
    int ret, len;
2111

    
2112
    len = len1;
2113
    while (len > 0) {
2114
        ret = send(fd, buf, len, 0);
2115
        if (ret < 0) {
2116
            int errno;
2117
            errno = WSAGetLastError();
2118
            if (errno != WSAEWOULDBLOCK) {
2119
                return -1;
2120
            }
2121
        } else if (ret == 0) {
2122
            break;
2123
        } else {
2124
            buf += ret;
2125
            len -= ret;
2126
        }
2127
    }
2128
    return len1 - len;
2129
}
2130

    
2131
#else
2132

    
2133
static int unix_write(int fd, const uint8_t *buf, int len1)
2134
{
2135
    int ret, len;
2136

    
2137
    len = len1;
2138
    while (len > 0) {
2139
        ret = write(fd, buf, len);
2140
        if (ret < 0) {
2141
            if (errno != EINTR && errno != EAGAIN)
2142
                return -1;
2143
        } else if (ret == 0) {
2144
            break;
2145
        } else {
2146
            buf += ret;
2147
            len -= ret;
2148
        }
2149
    }
2150
    return len1 - len;
2151
}
2152

    
2153
static inline int send_all(int fd, const uint8_t *buf, int len1)
2154
{
2155
    return unix_write(fd, buf, len1);
2156
}
2157
#endif /* !_WIN32 */
2158

    
2159
#ifndef _WIN32
2160

    
2161
typedef struct {
2162
    int fd_in, fd_out;
2163
    int max_size;
2164
} FDCharDriver;
2165

    
2166
#define STDIO_MAX_CLIENTS 1
2167
static int stdio_nb_clients = 0;
2168

    
2169
static int fd_chr_write(CharDriverState *chr, const uint8_t *buf, int len)
2170
{
2171
    FDCharDriver *s = chr->opaque;
2172
    return unix_write(s->fd_out, buf, len);
2173
}
2174

    
2175
static int fd_chr_read_poll(void *opaque)
2176
{
2177
    CharDriverState *chr = opaque;
2178
    FDCharDriver *s = chr->opaque;
2179

    
2180
    s->max_size = qemu_chr_can_read(chr);
2181
    return s->max_size;
2182
}
2183

    
2184
static void fd_chr_read(void *opaque)
2185
{
2186
    CharDriverState *chr = opaque;
2187
    FDCharDriver *s = chr->opaque;
2188
    int size, len;
2189
    uint8_t buf[1024];
2190

    
2191
    len = sizeof(buf);
2192
    if (len > s->max_size)
2193
        len = s->max_size;
2194
    if (len == 0)
2195
        return;
2196
    size = read(s->fd_in, buf, len);
2197
    if (size == 0) {
2198
        /* FD has been closed. Remove it from the active list.  */
2199
        qemu_set_fd_handler2(s->fd_in, NULL, NULL, NULL, NULL);
2200
        return;
2201
    }
2202
    if (size > 0) {
2203
        qemu_chr_read(chr, buf, size);
2204
    }
2205
}
2206

    
2207
static void fd_chr_update_read_handler(CharDriverState *chr)
2208
{
2209
    FDCharDriver *s = chr->opaque;
2210

    
2211
    if (s->fd_in >= 0) {
2212
        if (nographic && s->fd_in == 0) {
2213
        } else {
2214
            qemu_set_fd_handler2(s->fd_in, fd_chr_read_poll,
2215
                                 fd_chr_read, NULL, chr);
2216
        }
2217
    }
2218
}
2219

    
2220
static void fd_chr_close(struct CharDriverState *chr)
2221
{
2222
    FDCharDriver *s = chr->opaque;
2223

    
2224
    if (s->fd_in >= 0) {
2225
        if (nographic && s->fd_in == 0) {
2226
        } else {
2227
            qemu_set_fd_handler2(s->fd_in, NULL, NULL, NULL, NULL);
2228
        }
2229
    }
2230

    
2231
    qemu_free(s);
2232
}
2233

    
2234
/* open a character device to a unix fd */
2235
static CharDriverState *qemu_chr_open_fd(int fd_in, int fd_out)
2236
{
2237
    CharDriverState *chr;
2238
    FDCharDriver *s;
2239

    
2240
    chr = qemu_mallocz(sizeof(CharDriverState));
2241
    if (!chr)
2242
        return NULL;
2243
    s = qemu_mallocz(sizeof(FDCharDriver));
2244
    if (!s) {
2245
        free(chr);
2246
        return NULL;
2247
    }
2248
    s->fd_in = fd_in;
2249
    s->fd_out = fd_out;
2250
    chr->opaque = s;
2251
    chr->chr_write = fd_chr_write;
2252
    chr->chr_update_read_handler = fd_chr_update_read_handler;
2253
    chr->chr_close = fd_chr_close;
2254

    
2255
    qemu_chr_reset(chr);
2256

    
2257
    return chr;
2258
}
2259

    
2260
static CharDriverState *qemu_chr_open_file_out(const char *file_out)
2261
{
2262
    int fd_out;
2263

    
2264
    TFR(fd_out = open(file_out, O_WRONLY | O_TRUNC | O_CREAT | O_BINARY, 0666));
2265
    if (fd_out < 0)
2266
        return NULL;
2267
    return qemu_chr_open_fd(-1, fd_out);
2268
}
2269

    
2270
static CharDriverState *qemu_chr_open_pipe(const char *filename)
2271
{
2272
    int fd_in, fd_out;
2273
    char filename_in[256], filename_out[256];
2274

    
2275
    snprintf(filename_in, 256, "%s.in", filename);
2276
    snprintf(filename_out, 256, "%s.out", filename);
2277
    TFR(fd_in = open(filename_in, O_RDWR | O_BINARY));
2278
    TFR(fd_out = open(filename_out, O_RDWR | O_BINARY));
2279
    if (fd_in < 0 || fd_out < 0) {
2280
        if (fd_in >= 0)
2281
            close(fd_in);
2282
        if (fd_out >= 0)
2283
            close(fd_out);
2284
        TFR(fd_in = fd_out = open(filename, O_RDWR | O_BINARY));
2285
        if (fd_in < 0)
2286
            return NULL;
2287
    }
2288
    return qemu_chr_open_fd(fd_in, fd_out);
2289
}
2290

    
2291

    
2292
/* for STDIO, we handle the case where several clients use it
2293
   (nographic mode) */
2294

    
2295
#define TERM_FIFO_MAX_SIZE 1
2296

    
2297
static uint8_t term_fifo[TERM_FIFO_MAX_SIZE];
2298
static int term_fifo_size;
2299

    
2300
static int stdio_read_poll(void *opaque)
2301
{
2302
    CharDriverState *chr = opaque;
2303

    
2304
    /* try to flush the queue if needed */
2305
    if (term_fifo_size != 0 && qemu_chr_can_read(chr) > 0) {
2306
        qemu_chr_read(chr, term_fifo, 1);
2307
        term_fifo_size = 0;
2308
    }
2309
    /* see if we can absorb more chars */
2310
    if (term_fifo_size == 0)
2311
        return 1;
2312
    else
2313
        return 0;
2314
}
2315

    
2316
static void stdio_read(void *opaque)
2317
{
2318
    int size;
2319
    uint8_t buf[1];
2320
    CharDriverState *chr = opaque;
2321

    
2322
    size = read(0, buf, 1);
2323
    if (size == 0) {
2324
        /* stdin has been closed. Remove it from the active list.  */
2325
        qemu_set_fd_handler2(0, NULL, NULL, NULL, NULL);
2326
        return;
2327
    }
2328
    if (size > 0) {
2329
        if (qemu_chr_can_read(chr) > 0) {
2330
            qemu_chr_read(chr, buf, 1);
2331
        } else if (term_fifo_size == 0) {
2332
            term_fifo[term_fifo_size++] = buf[0];
2333
        }
2334
    }
2335
}
2336

    
2337
/* init terminal so that we can grab keys */
2338
static struct termios oldtty;
2339
static int old_fd0_flags;
2340
static int term_atexit_done;
2341

    
2342
static void term_exit(void)
2343
{
2344
    tcsetattr (0, TCSANOW, &oldtty);
2345
    fcntl(0, F_SETFL, old_fd0_flags);
2346
}
2347

    
2348
static void term_init(void)
2349
{
2350
    struct termios tty;
2351

    
2352
    tcgetattr (0, &tty);
2353
    oldtty = tty;
2354
    old_fd0_flags = fcntl(0, F_GETFL);
2355

    
2356
    tty.c_iflag &= ~(IGNBRK|BRKINT|PARMRK|ISTRIP
2357
                          |INLCR|IGNCR|ICRNL|IXON);
2358
    tty.c_oflag |= OPOST;
2359
    tty.c_lflag &= ~(ECHO|ECHONL|ICANON|IEXTEN);
2360
    /* if graphical mode, we allow Ctrl-C handling */
2361
    if (nographic)
2362
        tty.c_lflag &= ~ISIG;
2363
    tty.c_cflag &= ~(CSIZE|PARENB);
2364
    tty.c_cflag |= CS8;
2365
    tty.c_cc[VMIN] = 1;
2366
    tty.c_cc[VTIME] = 0;
2367

    
2368
    tcsetattr (0, TCSANOW, &tty);
2369

    
2370
    if (!term_atexit_done++)
2371
        atexit(term_exit);
2372

    
2373
    fcntl(0, F_SETFL, O_NONBLOCK);
2374
}
2375

    
2376
static void qemu_chr_close_stdio(struct CharDriverState *chr)
2377
{
2378
    term_exit();
2379
    stdio_nb_clients--;
2380
    qemu_set_fd_handler2(0, NULL, NULL, NULL, NULL);
2381
    fd_chr_close(chr);
2382
}
2383

    
2384
static CharDriverState *qemu_chr_open_stdio(void)
2385
{
2386
    CharDriverState *chr;
2387

    
2388
    if (stdio_nb_clients >= STDIO_MAX_CLIENTS)
2389
        return NULL;
2390
    chr = qemu_chr_open_fd(0, 1);
2391
    chr->chr_close = qemu_chr_close_stdio;
2392
    qemu_set_fd_handler2(0, stdio_read_poll, stdio_read, NULL, chr);
2393
    stdio_nb_clients++;
2394
    term_init();
2395

    
2396
    return chr;
2397
}
2398

    
2399
#ifdef __sun__
2400
/* Once Solaris has openpty(), this is going to be removed. */
2401
int openpty(int *amaster, int *aslave, char *name,
2402
            struct termios *termp, struct winsize *winp)
2403
{
2404
        const char *slave;
2405
        int mfd = -1, sfd = -1;
2406

    
2407
        *amaster = *aslave = -1;
2408

    
2409
        mfd = open("/dev/ptmx", O_RDWR | O_NOCTTY);
2410
        if (mfd < 0)
2411
                goto err;
2412

    
2413
        if (grantpt(mfd) == -1 || unlockpt(mfd) == -1)
2414
                goto err;
2415

    
2416
        if ((slave = ptsname(mfd)) == NULL)
2417
                goto err;
2418

    
2419
        if ((sfd = open(slave, O_RDONLY | O_NOCTTY)) == -1)
2420
                goto err;
2421

    
2422
        if (ioctl(sfd, I_PUSH, "ptem") == -1 ||
2423
            (termp != NULL && tcgetattr(sfd, termp) < 0))
2424
                goto err;
2425

    
2426
        if (amaster)
2427
                *amaster = mfd;
2428
        if (aslave)
2429
                *aslave = sfd;
2430
        if (winp)
2431
                ioctl(sfd, TIOCSWINSZ, winp);
2432

    
2433
        return 0;
2434

    
2435
err:
2436
        if (sfd != -1)
2437
                close(sfd);
2438
        close(mfd);
2439
        return -1;
2440
}
2441

    
2442
void cfmakeraw (struct termios *termios_p)
2443
{
2444
        termios_p->c_iflag &=
2445
                ~(IGNBRK|BRKINT|PARMRK|ISTRIP|INLCR|IGNCR|ICRNL|IXON);
2446
        termios_p->c_oflag &= ~OPOST;
2447
        termios_p->c_lflag &= ~(ECHO|ECHONL|ICANON|ISIG|IEXTEN);
2448
        termios_p->c_cflag &= ~(CSIZE|PARENB);
2449
        termios_p->c_cflag |= CS8;
2450

    
2451
        termios_p->c_cc[VMIN] = 0;
2452
        termios_p->c_cc[VTIME] = 0;
2453
}
2454
#endif
2455

    
2456
#if defined(__linux__) || defined(__sun__) || defined(__FreeBSD__) \
2457
    || defined(__NetBSD__) || defined(__OpenBSD__)
2458

    
2459
typedef struct {
2460
    int fd;
2461
    int connected;
2462
    int polling;
2463
    int read_bytes;
2464
    QEMUTimer *timer;
2465
} PtyCharDriver;
2466

    
2467
static void pty_chr_update_read_handler(CharDriverState *chr);
2468
static void pty_chr_state(CharDriverState *chr, int connected);
2469

    
2470
static int pty_chr_write(CharDriverState *chr, const uint8_t *buf, int len)
2471
{
2472
    PtyCharDriver *s = chr->opaque;
2473

    
2474
    if (!s->connected) {
2475
        /* guest sends data, check for (re-)connect */
2476
        pty_chr_update_read_handler(chr);
2477
        return 0;
2478
    }
2479
    return unix_write(s->fd, buf, len);
2480
}
2481

    
2482
static int pty_chr_read_poll(void *opaque)
2483
{
2484
    CharDriverState *chr = opaque;
2485
    PtyCharDriver *s = chr->opaque;
2486

    
2487
    s->read_bytes = qemu_chr_can_read(chr);
2488
    return s->read_bytes;
2489
}
2490

    
2491
static void pty_chr_read(void *opaque)
2492
{
2493
    CharDriverState *chr = opaque;
2494
    PtyCharDriver *s = chr->opaque;
2495
    int size, len;
2496
    uint8_t buf[1024];
2497

    
2498
    len = sizeof(buf);
2499
    if (len > s->read_bytes)
2500
        len = s->read_bytes;
2501
    if (len == 0)
2502
        return;
2503
    size = read(s->fd, buf, len);
2504
    if ((size == -1 && errno == EIO) ||
2505
        (size == 0)) {
2506
        pty_chr_state(chr, 0);
2507
        return;
2508
    }
2509
    if (size > 0) {
2510
        pty_chr_state(chr, 1);
2511
        qemu_chr_read(chr, buf, size);
2512
    }
2513
}
2514

    
2515
static void pty_chr_update_read_handler(CharDriverState *chr)
2516
{
2517
    PtyCharDriver *s = chr->opaque;
2518

    
2519
    qemu_set_fd_handler2(s->fd, pty_chr_read_poll,
2520
                         pty_chr_read, NULL, chr);
2521
    s->polling = 1;
2522
    /*
2523
     * Short timeout here: just need wait long enougth that qemu makes
2524
     * it through the poll loop once.  When reconnected we want a
2525
     * short timeout so we notice it almost instantly.  Otherwise
2526
     * read() gives us -EIO instantly, making pty_chr_state() reset the
2527
     * timeout to the normal (much longer) poll interval before the
2528
     * timer triggers.
2529
     */
2530
    qemu_mod_timer(s->timer, qemu_get_clock(rt_clock) + 10);
2531
}
2532

    
2533
static void pty_chr_state(CharDriverState *chr, int connected)
2534
{
2535
    PtyCharDriver *s = chr->opaque;
2536

    
2537
    if (!connected) {
2538
        qemu_set_fd_handler2(s->fd, NULL, NULL, NULL, NULL);
2539
        s->connected = 0;
2540
        s->polling = 0;
2541
        /* (re-)connect poll interval for idle guests: once per second.
2542
         * We check more frequently in case the guests sends data to
2543
         * the virtual device linked to our pty. */
2544
        qemu_mod_timer(s->timer, qemu_get_clock(rt_clock) + 1000);
2545
    } else {
2546
        if (!s->connected)
2547
            qemu_chr_reset(chr);
2548
        s->connected = 1;
2549
    }
2550
}
2551

    
2552
static void pty_chr_timer(void *opaque)
2553
{
2554
    struct CharDriverState *chr = opaque;
2555
    PtyCharDriver *s = chr->opaque;
2556

    
2557
    if (s->connected)
2558
        return;
2559
    if (s->polling) {
2560
        /* If we arrive here without polling being cleared due
2561
         * read returning -EIO, then we are (re-)connected */
2562
        pty_chr_state(chr, 1);
2563
        return;
2564
    }
2565

    
2566
    /* Next poll ... */
2567
    pty_chr_update_read_handler(chr);
2568
}
2569

    
2570
static void pty_chr_close(struct CharDriverState *chr)
2571
{
2572
    PtyCharDriver *s = chr->opaque;
2573

    
2574
    qemu_set_fd_handler2(s->fd, NULL, NULL, NULL, NULL);
2575
    close(s->fd);
2576
    qemu_free(s);
2577
}
2578

    
2579
static CharDriverState *qemu_chr_open_pty(void)
2580
{
2581
    CharDriverState *chr;
2582
    PtyCharDriver *s;
2583
    struct termios tty;
2584
    int slave_fd;
2585
#if defined(__OpenBSD__)
2586
    char pty_name[PATH_MAX];
2587
#define q_ptsname(x) pty_name
2588
#else
2589
    char *pty_name = NULL;
2590
#define q_ptsname(x) ptsname(x)
2591
#endif
2592

    
2593
    chr = qemu_mallocz(sizeof(CharDriverState));
2594
    if (!chr)
2595
        return NULL;
2596
    s = qemu_mallocz(sizeof(PtyCharDriver));
2597
    if (!s) {
2598
        qemu_free(chr);
2599
        return NULL;
2600
    }
2601

    
2602
    if (openpty(&s->fd, &slave_fd, pty_name, NULL, NULL) < 0) {
2603
        return NULL;
2604
    }
2605

    
2606
    /* Set raw attributes on the pty. */
2607
    cfmakeraw(&tty);
2608
    tcsetattr(slave_fd, TCSAFLUSH, &tty);
2609
    close(slave_fd);
2610

    
2611
    fprintf(stderr, "char device redirected to %s\n", q_ptsname(s->fd));
2612

    
2613
    chr->opaque = s;
2614
    chr->chr_write = pty_chr_write;
2615
    chr->chr_update_read_handler = pty_chr_update_read_handler;
2616
    chr->chr_close = pty_chr_close;
2617

    
2618
    s->timer = qemu_new_timer(rt_clock, pty_chr_timer, chr);
2619

    
2620
    return chr;
2621
}
2622

    
2623
static void tty_serial_init(int fd, int speed,
2624
                            int parity, int data_bits, int stop_bits)
2625
{
2626
    struct termios tty;
2627
    speed_t spd;
2628

    
2629
#if 0
2630
    printf("tty_serial_init: speed=%d parity=%c data=%d stop=%d\n",
2631
           speed, parity, data_bits, stop_bits);
2632
#endif
2633
    tcgetattr (fd, &tty);
2634

    
2635
#define MARGIN 1.1
2636
    if (speed <= 50 * MARGIN)
2637
        spd = B50;
2638
    else if (speed <= 75 * MARGIN)
2639
        spd = B75;
2640
    else if (speed <= 300 * MARGIN)
2641
        spd = B300;
2642
    else if (speed <= 600 * MARGIN)
2643
        spd = B600;
2644
    else if (speed <= 1200 * MARGIN)
2645
        spd = B1200;
2646
    else if (speed <= 2400 * MARGIN)
2647
        spd = B2400;
2648
    else if (speed <= 4800 * MARGIN)
2649
        spd = B4800;
2650
    else if (speed <= 9600 * MARGIN)
2651
        spd = B9600;
2652
    else if (speed <= 19200 * MARGIN)
2653
        spd = B19200;
2654
    else if (speed <= 38400 * MARGIN)
2655
        spd = B38400;
2656
    else if (speed <= 57600 * MARGIN)
2657
        spd = B57600;
2658
    else if (speed <= 115200 * MARGIN)
2659
        spd = B115200;
2660
    else
2661
        spd = B115200;
2662

    
2663
    cfsetispeed(&tty, spd);
2664
    cfsetospeed(&tty, spd);
2665

    
2666
    tty.c_iflag &= ~(IGNBRK|BRKINT|PARMRK|ISTRIP
2667
                          |INLCR|IGNCR|ICRNL|IXON);
2668
    tty.c_oflag |= OPOST;
2669
    tty.c_lflag &= ~(ECHO|ECHONL|ICANON|IEXTEN|ISIG);
2670
    tty.c_cflag &= ~(CSIZE|PARENB|PARODD|CRTSCTS|CSTOPB);
2671
    switch(data_bits) {
2672
    default:
2673
    case 8:
2674
        tty.c_cflag |= CS8;
2675
        break;
2676
    case 7:
2677
        tty.c_cflag |= CS7;
2678
        break;
2679
    case 6:
2680
        tty.c_cflag |= CS6;
2681
        break;
2682
    case 5:
2683
        tty.c_cflag |= CS5;
2684
        break;
2685
    }
2686
    switch(parity) {
2687
    default:
2688
    case 'N':
2689
        break;
2690
    case 'E':
2691
        tty.c_cflag |= PARENB;
2692
        break;
2693
    case 'O':
2694
        tty.c_cflag |= PARENB | PARODD;
2695
        break;
2696
    }
2697
    if (stop_bits == 2)
2698
        tty.c_cflag |= CSTOPB;
2699

    
2700
    tcsetattr (fd, TCSANOW, &tty);
2701
}
2702

    
2703
static int tty_serial_ioctl(CharDriverState *chr, int cmd, void *arg)
2704
{
2705
    FDCharDriver *s = chr->opaque;
2706

    
2707
    switch(cmd) {
2708
    case CHR_IOCTL_SERIAL_SET_PARAMS:
2709
        {
2710
            QEMUSerialSetParams *ssp = arg;
2711
            tty_serial_init(s->fd_in, ssp->speed, ssp->parity,
2712
                            ssp->data_bits, ssp->stop_bits);
2713
        }
2714
        break;
2715
    case CHR_IOCTL_SERIAL_SET_BREAK:
2716
        {
2717
            int enable = *(int *)arg;
2718
            if (enable)
2719
                tcsendbreak(s->fd_in, 1);
2720
        }
2721
        break;
2722
    case CHR_IOCTL_SERIAL_GET_TIOCM:
2723
        {
2724
            int sarg = 0;
2725
            int *targ = (int *)arg;
2726
            ioctl(s->fd_in, TIOCMGET, &sarg);
2727
            *targ = 0;
2728
            if (sarg | TIOCM_CTS)
2729
                *targ |= CHR_TIOCM_CTS;
2730
            if (sarg | TIOCM_CAR)
2731
                *targ |= CHR_TIOCM_CAR;
2732
            if (sarg | TIOCM_DSR)
2733
                *targ |= CHR_TIOCM_DSR;
2734
            if (sarg | TIOCM_RI)
2735
                *targ |= CHR_TIOCM_RI;
2736
            if (sarg | TIOCM_DTR)
2737
                *targ |= CHR_TIOCM_DTR;
2738
            if (sarg | TIOCM_RTS)
2739
                *targ |= CHR_TIOCM_RTS;
2740
        }
2741
        break;
2742
    case CHR_IOCTL_SERIAL_SET_TIOCM:
2743
        {
2744
            int sarg = *(int *)arg;
2745
            int targ = 0;
2746
            if (sarg | CHR_TIOCM_DTR)
2747
                targ |= TIOCM_DTR;
2748
            if (sarg | CHR_TIOCM_RTS)
2749
                targ |= TIOCM_RTS;
2750
            ioctl(s->fd_in, TIOCMSET, &targ);
2751
        }
2752
        break;
2753
    default:
2754
        return -ENOTSUP;
2755
    }
2756
    return 0;
2757
}
2758

    
2759
static CharDriverState *qemu_chr_open_tty(const char *filename)
2760
{
2761
    CharDriverState *chr;
2762
    int fd;
2763

    
2764
    TFR(fd = open(filename, O_RDWR | O_NONBLOCK));
2765
    tty_serial_init(fd, 115200, 'N', 8, 1);
2766
    chr = qemu_chr_open_fd(fd, fd);
2767
    if (!chr) {
2768
        close(fd);
2769
        return NULL;
2770
    }
2771
    chr->chr_ioctl = tty_serial_ioctl;
2772
    qemu_chr_reset(chr);
2773
    return chr;
2774
}
2775
#else  /* ! __linux__ && ! __sun__ */
2776
static CharDriverState *qemu_chr_open_pty(void)
2777
{
2778
    return NULL;
2779
}
2780
#endif /* __linux__ || __sun__ */
2781

    
2782
#if defined(__linux__)
2783
typedef struct {
2784
    int fd;
2785
    int mode;
2786
} ParallelCharDriver;
2787

    
2788
static int pp_hw_mode(ParallelCharDriver *s, uint16_t mode)
2789
{
2790
    if (s->mode != mode) {
2791
        int m = mode;
2792
        if (ioctl(s->fd, PPSETMODE, &m) < 0)
2793
            return 0;
2794
        s->mode = mode;
2795
    }
2796
    return 1;
2797
}
2798

    
2799
static int pp_ioctl(CharDriverState *chr, int cmd, void *arg)
2800
{
2801
    ParallelCharDriver *drv = chr->opaque;
2802
    int fd = drv->fd;
2803
    uint8_t b;
2804

    
2805
    switch(cmd) {
2806
    case CHR_IOCTL_PP_READ_DATA:
2807
        if (ioctl(fd, PPRDATA, &b) < 0)
2808
            return -ENOTSUP;
2809
        *(uint8_t *)arg = b;
2810
        break;
2811
    case CHR_IOCTL_PP_WRITE_DATA:
2812
        b = *(uint8_t *)arg;
2813
        if (ioctl(fd, PPWDATA, &b) < 0)
2814
            return -ENOTSUP;
2815
        break;
2816
    case CHR_IOCTL_PP_READ_CONTROL:
2817
        if (ioctl(fd, PPRCONTROL, &b) < 0)
2818
            return -ENOTSUP;
2819
        /* Linux gives only the lowest bits, and no way to know data
2820
           direction! For better compatibility set the fixed upper
2821
           bits. */
2822
        *(uint8_t *)arg = b | 0xc0;
2823
        break;
2824
    case CHR_IOCTL_PP_WRITE_CONTROL:
2825
        b = *(uint8_t *)arg;
2826
        if (ioctl(fd, PPWCONTROL, &b) < 0)
2827
            return -ENOTSUP;
2828
        break;
2829
    case CHR_IOCTL_PP_READ_STATUS:
2830
        if (ioctl(fd, PPRSTATUS, &b) < 0)
2831
            return -ENOTSUP;
2832
        *(uint8_t *)arg = b;
2833
        break;
2834
    case CHR_IOCTL_PP_DATA_DIR:
2835
        if (ioctl(fd, PPDATADIR, (int *)arg) < 0)
2836
            return -ENOTSUP;
2837
        break;
2838
    case CHR_IOCTL_PP_EPP_READ_ADDR:
2839
        if (pp_hw_mode(drv, IEEE1284_MODE_EPP|IEEE1284_ADDR)) {
2840
            struct ParallelIOArg *parg = arg;
2841
            int n = read(fd, parg->buffer, parg->count);
2842
            if (n != parg->count) {
2843
                return -EIO;
2844
            }
2845
        }
2846
        break;
2847
    case CHR_IOCTL_PP_EPP_READ:
2848
        if (pp_hw_mode(drv, IEEE1284_MODE_EPP)) {
2849
            struct ParallelIOArg *parg = arg;
2850
            int n = read(fd, parg->buffer, parg->count);
2851
            if (n != parg->count) {
2852
                return -EIO;
2853
            }
2854
        }
2855
        break;
2856
    case CHR_IOCTL_PP_EPP_WRITE_ADDR:
2857
        if (pp_hw_mode(drv, IEEE1284_MODE_EPP|IEEE1284_ADDR)) {
2858
            struct ParallelIOArg *parg = arg;
2859
            int n = write(fd, parg->buffer, parg->count);
2860
            if (n != parg->count) {
2861
                return -EIO;
2862
            }
2863
        }
2864
        break;
2865
    case CHR_IOCTL_PP_EPP_WRITE:
2866
        if (pp_hw_mode(drv, IEEE1284_MODE_EPP)) {
2867
            struct ParallelIOArg *parg = arg;
2868
            int n = write(fd, parg->buffer, parg->count);
2869
            if (n != parg->count) {
2870
                return -EIO;
2871
            }
2872
        }
2873
        break;
2874
    default:
2875
        return -ENOTSUP;
2876
    }
2877
    return 0;
2878
}
2879

    
2880
static void pp_close(CharDriverState *chr)
2881
{
2882
    ParallelCharDriver *drv = chr->opaque;
2883
    int fd = drv->fd;
2884

    
2885
    pp_hw_mode(drv, IEEE1284_MODE_COMPAT);
2886
    ioctl(fd, PPRELEASE);
2887
    close(fd);
2888
    qemu_free(drv);
2889
}
2890

    
2891
static CharDriverState *qemu_chr_open_pp(const char *filename)
2892
{
2893
    CharDriverState *chr;
2894
    ParallelCharDriver *drv;
2895
    int fd;
2896

    
2897
    TFR(fd = open(filename, O_RDWR));
2898
    if (fd < 0)
2899
        return NULL;
2900

    
2901
    if (ioctl(fd, PPCLAIM) < 0) {
2902
        close(fd);
2903
        return NULL;
2904
    }
2905

    
2906
    drv = qemu_mallocz(sizeof(ParallelCharDriver));
2907
    if (!drv) {
2908
        close(fd);
2909
        return NULL;
2910
    }
2911
    drv->fd = fd;
2912
    drv->mode = IEEE1284_MODE_COMPAT;
2913

    
2914
    chr = qemu_mallocz(sizeof(CharDriverState));
2915
    if (!chr) {
2916
        qemu_free(drv);
2917
        close(fd);
2918
        return NULL;
2919
    }
2920
    chr->chr_write = null_chr_write;
2921
    chr->chr_ioctl = pp_ioctl;
2922
    chr->chr_close = pp_close;
2923
    chr->opaque = drv;
2924

    
2925
    qemu_chr_reset(chr);
2926

    
2927
    return chr;
2928
}
2929
#endif /* __linux__ */
2930

    
2931
#else /* _WIN32 */
2932

    
2933
typedef struct {
2934
    int max_size;
2935
    HANDLE hcom, hrecv, hsend;
2936
    OVERLAPPED orecv, osend;
2937
    BOOL fpipe;
2938
    DWORD len;
2939
} WinCharState;
2940

    
2941
#define NSENDBUF 2048
2942
#define NRECVBUF 2048
2943
#define MAXCONNECT 1
2944
#define NTIMEOUT 5000
2945

    
2946
static int win_chr_poll(void *opaque);
2947
static int win_chr_pipe_poll(void *opaque);
2948

    
2949
static void win_chr_close(CharDriverState *chr)
2950
{
2951
    WinCharState *s = chr->opaque;
2952

    
2953
    if (s->hsend) {
2954
        CloseHandle(s->hsend);
2955
        s->hsend = NULL;
2956
    }
2957
    if (s->hrecv) {
2958
        CloseHandle(s->hrecv);
2959
        s->hrecv = NULL;
2960
    }
2961
    if (s->hcom) {
2962
        CloseHandle(s->hcom);
2963
        s->hcom = NULL;
2964
    }
2965
    if (s->fpipe)
2966
        qemu_del_polling_cb(win_chr_pipe_poll, chr);
2967
    else
2968
        qemu_del_polling_cb(win_chr_poll, chr);
2969
}
2970

    
2971
static int win_chr_init(CharDriverState *chr, const char *filename)
2972
{
2973
    WinCharState *s = chr->opaque;
2974
    COMMCONFIG comcfg;
2975
    COMMTIMEOUTS cto = { 0, 0, 0, 0, 0};
2976
    COMSTAT comstat;
2977
    DWORD size;
2978
    DWORD err;
2979

    
2980
    s->hsend = CreateEvent(NULL, TRUE, FALSE, NULL);
2981
    if (!s->hsend) {
2982
        fprintf(stderr, "Failed CreateEvent\n");
2983
        goto fail;
2984
    }
2985
    s->hrecv = CreateEvent(NULL, TRUE, FALSE, NULL);
2986
    if (!s->hrecv) {
2987
        fprintf(stderr, "Failed CreateEvent\n");
2988
        goto fail;
2989
    }
2990

    
2991
    s->hcom = CreateFile(filename, GENERIC_READ|GENERIC_WRITE, 0, NULL,
2992
                      OPEN_EXISTING, FILE_FLAG_OVERLAPPED, 0);
2993
    if (s->hcom == INVALID_HANDLE_VALUE) {
2994
        fprintf(stderr, "Failed CreateFile (%lu)\n", GetLastError());
2995
        s->hcom = NULL;
2996
        goto fail;
2997
    }
2998

    
2999
    if (!SetupComm(s->hcom, NRECVBUF, NSENDBUF)) {
3000
        fprintf(stderr, "Failed SetupComm\n");
3001
        goto fail;
3002
    }
3003

    
3004
    ZeroMemory(&comcfg, sizeof(COMMCONFIG));
3005
    size = sizeof(COMMCONFIG);
3006
    GetDefaultCommConfig(filename, &comcfg, &size);
3007
    comcfg.dcb.DCBlength = sizeof(DCB);
3008
    CommConfigDialog(filename, NULL, &comcfg);
3009

    
3010
    if (!SetCommState(s->hcom, &comcfg.dcb)) {
3011
        fprintf(stderr, "Failed SetCommState\n");
3012
        goto fail;
3013
    }
3014

    
3015
    if (!SetCommMask(s->hcom, EV_ERR)) {
3016
        fprintf(stderr, "Failed SetCommMask\n");
3017
        goto fail;
3018
    }
3019

    
3020
    cto.ReadIntervalTimeout = MAXDWORD;
3021
    if (!SetCommTimeouts(s->hcom, &cto)) {
3022
        fprintf(stderr, "Failed SetCommTimeouts\n");
3023
        goto fail;
3024
    }
3025

    
3026
    if (!ClearCommError(s->hcom, &err, &comstat)) {
3027
        fprintf(stderr, "Failed ClearCommError\n");
3028
        goto fail;
3029
    }
3030
    qemu_add_polling_cb(win_chr_poll, chr);
3031
    return 0;
3032

    
3033
 fail:
3034
    win_chr_close(chr);
3035
    return -1;
3036
}
3037

    
3038
static int win_chr_write(CharDriverState *chr, const uint8_t *buf, int len1)
3039
{
3040
    WinCharState *s = chr->opaque;
3041
    DWORD len, ret, size, err;
3042

    
3043
    len = len1;
3044
    ZeroMemory(&s->osend, sizeof(s->osend));
3045
    s->osend.hEvent = s->hsend;
3046
    while (len > 0) {
3047
        if (s->hsend)
3048
            ret = WriteFile(s->hcom, buf, len, &size, &s->osend);
3049
        else
3050
            ret = WriteFile(s->hcom, buf, len, &size, NULL);
3051
        if (!ret) {
3052
            err = GetLastError();
3053
            if (err == ERROR_IO_PENDING) {
3054
                ret = GetOverlappedResult(s->hcom, &s->osend, &size, TRUE);
3055
                if (ret) {
3056
                    buf += size;
3057
                    len -= size;
3058
                } else {
3059
                    break;
3060
                }
3061
            } else {
3062
                break;
3063
            }
3064
        } else {
3065
            buf += size;
3066
            len -= size;
3067
        }
3068
    }
3069
    return len1 - len;
3070
}
3071

    
3072
static int win_chr_read_poll(CharDriverState *chr)
3073
{
3074
    WinCharState *s = chr->opaque;
3075

    
3076
    s->max_size = qemu_chr_can_read(chr);
3077
    return s->max_size;
3078
}
3079

    
3080
static void win_chr_readfile(CharDriverState *chr)
3081
{
3082
    WinCharState *s = chr->opaque;
3083
    int ret, err;
3084
    uint8_t buf[1024];
3085
    DWORD size;
3086

    
3087
    ZeroMemory(&s->orecv, sizeof(s->orecv));
3088
    s->orecv.hEvent = s->hrecv;
3089
    ret = ReadFile(s->hcom, buf, s->len, &size, &s->orecv);
3090
    if (!ret) {
3091
        err = GetLastError();
3092
        if (err == ERROR_IO_PENDING) {
3093
            ret = GetOverlappedResult(s->hcom, &s->orecv, &size, TRUE);
3094
        }
3095
    }
3096

    
3097
    if (size > 0) {
3098
        qemu_chr_read(chr, buf, size);
3099
    }
3100
}
3101

    
3102
static void win_chr_read(CharDriverState *chr)
3103
{
3104
    WinCharState *s = chr->opaque;
3105

    
3106
    if (s->len > s->max_size)
3107
        s->len = s->max_size;
3108
    if (s->len == 0)
3109
        return;
3110

    
3111
    win_chr_readfile(chr);
3112
}
3113

    
3114
static int win_chr_poll(void *opaque)
3115
{
3116
    CharDriverState *chr = opaque;
3117
    WinCharState *s = chr->opaque;
3118
    COMSTAT status;
3119
    DWORD comerr;
3120

    
3121
    ClearCommError(s->hcom, &comerr, &status);
3122
    if (status.cbInQue > 0) {
3123
        s->len = status.cbInQue;
3124
        win_chr_read_poll(chr);
3125
        win_chr_read(chr);
3126
        return 1;
3127
    }
3128
    return 0;
3129
}
3130

    
3131
static CharDriverState *qemu_chr_open_win(const char *filename)
3132
{
3133
    CharDriverState *chr;
3134
    WinCharState *s;
3135

    
3136
    chr = qemu_mallocz(sizeof(CharDriverState));
3137
    if (!chr)
3138
        return NULL;
3139
    s = qemu_mallocz(sizeof(WinCharState));
3140
    if (!s) {
3141
        free(chr);
3142
        return NULL;
3143
    }
3144
    chr->opaque = s;
3145
    chr->chr_write = win_chr_write;
3146
    chr->chr_close = win_chr_close;
3147

    
3148
    if (win_chr_init(chr, filename) < 0) {
3149
        free(s);
3150
        free(chr);
3151
        return NULL;
3152
    }
3153
    qemu_chr_reset(chr);
3154
    return chr;
3155
}
3156

    
3157
static int win_chr_pipe_poll(void *opaque)
3158
{
3159
    CharDriverState *chr = opaque;
3160
    WinCharState *s = chr->opaque;
3161
    DWORD size;
3162

    
3163
    PeekNamedPipe(s->hcom, NULL, 0, NULL, &size, NULL);
3164
    if (size > 0) {
3165
        s->len = size;
3166
        win_chr_read_poll(chr);
3167
        win_chr_read(chr);
3168
        return 1;
3169
    }
3170
    return 0;
3171
}
3172

    
3173
static int win_chr_pipe_init(CharDriverState *chr, const char *filename)
3174
{
3175
    WinCharState *s = chr->opaque;
3176
    OVERLAPPED ov;
3177
    int ret;
3178
    DWORD size;
3179
    char openname[256];
3180

    
3181
    s->fpipe = TRUE;
3182

    
3183
    s->hsend = CreateEvent(NULL, TRUE, FALSE, NULL);
3184
    if (!s->hsend) {
3185
        fprintf(stderr, "Failed CreateEvent\n");
3186
        goto fail;
3187
    }
3188
    s->hrecv = CreateEvent(NULL, TRUE, FALSE, NULL);
3189
    if (!s->hrecv) {
3190
        fprintf(stderr, "Failed CreateEvent\n");
3191
        goto fail;
3192
    }
3193

    
3194
    snprintf(openname, sizeof(openname), "\\\\.\\pipe\\%s", filename);
3195
    s->hcom = CreateNamedPipe(openname, PIPE_ACCESS_DUPLEX | FILE_FLAG_OVERLAPPED,
3196
                              PIPE_TYPE_BYTE | PIPE_READMODE_BYTE |
3197
                              PIPE_WAIT,
3198
                              MAXCONNECT, NSENDBUF, NRECVBUF, NTIMEOUT, NULL);
3199
    if (s->hcom == INVALID_HANDLE_VALUE) {
3200
        fprintf(stderr, "Failed CreateNamedPipe (%lu)\n", GetLastError());
3201
        s->hcom = NULL;
3202
        goto fail;
3203
    }
3204

    
3205
    ZeroMemory(&ov, sizeof(ov));
3206
    ov.hEvent = CreateEvent(NULL, TRUE, FALSE, NULL);
3207
    ret = ConnectNamedPipe(s->hcom, &ov);
3208
    if (ret) {
3209
        fprintf(stderr, "Failed ConnectNamedPipe\n");
3210
        goto fail;
3211
    }
3212

    
3213
    ret = GetOverlappedResult(s->hcom, &ov, &size, TRUE);
3214
    if (!ret) {
3215
        fprintf(stderr, "Failed GetOverlappedResult\n");
3216
        if (ov.hEvent) {
3217
            CloseHandle(ov.hEvent);
3218
            ov.hEvent = NULL;
3219
        }
3220
        goto fail;
3221
    }
3222

    
3223
    if (ov.hEvent) {
3224
        CloseHandle(ov.hEvent);
3225
        ov.hEvent = NULL;
3226
    }
3227
    qemu_add_polling_cb(win_chr_pipe_poll, chr);
3228
    return 0;
3229

    
3230
 fail:
3231
    win_chr_close(chr);
3232
    return -1;
3233
}
3234

    
3235

    
3236
static CharDriverState *qemu_chr_open_win_pipe(const char *filename)
3237
{
3238
    CharDriverState *chr;
3239
    WinCharState *s;
3240

    
3241
    chr = qemu_mallocz(sizeof(CharDriverState));
3242
    if (!chr)
3243
        return NULL;
3244
    s = qemu_mallocz(sizeof(WinCharState));
3245
    if (!s) {
3246
        free(chr);
3247
        return NULL;
3248
    }
3249
    chr->opaque = s;
3250
    chr->chr_write = win_chr_write;
3251
    chr->chr_close = win_chr_close;
3252

    
3253
    if (win_chr_pipe_init(chr, filename) < 0) {
3254
        free(s);
3255
        free(chr);
3256
        return NULL;
3257
    }
3258
    qemu_chr_reset(chr);
3259
    return chr;
3260
}
3261

    
3262
static CharDriverState *qemu_chr_open_win_file(HANDLE fd_out)
3263
{
3264
    CharDriverState *chr;
3265
    WinCharState *s;
3266

    
3267
    chr = qemu_mallocz(sizeof(CharDriverState));
3268
    if (!chr)
3269
        return NULL;
3270
    s = qemu_mallocz(sizeof(WinCharState));
3271
    if (!s) {
3272
        free(chr);
3273
        return NULL;
3274
    }
3275
    s->hcom = fd_out;
3276
    chr->opaque = s;
3277
    chr->chr_write = win_chr_write;
3278
    qemu_chr_reset(chr);
3279
    return chr;
3280
}
3281

    
3282
static CharDriverState *qemu_chr_open_win_con(const char *filename)
3283
{
3284
    return qemu_chr_open_win_file(GetStdHandle(STD_OUTPUT_HANDLE));
3285
}
3286

    
3287
static CharDriverState *qemu_chr_open_win_file_out(const char *file_out)
3288
{
3289
    HANDLE fd_out;
3290

    
3291
    fd_out = CreateFile(file_out, GENERIC_WRITE, FILE_SHARE_READ, NULL,
3292
                        OPEN_ALWAYS, FILE_ATTRIBUTE_NORMAL, NULL);
3293
    if (fd_out == INVALID_HANDLE_VALUE)
3294
        return NULL;
3295

    
3296
    return qemu_chr_open_win_file(fd_out);
3297
}
3298
#endif /* !_WIN32 */
3299

    
3300
/***********************************************************/
3301
/* UDP Net console */
3302

    
3303
typedef struct {
3304
    int fd;
3305
    struct sockaddr_in daddr;
3306
    uint8_t buf[1024];
3307
    int bufcnt;
3308
    int bufptr;
3309
    int max_size;
3310
} NetCharDriver;
3311

    
3312
static int udp_chr_write(CharDriverState *chr, const uint8_t *buf, int len)
3313
{
3314
    NetCharDriver *s = chr->opaque;
3315

    
3316
    return sendto(s->fd, buf, len, 0,
3317
                  (struct sockaddr *)&s->daddr, sizeof(struct sockaddr_in));
3318
}
3319

    
3320
static int udp_chr_read_poll(void *opaque)
3321
{
3322
    CharDriverState *chr = opaque;
3323
    NetCharDriver *s = chr->opaque;
3324

    
3325
    s->max_size = qemu_chr_can_read(chr);
3326

    
3327
    /* If there were any stray characters in the queue process them
3328
     * first
3329
     */
3330
    while (s->max_size > 0 && s->bufptr < s->bufcnt) {
3331
        qemu_chr_read(chr, &s->buf[s->bufptr], 1);
3332
        s->bufptr++;
3333
        s->max_size = qemu_chr_can_read(chr);
3334
    }
3335
    return s->max_size;
3336
}
3337

    
3338
static void udp_chr_read(void *opaque)
3339
{
3340
    CharDriverState *chr = opaque;
3341
    NetCharDriver *s = chr->opaque;
3342

    
3343
    if (s->max_size == 0)
3344
        return;
3345
    s->bufcnt = recv(s->fd, s->buf, sizeof(s->buf), 0);
3346
    s->bufptr = s->bufcnt;
3347
    if (s->bufcnt <= 0)
3348
        return;
3349

    
3350
    s->bufptr = 0;
3351
    while (s->max_size > 0 && s->bufptr < s->bufcnt) {
3352
        qemu_chr_read(chr, &s->buf[s->bufptr], 1);
3353
        s->bufptr++;
3354
        s->max_size = qemu_chr_can_read(chr);
3355
    }
3356
}
3357

    
3358
static void udp_chr_update_read_handler(CharDriverState *chr)
3359
{
3360
    NetCharDriver *s = chr->opaque;
3361

    
3362
    if (s->fd >= 0) {
3363
        qemu_set_fd_handler2(s->fd, udp_chr_read_poll,
3364
                             udp_chr_read, NULL, chr);
3365
    }
3366
}
3367

    
3368
#ifndef _WIN32
3369
static int parse_unix_path(struct sockaddr_un *uaddr, const char *str);
3370
#endif
3371
int parse_host_src_port(struct sockaddr_in *haddr,
3372
                        struct sockaddr_in *saddr,
3373
                        const char *str);
3374

    
3375
static CharDriverState *qemu_chr_open_udp(const char *def)
3376
{
3377
    CharDriverState *chr = NULL;
3378
    NetCharDriver *s = NULL;
3379
    int fd = -1;
3380
    struct sockaddr_in saddr;
3381

    
3382
    chr = qemu_mallocz(sizeof(CharDriverState));
3383
    if (!chr)
3384
        goto return_err;
3385
    s = qemu_mallocz(sizeof(NetCharDriver));
3386
    if (!s)
3387
        goto return_err;
3388

    
3389
    fd = socket(PF_INET, SOCK_DGRAM, 0);
3390
    if (fd < 0) {
3391
        perror("socket(PF_INET, SOCK_DGRAM)");
3392
        goto return_err;
3393
    }
3394

    
3395
    if (parse_host_src_port(&s->daddr, &saddr, def) < 0) {
3396
        printf("Could not parse: %s\n", def);
3397
        goto return_err;
3398
    }
3399

    
3400
    if (bind(fd, (struct sockaddr *)&saddr, sizeof(saddr)) < 0)
3401
    {
3402
        perror("bind");
3403
        goto return_err;
3404
    }
3405

    
3406
    s->fd = fd;
3407
    s->bufcnt = 0;
3408
    s->bufptr = 0;
3409
    chr->opaque = s;
3410
    chr->chr_write = udp_chr_write;
3411
    chr->chr_update_read_handler = udp_chr_update_read_handler;
3412
    return chr;
3413

    
3414
return_err:
3415
    if (chr)
3416
        free(chr);
3417
    if (s)
3418
        free(s);
3419
    if (fd >= 0)
3420
        closesocket(fd);
3421
    return NULL;
3422
}
3423

    
3424
/***********************************************************/
3425
/* TCP Net console */
3426

    
3427
typedef struct {
3428
    int fd, listen_fd;
3429
    int connected;
3430
    int max_size;
3431
    int do_telnetopt;
3432
    int do_nodelay;
3433
    int is_unix;
3434
} TCPCharDriver;
3435

    
3436
static void tcp_chr_accept(void *opaque);
3437

    
3438
static int tcp_chr_write(CharDriverState *chr, const uint8_t *buf, int len)
3439
{
3440
    TCPCharDriver *s = chr->opaque;
3441
    if (s->connected) {
3442
        return send_all(s->fd, buf, len);
3443
    } else {
3444
        /* XXX: indicate an error ? */
3445
        return len;
3446
    }
3447
}
3448

    
3449
static int tcp_chr_read_poll(void *opaque)
3450
{
3451
    CharDriverState *chr = opaque;
3452
    TCPCharDriver *s = chr->opaque;
3453
    if (!s->connected)
3454
        return 0;
3455
    s->max_size = qemu_chr_can_read(chr);
3456
    return s->max_size;
3457
}
3458

    
3459
#define IAC 255
3460
#define IAC_BREAK 243
3461
static void tcp_chr_process_IAC_bytes(CharDriverState *chr,
3462
                                      TCPCharDriver *s,
3463
                                      uint8_t *buf, int *size)
3464
{
3465
    /* Handle any telnet client's basic IAC options to satisfy char by
3466
     * char mode with no echo.  All IAC options will be removed from
3467
     * the buf and the do_telnetopt variable will be used to track the
3468
     * state of the width of the IAC information.
3469
     *
3470
     * IAC commands come in sets of 3 bytes with the exception of the
3471
     * "IAC BREAK" command and the double IAC.
3472
     */
3473

    
3474
    int i;
3475
    int j = 0;
3476

    
3477
    for (i = 0; i < *size; i++) {
3478
        if (s->do_telnetopt > 1) {
3479
            if ((unsigned char)buf[i] == IAC && s->do_telnetopt == 2) {
3480
                /* Double IAC means send an IAC */
3481
                if (j != i)
3482
                    buf[j] = buf[i];
3483
                j++;
3484
                s->do_telnetopt = 1;
3485
            } else {
3486
                if ((unsigned char)buf[i] == IAC_BREAK && s->do_telnetopt == 2) {
3487
                    /* Handle IAC break commands by sending a serial break */
3488
                    qemu_chr_event(chr, CHR_EVENT_BREAK);
3489
                    s->do_telnetopt++;
3490
                }
3491
                s->do_telnetopt++;
3492
            }
3493
            if (s->do_telnetopt >= 4) {
3494
                s->do_telnetopt = 1;
3495
            }
3496
        } else {
3497
            if ((unsigned char)buf[i] == IAC) {
3498
                s->do_telnetopt = 2;
3499
            } else {
3500
                if (j != i)
3501
                    buf[j] = buf[i];
3502
                j++;
3503
            }
3504
        }
3505
    }
3506
    *size = j;
3507
}
3508

    
3509
static void tcp_chr_read(void *opaque)
3510
{
3511
    CharDriverState *chr = opaque;
3512
    TCPCharDriver *s = chr->opaque;
3513
    uint8_t buf[1024];
3514
    int len, size;
3515

    
3516
    if (!s->connected || s->max_size <= 0)
3517
        return;
3518
    len = sizeof(buf);
3519
    if (len > s->max_size)
3520
        len = s->max_size;
3521
    size = recv(s->fd, buf, len, 0);
3522
    if (size == 0) {
3523
        /* connection closed */
3524
        s->connected = 0;
3525
        if (s->listen_fd >= 0) {
3526
            qemu_set_fd_handler(s->listen_fd, tcp_chr_accept, NULL, chr);
3527
        }
3528
        qemu_set_fd_handler(s->fd, NULL, NULL, NULL);
3529
        closesocket(s->fd);
3530
        s->fd = -1;
3531
    } else if (size > 0) {
3532
        if (s->do_telnetopt)
3533
            tcp_chr_process_IAC_bytes(chr, s, buf, &size);
3534
        if (size > 0)
3535
            qemu_chr_read(chr, buf, size);
3536
    }
3537
}
3538

    
3539
static void tcp_chr_connect(void *opaque)
3540
{
3541
    CharDriverState *chr = opaque;
3542
    TCPCharDriver *s = chr->opaque;
3543

    
3544
    s->connected = 1;
3545
    qemu_set_fd_handler2(s->fd, tcp_chr_read_poll,
3546
                         tcp_chr_read, NULL, chr);
3547
    qemu_chr_reset(chr);
3548
}
3549

    
3550
#define IACSET(x,a,b,c) x[0] = a; x[1] = b; x[2] = c;
3551
static void tcp_chr_telnet_init(int fd)
3552
{
3553
    char buf[3];
3554
    /* Send the telnet negotion to put telnet in binary, no echo, single char mode */
3555
    IACSET(buf, 0xff, 0xfb, 0x01);  /* IAC WILL ECHO */
3556
    send(fd, (char *)buf, 3, 0);
3557
    IACSET(buf, 0xff, 0xfb, 0x03);  /* IAC WILL Suppress go ahead */
3558
    send(fd, (char *)buf, 3, 0);
3559
    IACSET(buf, 0xff, 0xfb, 0x00);  /* IAC WILL Binary */
3560
    send(fd, (char *)buf, 3, 0);
3561
    IACSET(buf, 0xff, 0xfd, 0x00);  /* IAC DO Binary */
3562
    send(fd, (char *)buf, 3, 0);
3563
}
3564

    
3565
static void socket_set_nodelay(int fd)
3566
{
3567
    int val = 1;
3568
    setsockopt(fd, IPPROTO_TCP, TCP_NODELAY, (char *)&val, sizeof(val));
3569
}
3570

    
3571
static void tcp_chr_accept(void *opaque)
3572
{
3573
    CharDriverState *chr = opaque;
3574
    TCPCharDriver *s = chr->opaque;
3575
    struct sockaddr_in saddr;
3576
#ifndef _WIN32
3577
    struct sockaddr_un uaddr;
3578
#endif
3579
    struct sockaddr *addr;
3580
    socklen_t len;
3581
    int fd;
3582

    
3583
    for(;;) {
3584
#ifndef _WIN32
3585
        if (s->is_unix) {
3586
            len = sizeof(uaddr);
3587
            addr = (struct sockaddr *)&uaddr;
3588
        } else
3589
#endif
3590
        {
3591
            len = sizeof(saddr);
3592
            addr = (struct sockaddr *)&saddr;
3593
        }
3594
        fd = accept(s->listen_fd, addr, &len);
3595
        if (fd < 0 && errno != EINTR) {
3596
            return;
3597
        } else if (fd >= 0) {
3598
            if (s->do_telnetopt)
3599
                tcp_chr_telnet_init(fd);
3600
            break;
3601
        }
3602
    }
3603
    socket_set_nonblock(fd);
3604
    if (s->do_nodelay)
3605
        socket_set_nodelay(fd);
3606
    s->fd = fd;
3607
    qemu_set_fd_handler(s->listen_fd, NULL, NULL, NULL);
3608
    tcp_chr_connect(chr);
3609
}
3610

    
3611
static void tcp_chr_close(CharDriverState *chr)
3612
{
3613
    TCPCharDriver *s = chr->opaque;
3614
    if (s->fd >= 0)
3615
        closesocket(s->fd);
3616
    if (s->listen_fd >= 0)
3617
        closesocket(s->listen_fd);
3618
    qemu_free(s);
3619
}
3620

    
3621
static CharDriverState *qemu_chr_open_tcp(const char *host_str,
3622
                                          int is_telnet,
3623
                                          int is_unix)
3624
{
3625
    CharDriverState *chr = NULL;
3626
    TCPCharDriver *s = NULL;
3627
    int fd = -1, ret, err, val;
3628
    int is_listen = 0;
3629
    int is_waitconnect = 1;
3630
    int do_nodelay = 0;
3631
    const char *ptr;
3632
    struct sockaddr_in saddr;
3633
#ifndef _WIN32
3634
    struct sockaddr_un uaddr;
3635
#endif
3636
    struct sockaddr *addr;
3637
    socklen_t addrlen;
3638

    
3639
#ifndef _WIN32
3640
    if (is_unix) {
3641
        addr = (struct sockaddr *)&uaddr;
3642
        addrlen = sizeof(uaddr);
3643
        if (parse_unix_path(&uaddr, host_str) < 0)
3644
            goto fail;
3645
    } else
3646
#endif
3647
    {
3648
        addr = (struct sockaddr *)&saddr;
3649
        addrlen = sizeof(saddr);
3650
        if (parse_host_port(&saddr, host_str) < 0)
3651
            goto fail;
3652
    }
3653

    
3654
    ptr = host_str;
3655
    while((ptr = strchr(ptr,','))) {
3656
        ptr++;
3657
        if (!strncmp(ptr,"server",6)) {
3658
            is_listen = 1;
3659
        } else if (!strncmp(ptr,"nowait",6)) {
3660
            is_waitconnect = 0;
3661
        } else if (!strncmp(ptr,"nodelay",6)) {
3662
            do_nodelay = 1;
3663
        } else {
3664
            printf("Unknown option: %s\n", ptr);
3665
            goto fail;
3666
        }
3667
    }
3668
    if (!is_listen)
3669
        is_waitconnect = 0;
3670

    
3671
    chr = qemu_mallocz(sizeof(CharDriverState));
3672
    if (!chr)
3673
        goto fail;
3674
    s = qemu_mallocz(sizeof(TCPCharDriver));
3675
    if (!s)
3676
        goto fail;
3677

    
3678
#ifndef _WIN32
3679
    if (is_unix)
3680
        fd = socket(PF_UNIX, SOCK_STREAM, 0);
3681
    else
3682
#endif
3683
        fd = socket(PF_INET, SOCK_STREAM, 0);
3684

    
3685
    if (fd < 0)
3686
        goto fail;
3687

    
3688
    if (!is_waitconnect)
3689
        socket_set_nonblock(fd);
3690

    
3691
    s->connected = 0;
3692
    s->fd = -1;
3693
    s->listen_fd = -1;
3694
    s->is_unix = is_unix;
3695
    s->do_nodelay = do_nodelay && !is_unix;
3696

    
3697
    chr->opaque = s;
3698
    chr->chr_write = tcp_chr_write;
3699
    chr->chr_close = tcp_chr_close;
3700

    
3701
    if (is_listen) {
3702
        /* allow fast reuse */
3703
#ifndef _WIN32
3704
        if (is_unix) {
3705
            char path[109];
3706
            pstrcpy(path, sizeof(path), uaddr.sun_path);
3707
            unlink(path);
3708
        } else
3709
#endif
3710
        {
3711
            val = 1;
3712
            setsockopt(fd, SOL_SOCKET, SO_REUSEADDR, (const char *)&val, sizeof(val));
3713
        }
3714

    
3715
        ret = bind(fd, addr, addrlen);
3716
        if (ret < 0)
3717
            goto fail;
3718

    
3719
        ret = listen(fd, 0);
3720
        if (ret < 0)
3721
            goto fail;
3722

    
3723
        s->listen_fd = fd;
3724
        qemu_set_fd_handler(s->listen_fd, tcp_chr_accept, NULL, chr);
3725
        if (is_telnet)
3726
            s->do_telnetopt = 1;
3727
    } else {
3728
        for(;;) {
3729
            ret = connect(fd, addr, addrlen);
3730
            if (ret < 0) {
3731
                err = socket_error();
3732
                if (err == EINTR || err == EWOULDBLOCK) {
3733
                } else if (err == EINPROGRESS) {
3734
                    break;
3735
#ifdef _WIN32
3736
                } else if (err == WSAEALREADY) {
3737
                    break;
3738
#endif
3739
                } else {
3740
                    goto fail;
3741
                }
3742
            } else {
3743
                s->connected = 1;
3744
                break;
3745
            }
3746
        }
3747
        s->fd = fd;
3748
        socket_set_nodelay(fd);
3749
        if (s->connected)
3750
            tcp_chr_connect(chr);
3751
        else
3752
            qemu_set_fd_handler(s->fd, NULL, tcp_chr_connect, chr);
3753
    }
3754

    
3755
    if (is_listen && is_waitconnect) {
3756
        printf("QEMU waiting for connection on: %s\n", host_str);
3757
        tcp_chr_accept(chr);
3758
        socket_set_nonblock(s->listen_fd);
3759
    }
3760

    
3761
    return chr;
3762
 fail:
3763
    if (fd >= 0)
3764
        closesocket(fd);
3765
    qemu_free(s);
3766
    qemu_free(chr);
3767
    return NULL;
3768
}
3769

    
3770
CharDriverState *qemu_chr_open(const char *filename)
3771
{
3772
    const char *p;
3773

    
3774
    if (!strcmp(filename, "vc")) {
3775
        return text_console_init(&display_state, 0);
3776
    } else if (strstart(filename, "vc:", &p)) {
3777
        return text_console_init(&display_state, p);
3778
    } else if (!strcmp(filename, "null")) {
3779
        return qemu_chr_open_null();
3780
    } else
3781
    if (strstart(filename, "tcp:", &p)) {
3782
        return qemu_chr_open_tcp(p, 0, 0);
3783
    } else
3784
    if (strstart(filename, "telnet:", &p)) {
3785
        return qemu_chr_open_tcp(p, 1, 0);
3786
    } else
3787
    if (strstart(filename, "udp:", &p)) {
3788
        return qemu_chr_open_udp(p);
3789
    } else
3790
    if (strstart(filename, "mon:", &p)) {
3791
        CharDriverState *drv = qemu_chr_open(p);
3792
        if (drv) {
3793
            drv = qemu_chr_open_mux(drv);
3794
            monitor_init(drv, !nographic);
3795
            return drv;
3796
        }
3797
        printf("Unable to open driver: %s\n", p);
3798
        return 0;
3799
    } else
3800
#ifndef _WIN32
3801
    if (strstart(filename, "unix:", &p)) {
3802
        return qemu_chr_open_tcp(p, 0, 1);
3803
    } else if (strstart(filename, "file:", &p)) {
3804
        return qemu_chr_open_file_out(p);
3805
    } else if (strstart(filename, "pipe:", &p)) {
3806
        return qemu_chr_open_pipe(p);
3807
    } else if (!strcmp(filename, "pty")) {
3808
        return qemu_chr_open_pty();
3809
    } else if (!strcmp(filename, "stdio")) {
3810
        return qemu_chr_open_stdio();
3811
    } else
3812
#if defined(__linux__)
3813
    if (strstart(filename, "/dev/parport", NULL)) {
3814
        return qemu_chr_open_pp(filename);
3815
    } else
3816
#endif
3817
#if defined(__linux__) || defined(__sun__) || defined(__FreeBSD__) \
3818
    || defined(__NetBSD__) || defined(__OpenBSD__)
3819
    if (strstart(filename, "/dev/", NULL)) {
3820
        return qemu_chr_open_tty(filename);
3821
    } else
3822
#endif
3823
#else /* !_WIN32 */
3824
    if (strstart(filename, "COM", NULL)) {
3825
        return qemu_chr_open_win(filename);
3826
    } else
3827
    if (strstart(filename, "pipe:", &p)) {
3828
        return qemu_chr_open_win_pipe(p);
3829
    } else
3830
    if (strstart(filename, "con:", NULL)) {
3831
        return qemu_chr_open_win_con(filename);
3832
    } else
3833
    if (strstart(filename, "file:", &p)) {
3834
        return qemu_chr_open_win_file_out(p);
3835
    } else
3836
#endif
3837
#ifdef CONFIG_BRLAPI
3838
    if (!strcmp(filename, "braille")) {
3839
        return chr_baum_init();
3840
    } else
3841
#endif
3842
    {
3843
        return NULL;
3844
    }
3845
}
3846

    
3847
void qemu_chr_close(CharDriverState *chr)
3848
{
3849
    if (chr->chr_close)
3850
        chr->chr_close(chr);
3851
    qemu_free(chr);
3852
}
3853

    
3854
/***********************************************************/
3855
/* network device redirectors */
3856

    
3857
#if defined(DEBUG_NET) || defined(DEBUG_SLIRP)
3858
static void hex_dump(FILE *f, const uint8_t *buf, int size)
3859
{
3860
    int len, i, j, c;
3861

    
3862
    for(i=0;i<size;i+=16) {
3863
        len = size - i;
3864
        if (len > 16)
3865
            len = 16;
3866
        fprintf(f, "%08x ", i);
3867
        for(j=0;j<16;j++) {
3868
            if (j < len)
3869
                fprintf(f, " %02x", buf[i+j]);
3870
            else
3871
                fprintf(f, "   ");
3872
        }
3873
        fprintf(f, " ");
3874
        for(j=0;j<len;j++) {
3875
            c = buf[i+j];
3876
            if (c < ' ' || c > '~')
3877
                c = '.';
3878
            fprintf(f, "%c", c);
3879
        }
3880
        fprintf(f, "\n");
3881
    }
3882
}
3883
#endif
3884

    
3885
static int parse_macaddr(uint8_t *macaddr, const char *p)
3886
{
3887
    int i;
3888
    char *last_char;
3889
    long int offset;
3890

    
3891
    errno = 0;
3892
    offset = strtol(p, &last_char, 0);    
3893
    if (0 == errno && '\0' == *last_char &&
3894
            offset >= 0 && offset <= 0xFFFFFF) {
3895
        macaddr[3] = (offset & 0xFF0000) >> 16;
3896
        macaddr[4] = (offset & 0xFF00) >> 8;
3897
        macaddr[5] = offset & 0xFF;
3898
        return 0;
3899
    } else {
3900
        for(i = 0; i < 6; i++) {
3901
            macaddr[i] = strtol(p, (char **)&p, 16);
3902
            if (i == 5) {
3903
                if (*p != '\0')
3904
                    return -1;
3905
            } else {
3906
                if (*p != ':' && *p != '-')
3907
                    return -1;
3908
                p++;
3909
            }
3910
        }
3911
        return 0;    
3912
    }
3913

    
3914
    return -1;
3915
}
3916

    
3917
static int get_str_sep(char *buf, int buf_size, const char **pp, int sep)
3918
{
3919
    const char *p, *p1;
3920
    int len;
3921
    p = *pp;
3922
    p1 = strchr(p, sep);
3923
    if (!p1)
3924
        return -1;
3925
    len = p1 - p;
3926
    p1++;
3927
    if (buf_size > 0) {
3928
        if (len > buf_size - 1)
3929
            len = buf_size - 1;
3930
        memcpy(buf, p, len);
3931
        buf[len] = '\0';
3932
    }
3933
    *pp = p1;
3934
    return 0;
3935
}
3936

    
3937
int parse_host_src_port(struct sockaddr_in *haddr,
3938
                        struct sockaddr_in *saddr,
3939
                        const char *input_str)
3940
{
3941
    char *str = strdup(input_str);
3942
    char *host_str = str;
3943
    char *src_str;
3944
    const char *src_str2;
3945
    char *ptr;
3946

    
3947
    /*
3948
     * Chop off any extra arguments at the end of the string which
3949
     * would start with a comma, then fill in the src port information
3950
     * if it was provided else use the "any address" and "any port".
3951
     */
3952
    if ((ptr = strchr(str,',')))
3953
        *ptr = '\0';
3954

    
3955
    if ((src_str = strchr(input_str,'@'))) {
3956
        *src_str = '\0';
3957
        src_str++;
3958
    }
3959

    
3960
    if (parse_host_port(haddr, host_str) < 0)
3961
        goto fail;
3962

    
3963
    src_str2 = src_str;
3964
    if (!src_str || *src_str == '\0')
3965
        src_str2 = ":0";
3966

    
3967
    if (parse_host_port(saddr, src_str2) < 0)
3968
        goto fail;
3969

    
3970
    free(str);
3971
    return(0);
3972

    
3973
fail:
3974
    free(str);
3975
    return -1;
3976
}
3977

    
3978
int parse_host_port(struct sockaddr_in *saddr, const char *str)
3979
{
3980
    char buf[512];
3981
    struct hostent *he;
3982
    const char *p, *r;
3983
    int port;
3984

    
3985
    p = str;
3986
    if (get_str_sep(buf, sizeof(buf), &p, ':') < 0)
3987
        return -1;
3988
    saddr->sin_family = AF_INET;
3989
    if (buf[0] == '\0') {
3990
        saddr->sin_addr.s_addr = 0;
3991
    } else {
3992
        if (isdigit(buf[0])) {
3993
            if (!inet_aton(buf, &saddr->sin_addr))
3994
                return -1;
3995
        } else {
3996
            if ((he = gethostbyname(buf)) == NULL)
3997
                return - 1;
3998
            saddr->sin_addr = *(struct in_addr *)he->h_addr;
3999
        }
4000
    }
4001
    port = strtol(p, (char **)&r, 0);
4002
    if (r == p)
4003
        return -1;
4004
    saddr->sin_port = htons(port);
4005
    return 0;
4006
}
4007

    
4008
#ifndef _WIN32
4009
static int parse_unix_path(struct sockaddr_un *uaddr, const char *str)
4010
{
4011
    const char *p;
4012
    int len;
4013

    
4014
    len = MIN(108, strlen(str));
4015
    p = strchr(str, ',');
4016
    if (p)
4017
        len = MIN(len, p - str);
4018

    
4019
    memset(uaddr, 0, sizeof(*uaddr));
4020

    
4021
    uaddr->sun_family = AF_UNIX;
4022
    memcpy(uaddr->sun_path, str, len);
4023

    
4024
    return 0;
4025
}
4026
#endif
4027

    
4028
/* find or alloc a new VLAN */
4029
VLANState *qemu_find_vlan(int id)
4030
{
4031
    VLANState **pvlan, *vlan;
4032
    for(vlan = first_vlan; vlan != NULL; vlan = vlan->next) {
4033
        if (vlan->id == id)
4034
            return vlan;
4035
    }
4036
    vlan = qemu_mallocz(sizeof(VLANState));
4037
    if (!vlan)
4038
        return NULL;
4039
    vlan->id = id;
4040
    vlan->next = NULL;
4041
    pvlan = &first_vlan;
4042
    while (*pvlan != NULL)
4043
        pvlan = &(*pvlan)->next;
4044
    *pvlan = vlan;
4045
    return vlan;
4046
}
4047

    
4048
VLANClientState *qemu_new_vlan_client(VLANState *vlan,
4049
                                      IOReadHandler *fd_read,
4050
                                      IOCanRWHandler *fd_can_read,
4051
                                      void *opaque)
4052
{
4053
    VLANClientState *vc, **pvc;
4054
    vc = qemu_mallocz(sizeof(VLANClientState));
4055
    if (!vc)
4056
        return NULL;
4057
    vc->fd_read = fd_read;
4058
    vc->fd_can_read = fd_can_read;
4059
    vc->opaque = opaque;
4060
    vc->vlan = vlan;
4061

    
4062
    vc->next = NULL;
4063
    pvc = &vlan->first_client;
4064
    while (*pvc != NULL)
4065
        pvc = &(*pvc)->next;
4066
    *pvc = vc;
4067
    return vc;
4068
}
4069

    
4070
void qemu_del_vlan_client(VLANClientState *vc)
4071
{
4072
    VLANClientState **pvc = &vc->vlan->first_client;
4073

    
4074
    while (*pvc != NULL)
4075
        if (*pvc == vc) {
4076
            *pvc = vc->next;
4077
            free(vc);
4078
            break;
4079
        } else
4080
            pvc = &(*pvc)->next;
4081
}
4082

    
4083
int qemu_can_send_packet(VLANClientState *vc1)
4084
{
4085
    VLANState *vlan = vc1->vlan;
4086
    VLANClientState *vc;
4087

    
4088
    for(vc = vlan->first_client; vc != NULL; vc = vc->next) {
4089
        if (vc != vc1) {
4090
            if (vc->fd_can_read && vc->fd_can_read(vc->opaque))
4091
                return 1;
4092
        }
4093
    }
4094
    return 0;
4095
}
4096

    
4097
void qemu_send_packet(VLANClientState *vc1, const uint8_t *buf, int size)
4098
{
4099
    VLANState *vlan = vc1->vlan;
4100
    VLANClientState *vc;
4101

    
4102
#ifdef DEBUG_NET
4103
    printf("vlan %d send:\n", vlan->id);
4104
    hex_dump(stdout, buf, size);
4105
#endif
4106
    for(vc = vlan->first_client; vc != NULL; vc = vc->next) {
4107
        if (vc != vc1) {
4108
            vc->fd_read(vc->opaque, buf, size);
4109
        }
4110
    }
4111
}
4112

    
4113
#if defined(CONFIG_SLIRP)
4114

    
4115
/* slirp network adapter */
4116

    
4117
static int slirp_inited;
4118
static VLANClientState *slirp_vc;
4119

    
4120
int slirp_can_output(void)
4121
{
4122
    return !slirp_vc || qemu_can_send_packet(slirp_vc);
4123
}
4124

    
4125
void slirp_output(const uint8_t *pkt, int pkt_len)
4126
{
4127
#ifdef DEBUG_SLIRP
4128
    printf("slirp output:\n");
4129
    hex_dump(stdout, pkt, pkt_len);
4130
#endif
4131
    if (!slirp_vc)
4132
        return;
4133
    qemu_send_packet(slirp_vc, pkt, pkt_len);
4134
}
4135

    
4136
static void slirp_receive(void *opaque, const uint8_t *buf, int size)
4137
{
4138
#ifdef DEBUG_SLIRP
4139
    printf("slirp input:\n");
4140
    hex_dump(stdout, buf, size);
4141
#endif
4142
    slirp_input(buf, size);
4143
}
4144

    
4145
static int net_slirp_init(VLANState *vlan)
4146
{
4147
    if (!slirp_inited) {
4148
        slirp_inited = 1;
4149
        slirp_init();
4150
    }
4151
    slirp_vc = qemu_new_vlan_client(vlan,
4152
                                    slirp_receive, NULL, NULL);
4153
    snprintf(slirp_vc->info_str, sizeof(slirp_vc->info_str), "user redirector");
4154
    return 0;
4155
}
4156

    
4157
static void net_slirp_redir(const char *redir_str)
4158
{
4159
    int is_udp;
4160
    char buf[256], *r;
4161
    const char *p;
4162
    struct in_addr guest_addr;
4163
    int host_port, guest_port;
4164

    
4165
    if (!slirp_inited) {
4166
        slirp_inited = 1;
4167
        slirp_init();
4168
    }
4169

    
4170
    p = redir_str;
4171
    if (get_str_sep(buf, sizeof(buf), &p, ':') < 0)
4172
        goto fail;
4173
    if (!strcmp(buf, "tcp")) {
4174
        is_udp = 0;
4175
    } else if (!strcmp(buf, "udp")) {
4176
        is_udp = 1;
4177
    } else {
4178
        goto fail;
4179
    }
4180

    
4181
    if (get_str_sep(buf, sizeof(buf), &p, ':') < 0)
4182
        goto fail;
4183
    host_port = strtol(buf, &r, 0);
4184
    if (r == buf)
4185
        goto fail;
4186

    
4187
    if (get_str_sep(buf, sizeof(buf), &p, ':') < 0)
4188
        goto fail;
4189
    if (buf[0] == '\0') {
4190
        pstrcpy(buf, sizeof(buf), "10.0.2.15");
4191
    }
4192
    if (!inet_aton(buf, &guest_addr))
4193
        goto fail;
4194

    
4195
    guest_port = strtol(p, &r, 0);
4196
    if (r == p)
4197
        goto fail;
4198

    
4199
    if (slirp_redir(is_udp, host_port, guest_addr, guest_port) < 0) {
4200
        fprintf(stderr, "qemu: could not set up redirection\n");
4201
        exit(1);
4202
    }
4203
    return;
4204
 fail:
4205
    fprintf(stderr, "qemu: syntax: -redir [tcp|udp]:host-port:[guest-host]:guest-port\n");
4206
    exit(1);
4207
}
4208

    
4209
#ifndef _WIN32
4210

    
4211
static char smb_dir[1024];
4212

    
4213
static void erase_dir(char *dir_name)
4214
{
4215
    DIR *d;
4216
    struct dirent *de;
4217
    char filename[1024];
4218

    
4219
    /* erase all the files in the directory */
4220
    if ((d = opendir(dir_name)) != 0) {
4221
        for(;;) {
4222
            de = readdir(d);
4223
            if (!de)
4224
                break;
4225
            if (strcmp(de->d_name, ".") != 0 &&
4226
                strcmp(de->d_name, "..") != 0) {
4227
                snprintf(filename, sizeof(filename), "%s/%s",
4228
                         smb_dir, de->d_name);
4229
                if (unlink(filename) != 0)  /* is it a directory? */
4230
                    erase_dir(filename);
4231
            }
4232
        }
4233
        closedir(d);
4234
        rmdir(dir_name);
4235
    }
4236
}
4237

    
4238
/* automatic user mode samba server configuration */
4239
static void smb_exit(void)
4240
{
4241
    erase_dir(smb_dir);
4242
}
4243

    
4244
/* automatic user mode samba server configuration */
4245
static void net_slirp_smb(const char *exported_dir)
4246
{
4247
    char smb_conf[1024];
4248
    char smb_cmdline[1024];
4249
    FILE *f;
4250

    
4251
    if (!slirp_inited) {
4252
        slirp_inited = 1;
4253
        slirp_init();
4254
    }
4255

    
4256
    /* XXX: better tmp dir construction */
4257
    snprintf(smb_dir, sizeof(smb_dir), "/tmp/qemu-smb.%d", getpid());
4258
    if (mkdir(smb_dir, 0700) < 0) {
4259
        fprintf(stderr, "qemu: could not create samba server dir '%s'\n", smb_dir);
4260
        exit(1);
4261
    }
4262
    snprintf(smb_conf, sizeof(smb_conf), "%s/%s", smb_dir, "smb.conf");
4263

    
4264
    f = fopen(smb_conf, "w");
4265
    if (!f) {
4266
        fprintf(stderr, "qemu: could not create samba server configuration file '%s'\n", smb_conf);
4267
        exit(1);
4268
    }
4269
    fprintf(f,
4270
            "[global]\n"
4271
            "private dir=%s\n"
4272
            "smb ports=0\n"
4273
            "socket address=127.0.0.1\n"
4274
            "pid directory=%s\n"
4275
            "lock directory=%s\n"
4276
            "log file=%s/log.smbd\n"
4277
            "smb passwd file=%s/smbpasswd\n"
4278
            "security = share\n"
4279
            "[qemu]\n"
4280
            "path=%s\n"
4281
            "read only=no\n"
4282
            "guest ok=yes\n",
4283
            smb_dir,
4284
            smb_dir,
4285
            smb_dir,
4286
            smb_dir,
4287
            smb_dir,
4288
            exported_dir
4289
            );
4290
    fclose(f);
4291
    atexit(smb_exit);
4292

    
4293
    snprintf(smb_cmdline, sizeof(smb_cmdline), "%s -s %s",
4294
             SMBD_COMMAND, smb_conf);
4295

    
4296
    slirp_add_exec(0, smb_cmdline, 4, 139);
4297
}
4298

    
4299
#endif /* !defined(_WIN32) */
4300
void do_info_slirp(void)
4301
{
4302
    slirp_stats();
4303
}
4304

    
4305
#endif /* CONFIG_SLIRP */
4306

    
4307
#if !defined(_WIN32)
4308

    
4309
typedef struct TAPState {
4310
    VLANClientState *vc;
4311
    int fd;
4312
    char down_script[1024];
4313
} TAPState;
4314

    
4315
static void tap_receive(void *opaque, const uint8_t *buf, int size)
4316
{
4317
    TAPState *s = opaque;
4318
    int ret;
4319
    for(;;) {
4320
        ret = write(s->fd, buf, size);
4321
        if (ret < 0 && (errno == EINTR || errno == EAGAIN)) {
4322
        } else {
4323
            break;
4324
        }
4325
    }
4326
}
4327

    
4328
static void tap_send(void *opaque)
4329
{
4330
    TAPState *s = opaque;
4331
    uint8_t buf[4096];
4332
    int size;
4333

    
4334
#ifdef __sun__
4335
    struct strbuf sbuf;
4336
    int f = 0;
4337
    sbuf.maxlen = sizeof(buf);
4338
    sbuf.buf = buf;
4339
    size = getmsg(s->fd, NULL, &sbuf, &f) >=0 ? sbuf.len : -1;
4340
#else
4341
    size = read(s->fd, buf, sizeof(buf));
4342
#endif
4343
    if (size > 0) {
4344
        qemu_send_packet(s->vc, buf, size);
4345
    }
4346
}
4347

    
4348
/* fd support */
4349

    
4350
static TAPState *net_tap_fd_init(VLANState *vlan, int fd)
4351
{
4352
    TAPState *s;
4353

    
4354
    s = qemu_mallocz(sizeof(TAPState));
4355
    if (!s)
4356
        return NULL;
4357
    s->fd = fd;
4358
    s->vc = qemu_new_vlan_client(vlan, tap_receive, NULL, s);
4359
    qemu_set_fd_handler(s->fd, tap_send, NULL, s);
4360
    snprintf(s->vc->info_str, sizeof(s->vc->info_str), "tap: fd=%d", fd);
4361
    return s;
4362
}
4363

    
4364
#if defined (_BSD) || defined (__FreeBSD_kernel__)
4365
static int tap_open(char *ifname, int ifname_size)
4366
{
4367
    int fd;
4368
    char *dev;
4369
    struct stat s;
4370

    
4371
    TFR(fd = open("/dev/tap", O_RDWR));
4372
    if (fd < 0) {
4373
        fprintf(stderr, "warning: could not open /dev/tap: no virtual network emulation\n");
4374
        return -1;
4375
    }
4376

    
4377
    fstat(fd, &s);
4378
    dev = devname(s.st_rdev, S_IFCHR);
4379
    pstrcpy(ifname, ifname_size, dev);
4380

    
4381
    fcntl(fd, F_SETFL, O_NONBLOCK);
4382
    return fd;
4383
}
4384
#elif defined(__sun__)
4385
#define TUNNEWPPA       (('T'<<16) | 0x0001)
4386
/*
4387
 * Allocate TAP device, returns opened fd.
4388
 * Stores dev name in the first arg(must be large enough).
4389
 */
4390
int tap_alloc(char *dev, size_t dev_size)
4391
{
4392
    int tap_fd, if_fd, ppa = -1;
4393
    static int ip_fd = 0;
4394
    char *ptr;
4395

    
4396
    static int arp_fd = 0;
4397
    int ip_muxid, arp_muxid;
4398
    struct strioctl  strioc_if, strioc_ppa;
4399
    int link_type = I_PLINK;;
4400
    struct lifreq ifr;
4401
    char actual_name[32] = "";
4402

    
4403
    memset(&ifr, 0x0, sizeof(ifr));
4404

    
4405
    if( *dev ){
4406
       ptr = dev;
4407
       while( *ptr && !isdigit((int)*ptr) ) ptr++;
4408
       ppa = atoi(ptr);
4409
    }
4410

    
4411
    /* Check if IP device was opened */
4412
    if( ip_fd )
4413
       close(ip_fd);
4414

    
4415
    TFR(ip_fd = open("/dev/udp", O_RDWR, 0));
4416
    if (ip_fd < 0) {
4417
       syslog(LOG_ERR, "Can't open /dev/ip (actually /dev/udp)");
4418
       return -1;
4419
    }
4420

    
4421
    TFR(tap_fd = open("/dev/tap", O_RDWR, 0));
4422
    if (tap_fd < 0) {
4423
       syslog(LOG_ERR, "Can't open /dev/tap");
4424
       return -1;
4425
    }
4426

    
4427
    /* Assign a new PPA and get its unit number. */
4428
    strioc_ppa.ic_cmd = TUNNEWPPA;
4429
    strioc_ppa.ic_timout = 0;
4430
    strioc_ppa.ic_len = sizeof(ppa);
4431
    strioc_ppa.ic_dp = (char *)&ppa;
4432
    if ((ppa = ioctl (tap_fd, I_STR, &strioc_ppa)) < 0)
4433
       syslog (LOG_ERR, "Can't assign new interface");
4434

    
4435
    TFR(if_fd = open("/dev/tap", O_RDWR, 0));
4436
    if (if_fd < 0) {
4437
       syslog(LOG_ERR, "Can't open /dev/tap (2)");
4438
       return -1;
4439
    }
4440
    if(ioctl(if_fd, I_PUSH, "ip") < 0){
4441
       syslog(LOG_ERR, "Can't push IP module");
4442
       return -1;
4443
    }
4444

    
4445
    if (ioctl(if_fd, SIOCGLIFFLAGS, &ifr) < 0)
4446
        syslog(LOG_ERR, "Can't get flags\n");
4447

    
4448
    snprintf (actual_name, 32, "tap%d", ppa);
4449
    strncpy (ifr.lifr_name, actual_name, sizeof (ifr.lifr_name));
4450

    
4451
    ifr.lifr_ppa = ppa;
4452
    /* Assign ppa according to the unit number returned by tun device */
4453

    
4454
    if (ioctl (if_fd, SIOCSLIFNAME, &ifr) < 0)
4455
        syslog (LOG_ERR, "Can't set PPA %d", ppa);
4456
    if (ioctl(if_fd, SIOCGLIFFLAGS, &ifr) <0)
4457
        syslog (LOG_ERR, "Can't get flags\n");
4458
    /* Push arp module to if_fd */
4459
    if (ioctl (if_fd, I_PUSH, "arp") < 0)
4460
        syslog (LOG_ERR, "Can't push ARP module (2)");
4461

    
4462
    /* Push arp module to ip_fd */
4463
    if (ioctl (ip_fd, I_POP, NULL) < 0)
4464
        syslog (LOG_ERR, "I_POP failed\n");
4465
    if (ioctl (ip_fd, I_PUSH, "arp") < 0)
4466
        syslog (LOG_ERR, "Can't push ARP module (3)\n");
4467
    /* Open arp_fd */
4468
    TFR(arp_fd = open ("/dev/tap", O_RDWR, 0));
4469
    if (arp_fd < 0)
4470
       syslog (LOG_ERR, "Can't open %s\n", "/dev/tap");
4471

    
4472
    /* Set ifname to arp */
4473
    strioc_if.ic_cmd = SIOCSLIFNAME;
4474
    strioc_if.ic_timout = 0;
4475
    strioc_if.ic_len = sizeof(ifr);
4476
    strioc_if.ic_dp = (char *)&ifr;
4477
    if (ioctl(arp_fd, I_STR, &strioc_if) < 0){
4478
        syslog (LOG_ERR, "Can't set ifname to arp\n");
4479
    }
4480

    
4481
    if((ip_muxid = ioctl(ip_fd, I_LINK, if_fd)) < 0){
4482
       syslog(LOG_ERR, "Can't link TAP device to IP");
4483
       return -1;
4484
    }
4485

    
4486
    if ((arp_muxid = ioctl (ip_fd, link_type, arp_fd)) < 0)
4487
        syslog (LOG_ERR, "Can't link TAP device to ARP");
4488

    
4489
    close (if_fd);
4490

    
4491
    memset(&ifr, 0x0, sizeof(ifr));
4492
    strncpy (ifr.lifr_name, actual_name, sizeof (ifr.lifr_name));
4493
    ifr.lifr_ip_muxid  = ip_muxid;
4494
    ifr.lifr_arp_muxid = arp_muxid;
4495

    
4496
    if (ioctl (ip_fd, SIOCSLIFMUXID, &ifr) < 0)
4497
    {
4498
      ioctl (ip_fd, I_PUNLINK , arp_muxid);
4499
      ioctl (ip_fd, I_PUNLINK, ip_muxid);
4500
      syslog (LOG_ERR, "Can't set multiplexor id");
4501
    }
4502

    
4503
    snprintf(dev, dev_size, "tap%d", ppa);
4504
    return tap_fd;
4505
}
4506

    
4507
static int tap_open(char *ifname, int ifname_size)
4508
{
4509
    char  dev[10]="";
4510
    int fd;
4511
    if( (fd = tap_alloc(dev, sizeof(dev))) < 0 ){
4512
       fprintf(stderr, "Cannot allocate TAP device\n");
4513
       return -1;
4514
    }
4515
    pstrcpy(ifname, ifname_size, dev);
4516
    fcntl(fd, F_SETFL, O_NONBLOCK);
4517
    return fd;
4518
}
4519
#else
4520
static int tap_open(char *ifname, int ifname_size)
4521
{
4522
    struct ifreq ifr;
4523
    int fd, ret;
4524

    
4525
    TFR(fd = open("/dev/net/tun", O_RDWR));
4526
    if (fd < 0) {
4527
        fprintf(stderr, "warning: could not open /dev/net/tun: no virtual network emulation\n");
4528
        return -1;
4529
    }
4530
    memset(&ifr, 0, sizeof(ifr));
4531
    ifr.ifr_flags = IFF_TAP | IFF_NO_PI;
4532
    if (ifname[0] != '\0')
4533
        pstrcpy(ifr.ifr_name, IFNAMSIZ, ifname);
4534
    else
4535
        pstrcpy(ifr.ifr_name, IFNAMSIZ, "tap%d");
4536
    ret = ioctl(fd, TUNSETIFF, (void *) &ifr);
4537
    if (ret != 0) {
4538
        fprintf(stderr, "warning: could not configure /dev/net/tun: no virtual network emulation\n");
4539
        close(fd);
4540
        return -1;
4541
    }
4542
    pstrcpy(ifname, ifname_size, ifr.ifr_name);
4543
    fcntl(fd, F_SETFL, O_NONBLOCK);
4544
    return fd;
4545
}
4546
#endif
4547

    
4548
static int launch_script(const char *setup_script, const char *ifname, int fd)
4549
{
4550
    int pid, status;
4551
    char *args[3];
4552
    char **parg;
4553

    
4554
        /* try to launch network script */
4555
        pid = fork();
4556
        if (pid >= 0) {
4557
            if (pid == 0) {
4558
                int open_max = sysconf (_SC_OPEN_MAX), i;
4559
                for (i = 0; i < open_max; i++)
4560
                    if (i != STDIN_FILENO &&
4561
                        i != STDOUT_FILENO &&
4562
                        i != STDERR_FILENO &&
4563
                        i != fd)
4564
                        close(i);
4565

    
4566
                parg = args;
4567
                *parg++ = (char *)setup_script;
4568
                *parg++ = (char *)ifname;
4569
                *parg++ = NULL;
4570
                execv(setup_script, args);
4571
                _exit(1);
4572
            }
4573
            while (waitpid(pid, &status, 0) != pid);
4574
            if (!WIFEXITED(status) ||
4575
                WEXITSTATUS(status) != 0) {
4576
                fprintf(stderr, "%s: could not launch network script\n",
4577
                        setup_script);
4578
                return -1;
4579
            }
4580
        }
4581
    return 0;
4582
}
4583

    
4584
static int net_tap_init(VLANState *vlan, const char *ifname1,
4585
                        const char *setup_script, const char *down_script)
4586
{
4587
    TAPState *s;
4588
    int fd;
4589
    char ifname[128];
4590

    
4591
    if (ifname1 != NULL)
4592
        pstrcpy(ifname, sizeof(ifname), ifname1);
4593
    else
4594
        ifname[0] = '\0';
4595
    TFR(fd = tap_open(ifname, sizeof(ifname)));
4596
    if (fd < 0)
4597
        return -1;
4598

    
4599
    if (!setup_script || !strcmp(setup_script, "no"))
4600
        setup_script = "";
4601
    if (setup_script[0] != '\0') {
4602
        if (launch_script(setup_script, ifname, fd))
4603
            return -1;
4604
    }
4605
    s = net_tap_fd_init(vlan, fd);
4606
    if (!s)
4607
        return -1;
4608
    snprintf(s->vc->info_str, sizeof(s->vc->info_str),
4609
             "tap: ifname=%s setup_script=%s", ifname, setup_script);
4610
    if (down_script && strcmp(down_script, "no"))
4611
        snprintf(s->down_script, sizeof(s->down_script), "%s", down_script);
4612
    return 0;
4613
}
4614

    
4615
#endif /* !_WIN32 */
4616

    
4617
#if defined(CONFIG_VDE)
4618
typedef struct VDEState {
4619
    VLANClientState *vc;
4620
    VDECONN *vde;
4621
} VDEState;
4622

    
4623
static void vde_to_qemu(void *opaque)
4624
{
4625
    VDEState *s = opaque;
4626
    uint8_t buf[4096];
4627
    int size;
4628

    
4629
    size = vde_recv(s->vde, buf, sizeof(buf), 0);
4630
    if (size > 0) {
4631
        qemu_send_packet(s->vc, buf, size);
4632
    }
4633
}
4634

    
4635
static void vde_from_qemu(void *opaque, const uint8_t *buf, int size)
4636
{
4637
    VDEState *s = opaque;
4638
    int ret;
4639
    for(;;) {
4640
        ret = vde_send(s->vde, buf, size, 0);
4641
        if (ret < 0 && errno == EINTR) {
4642
        } else {
4643
            break;
4644
        }
4645
    }
4646
}
4647

    
4648
static int net_vde_init(VLANState *vlan, const char *sock, int port,
4649
                        const char *group, int mode)
4650
{
4651
    VDEState *s;
4652
    char *init_group = strlen(group) ? (char *)group : NULL;
4653
    char *init_sock = strlen(sock) ? (char *)sock : NULL;
4654

    
4655
    struct vde_open_args args = {
4656
        .port = port,
4657
        .group = init_group,
4658
        .mode = mode,
4659
    };
4660

    
4661
    s = qemu_mallocz(sizeof(VDEState));
4662
    if (!s)
4663
        return -1;
4664
    s->vde = vde_open(init_sock, "QEMU", &args);
4665
    if (!s->vde){
4666
        free(s);
4667
        return -1;
4668
    }
4669
    s->vc = qemu_new_vlan_client(vlan, vde_from_qemu, NULL, s);
4670
    qemu_set_fd_handler(vde_datafd(s->vde), vde_to_qemu, NULL, s);
4671
    snprintf(s->vc->info_str, sizeof(s->vc->info_str), "vde: sock=%s fd=%d",
4672
             sock, vde_datafd(s->vde));
4673
    return 0;
4674
}
4675
#endif
4676

    
4677
/* network connection */
4678
typedef struct NetSocketState {
4679
    VLANClientState *vc;
4680
    int fd;
4681
    int state; /* 0 = getting length, 1 = getting data */
4682
    int index;
4683
    int packet_len;
4684
    uint8_t buf[4096];
4685
    struct sockaddr_in dgram_dst; /* contains inet host and port destination iff connectionless (SOCK_DGRAM) */
4686
} NetSocketState;
4687

    
4688
typedef struct NetSocketListenState {
4689
    VLANState *vlan;
4690
    int fd;
4691
} NetSocketListenState;
4692

    
4693
/* XXX: we consider we can send the whole packet without blocking */
4694
static void net_socket_receive(void *opaque, const uint8_t *buf, int size)
4695
{
4696
    NetSocketState *s = opaque;
4697
    uint32_t len;
4698
    len = htonl(size);
4699

    
4700
    send_all(s->fd, (const uint8_t *)&len, sizeof(len));
4701
    send_all(s->fd, buf, size);
4702
}
4703

    
4704
static void net_socket_receive_dgram(void *opaque, const uint8_t *buf, int size)
4705
{
4706
    NetSocketState *s = opaque;
4707
    sendto(s->fd, buf, size, 0,
4708
           (struct sockaddr *)&s->dgram_dst, sizeof(s->dgram_dst));
4709
}
4710

    
4711
static void net_socket_send(void *opaque)
4712
{
4713
    NetSocketState *s = opaque;
4714
    int l, size, err;
4715
    uint8_t buf1[4096];
4716
    const uint8_t *buf;
4717

    
4718
    size = recv(s->fd, buf1, sizeof(buf1), 0);
4719
    if (size < 0) {
4720
        err = socket_error();
4721
        if (err != EWOULDBLOCK)
4722
            goto eoc;
4723
    } else if (size == 0) {
4724
        /* end of connection */
4725
    eoc:
4726
        qemu_set_fd_handler(s->fd, NULL, NULL, NULL);
4727
        closesocket(s->fd);
4728
        return;
4729
    }
4730
    buf = buf1;
4731
    while (size > 0) {
4732
        /* reassemble a packet from the network */
4733
        switch(s->state) {
4734
        case 0:
4735
            l = 4 - s->index;
4736
            if (l > size)
4737
                l = size;
4738
            memcpy(s->buf + s->index, buf, l);
4739
            buf += l;
4740
            size -= l;
4741
            s->index += l;
4742
            if (s->index == 4) {
4743
                /* got length */
4744
                s->packet_len = ntohl(*(uint32_t *)s->buf);
4745
                s->index = 0;
4746
                s->state = 1;
4747
            }
4748
            break;
4749
        case 1:
4750
            l = s->packet_len - s->index;
4751
            if (l > size)
4752
                l = size;
4753
            memcpy(s->buf + s->index, buf, l);
4754
            s->index += l;
4755
            buf += l;
4756
            size -= l;
4757
            if (s->index >= s->packet_len) {
4758
                qemu_send_packet(s->vc, s->buf, s->packet_len);
4759
                s->index = 0;
4760
                s->state = 0;
4761
            }
4762
            break;
4763
        }
4764
    }
4765
}
4766

    
4767
static void net_socket_send_dgram(void *opaque)
4768
{
4769
    NetSocketState *s = opaque;
4770
    int size;
4771

    
4772
    size = recv(s->fd, s->buf, sizeof(s->buf), 0);
4773
    if (size < 0)
4774
        return;
4775
    if (size == 0) {
4776
        /* end of connection */
4777
        qemu_set_fd_handler(s->fd, NULL, NULL, NULL);
4778
        return;
4779
    }
4780
    qemu_send_packet(s->vc, s->buf, size);
4781
}
4782

    
4783
static int net_socket_mcast_create(struct sockaddr_in *mcastaddr)
4784
{
4785
    struct ip_mreq imr;
4786
    int fd;
4787
    int val, ret;
4788
    if (!IN_MULTICAST(ntohl(mcastaddr->sin_addr.s_addr))) {
4789
        fprintf(stderr, "qemu: error: specified mcastaddr \"%s\" (0x%08x) does not contain a multicast address\n",
4790
                inet_ntoa(mcastaddr->sin_addr),
4791
                (int)ntohl(mcastaddr->sin_addr.s_addr));
4792
        return -1;
4793

    
4794
    }
4795
    fd = socket(PF_INET, SOCK_DGRAM, 0);
4796
    if (fd < 0) {
4797
        perror("socket(PF_INET, SOCK_DGRAM)");
4798
        return -1;
4799
    }
4800

    
4801
    val = 1;
4802
    ret=setsockopt(fd, SOL_SOCKET, SO_REUSEADDR,
4803
                   (const char *)&val, sizeof(val));
4804
    if (ret < 0) {
4805
        perror("setsockopt(SOL_SOCKET, SO_REUSEADDR)");
4806
        goto fail;
4807
    }
4808

    
4809
    ret = bind(fd, (struct sockaddr *)mcastaddr, sizeof(*mcastaddr));
4810
    if (ret < 0) {
4811
        perror("bind");
4812
        goto fail;
4813
    }
4814

    
4815
    /* Add host to multicast group */
4816
    imr.imr_multiaddr = mcastaddr->sin_addr;
4817
    imr.imr_interface.s_addr = htonl(INADDR_ANY);
4818

    
4819
    ret = setsockopt(fd, IPPROTO_IP, IP_ADD_MEMBERSHIP,
4820
                     (const char *)&imr, sizeof(struct ip_mreq));
4821
    if (ret < 0) {
4822
        perror("setsockopt(IP_ADD_MEMBERSHIP)");
4823
        goto fail;
4824
    }
4825

    
4826
    /* Force mcast msgs to loopback (eg. several QEMUs in same host */
4827
    val = 1;
4828
    ret=setsockopt(fd, IPPROTO_IP, IP_MULTICAST_LOOP,
4829
                   (const char *)&val, sizeof(val));
4830
    if (ret < 0) {
4831
        perror("setsockopt(SOL_IP, IP_MULTICAST_LOOP)");
4832
        goto fail;
4833
    }
4834

    
4835
    socket_set_nonblock(fd);
4836
    return fd;
4837
fail:
4838
    if (fd >= 0)
4839
        closesocket(fd);
4840
    return -1;
4841
}
4842

    
4843
static NetSocketState *net_socket_fd_init_dgram(VLANState *vlan, int fd,
4844
                                          int is_connected)
4845
{
4846
    struct sockaddr_in saddr;
4847
    int newfd;
4848
    socklen_t saddr_len;
4849
    NetSocketState *s;
4850

    
4851
    /* fd passed: multicast: "learn" dgram_dst address from bound address and save it
4852
     * Because this may be "shared" socket from a "master" process, datagrams would be recv()
4853
     * by ONLY ONE process: we must "clone" this dgram socket --jjo
4854
     */
4855

    
4856
    if (is_connected) {
4857
        if (getsockname(fd, (struct sockaddr *) &saddr, &saddr_len) == 0) {
4858
            /* must be bound */
4859
            if (saddr.sin_addr.s_addr==0) {
4860
                fprintf(stderr, "qemu: error: init_dgram: fd=%d unbound, cannot setup multicast dst addr\n",
4861
                        fd);
4862
                return NULL;
4863
            }
4864
            /* clone dgram socket */
4865
            newfd = net_socket_mcast_create(&saddr);
4866
            if (newfd < 0) {
4867
                /* error already reported by net_socket_mcast_create() */
4868
                close(fd);
4869
                return NULL;
4870
            }
4871
            /* clone newfd to fd, close newfd */
4872
            dup2(newfd, fd);
4873
            close(newfd);
4874

    
4875
        } else {
4876
            fprintf(stderr, "qemu: error: init_dgram: fd=%d failed getsockname(): %s\n",
4877
                    fd, strerror(errno));
4878
            return NULL;
4879
        }
4880
    }
4881

    
4882
    s = qemu_mallocz(sizeof(NetSocketState));
4883
    if (!s)
4884
        return NULL;
4885
    s->fd = fd;
4886

    
4887
    s->vc = qemu_new_vlan_client(vlan, net_socket_receive_dgram, NULL, s);
4888
    qemu_set_fd_handler(s->fd, net_socket_send_dgram, NULL, s);
4889

    
4890
    /* mcast: save bound address as dst */
4891
    if (is_connected) s->dgram_dst=saddr;
4892

    
4893
    snprintf(s->vc->info_str, sizeof(s->vc->info_str),
4894
            "socket: fd=%d (%s mcast=%s:%d)",
4895
            fd, is_connected? "cloned" : "",
4896
            inet_ntoa(saddr.sin_addr), ntohs(saddr.sin_port));
4897
    return s;
4898
}
4899

    
4900
static void net_socket_connect(void *opaque)
4901
{
4902
    NetSocketState *s = opaque;
4903
    qemu_set_fd_handler(s->fd, net_socket_send, NULL, s);
4904
}
4905

    
4906
static NetSocketState *net_socket_fd_init_stream(VLANState *vlan, int fd,
4907
                                          int is_connected)
4908
{
4909
    NetSocketState *s;
4910
    s = qemu_mallocz(sizeof(NetSocketState));
4911
    if (!s)
4912
        return NULL;
4913
    s->fd = fd;
4914
    s->vc = qemu_new_vlan_client(vlan,
4915
                                 net_socket_receive, NULL, s);
4916
    snprintf(s->vc->info_str, sizeof(s->vc->info_str),
4917
             "socket: fd=%d", fd);
4918
    if (is_connected) {
4919
        net_socket_connect(s);
4920
    } else {
4921
        qemu_set_fd_handler(s->fd, NULL, net_socket_connect, s);
4922
    }
4923
    return s;
4924
}
4925

    
4926
static NetSocketState *net_socket_fd_init(VLANState *vlan, int fd,
4927
                                          int is_connected)
4928
{
4929
    int so_type=-1, optlen=sizeof(so_type);
4930

    
4931
    if(getsockopt(fd, SOL_SOCKET, SO_TYPE, (char *)&so_type,
4932
        (socklen_t *)&optlen)< 0) {
4933
        fprintf(stderr, "qemu: error: getsockopt(SO_TYPE) for fd=%d failed\n", fd);
4934
        return NULL;
4935
    }
4936
    switch(so_type) {
4937
    case SOCK_DGRAM:
4938
        return net_socket_fd_init_dgram(vlan, fd, is_connected);
4939
    case SOCK_STREAM:
4940
        return net_socket_fd_init_stream(vlan, fd, is_connected);
4941
    default:
4942
        /* who knows ... this could be a eg. a pty, do warn and continue as stream */
4943
        fprintf(stderr, "qemu: warning: socket type=%d for fd=%d is not SOCK_DGRAM or SOCK_STREAM\n", so_type, fd);
4944
        return net_socket_fd_init_stream(vlan, fd, is_connected);
4945
    }
4946
    return NULL;
4947
}
4948

    
4949
static void net_socket_accept(void *opaque)
4950
{
4951
    NetSocketListenState *s = opaque;
4952
    NetSocketState *s1;
4953
    struct sockaddr_in saddr;
4954
    socklen_t len;
4955
    int fd;
4956

    
4957
    for(;;) {
4958
        len = sizeof(saddr);
4959
        fd = accept(s->fd, (struct sockaddr *)&saddr, &len);
4960
        if (fd < 0 && errno != EINTR) {
4961
            return;
4962
        } else if (fd >= 0) {
4963
            break;
4964
        }
4965
    }
4966
    s1 = net_socket_fd_init(s->vlan, fd, 1);
4967
    if (!s1) {
4968
        closesocket(fd);
4969
    } else {
4970
        snprintf(s1->vc->info_str, sizeof(s1->vc->info_str),
4971
                 "socket: connection from %s:%d",
4972
                 inet_ntoa(saddr.sin_addr), ntohs(saddr.sin_port));
4973
    }
4974
}
4975

    
4976
static int net_socket_listen_init(VLANState *vlan, const char *host_str)
4977
{
4978
    NetSocketListenState *s;
4979
    int fd, val, ret;
4980
    struct sockaddr_in saddr;
4981

    
4982
    if (parse_host_port(&saddr, host_str) < 0)
4983
        return -1;
4984

    
4985
    s = qemu_mallocz(sizeof(NetSocketListenState));
4986
    if (!s)
4987
        return -1;
4988

    
4989
    fd = socket(PF_INET, SOCK_STREAM, 0);
4990
    if (fd < 0) {
4991
        perror("socket");
4992
        return -1;
4993
    }
4994
    socket_set_nonblock(fd);
4995

    
4996
    /* allow fast reuse */
4997
    val = 1;
4998
    setsockopt(fd, SOL_SOCKET, SO_REUSEADDR, (const char *)&val, sizeof(val));
4999

    
5000
    ret = bind(fd, (struct sockaddr *)&saddr, sizeof(saddr));
5001
    if (ret < 0) {
5002
        perror("bind");
5003
        return -1;
5004
    }
5005
    ret = listen(fd, 0);
5006
    if (ret < 0) {
5007
        perror("listen");
5008
        return -1;
5009
    }
5010
    s->vlan = vlan;
5011
    s->fd = fd;
5012
    qemu_set_fd_handler(fd, net_socket_accept, NULL, s);
5013
    return 0;
5014
}
5015

    
5016
static int net_socket_connect_init(VLANState *vlan, const char *host_str)
5017
{
5018
    NetSocketState *s;
5019
    int fd, connected, ret, err;
5020
    struct sockaddr_in saddr;
5021

    
5022
    if (parse_host_port(&saddr, host_str) < 0)
5023
        return -1;
5024

    
5025
    fd = socket(PF_INET, SOCK_STREAM, 0);
5026
    if (fd < 0) {
5027
        perror("socket");
5028
        return -1;
5029
    }
5030
    socket_set_nonblock(fd);
5031

    
5032
    connected = 0;
5033
    for(;;) {
5034
        ret = connect(fd, (struct sockaddr *)&saddr, sizeof(saddr));
5035
        if (ret < 0) {
5036
            err = socket_error();
5037
            if (err == EINTR || err == EWOULDBLOCK) {
5038
            } else if (err == EINPROGRESS) {
5039
                break;
5040
#ifdef _WIN32
5041
            } else if (err == WSAEALREADY) {
5042
                break;
5043
#endif
5044
            } else {
5045
                perror("connect");
5046
                closesocket(fd);
5047
                return -1;
5048
            }
5049
        } else {
5050
            connected = 1;
5051
            break;
5052
        }
5053
    }
5054
    s = net_socket_fd_init(vlan, fd, connected);
5055
    if (!s)
5056
        return -1;
5057
    snprintf(s->vc->info_str, sizeof(s->vc->info_str),
5058
             "socket: connect to %s:%d",
5059
             inet_ntoa(saddr.sin_addr), ntohs(saddr.sin_port));
5060
    return 0;
5061
}
5062

    
5063
static int net_socket_mcast_init(VLANState *vlan, const char *host_str)
5064
{
5065
    NetSocketState *s;
5066
    int fd;
5067
    struct sockaddr_in saddr;
5068

    
5069
    if (parse_host_port(&saddr, host_str) < 0)
5070
        return -1;
5071

    
5072

    
5073
    fd = net_socket_mcast_create(&saddr);
5074
    if (fd < 0)
5075
        return -1;
5076

    
5077
    s = net_socket_fd_init(vlan, fd, 0);
5078
    if (!s)
5079
        return -1;
5080

    
5081
    s->dgram_dst = saddr;
5082

    
5083
    snprintf(s->vc->info_str, sizeof(s->vc->info_str),
5084
             "socket: mcast=%s:%d",
5085
             inet_ntoa(saddr.sin_addr), ntohs(saddr.sin_port));
5086
    return 0;
5087

    
5088
}
5089

    
5090
static const char *get_opt_name(char *buf, int buf_size, const char *p)
5091
{
5092
    char *q;
5093

    
5094
    q = buf;
5095
    while (*p != '\0' && *p != '=') {
5096
        if (q && (q - buf) < buf_size - 1)
5097
            *q++ = *p;
5098
        p++;
5099
    }
5100
    if (q)
5101
        *q = '\0';
5102

    
5103
    return p;
5104
}
5105

    
5106
static const char *get_opt_value(char *buf, int buf_size, const char *p)
5107
{
5108
    char *q;
5109

    
5110
    q = buf;
5111
    while (*p != '\0') {
5112
        if (*p == ',') {
5113
            if (*(p + 1) != ',')
5114
                break;
5115
            p++;
5116
        }
5117
        if (q && (q - buf) < buf_size - 1)
5118
            *q++ = *p;
5119
        p++;
5120
    }
5121
    if (q)
5122
        *q = '\0';
5123

    
5124
    return p;
5125
}
5126

    
5127
static int get_param_value(char *buf, int buf_size,
5128
                           const char *tag, const char *str)
5129
{
5130
    const char *p;
5131
    char option[128];
5132

    
5133
    p = str;
5134
    for(;;) {
5135
        p = get_opt_name(option, sizeof(option), p);
5136
        if (*p != '=')
5137
            break;
5138
        p++;
5139
        if (!strcmp(tag, option)) {
5140
            (void)get_opt_value(buf, buf_size, p);
5141
            return strlen(buf);
5142
        } else {
5143
            p = get_opt_value(NULL, 0, p);
5144
        }
5145
        if (*p != ',')
5146
            break;
5147
        p++;
5148
    }
5149
    return 0;
5150
}
5151

    
5152
static int check_params(char *buf, int buf_size,
5153
                        const char * const *params, const char *str)
5154
{
5155
    const char *p;
5156
    int i;
5157

    
5158
    p = str;
5159
    for(;;) {
5160
        p = get_opt_name(buf, buf_size, p);
5161
        if (*p != '=')
5162
            return -1;
5163
        p++;
5164
        for(i = 0; params[i] != NULL; i++)
5165
            if (!strcmp(params[i], buf))
5166
                break;
5167
        if (params[i] == NULL)
5168
            return -1;
5169
        p = get_opt_value(NULL, 0, p);
5170
        if (*p != ',')
5171
            break;
5172
        p++;
5173
    }
5174
    return 0;
5175
}
5176

    
5177
static int net_client_init(const char *device, const char *p)
5178
{
5179
    char buf[1024];
5180
    int vlan_id, ret;
5181
    VLANState *vlan;
5182

    
5183
    vlan_id = 0;
5184
    if (get_param_value(buf, sizeof(buf), "vlan", p)) {
5185
        vlan_id = strtol(buf, NULL, 0);
5186
    }
5187
    vlan = qemu_find_vlan(vlan_id);
5188
    if (!vlan) {
5189
        fprintf(stderr, "Could not create vlan %d\n", vlan_id);
5190
        return -1;
5191
    }
5192
    if (!strcmp(device, "nic")) {
5193
        NICInfo *nd;
5194
        uint8_t *macaddr;
5195

    
5196
        if (nb_nics >= MAX_NICS) {
5197
            fprintf(stderr, "Too Many NICs\n");
5198
            return -1;
5199
        }
5200
        nd = &nd_table[nb_nics];
5201
        macaddr = nd->macaddr;
5202
        macaddr[0] = 0x52;
5203
        macaddr[1] = 0x54;
5204
        macaddr[2] = 0x00;
5205
        macaddr[3] = 0x12;
5206
        macaddr[4] = 0x34;
5207
        macaddr[5] = 0x56 + nb_nics;
5208

    
5209
        if (get_param_value(buf, sizeof(buf), "macaddr", p)) {
5210
            if (parse_macaddr(macaddr, buf) < 0) {
5211
                fprintf(stderr, "invalid syntax for ethernet address\n");
5212
                return -1;
5213
            }
5214
        }
5215
        if (get_param_value(buf, sizeof(buf), "model", p)) {
5216
            nd->model = strdup(buf);
5217
        }
5218
        nd->vlan = vlan;
5219
        nb_nics++;
5220
        vlan->nb_guest_devs++;
5221
        ret = 0;
5222
    } else
5223
    if (!strcmp(device, "none")) {
5224
        /* does nothing. It is needed to signal that no network cards
5225
           are wanted */
5226
        ret = 0;
5227
    } else
5228
#ifdef CONFIG_SLIRP
5229
    if (!strcmp(device, "user")) {
5230
        if (get_param_value(buf, sizeof(buf), "hostname", p)) {
5231
            pstrcpy(slirp_hostname, sizeof(slirp_hostname), buf);
5232
        }
5233
        vlan->nb_host_devs++;
5234
        ret = net_slirp_init(vlan);
5235
    } else
5236
#endif
5237
#ifdef _WIN32
5238
    if (!strcmp(device, "tap")) {
5239
        char ifname[64];
5240
        if (get_param_value(ifname, sizeof(ifname), "ifname", p) <= 0) {
5241
            fprintf(stderr, "tap: no interface name\n");
5242
            return -1;
5243
        }
5244
        vlan->nb_host_devs++;
5245
        ret = tap_win32_init(vlan, ifname);
5246
    } else
5247
#else
5248
    if (!strcmp(device, "tap")) {
5249
        char ifname[64];
5250
        char setup_script[1024], down_script[1024];
5251
        int fd;
5252
        vlan->nb_host_devs++;
5253
        if (get_param_value(buf, sizeof(buf), "fd", p) > 0) {
5254
            fd = strtol(buf, NULL, 0);
5255
            fcntl(fd, F_SETFL, O_NONBLOCK);
5256
            ret = -1;
5257
            if (net_tap_fd_init(vlan, fd))
5258
                ret = 0;
5259
        } else {
5260
            if (get_param_value(ifname, sizeof(ifname), "ifname", p) <= 0) {
5261
                ifname[0] = '\0';
5262
            }
5263
            if (get_param_value(setup_script, sizeof(setup_script), "script", p) == 0) {
5264
                pstrcpy(setup_script, sizeof(setup_script), DEFAULT_NETWORK_SCRIPT);
5265
            }
5266
            if (get_param_value(down_script, sizeof(down_script), "downscript", p) == 0) {
5267
                pstrcpy(down_script, sizeof(down_script), DEFAULT_NETWORK_DOWN_SCRIPT);
5268
            }
5269
            ret = net_tap_init(vlan, ifname, setup_script, down_script);
5270
        }
5271
    } else
5272
#endif
5273
    if (!strcmp(device, "socket")) {
5274
        if (get_param_value(buf, sizeof(buf), "fd", p) > 0) {
5275
            int fd;
5276
            fd = strtol(buf, NULL, 0);
5277
            ret = -1;
5278
            if (net_socket_fd_init(vlan, fd, 1))
5279
                ret = 0;
5280
        } else if (get_param_value(buf, sizeof(buf), "listen", p) > 0) {
5281
            ret = net_socket_listen_init(vlan, buf);
5282
        } else if (get_param_value(buf, sizeof(buf), "connect", p) > 0) {
5283
            ret = net_socket_connect_init(vlan, buf);
5284
        } else if (get_param_value(buf, sizeof(buf), "mcast", p) > 0) {
5285
            ret = net_socket_mcast_init(vlan, buf);
5286
        } else {
5287
            fprintf(stderr, "Unknown socket options: %s\n", p);
5288
            return -1;
5289
        }
5290
        vlan->nb_host_devs++;
5291
    } else
5292
#ifdef CONFIG_VDE
5293
    if (!strcmp(device, "vde")) {
5294
        char vde_sock[1024], vde_group[512];
5295
        int vde_port, vde_mode;
5296
        vlan->nb_host_devs++;
5297
        if (get_param_value(vde_sock, sizeof(vde_sock), "sock", p) <= 0) {
5298
            vde_sock[0] = '\0';
5299
        }
5300
        if (get_param_value(buf, sizeof(buf), "port", p) > 0) {
5301
            vde_port = strtol(buf, NULL, 10);
5302
        } else {
5303
            vde_port = 0;
5304
        }
5305
        if (get_param_value(vde_group, sizeof(vde_group), "group", p) <= 0) {
5306
            vde_group[0] = '\0';
5307
        }
5308
        if (get_param_value(buf, sizeof(buf), "mode", p) > 0) {
5309
            vde_mode = strtol(buf, NULL, 8);
5310
        } else {
5311
            vde_mode = 0700;
5312
        }
5313
        ret = net_vde_init(vlan, vde_sock, vde_port, vde_group, vde_mode);
5314
    } else
5315
#endif
5316
    {
5317
        fprintf(stderr, "Unknown network device: %s\n", device);
5318
        return -1;
5319
    }
5320
    if (ret < 0) {
5321
        fprintf(stderr, "Could not initialize device '%s'\n", device);
5322
    }
5323

    
5324
    return ret;
5325
}
5326

    
5327
static int net_client_parse(const char *str)
5328
{
5329
    const char *p;
5330
    char *q;
5331
    char device[64];
5332

    
5333
    p = str;
5334
    q = device;
5335
    while (*p != '\0' && *p != ',') {
5336
        if ((q - device) < sizeof(device) - 1)
5337
            *q++ = *p;
5338
        p++;
5339
    }
5340
    *q = '\0';
5341
    if (*p == ',')
5342
        p++;
5343

    
5344
    return net_client_init(device, p);
5345
}
5346

    
5347
void do_info_network(void)
5348
{
5349
    VLANState *vlan;
5350
    VLANClientState *vc;
5351

    
5352
    for(vlan = first_vlan; vlan != NULL; vlan = vlan->next) {
5353
        term_printf("VLAN %d devices:\n", vlan->id);
5354
        for(vc = vlan->first_client; vc != NULL; vc = vc->next)
5355
            term_printf("  %s\n", vc->info_str);
5356
    }
5357
}
5358

    
5359
/***********************************************************/
5360
/* Bluetooth support */
5361
static int nb_hcis;
5362
static int cur_hci;
5363
static struct HCIInfo *hci_table[MAX_NICS];
5364
static struct bt_vlan_s {
5365
    struct bt_scatternet_s net;
5366
    int id;
5367
    struct bt_vlan_s *next;
5368
} *first_bt_vlan;
5369

    
5370
/* find or alloc a new bluetooth "VLAN" */
5371
static struct bt_scatternet_s *qemu_find_bt_vlan(int id)
5372
{
5373
    struct bt_vlan_s **pvlan, *vlan;
5374
    for (vlan = first_bt_vlan; vlan != NULL; vlan = vlan->next) {
5375
        if (vlan->id == id)
5376
            return &vlan->net;
5377
    }
5378
    vlan = qemu_mallocz(sizeof(struct bt_vlan_s));
5379
    vlan->id = id;
5380
    pvlan = &first_bt_vlan;
5381
    while (*pvlan != NULL)
5382
        pvlan = &(*pvlan)->next;
5383
    *pvlan = vlan;
5384
    return &vlan->net;
5385
}
5386

    
5387
static void null_hci_send(struct HCIInfo *hci, const uint8_t *data, int len)
5388
{
5389
}
5390

    
5391
static int null_hci_addr_set(struct HCIInfo *hci, const uint8_t *bd_addr)
5392
{
5393
    return -ENOTSUP;
5394
}
5395

    
5396
static struct HCIInfo null_hci = {
5397
    .cmd_send = null_hci_send,
5398
    .sco_send = null_hci_send,
5399
    .acl_send = null_hci_send,
5400
    .bdaddr_set = null_hci_addr_set,
5401
};
5402

    
5403
struct HCIInfo *qemu_next_hci(void)
5404
{
5405
    if (cur_hci == nb_hcis)
5406
        return &null_hci;
5407

    
5408
    return hci_table[cur_hci++];
5409
}
5410

    
5411
/***********************************************************/
5412
/* QEMU Block devices */
5413

    
5414
#define HD_ALIAS "index=%d,media=disk"
5415
#ifdef TARGET_PPC
5416
#define CDROM_ALIAS "index=1,media=cdrom"
5417
#else
5418
#define CDROM_ALIAS "index=2,media=cdrom"
5419
#endif
5420
#define FD_ALIAS "index=%d,if=floppy"
5421
#define PFLASH_ALIAS "if=pflash"
5422
#define MTD_ALIAS "if=mtd"
5423
#define SD_ALIAS "index=0,if=sd"
5424

    
5425
static int drive_add(const char *file, const char *fmt, ...)
5426
{
5427
    va_list ap;
5428

    
5429
    if (nb_drives_opt >= MAX_DRIVES) {
5430
        fprintf(stderr, "qemu: too many drives\n");
5431
        exit(1);
5432
    }
5433

    
5434
    drives_opt[nb_drives_opt].file = file;
5435
    va_start(ap, fmt);
5436
    vsnprintf(drives_opt[nb_drives_opt].opt,
5437
              sizeof(drives_opt[0].opt), fmt, ap);
5438
    va_end(ap);
5439

    
5440
    return nb_drives_opt++;
5441
}
5442

    
5443
int drive_get_index(BlockInterfaceType type, int bus, int unit)
5444
{
5445
    int index;
5446

    
5447
    /* seek interface, bus and unit */
5448

    
5449
    for (index = 0; index < nb_drives; index++)
5450
        if (drives_table[index].type == type &&
5451
            drives_table[index].bus == bus &&
5452
            drives_table[index].unit == unit)
5453
        return index;
5454

    
5455
    return -1;
5456
}
5457

    
5458
int drive_get_max_bus(BlockInterfaceType type)
5459
{
5460
    int max_bus;
5461
    int index;
5462

    
5463
    max_bus = -1;
5464
    for (index = 0; index < nb_drives; index++) {
5465
        if(drives_table[index].type == type &&
5466
           drives_table[index].bus > max_bus)
5467
            max_bus = drives_table[index].bus;
5468
    }
5469
    return max_bus;
5470
}
5471

    
5472
static void bdrv_format_print(void *opaque, const char *name)
5473
{
5474
    fprintf(stderr, " %s", name);
5475
}
5476

    
5477
static int drive_init(struct drive_opt *arg, int snapshot,
5478
                      QEMUMachine *machine)
5479
{
5480
    char buf[128];
5481
    char file[1024];
5482
    char devname[128];
5483
    const char *mediastr = "";
5484
    BlockInterfaceType type;
5485
    enum { MEDIA_DISK, MEDIA_CDROM } media;
5486
    int bus_id, unit_id;
5487
    int cyls, heads, secs, translation;
5488
    BlockDriverState *bdrv;
5489
    BlockDriver *drv = NULL;
5490
    int max_devs;
5491
    int index;
5492
    int cache;
5493
    int bdrv_flags;
5494
    char *str = arg->opt;
5495
    static const char * const params[] = { "bus", "unit", "if", "index",
5496
                                           "cyls", "heads", "secs", "trans",
5497
                                           "media", "snapshot", "file",
5498
                                           "cache", "format", NULL };
5499

    
5500
    if (check_params(buf, sizeof(buf), params, str) < 0) {
5501
         fprintf(stderr, "qemu: unknown parameter '%s' in '%s'\n",
5502
                         buf, str);
5503
         return -1;
5504
    }
5505

    
5506
    file[0] = 0;
5507
    cyls = heads = secs = 0;
5508
    bus_id = 0;
5509
    unit_id = -1;
5510
    translation = BIOS_ATA_TRANSLATION_AUTO;
5511
    index = -1;
5512
    cache = 1;
5513

    
5514
    if (machine->use_scsi) {
5515
        type = IF_SCSI;
5516
        max_devs = MAX_SCSI_DEVS;
5517
        pstrcpy(devname, sizeof(devname), "scsi");
5518
    } else {
5519
        type = IF_IDE;
5520
        max_devs = MAX_IDE_DEVS;
5521
        pstrcpy(devname, sizeof(devname), "ide");
5522
    }
5523
    media = MEDIA_DISK;
5524

    
5525
    /* extract parameters */
5526

    
5527
    if (get_param_value(buf, sizeof(buf), "bus", str)) {
5528
        bus_id = strtol(buf, NULL, 0);
5529
        if (bus_id < 0) {
5530
            fprintf(stderr, "qemu: '%s' invalid bus id\n", str);
5531
            return -1;
5532
        }
5533
    }
5534

    
5535
    if (get_param_value(buf, sizeof(buf), "unit", str)) {
5536
        unit_id = strtol(buf, NULL, 0);
5537
        if (unit_id < 0) {
5538
            fprintf(stderr, "qemu: '%s' invalid unit id\n", str);
5539
            return -1;
5540
        }
5541
    }
5542

    
5543
    if (get_param_value(buf, sizeof(buf), "if", str)) {
5544
        pstrcpy(devname, sizeof(devname), buf);
5545
        if (!strcmp(buf, "ide")) {
5546
            type = IF_IDE;
5547
            max_devs = MAX_IDE_DEVS;
5548
        } else if (!strcmp(buf, "scsi")) {
5549
            type = IF_SCSI;
5550
            max_devs = MAX_SCSI_DEVS;
5551
        } else if (!strcmp(buf, "floppy")) {
5552
            type = IF_FLOPPY;
5553
            max_devs = 0;
5554
        } else if (!strcmp(buf, "pflash")) {
5555
            type = IF_PFLASH;
5556
            max_devs = 0;
5557
        } else if (!strcmp(buf, "mtd")) {
5558
            type = IF_MTD;
5559
            max_devs = 0;
5560
        } else if (!strcmp(buf, "sd")) {
5561
            type = IF_SD;
5562
            max_devs = 0;
5563
        } else {
5564
            fprintf(stderr, "qemu: '%s' unsupported bus type '%s'\n", str, buf);
5565
            return -1;
5566
        }
5567
    }
5568

    
5569
    if (get_param_value(buf, sizeof(buf), "index", str)) {
5570
        index = strtol(buf, NULL, 0);
5571
        if (index < 0) {
5572
            fprintf(stderr, "qemu: '%s' invalid index\n", str);
5573
            return -1;
5574
        }
5575
    }
5576

    
5577
    if (get_param_value(buf, sizeof(buf), "cyls", str)) {
5578
        cyls = strtol(buf, NULL, 0);
5579
    }
5580

    
5581
    if (get_param_value(buf, sizeof(buf), "heads", str)) {
5582
        heads = strtol(buf, NULL, 0);
5583
    }
5584

    
5585
    if (get_param_value(buf, sizeof(buf), "secs", str)) {
5586
        secs = strtol(buf, NULL, 0);
5587
    }
5588

    
5589
    if (cyls || heads || secs) {
5590
        if (cyls < 1 || cyls > 16383) {
5591
            fprintf(stderr, "qemu: '%s' invalid physical cyls number\n", str);
5592
            return -1;
5593
        }
5594
        if (heads < 1 || heads > 16) {
5595
            fprintf(stderr, "qemu: '%s' invalid physical heads number\n", str);
5596
            return -1;
5597
        }
5598
        if (secs < 1 || secs > 63) {
5599
            fprintf(stderr, "qemu: '%s' invalid physical secs number\n", str);
5600
            return -1;
5601
        }
5602
    }
5603

    
5604
    if (get_param_value(buf, sizeof(buf), "trans", str)) {
5605
        if (!cyls) {
5606
            fprintf(stderr,
5607
                    "qemu: '%s' trans must be used with cyls,heads and secs\n",
5608
                    str);
5609
            return -1;
5610
        }
5611
        if (!strcmp(buf, "none"))
5612
            translation = BIOS_ATA_TRANSLATION_NONE;
5613
        else if (!strcmp(buf, "lba"))
5614
            translation = BIOS_ATA_TRANSLATION_LBA;
5615
        else if (!strcmp(buf, "auto"))
5616
            translation = BIOS_ATA_TRANSLATION_AUTO;
5617
        else {
5618
            fprintf(stderr, "qemu: '%s' invalid translation type\n", str);
5619
            return -1;
5620
        }
5621
    }
5622

    
5623
    if (get_param_value(buf, sizeof(buf), "media", str)) {
5624
        if (!strcmp(buf, "disk")) {
5625
            media = MEDIA_DISK;
5626
        } else if (!strcmp(buf, "cdrom")) {
5627
            if (cyls || secs || heads) {
5628
                fprintf(stderr,
5629
                        "qemu: '%s' invalid physical CHS format\n", str);
5630
                return -1;
5631
            }
5632
            media = MEDIA_CDROM;
5633
        } else {
5634
            fprintf(stderr, "qemu: '%s' invalid media\n", str);
5635
            return -1;
5636
        }
5637
    }
5638

    
5639
    if (get_param_value(buf, sizeof(buf), "snapshot", str)) {
5640
        if (!strcmp(buf, "on"))
5641
            snapshot = 1;
5642
        else if (!strcmp(buf, "off"))
5643
            snapshot = 0;
5644
        else {
5645
            fprintf(stderr, "qemu: '%s' invalid snapshot option\n", str);
5646
            return -1;
5647
        }
5648
    }
5649

    
5650
    if (get_param_value(buf, sizeof(buf), "cache", str)) {
5651
        if (!strcmp(buf, "off") || !strcmp(buf, "none"))
5652
            cache = 0;
5653
        else if (!strcmp(buf, "writethrough"))
5654
            cache = 1;
5655
        else if (!strcmp(buf, "writeback"))
5656
            cache = 2;
5657
        else {
5658
           fprintf(stderr, "qemu: invalid cache option\n");
5659
           return -1;
5660
        }
5661
    }
5662

    
5663
    if (get_param_value(buf, sizeof(buf), "format", str)) {
5664
       if (strcmp(buf, "?") == 0) {
5665
            fprintf(stderr, "qemu: Supported formats:");
5666
            bdrv_iterate_format(bdrv_format_print, NULL);
5667
            fprintf(stderr, "\n");
5668
            return -1;
5669
        }
5670
        drv = bdrv_find_format(buf);
5671
        if (!drv) {
5672
            fprintf(stderr, "qemu: '%s' invalid format\n", buf);
5673
            return -1;
5674
        }
5675
    }
5676

    
5677
    if (arg->file == NULL)
5678
        get_param_value(file, sizeof(file), "file", str);
5679
    else
5680
        pstrcpy(file, sizeof(file), arg->file);
5681

    
5682
    /* compute bus and unit according index */
5683

    
5684
    if (index != -1) {
5685
        if (bus_id != 0 || unit_id != -1) {
5686
            fprintf(stderr,
5687
                    "qemu: '%s' index cannot be used with bus and unit\n", str);
5688
            return -1;
5689
        }
5690
        if (max_devs == 0)
5691
        {
5692
            unit_id = index;
5693
            bus_id = 0;
5694
        } else {
5695
            unit_id = index % max_devs;
5696
            bus_id = index / max_devs;
5697
        }
5698
    }
5699

    
5700
    /* if user doesn't specify a unit_id,
5701
     * try to find the first free
5702
     */
5703

    
5704
    if (unit_id == -1) {
5705
       unit_id = 0;
5706
       while (drive_get_index(type, bus_id, unit_id) != -1) {
5707
           unit_id++;
5708
           if (max_devs && unit_id >= max_devs) {
5709
               unit_id -= max_devs;
5710
               bus_id++;
5711
           }
5712
       }
5713
    }
5714

    
5715
    /* check unit id */
5716

    
5717
    if (max_devs && unit_id >= max_devs) {
5718
        fprintf(stderr, "qemu: '%s' unit %d too big (max is %d)\n",
5719
                        str, unit_id, max_devs - 1);
5720
        return -1;
5721
    }
5722

    
5723
    /*
5724
     * ignore multiple definitions
5725
     */
5726

    
5727
    if (drive_get_index(type, bus_id, unit_id) != -1)
5728
        return 0;
5729

    
5730
    /* init */
5731

    
5732
    if (type == IF_IDE || type == IF_SCSI)
5733
        mediastr = (media == MEDIA_CDROM) ? "-cd" : "-hd";
5734
    if (max_devs)
5735
        snprintf(buf, sizeof(buf), "%s%i%s%i",
5736
                 devname, bus_id, mediastr, unit_id);
5737
    else
5738
        snprintf(buf, sizeof(buf), "%s%s%i",
5739
                 devname, mediastr, unit_id);
5740
    bdrv = bdrv_new(buf);
5741
    drives_table[nb_drives].bdrv = bdrv;
5742
    drives_table[nb_drives].type = type;
5743
    drives_table[nb_drives].bus = bus_id;
5744
    drives_table[nb_drives].unit = unit_id;
5745
    nb_drives++;
5746

    
5747
    switch(type) {
5748
    case IF_IDE:
5749
    case IF_SCSI:
5750
        switch(media) {
5751
        case MEDIA_DISK:
5752
            if (cyls != 0) {
5753
                bdrv_set_geometry_hint(bdrv, cyls, heads, secs);
5754
                bdrv_set_translation_hint(bdrv, translation);
5755
            }
5756
            break;
5757
        case MEDIA_CDROM:
5758
            bdrv_set_type_hint(bdrv, BDRV_TYPE_CDROM);
5759
            break;
5760
        }
5761
        break;
5762
    case IF_SD:
5763
        /* FIXME: This isn't really a floppy, but it's a reasonable
5764
           approximation.  */
5765
    case IF_FLOPPY:
5766
        bdrv_set_type_hint(bdrv, BDRV_TYPE_FLOPPY);
5767
        break;
5768
    case IF_PFLASH:
5769
    case IF_MTD:
5770
        break;
5771
    }
5772
    if (!file[0])
5773
        return 0;
5774
    bdrv_flags = 0;
5775
    if (snapshot) {
5776
        bdrv_flags |= BDRV_O_SNAPSHOT;
5777
        cache = 2; /* always use write-back with snapshot */
5778
    }
5779
    if (cache == 0) /* no caching */
5780
        bdrv_flags |= BDRV_O_NOCACHE;
5781
    else if (cache == 2) /* write-back */
5782
        bdrv_flags |= BDRV_O_CACHE_WB;
5783
    if (bdrv_open2(bdrv, file, bdrv_flags, drv) < 0 || qemu_key_check(bdrv, file)) {
5784
        fprintf(stderr, "qemu: could not open disk image %s\n",
5785
                        file);
5786
        return -1;
5787
    }
5788
    return 0;
5789
}
5790

    
5791
/***********************************************************/
5792
/* USB devices */
5793

    
5794
static USBPort *used_usb_ports;
5795
static USBPort *free_usb_ports;
5796

    
5797
/* ??? Maybe change this to register a hub to keep track of the topology.  */
5798
void qemu_register_usb_port(USBPort *port, void *opaque, int index,
5799
                            usb_attachfn attach)
5800
{
5801
    port->opaque = opaque;
5802
    port->index = index;
5803
    port->attach = attach;
5804
    port->next = free_usb_ports;
5805
    free_usb_ports = port;
5806
}
5807

    
5808
int usb_device_add_dev(USBDevice *dev)
5809
{
5810
    USBPort *port;
5811

    
5812
    /* Find a USB port to add the device to.  */
5813
    port = free_usb_ports;
5814
    if (!port->next) {
5815
        USBDevice *hub;
5816

    
5817
        /* Create a new hub and chain it on.  */
5818
        free_usb_ports = NULL;
5819
        port->next = used_usb_ports;
5820
        used_usb_ports = port;
5821

    
5822
        hub = usb_hub_init(VM_USB_HUB_SIZE);
5823
        usb_attach(port, hub);
5824
        port = free_usb_ports;
5825
    }
5826

    
5827
    free_usb_ports = port->next;
5828
    port->next = used_usb_ports;
5829
    used_usb_ports = port;
5830
    usb_attach(port, dev);
5831
    return 0;
5832
}
5833

    
5834
static int usb_device_add(const char *devname)
5835
{
5836
    const char *p;
5837
    USBDevice *dev;
5838

    
5839
    if (!free_usb_ports)
5840
        return -1;
5841

    
5842
    if (strstart(devname, "host:", &p)) {
5843
        dev = usb_host_device_open(p);
5844
    } else if (!strcmp(devname, "mouse")) {
5845
        dev = usb_mouse_init();
5846
    } else if (!strcmp(devname, "tablet")) {
5847
        dev = usb_tablet_init();
5848
    } else if (!strcmp(devname, "keyboard")) {
5849
        dev = usb_keyboard_init();
5850
    } else if (strstart(devname, "disk:", &p)) {
5851
        dev = usb_msd_init(p);
5852
    } else if (!strcmp(devname, "wacom-tablet")) {
5853
        dev = usb_wacom_init();
5854
    } else if (strstart(devname, "serial:", &p)) {
5855
        dev = usb_serial_init(p);
5856
#ifdef CONFIG_BRLAPI
5857
    } else if (!strcmp(devname, "braille")) {
5858
        dev = usb_baum_init();
5859
#endif
5860
    } else if (strstart(devname, "net:", &p)) {
5861
        int nic = nb_nics;
5862

    
5863
        if (net_client_init("nic", p) < 0)
5864
            return -1;
5865
        nd_table[nic].model = "usb";
5866
        dev = usb_net_init(&nd_table[nic]);
5867
    } else {
5868
        return -1;
5869
    }
5870
    if (!dev)
5871
        return -1;
5872

    
5873
    return usb_device_add_dev(dev);
5874
}
5875

    
5876
int usb_device_del_addr(int bus_num, int addr)
5877
{
5878
    USBPort *port;
5879
    USBPort **lastp;
5880
    USBDevice *dev;
5881

    
5882
    if (!used_usb_ports)
5883
        return -1;
5884

    
5885
    if (bus_num != 0)
5886
        return -1;
5887

    
5888
    lastp = &used_usb_ports;
5889
    port = used_usb_ports;
5890
    while (port && port->dev->addr != addr) {
5891
        lastp = &port->next;
5892
        port = port->next;
5893
    }
5894

    
5895
    if (!port)
5896
        return -1;
5897

    
5898
    dev = port->dev;
5899
    *lastp = port->next;
5900
    usb_attach(port, NULL);
5901
    dev->handle_destroy(dev);
5902
    port->next = free_usb_ports;
5903
    free_usb_ports = port;
5904
    return 0;
5905
}
5906

    
5907
static int usb_device_del(const char *devname)
5908
{
5909
    int bus_num, addr;
5910
    const char *p;
5911

    
5912
    if (strstart(devname, "host:", &p))
5913
        return usb_host_device_close(p);
5914

    
5915
    if (!used_usb_ports)
5916
        return -1;
5917

    
5918
    p = strchr(devname, '.');
5919
    if (!p)
5920
        return -1;
5921
    bus_num = strtoul(devname, NULL, 0);
5922
    addr = strtoul(p + 1, NULL, 0);
5923

    
5924
    return usb_device_del_addr(bus_num, addr);
5925
}
5926

    
5927
void do_usb_add(const char *devname)
5928
{
5929
    usb_device_add(devname);
5930
}
5931

    
5932
void do_usb_del(const char *devname)
5933
{
5934
    usb_device_del(devname);
5935
}
5936

    
5937
void usb_info(void)
5938
{
5939
    USBDevice *dev;
5940
    USBPort *port;
5941
    const char *speed_str;
5942

    
5943
    if (!usb_enabled) {
5944
        term_printf("USB support not enabled\n");
5945
        return;
5946
    }
5947

    
5948
    for (port = used_usb_ports; port; port = port->next) {
5949
        dev = port->dev;
5950
        if (!dev)
5951
            continue;
5952
        switch(dev->speed) {
5953
        case USB_SPEED_LOW:
5954
            speed_str = "1.5";
5955
            break;
5956
        case USB_SPEED_FULL:
5957
            speed_str = "12";
5958
            break;
5959
        case USB_SPEED_HIGH:
5960
            speed_str = "480";
5961
            break;
5962
        default:
5963
            speed_str = "?";
5964
            break;
5965
        }
5966
        term_printf("  Device %d.%d, Speed %s Mb/s, Product %s\n",
5967
                    0, dev->addr, speed_str, dev->devname);
5968
    }
5969
}
5970

    
5971
/***********************************************************/
5972
/* PCMCIA/Cardbus */
5973

    
5974
static struct pcmcia_socket_entry_s {
5975
    struct pcmcia_socket_s *socket;
5976
    struct pcmcia_socket_entry_s *next;
5977
} *pcmcia_sockets = 0;
5978

    
5979
void pcmcia_socket_register(struct pcmcia_socket_s *socket)
5980
{
5981
    struct pcmcia_socket_entry_s *entry;
5982

    
5983
    entry = qemu_malloc(sizeof(struct pcmcia_socket_entry_s));
5984
    entry->socket = socket;
5985
    entry->next = pcmcia_sockets;
5986
    pcmcia_sockets = entry;
5987
}
5988

    
5989
void pcmcia_socket_unregister(struct pcmcia_socket_s *socket)
5990
{
5991
    struct pcmcia_socket_entry_s *entry, **ptr;
5992

    
5993
    ptr = &pcmcia_sockets;
5994
    for (entry = *ptr; entry; ptr = &entry->next, entry = *ptr)
5995
        if (entry->socket == socket) {
5996
            *ptr = entry->next;
5997
            qemu_free(entry);
5998
        }
5999
}
6000

    
6001
void pcmcia_info(void)
6002
{
6003
    struct pcmcia_socket_entry_s *iter;
6004
    if (!pcmcia_sockets)
6005
        term_printf("No PCMCIA sockets\n");
6006

    
6007
    for (iter = pcmcia_sockets; iter; iter = iter->next)
6008
        term_printf("%s: %s\n", iter->socket->slot_string,
6009
                    iter->socket->attached ? iter->socket->card_string :
6010
                    "Empty");
6011
}
6012

    
6013
/***********************************************************/
6014
/* dumb display */
6015

    
6016
static void dumb_update(DisplayState *ds, int x, int y, int w, int h)
6017
{
6018
}
6019

    
6020
static void dumb_resize(DisplayState *ds, int w, int h)
6021
{
6022
}
6023

    
6024
static void dumb_refresh(DisplayState *ds)
6025
{
6026
#if defined(CONFIG_SDL)
6027
    vga_hw_update();
6028
#endif
6029
}
6030

    
6031
static void dumb_display_init(DisplayState *ds)
6032
{
6033
    ds->data = NULL;
6034
    ds->linesize = 0;
6035
    ds->depth = 0;
6036
    ds->dpy_update = dumb_update;
6037
    ds->dpy_resize = dumb_resize;
6038
    ds->dpy_refresh = dumb_refresh;
6039
    ds->gui_timer_interval = 500;
6040
    ds->idle = 1;
6041
}
6042

    
6043
/***********************************************************/
6044
/* I/O handling */
6045

    
6046
#define MAX_IO_HANDLERS 64
6047

    
6048
typedef struct IOHandlerRecord {
6049
    int fd;
6050
    IOCanRWHandler *fd_read_poll;
6051
    IOHandler *fd_read;
6052
    IOHandler *fd_write;
6053
    int deleted;
6054
    void *opaque;
6055
    /* temporary data */
6056
    struct pollfd *ufd;
6057
    struct IOHandlerRecord *next;
6058
} IOHandlerRecord;
6059

    
6060
static IOHandlerRecord *first_io_handler;
6061

    
6062
/* XXX: fd_read_poll should be suppressed, but an API change is
6063
   necessary in the character devices to suppress fd_can_read(). */
6064
int qemu_set_fd_handler2(int fd,
6065
                         IOCanRWHandler *fd_read_poll,
6066
                         IOHandler *fd_read,
6067
                         IOHandler *fd_write,
6068
                         void *opaque)
6069
{
6070
    IOHandlerRecord **pioh, *ioh;
6071

    
6072
    if (!fd_read && !fd_write) {
6073
        pioh = &first_io_handler;
6074
        for(;;) {
6075
            ioh = *pioh;
6076
            if (ioh == NULL)
6077
                break;
6078
            if (ioh->fd == fd) {
6079
                ioh->deleted = 1;
6080
                break;
6081
            }
6082
            pioh = &ioh->next;
6083
        }
6084
    } else {
6085
        for(ioh = first_io_handler; ioh != NULL; ioh = ioh->next) {
6086
            if (ioh->fd == fd)
6087
                goto found;
6088
        }
6089
        ioh = qemu_mallocz(sizeof(IOHandlerRecord));
6090
        if (!ioh)
6091
            return -1;
6092
        ioh->next = first_io_handler;
6093
        first_io_handler = ioh;
6094
    found:
6095
        ioh->fd = fd;
6096
        ioh->fd_read_poll = fd_read_poll;
6097
        ioh->fd_read = fd_read;
6098
        ioh->fd_write = fd_write;
6099
        ioh->opaque = opaque;
6100
        ioh->deleted = 0;
6101
    }
6102
    return 0;
6103
}
6104

    
6105
int qemu_set_fd_handler(int fd,
6106
                        IOHandler *fd_read,
6107
                        IOHandler *fd_write,
6108
                        void *opaque)
6109
{
6110
    return qemu_set_fd_handler2(fd, NULL, fd_read, fd_write, opaque);
6111
}
6112

    
6113
/***********************************************************/
6114
/* Polling handling */
6115

    
6116
typedef struct PollingEntry {
6117
    PollingFunc *func;
6118
    void *opaque;
6119
    struct PollingEntry *next;
6120
} PollingEntry;
6121

    
6122
static PollingEntry *first_polling_entry;
6123

    
6124
int qemu_add_polling_cb(PollingFunc *func, void *opaque)
6125
{
6126
    PollingEntry **ppe, *pe;
6127
    pe = qemu_mallocz(sizeof(PollingEntry));
6128
    if (!pe)
6129
        return -1;
6130
    pe->func = func;
6131
    pe->opaque = opaque;
6132
    for(ppe = &first_polling_entry; *ppe != NULL; ppe = &(*ppe)->next);
6133
    *ppe = pe;
6134
    return 0;
6135
}
6136

    
6137
void qemu_del_polling_cb(PollingFunc *func, void *opaque)
6138
{
6139
    PollingEntry **ppe, *pe;
6140
    for(ppe = &first_polling_entry; *ppe != NULL; ppe = &(*ppe)->next) {
6141
        pe = *ppe;
6142
        if (pe->func == func && pe->opaque == opaque) {
6143
            *ppe = pe->next;
6144
            qemu_free(pe);
6145
            break;
6146
        }
6147
    }
6148
}
6149

    
6150
#ifdef _WIN32
6151
/***********************************************************/
6152
/* Wait objects support */
6153
typedef struct WaitObjects {
6154
    int num;
6155
    HANDLE events[MAXIMUM_WAIT_OBJECTS + 1];
6156
    WaitObjectFunc *func[MAXIMUM_WAIT_OBJECTS + 1];
6157
    void *opaque[MAXIMUM_WAIT_OBJECTS + 1];
6158
} WaitObjects;
6159

    
6160
static WaitObjects wait_objects = {0};
6161

    
6162
int qemu_add_wait_object(HANDLE handle, WaitObjectFunc *func, void *opaque)
6163
{
6164
    WaitObjects *w = &wait_objects;
6165

    
6166
    if (w->num >= MAXIMUM_WAIT_OBJECTS)
6167
        return -1;
6168
    w->events[w->num] = handle;
6169
    w->func[w->num] = func;
6170
    w->opaque[w->num] = opaque;
6171
    w->num++;
6172
    return 0;
6173
}
6174

    
6175
void qemu_del_wait_object(HANDLE handle, WaitObjectFunc *func, void *opaque)
6176
{
6177
    int i, found;
6178
    WaitObjects *w = &wait_objects;
6179

    
6180
    found = 0;
6181
    for (i = 0; i < w->num; i++) {
6182
        if (w->events[i] == handle)
6183
            found = 1;
6184
        if (found) {
6185
            w->events[i] = w->events[i + 1];
6186
            w->func[i] = w->func[i + 1];
6187
            w->opaque[i] = w->opaque[i + 1];
6188
        }
6189
    }
6190
    if (found)
6191
        w->num--;
6192
}
6193
#endif
6194

    
6195
#define SELF_ANNOUNCE_ROUNDS 5
6196
#define ETH_P_EXPERIMENTAL 0x01F1 /* just a number */
6197
//#define ETH_P_EXPERIMENTAL 0x0012 /* make it the size of the packet */
6198
#define EXPERIMENTAL_MAGIC 0xf1f23f4f
6199

    
6200
static int announce_self_create(uint8_t *buf, 
6201
                                uint8_t *mac_addr)
6202
{
6203
    uint32_t magic = EXPERIMENTAL_MAGIC;
6204
    uint16_t proto = htons(ETH_P_EXPERIMENTAL);
6205

    
6206
    /* FIXME: should we send a different packet (arp/rarp/ping)? */
6207

    
6208
    memset(buf, 0xff, 6);         /* h_dst */
6209
    memcpy(buf + 6, mac_addr, 6); /* h_src */
6210
    memcpy(buf + 12, &proto, 2);  /* h_proto */
6211
    memcpy(buf + 14, &magic, 4);  /* magic */
6212

    
6213
    return 18; /* len */
6214
}
6215

    
6216
void qemu_announce_self(void)
6217
{
6218
    int i, j, len;
6219
    VLANState *vlan;
6220
    VLANClientState *vc;
6221
    uint8_t buf[256];
6222

    
6223
    for (i = 0; i < nb_nics; i++) {
6224
        len = announce_self_create(buf, nd_table[i].macaddr);
6225
        vlan = nd_table[i].vlan;
6226
        for(vc = vlan->first_client; vc != NULL; vc = vc->next) {
6227
            if (vc->fd_read == tap_receive)  /* send only if tap */
6228
                for (j=0; j < SELF_ANNOUNCE_ROUNDS; j++)
6229
                    vc->fd_read(vc->opaque, buf, len);
6230
        }
6231
    }
6232
}
6233

    
6234
/***********************************************************/
6235
/* savevm/loadvm support */
6236

    
6237
#define IO_BUF_SIZE 32768
6238

    
6239
struct QEMUFile {
6240
    QEMUFilePutBufferFunc *put_buffer;
6241
    QEMUFileGetBufferFunc *get_buffer;
6242
    QEMUFileCloseFunc *close;
6243
    QEMUFileRateLimit *rate_limit;
6244
    void *opaque;
6245
    int is_write;
6246

    
6247
    int64_t buf_offset; /* start of buffer when writing, end of buffer
6248
                           when reading */
6249
    int buf_index;
6250
    int buf_size; /* 0 when writing */
6251
    uint8_t buf[IO_BUF_SIZE];
6252

    
6253
    int has_error;
6254
};
6255

    
6256
typedef struct QEMUFileFD
6257
{
6258
    int fd;
6259
    QEMUFile *file;
6260
} QEMUFileFD;
6261

    
6262
static int fd_get_buffer(void *opaque, uint8_t *buf, int64_t pos, int size)
6263
{
6264
    QEMUFileFD *s = opaque;
6265
    ssize_t len;
6266

    
6267
    do {
6268
        len = read(s->fd, buf, size);
6269
    } while (len == -1 && errno == EINTR);
6270

    
6271
    if (len == -1)
6272
        len = -errno;
6273

    
6274
    return len;
6275
}
6276

    
6277
static int fd_close(void *opaque)
6278
{
6279
    QEMUFileFD *s = opaque;
6280
    qemu_free(s);
6281
    return 0;
6282
}
6283

    
6284
QEMUFile *qemu_fopen_fd(int fd)
6285
{
6286
    QEMUFileFD *s = qemu_mallocz(sizeof(QEMUFileFD));
6287

    
6288
    if (s == NULL)
6289
        return NULL;
6290

    
6291
    s->fd = fd;
6292
    s->file = qemu_fopen_ops(s, NULL, fd_get_buffer, fd_close, NULL);
6293
    return s->file;
6294
}
6295

    
6296
typedef struct QEMUFileStdio
6297
{
6298
    FILE *outfile;
6299
} QEMUFileStdio;
6300

    
6301
static int file_put_buffer(void *opaque, const uint8_t *buf,
6302
                            int64_t pos, int size)
6303
{
6304
    QEMUFileStdio *s = opaque;
6305
    fseek(s->outfile, pos, SEEK_SET);
6306
    fwrite(buf, 1, size, s->outfile);
6307
    return size;
6308
}
6309

    
6310
static int file_get_buffer(void *opaque, uint8_t *buf, int64_t pos, int size)
6311
{
6312
    QEMUFileStdio *s = opaque;
6313
    fseek(s->outfile, pos, SEEK_SET);
6314
    return fread(buf, 1, size, s->outfile);
6315
}
6316

    
6317
static int file_close(void *opaque)
6318
{
6319
    QEMUFileStdio *s = opaque;
6320
    fclose(s->outfile);
6321
    qemu_free(s);
6322
    return 0;
6323
}
6324

    
6325
QEMUFile *qemu_fopen(const char *filename, const char *mode)
6326
{
6327
    QEMUFileStdio *s;
6328

    
6329
    s = qemu_mallocz(sizeof(QEMUFileStdio));
6330
    if (!s)
6331
        return NULL;
6332

    
6333
    s->outfile = fopen(filename, mode);
6334
    if (!s->outfile)
6335
        goto fail;
6336

    
6337
    if (!strcmp(mode, "wb"))
6338
        return qemu_fopen_ops(s, file_put_buffer, NULL, file_close, NULL);
6339
    else if (!strcmp(mode, "rb"))
6340
        return qemu_fopen_ops(s, NULL, file_get_buffer, file_close, NULL);
6341

    
6342
fail:
6343
    if (s->outfile)
6344
        fclose(s->outfile);
6345
    qemu_free(s);
6346
    return NULL;
6347
}
6348

    
6349
typedef struct QEMUFileBdrv
6350
{
6351
    BlockDriverState *bs;
6352
    int64_t base_offset;
6353
} QEMUFileBdrv;
6354

    
6355
static int bdrv_put_buffer(void *opaque, const uint8_t *buf,
6356
                           int64_t pos, int size)
6357
{
6358
    QEMUFileBdrv *s = opaque;
6359
    bdrv_pwrite(s->bs, s->base_offset + pos, buf, size);
6360
    return size;
6361
}
6362

    
6363
static int bdrv_get_buffer(void *opaque, uint8_t *buf, int64_t pos, int size)
6364
{
6365
    QEMUFileBdrv *s = opaque;
6366
    return bdrv_pread(s->bs, s->base_offset + pos, buf, size);
6367
}
6368

    
6369
static int bdrv_fclose(void *opaque)
6370
{
6371
    QEMUFileBdrv *s = opaque;
6372
    qemu_free(s);
6373
    return 0;
6374
}
6375

    
6376
static QEMUFile *qemu_fopen_bdrv(BlockDriverState *bs, int64_t offset, int is_writable)
6377
{
6378
    QEMUFileBdrv *s;
6379

    
6380
    s = qemu_mallocz(sizeof(QEMUFileBdrv));
6381
    if (!s)
6382
        return NULL;
6383

    
6384
    s->bs = bs;
6385
    s->base_offset = offset;
6386

    
6387
    if (is_writable)
6388
        return qemu_fopen_ops(s, bdrv_put_buffer, NULL, bdrv_fclose, NULL);
6389

    
6390
    return qemu_fopen_ops(s, NULL, bdrv_get_buffer, bdrv_fclose, NULL);
6391
}
6392

    
6393
QEMUFile *qemu_fopen_ops(void *opaque, QEMUFilePutBufferFunc *put_buffer,
6394
                         QEMUFileGetBufferFunc *get_buffer,
6395
                         QEMUFileCloseFunc *close,
6396
                         QEMUFileRateLimit *rate_limit)
6397
{
6398
    QEMUFile *f;
6399

    
6400
    f = qemu_mallocz(sizeof(QEMUFile));
6401
    if (!f)
6402
        return NULL;
6403

    
6404
    f->opaque = opaque;
6405
    f->put_buffer = put_buffer;
6406
    f->get_buffer = get_buffer;
6407
    f->close = close;
6408
    f->rate_limit = rate_limit;
6409
    f->is_write = 0;
6410

    
6411
    return f;
6412
}
6413

    
6414
int qemu_file_has_error(QEMUFile *f)
6415
{
6416
    return f->has_error;
6417
}
6418

    
6419
void qemu_fflush(QEMUFile *f)
6420
{
6421
    if (!f->put_buffer)
6422
        return;
6423

    
6424
    if (f->is_write && f->buf_index > 0) {
6425
        int len;
6426

    
6427
        len = f->put_buffer(f->opaque, f->buf, f->buf_offset, f->buf_index);
6428
        if (len > 0)
6429
            f->buf_offset += f->buf_index;
6430
        else
6431
            f->has_error = 1;
6432
        f->buf_index = 0;
6433
    }
6434
}
6435

    
6436
static void qemu_fill_buffer(QEMUFile *f)
6437
{
6438
    int len;
6439

    
6440
    if (!f->get_buffer)
6441
        return;
6442

    
6443
    if (f->is_write)
6444
        abort();
6445

    
6446
    len = f->get_buffer(f->opaque, f->buf, f->buf_offset, IO_BUF_SIZE);
6447
    if (len > 0) {
6448
        f->buf_index = 0;
6449
        f->buf_size = len;
6450
        f->buf_offset += len;
6451
    } else if (len != -EAGAIN)
6452
        f->has_error = 1;
6453
}
6454

    
6455
int qemu_fclose(QEMUFile *f)
6456
{
6457
    int ret = 0;
6458
    qemu_fflush(f);
6459
    if (f->close)
6460
        ret = f->close(f->opaque);
6461
    qemu_free(f);
6462
    return ret;
6463
}
6464

    
6465
void qemu_file_put_notify(QEMUFile *f)
6466
{
6467
    f->put_buffer(f->opaque, NULL, 0, 0);
6468
}
6469

    
6470
void qemu_put_buffer(QEMUFile *f, const uint8_t *buf, int size)
6471
{
6472
    int l;
6473

    
6474
    if (!f->has_error && f->is_write == 0 && f->buf_index > 0) {
6475
        fprintf(stderr,
6476
                "Attempted to write to buffer while read buffer is not empty\n");
6477
        abort();
6478
    }
6479

    
6480
    while (!f->has_error && size > 0) {
6481
        l = IO_BUF_SIZE - f->buf_index;
6482
        if (l > size)
6483
            l = size;
6484
        memcpy(f->buf + f->buf_index, buf, l);
6485
        f->is_write = 1;
6486
        f->buf_index += l;
6487
        buf += l;
6488
        size -= l;
6489
        if (f->buf_index >= IO_BUF_SIZE)
6490
            qemu_fflush(f);
6491
    }
6492
}
6493

    
6494
void qemu_put_byte(QEMUFile *f, int v)
6495
{
6496
    if (!f->has_error && f->is_write == 0 && f->buf_index > 0) {
6497
        fprintf(stderr,
6498
                "Attempted to write to buffer while read buffer is not empty\n");
6499
        abort();
6500
    }
6501

    
6502
    f->buf[f->buf_index++] = v;
6503
    f->is_write = 1;
6504
    if (f->buf_index >= IO_BUF_SIZE)
6505
        qemu_fflush(f);
6506
}
6507

    
6508
int qemu_get_buffer(QEMUFile *f, uint8_t *buf, int size1)
6509
{
6510
    int size, l;
6511

    
6512
    if (f->is_write)
6513
        abort();
6514

    
6515
    size = size1;
6516
    while (size > 0) {
6517
        l = f->buf_size - f->buf_index;
6518
        if (l == 0) {
6519
            qemu_fill_buffer(f);
6520
            l = f->buf_size - f->buf_index;
6521
            if (l == 0)
6522
                break;
6523
        }
6524
        if (l > size)
6525
            l = size;
6526
        memcpy(buf, f->buf + f->buf_index, l);
6527
        f->buf_index += l;
6528
        buf += l;
6529
        size -= l;
6530
    }
6531
    return size1 - size;
6532
}
6533

    
6534
int qemu_get_byte(QEMUFile *f)
6535
{
6536
    if (f->is_write)
6537
        abort();
6538

    
6539
    if (f->buf_index >= f->buf_size) {
6540
        qemu_fill_buffer(f);
6541
        if (f->buf_index >= f->buf_size)
6542
            return 0;
6543
    }
6544
    return f->buf[f->buf_index++];
6545
}
6546

    
6547
int64_t qemu_ftell(QEMUFile *f)
6548
{
6549
    return f->buf_offset - f->buf_size + f->buf_index;
6550
}
6551

    
6552
int64_t qemu_fseek(QEMUFile *f, int64_t pos, int whence)
6553
{
6554
    if (whence == SEEK_SET) {
6555
        /* nothing to do */
6556
    } else if (whence == SEEK_CUR) {
6557
        pos += qemu_ftell(f);
6558
    } else {
6559
        /* SEEK_END not supported */
6560
        return -1;
6561
    }
6562
    if (f->put_buffer) {
6563
        qemu_fflush(f);
6564
        f->buf_offset = pos;
6565
    } else {
6566
        f->buf_offset = pos;
6567
        f->buf_index = 0;
6568
        f->buf_size = 0;
6569
    }
6570
    return pos;
6571
}
6572

    
6573
int qemu_file_rate_limit(QEMUFile *f)
6574
{
6575
    if (f->rate_limit)
6576
        return f->rate_limit(f->opaque);
6577

    
6578
    return 0;
6579
}
6580

    
6581
void qemu_put_be16(QEMUFile *f, unsigned int v)
6582
{
6583
    qemu_put_byte(f, v >> 8);
6584
    qemu_put_byte(f, v);
6585
}
6586

    
6587
void qemu_put_be32(QEMUFile *f, unsigned int v)
6588
{
6589
    qemu_put_byte(f, v >> 24);
6590
    qemu_put_byte(f, v >> 16);
6591
    qemu_put_byte(f, v >> 8);
6592
    qemu_put_byte(f, v);
6593
}
6594

    
6595
void qemu_put_be64(QEMUFile *f, uint64_t v)
6596
{
6597
    qemu_put_be32(f, v >> 32);
6598
    qemu_put_be32(f, v);
6599
}
6600

    
6601
unsigned int qemu_get_be16(QEMUFile *f)
6602
{
6603
    unsigned int v;
6604
    v = qemu_get_byte(f) << 8;
6605
    v |= qemu_get_byte(f);
6606
    return v;
6607
}
6608

    
6609
unsigned int qemu_get_be32(QEMUFile *f)
6610
{
6611
    unsigned int v;
6612
    v = qemu_get_byte(f) << 24;
6613
    v |= qemu_get_byte(f) << 16;
6614
    v |= qemu_get_byte(f) << 8;
6615
    v |= qemu_get_byte(f);
6616
    return v;
6617
}
6618

    
6619
uint64_t qemu_get_be64(QEMUFile *f)
6620
{
6621
    uint64_t v;
6622
    v = (uint64_t)qemu_get_be32(f) << 32;
6623
    v |= qemu_get_be32(f);
6624
    return v;
6625
}
6626

    
6627
typedef struct SaveStateEntry {
6628
    char idstr[256];
6629
    int instance_id;
6630
    int version_id;
6631
    int section_id;
6632
    SaveLiveStateHandler *save_live_state;
6633
    SaveStateHandler *save_state;
6634
    LoadStateHandler *load_state;
6635
    void *opaque;
6636
    struct SaveStateEntry *next;
6637
} SaveStateEntry;
6638

    
6639
static SaveStateEntry *first_se;
6640

    
6641
/* TODO: Individual devices generally have very little idea about the rest
6642
   of the system, so instance_id should be removed/replaced.
6643
   Meanwhile pass -1 as instance_id if you do not already have a clearly
6644
   distinguishing id for all instances of your device class. */
6645
int register_savevm_live(const char *idstr,
6646
                         int instance_id,
6647
                         int version_id,
6648
                         SaveLiveStateHandler *save_live_state,
6649
                         SaveStateHandler *save_state,
6650
                         LoadStateHandler *load_state,
6651
                         void *opaque)
6652
{
6653
    SaveStateEntry *se, **pse;
6654
    static int global_section_id;
6655

    
6656
    se = qemu_malloc(sizeof(SaveStateEntry));
6657
    if (!se)
6658
        return -1;
6659
    pstrcpy(se->idstr, sizeof(se->idstr), idstr);
6660
    se->instance_id = (instance_id == -1) ? 0 : instance_id;
6661
    se->version_id = version_id;
6662
    se->section_id = global_section_id++;
6663
    se->save_live_state = save_live_state;
6664
    se->save_state = save_state;
6665
    se->load_state = load_state;
6666
    se->opaque = opaque;
6667
    se->next = NULL;
6668

    
6669
    /* add at the end of list */
6670
    pse = &first_se;
6671
    while (*pse != NULL) {
6672
        if (instance_id == -1
6673
                && strcmp(se->idstr, (*pse)->idstr) == 0
6674
                && se->instance_id <= (*pse)->instance_id)
6675
            se->instance_id = (*pse)->instance_id + 1;
6676
        pse = &(*pse)->next;
6677
    }
6678
    *pse = se;
6679
    return 0;
6680
}
6681

    
6682
int register_savevm(const char *idstr,
6683
                    int instance_id,
6684
                    int version_id,
6685
                    SaveStateHandler *save_state,
6686
                    LoadStateHandler *load_state,
6687
                    void *opaque)
6688
{
6689
    return register_savevm_live(idstr, instance_id, version_id,
6690
                                NULL, save_state, load_state, opaque);
6691
}
6692

    
6693
#define QEMU_VM_FILE_MAGIC           0x5145564d
6694
#define QEMU_VM_FILE_VERSION_COMPAT  0x00000002
6695
#define QEMU_VM_FILE_VERSION         0x00000003
6696

    
6697
#define QEMU_VM_EOF                  0x00
6698
#define QEMU_VM_SECTION_START        0x01
6699
#define QEMU_VM_SECTION_PART         0x02
6700
#define QEMU_VM_SECTION_END          0x03
6701
#define QEMU_VM_SECTION_FULL         0x04
6702

    
6703
int qemu_savevm_state_begin(QEMUFile *f)
6704
{
6705
    SaveStateEntry *se;
6706

    
6707
    qemu_put_be32(f, QEMU_VM_FILE_MAGIC);
6708
    qemu_put_be32(f, QEMU_VM_FILE_VERSION);
6709

    
6710
    for (se = first_se; se != NULL; se = se->next) {
6711
        int len;
6712

    
6713
        if (se->save_live_state == NULL)
6714
            continue;
6715

    
6716
        /* Section type */
6717
        qemu_put_byte(f, QEMU_VM_SECTION_START);
6718
        qemu_put_be32(f, se->section_id);
6719

    
6720
        /* ID string */
6721
        len = strlen(se->idstr);
6722
        qemu_put_byte(f, len);
6723
        qemu_put_buffer(f, (uint8_t *)se->idstr, len);
6724

    
6725
        qemu_put_be32(f, se->instance_id);
6726
        qemu_put_be32(f, se->version_id);
6727

    
6728
        se->save_live_state(f, QEMU_VM_SECTION_START, se->opaque);
6729
    }
6730

    
6731
    if (qemu_file_has_error(f))
6732
        return -EIO;
6733

    
6734
    return 0;
6735
}
6736

    
6737
int qemu_savevm_state_iterate(QEMUFile *f)
6738
{
6739
    SaveStateEntry *se;
6740
    int ret = 1;
6741

    
6742
    for (se = first_se; se != NULL; se = se->next) {
6743
        if (se->save_live_state == NULL)
6744
            continue;
6745

    
6746
        /* Section type */
6747
        qemu_put_byte(f, QEMU_VM_SECTION_PART);
6748
        qemu_put_be32(f, se->section_id);
6749

    
6750
        ret &= !!se->save_live_state(f, QEMU_VM_SECTION_PART, se->opaque);
6751
    }
6752

    
6753
    if (ret)
6754
        return 1;
6755

    
6756
    if (qemu_file_has_error(f))
6757
        return -EIO;
6758

    
6759
    return 0;
6760
}
6761

    
6762
int qemu_savevm_state_complete(QEMUFile *f)
6763
{
6764
    SaveStateEntry *se;
6765

    
6766
    for (se = first_se; se != NULL; se = se->next) {
6767
        if (se->save_live_state == NULL)
6768
            continue;
6769

    
6770
        /* Section type */
6771
        qemu_put_byte(f, QEMU_VM_SECTION_END);
6772
        qemu_put_be32(f, se->section_id);
6773

    
6774
        se->save_live_state(f, QEMU_VM_SECTION_END, se->opaque);
6775
    }
6776

    
6777
    for(se = first_se; se != NULL; se = se->next) {
6778
        int len;
6779

    
6780
        if (se->save_state == NULL)
6781
            continue;
6782

    
6783
        /* Section type */
6784
        qemu_put_byte(f, QEMU_VM_SECTION_FULL);
6785
        qemu_put_be32(f, se->section_id);
6786

    
6787
        /* ID string */
6788
        len = strlen(se->idstr);
6789
        qemu_put_byte(f, len);
6790
        qemu_put_buffer(f, (uint8_t *)se->idstr, len);
6791

    
6792
        qemu_put_be32(f, se->instance_id);
6793
        qemu_put_be32(f, se->version_id);
6794

    
6795
        se->save_state(f, se->opaque);
6796
    }
6797

    
6798
    qemu_put_byte(f, QEMU_VM_EOF);
6799

    
6800
    if (qemu_file_has_error(f))
6801
        return -EIO;
6802

    
6803
    return 0;
6804
}
6805

    
6806
int qemu_savevm_state(QEMUFile *f)
6807
{
6808
    int saved_vm_running;
6809
    int ret;
6810

    
6811
    saved_vm_running = vm_running;
6812
    vm_stop(0);
6813

    
6814
    bdrv_flush_all();
6815

    
6816
    ret = qemu_savevm_state_begin(f);
6817
    if (ret < 0)
6818
        goto out;
6819

    
6820
    do {
6821
        ret = qemu_savevm_state_iterate(f);
6822
        if (ret < 0)
6823
            goto out;
6824
    } while (ret == 0);
6825

    
6826
    ret = qemu_savevm_state_complete(f);
6827

    
6828
out:
6829
    if (qemu_file_has_error(f))
6830
        ret = -EIO;
6831

    
6832
    if (!ret && saved_vm_running)
6833
        vm_start();
6834

    
6835
    return ret;
6836
}
6837

    
6838
static SaveStateEntry *find_se(const char *idstr, int instance_id)
6839
{
6840
    SaveStateEntry *se;
6841

    
6842
    for(se = first_se; se != NULL; se = se->next) {
6843
        if (!strcmp(se->idstr, idstr) &&
6844
            instance_id == se->instance_id)
6845
            return se;
6846
    }
6847
    return NULL;
6848
}
6849

    
6850
typedef struct LoadStateEntry {
6851
    SaveStateEntry *se;
6852
    int section_id;
6853
    int version_id;
6854
    struct LoadStateEntry *next;
6855
} LoadStateEntry;
6856

    
6857
static int qemu_loadvm_state_v2(QEMUFile *f)
6858
{
6859
    SaveStateEntry *se;
6860
    int len, ret, instance_id, record_len, version_id;
6861
    int64_t total_len, end_pos, cur_pos;
6862
    char idstr[256];
6863

    
6864
    total_len = qemu_get_be64(f);
6865
    end_pos = total_len + qemu_ftell(f);
6866
    for(;;) {
6867
        if (qemu_ftell(f) >= end_pos)
6868
            break;
6869
        len = qemu_get_byte(f);
6870
        qemu_get_buffer(f, (uint8_t *)idstr, len);
6871
        idstr[len] = '\0';
6872
        instance_id = qemu_get_be32(f);
6873
        version_id = qemu_get_be32(f);
6874
        record_len = qemu_get_be32(f);
6875
        cur_pos = qemu_ftell(f);
6876
        se = find_se(idstr, instance_id);
6877
        if (!se) {
6878
            fprintf(stderr, "qemu: warning: instance 0x%x of device '%s' not present in current VM\n",
6879
                    instance_id, idstr);
6880
        } else {
6881
            ret = se->load_state(f, se->opaque, version_id);
6882
            if (ret < 0) {
6883
                fprintf(stderr, "qemu: warning: error while loading state for instance 0x%x of device '%s'\n",
6884
                        instance_id, idstr);
6885
            }
6886
        }
6887
        /* always seek to exact end of record */
6888
        qemu_fseek(f, cur_pos + record_len, SEEK_SET);
6889
    }
6890

    
6891
    if (qemu_file_has_error(f))
6892
        return -EIO;
6893

    
6894
    return 0;
6895
}
6896

    
6897
int qemu_loadvm_state(QEMUFile *f)
6898
{
6899
    LoadStateEntry *first_le = NULL;
6900
    uint8_t section_type;
6901
    unsigned int v;
6902
    int ret;
6903

    
6904
    v = qemu_get_be32(f);
6905
    if (v != QEMU_VM_FILE_MAGIC)
6906
        return -EINVAL;
6907

    
6908
    v = qemu_get_be32(f);
6909
    if (v == QEMU_VM_FILE_VERSION_COMPAT)
6910
        return qemu_loadvm_state_v2(f);
6911
    if (v != QEMU_VM_FILE_VERSION)
6912
        return -ENOTSUP;
6913

    
6914
    while ((section_type = qemu_get_byte(f)) != QEMU_VM_EOF) {
6915
        uint32_t instance_id, version_id, section_id;
6916
        LoadStateEntry *le;
6917
        SaveStateEntry *se;
6918
        char idstr[257];
6919
        int len;
6920

    
6921
        switch (section_type) {
6922
        case QEMU_VM_SECTION_START:
6923
        case QEMU_VM_SECTION_FULL:
6924
            /* Read section start */
6925
            section_id = qemu_get_be32(f);
6926
            len = qemu_get_byte(f);
6927
            qemu_get_buffer(f, (uint8_t *)idstr, len);
6928
            idstr[len] = 0;
6929
            instance_id = qemu_get_be32(f);
6930
            version_id = qemu_get_be32(f);
6931

    
6932
            /* Find savevm section */
6933
            se = find_se(idstr, instance_id);
6934
            if (se == NULL) {
6935
                fprintf(stderr, "Unknown savevm section or instance '%s' %d\n", idstr, instance_id);
6936
                ret = -EINVAL;
6937
                goto out;
6938
            }
6939

    
6940
            /* Validate version */
6941
            if (version_id > se->version_id) {
6942
                fprintf(stderr, "savevm: unsupported version %d for '%s' v%d\n",
6943
                        version_id, idstr, se->version_id);
6944
                ret = -EINVAL;
6945
                goto out;
6946
            }
6947

    
6948
            /* Add entry */
6949
            le = qemu_mallocz(sizeof(*le));
6950
            if (le == NULL) {
6951
                ret = -ENOMEM;
6952
                goto out;
6953
            }
6954

    
6955
            le->se = se;
6956
            le->section_id = section_id;
6957
            le->version_id = version_id;
6958
            le->next = first_le;
6959
            first_le = le;
6960

    
6961
            le->se->load_state(f, le->se->opaque, le->version_id);
6962
            break;
6963
        case QEMU_VM_SECTION_PART:
6964
        case QEMU_VM_SECTION_END:
6965
            section_id = qemu_get_be32(f);
6966

    
6967
            for (le = first_le; le && le->section_id != section_id; le = le->next);
6968
            if (le == NULL) {
6969
                fprintf(stderr, "Unknown savevm section %d\n", section_id);
6970
                ret = -EINVAL;
6971
                goto out;
6972
            }
6973

    
6974
            le->se->load_state(f, le->se->opaque, le->version_id);
6975
            break;
6976
        default:
6977
            fprintf(stderr, "Unknown savevm section type %d\n", section_type);
6978
            ret = -EINVAL;
6979
            goto out;
6980
        }
6981
    }
6982

    
6983
    ret = 0;
6984

    
6985
out:
6986
    while (first_le) {
6987
        LoadStateEntry *le = first_le;
6988
        first_le = first_le->next;
6989
        qemu_free(le);
6990
    }
6991

    
6992
    if (qemu_file_has_error(f))
6993
        ret = -EIO;
6994

    
6995
    return ret;
6996
}
6997

    
6998
/* device can contain snapshots */
6999
static int bdrv_can_snapshot(BlockDriverState *bs)
7000
{
7001
    return (bs &&
7002
            !bdrv_is_removable(bs) &&
7003
            !bdrv_is_read_only(bs));
7004
}
7005

    
7006
/* device must be snapshots in order to have a reliable snapshot */
7007
static int bdrv_has_snapshot(BlockDriverState *bs)
7008
{
7009
    return (bs &&
7010
            !bdrv_is_removable(bs) &&
7011
            !bdrv_is_read_only(bs));
7012
}
7013

    
7014
static BlockDriverState *get_bs_snapshots(void)
7015
{
7016
    BlockDriverState *bs;
7017
    int i;
7018

    
7019
    if (bs_snapshots)
7020
        return bs_snapshots;
7021
    for(i = 0; i <= nb_drives; i++) {
7022
        bs = drives_table[i].bdrv;
7023
        if (bdrv_can_snapshot(bs))
7024
            goto ok;
7025
    }
7026
    return NULL;
7027
 ok:
7028
    bs_snapshots = bs;
7029
    return bs;
7030
}
7031

    
7032
static int bdrv_snapshot_find(BlockDriverState *bs, QEMUSnapshotInfo *sn_info,
7033
                              const char *name)
7034
{
7035
    QEMUSnapshotInfo *sn_tab, *sn;
7036
    int nb_sns, i, ret;
7037

    
7038
    ret = -ENOENT;
7039
    nb_sns = bdrv_snapshot_list(bs, &sn_tab);
7040
    if (nb_sns < 0)
7041
        return ret;
7042
    for(i = 0; i < nb_sns; i++) {
7043
        sn = &sn_tab[i];
7044
        if (!strcmp(sn->id_str, name) || !strcmp(sn->name, name)) {
7045
            *sn_info = *sn;
7046
            ret = 0;
7047
            break;
7048
        }
7049
    }
7050
    qemu_free(sn_tab);
7051
    return ret;
7052
}
7053

    
7054
void do_savevm(const char *name)
7055
{
7056
    BlockDriverState *bs, *bs1;
7057
    QEMUSnapshotInfo sn1, *sn = &sn1, old_sn1, *old_sn = &old_sn1;
7058
    int must_delete, ret, i;
7059
    BlockDriverInfo bdi1, *bdi = &bdi1;
7060
    QEMUFile *f;
7061
    int saved_vm_running;
7062
#ifdef _WIN32
7063
    struct _timeb tb;
7064
#else
7065
    struct timeval tv;
7066
#endif
7067

    
7068
    bs = get_bs_snapshots();
7069
    if (!bs) {
7070
        term_printf("No block device can accept snapshots\n");
7071
        return;
7072
    }
7073

    
7074
    /* ??? Should this occur after vm_stop?  */
7075
    qemu_aio_flush();
7076

    
7077
    saved_vm_running = vm_running;
7078
    vm_stop(0);
7079

    
7080
    must_delete = 0;
7081
    if (name) {
7082
        ret = bdrv_snapshot_find(bs, old_sn, name);
7083
        if (ret >= 0) {
7084
            must_delete = 1;
7085
        }
7086
    }
7087
    memset(sn, 0, sizeof(*sn));
7088
    if (must_delete) {
7089
        pstrcpy(sn->name, sizeof(sn->name), old_sn->name);
7090
        pstrcpy(sn->id_str, sizeof(sn->id_str), old_sn->id_str);
7091
    } else {
7092
        if (name)
7093
            pstrcpy(sn->name, sizeof(sn->name), name);
7094
    }
7095

    
7096
    /* fill auxiliary fields */
7097
#ifdef _WIN32
7098
    _ftime(&tb);
7099
    sn->date_sec = tb.time;
7100
    sn->date_nsec = tb.millitm * 1000000;
7101
#else
7102
    gettimeofday(&tv, NULL);
7103
    sn->date_sec = tv.tv_sec;
7104
    sn->date_nsec = tv.tv_usec * 1000;
7105
#endif
7106
    sn->vm_clock_nsec = qemu_get_clock(vm_clock);
7107

    
7108
    if (bdrv_get_info(bs, bdi) < 0 || bdi->vm_state_offset <= 0) {
7109
        term_printf("Device %s does not support VM state snapshots\n",
7110
                    bdrv_get_device_name(bs));
7111
        goto the_end;
7112
    }
7113

    
7114
    /* save the VM state */
7115
    f = qemu_fopen_bdrv(bs, bdi->vm_state_offset, 1);
7116
    if (!f) {
7117
        term_printf("Could not open VM state file\n");
7118
        goto the_end;
7119
    }
7120
    ret = qemu_savevm_state(f);
7121
    sn->vm_state_size = qemu_ftell(f);
7122
    qemu_fclose(f);
7123
    if (ret < 0) {
7124
        term_printf("Error %d while writing VM\n", ret);
7125
        goto the_end;
7126
    }
7127

    
7128
    /* create the snapshots */
7129

    
7130
    for(i = 0; i < nb_drives; i++) {
7131
        bs1 = drives_table[i].bdrv;
7132
        if (bdrv_has_snapshot(bs1)) {
7133
            if (must_delete) {
7134
                ret = bdrv_snapshot_delete(bs1, old_sn->id_str);
7135
                if (ret < 0) {
7136
                    term_printf("Error while deleting snapshot on '%s'\n",
7137
                                bdrv_get_device_name(bs1));
7138
                }
7139
            }
7140
            ret = bdrv_snapshot_create(bs1, sn);
7141
            if (ret < 0) {
7142
                term_printf("Error while creating snapshot on '%s'\n",
7143
                            bdrv_get_device_name(bs1));
7144
            }
7145
        }
7146
    }
7147

    
7148
 the_end:
7149
    if (saved_vm_running)
7150
        vm_start();
7151
}
7152

    
7153
void do_loadvm(const char *name)
7154
{
7155
    BlockDriverState *bs, *bs1;
7156
    BlockDriverInfo bdi1, *bdi = &bdi1;
7157
    QEMUFile *f;
7158
    int i, ret;
7159
    int saved_vm_running;
7160

    
7161
    bs = get_bs_snapshots();
7162
    if (!bs) {
7163
        term_printf("No block device supports snapshots\n");
7164
        return;
7165
    }
7166

    
7167
    /* Flush all IO requests so they don't interfere with the new state.  */
7168
    qemu_aio_flush();
7169

    
7170
    saved_vm_running = vm_running;
7171
    vm_stop(0);
7172

    
7173
    for(i = 0; i <= nb_drives; i++) {
7174
        bs1 = drives_table[i].bdrv;
7175
        if (bdrv_has_snapshot(bs1)) {
7176
            ret = bdrv_snapshot_goto(bs1, name);
7177
            if (ret < 0) {
7178
                if (bs != bs1)
7179
                    term_printf("Warning: ");
7180
                switch(ret) {
7181
                case -ENOTSUP:
7182
                    term_printf("Snapshots not supported on device '%s'\n",
7183
                                bdrv_get_device_name(bs1));
7184
                    break;
7185
                case -ENOENT:
7186
                    term_printf("Could not find snapshot '%s' on device '%s'\n",
7187
                                name, bdrv_get_device_name(bs1));
7188
                    break;
7189
                default:
7190
                    term_printf("Error %d while activating snapshot on '%s'\n",
7191
                                ret, bdrv_get_device_name(bs1));
7192
                    break;
7193
                }
7194
                /* fatal on snapshot block device */
7195
                if (bs == bs1)
7196
                    goto the_end;
7197
            }
7198
        }
7199
    }
7200

    
7201
    if (bdrv_get_info(bs, bdi) < 0 || bdi->vm_state_offset <= 0) {
7202
        term_printf("Device %s does not support VM state snapshots\n",
7203
                    bdrv_get_device_name(bs));
7204
        return;
7205
    }
7206

    
7207
    /* restore the VM state */
7208
    f = qemu_fopen_bdrv(bs, bdi->vm_state_offset, 0);
7209
    if (!f) {
7210
        term_printf("Could not open VM state file\n");
7211
        goto the_end;
7212
    }
7213
    ret = qemu_loadvm_state(f);
7214
    qemu_fclose(f);
7215
    if (ret < 0) {
7216
        term_printf("Error %d while loading VM state\n", ret);
7217
    }
7218
 the_end:
7219
    if (saved_vm_running)
7220
        vm_start();
7221
}
7222

    
7223
void do_delvm(const char *name)
7224
{
7225
    BlockDriverState *bs, *bs1;
7226
    int i, ret;
7227

    
7228
    bs = get_bs_snapshots();
7229
    if (!bs) {
7230
        term_printf("No block device supports snapshots\n");
7231
        return;
7232
    }
7233

    
7234
    for(i = 0; i <= nb_drives; i++) {
7235
        bs1 = drives_table[i].bdrv;
7236
        if (bdrv_has_snapshot(bs1)) {
7237
            ret = bdrv_snapshot_delete(bs1, name);
7238
            if (ret < 0) {
7239
                if (ret == -ENOTSUP)
7240
                    term_printf("Snapshots not supported on device '%s'\n",
7241
                                bdrv_get_device_name(bs1));
7242
                else
7243
                    term_printf("Error %d while deleting snapshot on '%s'\n",
7244
                                ret, bdrv_get_device_name(bs1));
7245
            }
7246
        }
7247
    }
7248
}
7249

    
7250
void do_info_snapshots(void)
7251
{
7252
    BlockDriverState *bs, *bs1;
7253
    QEMUSnapshotInfo *sn_tab, *sn;
7254
    int nb_sns, i;
7255
    char buf[256];
7256

    
7257
    bs = get_bs_snapshots();
7258
    if (!bs) {
7259
        term_printf("No available block device supports snapshots\n");
7260
        return;
7261
    }
7262
    term_printf("Snapshot devices:");
7263
    for(i = 0; i <= nb_drives; i++) {
7264
        bs1 = drives_table[i].bdrv;
7265
        if (bdrv_has_snapshot(bs1)) {
7266
            if (bs == bs1)
7267
                term_printf(" %s", bdrv_get_device_name(bs1));
7268
        }
7269
    }
7270
    term_printf("\n");
7271

    
7272
    nb_sns = bdrv_snapshot_list(bs, &sn_tab);
7273
    if (nb_sns < 0) {
7274
        term_printf("bdrv_snapshot_list: error %d\n", nb_sns);
7275
        return;
7276
    }
7277
    term_printf("Snapshot list (from %s):\n", bdrv_get_device_name(bs));
7278
    term_printf("%s\n", bdrv_snapshot_dump(buf, sizeof(buf), NULL));
7279
    for(i = 0; i < nb_sns; i++) {
7280
        sn = &sn_tab[i];
7281
        term_printf("%s\n", bdrv_snapshot_dump(buf, sizeof(buf), sn));
7282
    }
7283
    qemu_free(sn_tab);
7284
}
7285

    
7286
/***********************************************************/
7287
/* ram save/restore */
7288

    
7289
static int ram_get_page(QEMUFile *f, uint8_t *buf, int len)
7290
{
7291
    int v;
7292

    
7293
    v = qemu_get_byte(f);
7294
    switch(v) {
7295
    case 0:
7296
        if (qemu_get_buffer(f, buf, len) != len)
7297
            return -EIO;
7298
        break;
7299
    case 1:
7300
        v = qemu_get_byte(f);
7301
        memset(buf, v, len);
7302
        break;
7303
    default:
7304
        return -EINVAL;
7305
    }
7306

    
7307
    if (qemu_file_has_error(f))
7308
        return -EIO;
7309

    
7310
    return 0;
7311
}
7312

    
7313
static int ram_load_v1(QEMUFile *f, void *opaque)
7314
{
7315
    int ret;
7316
    ram_addr_t i;
7317

    
7318
    if (qemu_get_be32(f) != phys_ram_size)
7319
        return -EINVAL;
7320
    for(i = 0; i < phys_ram_size; i+= TARGET_PAGE_SIZE) {
7321
        ret = ram_get_page(f, phys_ram_base + i, TARGET_PAGE_SIZE);
7322
        if (ret)
7323
            return ret;
7324
    }
7325
    return 0;
7326
}
7327

    
7328
#define BDRV_HASH_BLOCK_SIZE 1024
7329
#define IOBUF_SIZE 4096
7330
#define RAM_CBLOCK_MAGIC 0xfabe
7331

    
7332
typedef struct RamDecompressState {
7333
    z_stream zstream;
7334
    QEMUFile *f;
7335
    uint8_t buf[IOBUF_SIZE];
7336
} RamDecompressState;
7337

    
7338
static int ram_decompress_open(RamDecompressState *s, QEMUFile *f)
7339
{
7340
    int ret;
7341
    memset(s, 0, sizeof(*s));
7342
    s->f = f;
7343
    ret = inflateInit(&s->zstream);
7344
    if (ret != Z_OK)
7345
        return -1;
7346
    return 0;
7347
}
7348

    
7349
static int ram_decompress_buf(RamDecompressState *s, uint8_t *buf, int len)
7350
{
7351
    int ret, clen;
7352

    
7353
    s->zstream.avail_out = len;
7354
    s->zstream.next_out = buf;
7355
    while (s->zstream.avail_out > 0) {
7356
        if (s->zstream.avail_in == 0) {
7357
            if (qemu_get_be16(s->f) != RAM_CBLOCK_MAGIC)
7358
                return -1;
7359
            clen = qemu_get_be16(s->f);
7360
            if (clen > IOBUF_SIZE)
7361
                return -1;
7362
            qemu_get_buffer(s->f, s->buf, clen);
7363
            s->zstream.avail_in = clen;
7364
            s->zstream.next_in = s->buf;
7365
        }
7366
        ret = inflate(&s->zstream, Z_PARTIAL_FLUSH);
7367
        if (ret != Z_OK && ret != Z_STREAM_END) {
7368
            return -1;
7369
        }
7370
    }
7371
    return 0;
7372
}
7373

    
7374
static void ram_decompress_close(RamDecompressState *s)
7375
{
7376
    inflateEnd(&s->zstream);
7377
}
7378

    
7379
#define RAM_SAVE_FLAG_FULL        0x01
7380
#define RAM_SAVE_FLAG_COMPRESS        0x02
7381
#define RAM_SAVE_FLAG_MEM_SIZE        0x04
7382
#define RAM_SAVE_FLAG_PAGE        0x08
7383
#define RAM_SAVE_FLAG_EOS        0x10
7384

    
7385
static int is_dup_page(uint8_t *page, uint8_t ch)
7386
{
7387
    uint32_t val = ch << 24 | ch << 16 | ch << 8 | ch;
7388
    uint32_t *array = (uint32_t *)page;
7389
    int i;
7390

    
7391
    for (i = 0; i < (TARGET_PAGE_SIZE / 4); i++) {
7392
        if (array[i] != val)
7393
            return 0;
7394
    }
7395

    
7396
    return 1;
7397
}
7398

    
7399
static int ram_save_block(QEMUFile *f)
7400
{
7401
    static ram_addr_t current_addr = 0;
7402
    ram_addr_t saved_addr = current_addr;
7403
    ram_addr_t addr = 0;
7404
    int found = 0;
7405

    
7406
    while (addr < phys_ram_size) {
7407
        if (cpu_physical_memory_get_dirty(current_addr, MIGRATION_DIRTY_FLAG)) {
7408
            uint8_t ch;
7409

    
7410
            cpu_physical_memory_reset_dirty(current_addr,
7411
                                            current_addr + TARGET_PAGE_SIZE,
7412
                                            MIGRATION_DIRTY_FLAG);
7413

    
7414
            ch = *(phys_ram_base + current_addr);
7415

    
7416
            if (is_dup_page(phys_ram_base + current_addr, ch)) {
7417
                qemu_put_be64(f, current_addr | RAM_SAVE_FLAG_COMPRESS);
7418
                qemu_put_byte(f, ch);
7419
            } else {
7420
                qemu_put_be64(f, current_addr | RAM_SAVE_FLAG_PAGE);
7421
                qemu_put_buffer(f, phys_ram_base + current_addr, TARGET_PAGE_SIZE);
7422
            }
7423

    
7424
            found = 1;
7425
            break;
7426
        }
7427
        addr += TARGET_PAGE_SIZE;
7428
        current_addr = (saved_addr + addr) % phys_ram_size;
7429
    }
7430

    
7431
    return found;
7432
}
7433

    
7434
static ram_addr_t ram_save_threshold = 10;
7435

    
7436
static ram_addr_t ram_save_remaining(void)
7437
{
7438
    ram_addr_t addr;
7439
    ram_addr_t count = 0;
7440

    
7441
    for (addr = 0; addr < phys_ram_size; addr += TARGET_PAGE_SIZE) {
7442
        if (cpu_physical_memory_get_dirty(addr, MIGRATION_DIRTY_FLAG))
7443
            count++;
7444
    }
7445

    
7446
    return count;
7447
}
7448

    
7449
static int ram_save_live(QEMUFile *f, int stage, void *opaque)
7450
{
7451
    ram_addr_t addr;
7452

    
7453
    if (stage == 1) {
7454
        /* Make sure all dirty bits are set */
7455
        for (addr = 0; addr < phys_ram_size; addr += TARGET_PAGE_SIZE) {
7456
            if (!cpu_physical_memory_get_dirty(addr, MIGRATION_DIRTY_FLAG))
7457
                cpu_physical_memory_set_dirty(addr);
7458
        }
7459
        
7460
        /* Enable dirty memory tracking */
7461
        cpu_physical_memory_set_dirty_tracking(1);
7462

    
7463
        qemu_put_be64(f, phys_ram_size | RAM_SAVE_FLAG_MEM_SIZE);
7464
    }
7465

    
7466
    while (!qemu_file_rate_limit(f)) {
7467
        int ret;
7468

    
7469
        ret = ram_save_block(f);
7470
        if (ret == 0) /* no more blocks */
7471
            break;
7472
    }
7473

    
7474
    /* try transferring iterative blocks of memory */
7475

    
7476
    if (stage == 3) {
7477
        cpu_physical_memory_set_dirty_tracking(0);
7478

    
7479
        /* flush all remaining blocks regardless of rate limiting */
7480
        while (ram_save_block(f) != 0);
7481
    }
7482

    
7483
    qemu_put_be64(f, RAM_SAVE_FLAG_EOS);
7484

    
7485
    return (stage == 2) && (ram_save_remaining() < ram_save_threshold);
7486
}
7487

    
7488
static int ram_load_dead(QEMUFile *f, void *opaque)
7489
{
7490
    RamDecompressState s1, *s = &s1;
7491
    uint8_t buf[10];
7492
    ram_addr_t i;
7493

    
7494
    if (ram_decompress_open(s, f) < 0)
7495
        return -EINVAL;
7496
    for(i = 0; i < phys_ram_size; i+= BDRV_HASH_BLOCK_SIZE) {
7497
        if (ram_decompress_buf(s, buf, 1) < 0) {
7498
            fprintf(stderr, "Error while reading ram block header\n");
7499
            goto error;
7500
        }
7501
        if (buf[0] == 0) {
7502
            if (ram_decompress_buf(s, phys_ram_base + i, BDRV_HASH_BLOCK_SIZE) < 0) {
7503
                fprintf(stderr, "Error while reading ram block address=0x%08" PRIx64, (uint64_t)i);
7504
                goto error;
7505
            }
7506
        } else {
7507
        error:
7508
            printf("Error block header\n");
7509
            return -EINVAL;
7510
        }
7511
    }
7512
    ram_decompress_close(s);
7513

    
7514
    return 0;
7515
}
7516

    
7517
static int ram_load(QEMUFile *f, void *opaque, int version_id)
7518
{
7519
    ram_addr_t addr;
7520
    int flags;
7521

    
7522
    if (version_id == 1)
7523
        return ram_load_v1(f, opaque);
7524

    
7525
    if (version_id == 2) {
7526
        if (qemu_get_be32(f) != phys_ram_size)
7527
            return -EINVAL;
7528
        return ram_load_dead(f, opaque);
7529
    }
7530

    
7531
    if (version_id != 3)
7532
        return -EINVAL;
7533

    
7534
    do {
7535
        addr = qemu_get_be64(f);
7536

    
7537
        flags = addr & ~TARGET_PAGE_MASK;
7538
        addr &= TARGET_PAGE_MASK;
7539

    
7540
        if (flags & RAM_SAVE_FLAG_MEM_SIZE) {
7541
            if (addr != phys_ram_size)
7542
                return -EINVAL;
7543
        }
7544

    
7545
        if (flags & RAM_SAVE_FLAG_FULL) {
7546
            if (ram_load_dead(f, opaque) < 0)
7547
                return -EINVAL;
7548
        }
7549
        
7550
        if (flags & RAM_SAVE_FLAG_COMPRESS) {
7551
            uint8_t ch = qemu_get_byte(f);
7552
            memset(phys_ram_base + addr, ch, TARGET_PAGE_SIZE);
7553
        } else if (flags & RAM_SAVE_FLAG_PAGE)
7554
            qemu_get_buffer(f, phys_ram_base + addr, TARGET_PAGE_SIZE);
7555
    } while (!(flags & RAM_SAVE_FLAG_EOS));
7556

    
7557
    return 0;
7558
}
7559

    
7560
void qemu_service_io(void)
7561
{
7562
    CPUState *env = cpu_single_env;
7563
    if (env) {
7564
        cpu_interrupt(env, CPU_INTERRUPT_EXIT);
7565
#ifdef USE_KQEMU
7566
        if (env->kqemu_enabled) {
7567
            kqemu_cpu_interrupt(env);
7568
        }
7569
#endif
7570
    }
7571
}
7572

    
7573
/***********************************************************/
7574
/* bottom halves (can be seen as timers which expire ASAP) */
7575

    
7576
struct QEMUBH {
7577
    QEMUBHFunc *cb;
7578
    void *opaque;
7579
    int scheduled;
7580
    QEMUBH *next;
7581
};
7582

    
7583
static QEMUBH *first_bh = NULL;
7584

    
7585
QEMUBH *qemu_bh_new(QEMUBHFunc *cb, void *opaque)
7586
{
7587
    QEMUBH *bh;
7588
    bh = qemu_mallocz(sizeof(QEMUBH));
7589
    if (!bh)
7590
        return NULL;
7591
    bh->cb = cb;
7592
    bh->opaque = opaque;
7593
    return bh;
7594
}
7595

    
7596
int qemu_bh_poll(void)
7597
{
7598
    QEMUBH *bh, **pbh;
7599
    int ret;
7600

    
7601
    ret = 0;
7602
    for(;;) {
7603
        pbh = &first_bh;
7604
        bh = *pbh;
7605
        if (!bh)
7606
            break;
7607
        ret = 1;
7608
        *pbh = bh->next;
7609
        bh->scheduled = 0;
7610
        bh->cb(bh->opaque);
7611
    }
7612
    return ret;
7613
}
7614

    
7615
void qemu_bh_schedule(QEMUBH *bh)
7616
{
7617
    CPUState *env = cpu_single_env;
7618
    if (bh->scheduled)
7619
        return;
7620
    bh->scheduled = 1;
7621
    bh->next = first_bh;
7622
    first_bh = bh;
7623

    
7624
    /* stop the currently executing CPU to execute the BH ASAP */
7625
    if (env) {
7626
        cpu_interrupt(env, CPU_INTERRUPT_EXIT);
7627
    }
7628
}
7629

    
7630
void qemu_bh_cancel(QEMUBH *bh)
7631
{
7632
    QEMUBH **pbh;
7633
    if (bh->scheduled) {
7634
        pbh = &first_bh;
7635
        while (*pbh != bh)
7636
            pbh = &(*pbh)->next;
7637
        *pbh = bh->next;
7638
        bh->scheduled = 0;
7639
    }
7640
}
7641

    
7642
void qemu_bh_delete(QEMUBH *bh)
7643
{
7644
    qemu_bh_cancel(bh);
7645
    qemu_free(bh);
7646
}
7647

    
7648
/***********************************************************/
7649
/* machine registration */
7650

    
7651
static QEMUMachine *first_machine = NULL;
7652

    
7653
int qemu_register_machine(QEMUMachine *m)
7654
{
7655
    QEMUMachine **pm;
7656
    pm = &first_machine;
7657
    while (*pm != NULL)
7658
        pm = &(*pm)->next;
7659
    m->next = NULL;
7660
    *pm = m;
7661
    return 0;
7662
}
7663

    
7664
static QEMUMachine *find_machine(const char *name)
7665
{
7666
    QEMUMachine *m;
7667

    
7668
    for(m = first_machine; m != NULL; m = m->next) {
7669
        if (!strcmp(m->name, name))
7670
            return m;
7671
    }
7672
    return NULL;
7673
}
7674

    
7675
/***********************************************************/
7676
/* main execution loop */
7677

    
7678
static void gui_update(void *opaque)
7679
{
7680
    DisplayState *ds = opaque;
7681
    ds->dpy_refresh(ds);
7682
    qemu_mod_timer(ds->gui_timer,
7683
        (ds->gui_timer_interval ?
7684
            ds->gui_timer_interval :
7685
            GUI_REFRESH_INTERVAL)
7686
        + qemu_get_clock(rt_clock));
7687
}
7688

    
7689
struct vm_change_state_entry {
7690
    VMChangeStateHandler *cb;
7691
    void *opaque;
7692
    LIST_ENTRY (vm_change_state_entry) entries;
7693
};
7694

    
7695
static LIST_HEAD(vm_change_state_head, vm_change_state_entry) vm_change_state_head;
7696

    
7697
VMChangeStateEntry *qemu_add_vm_change_state_handler(VMChangeStateHandler *cb,
7698
                                                     void *opaque)
7699
{
7700
    VMChangeStateEntry *e;
7701

    
7702
    e = qemu_mallocz(sizeof (*e));
7703
    if (!e)
7704
        return NULL;
7705

    
7706
    e->cb = cb;
7707
    e->opaque = opaque;
7708
    LIST_INSERT_HEAD(&vm_change_state_head, e, entries);
7709
    return e;
7710
}
7711

    
7712
void qemu_del_vm_change_state_handler(VMChangeStateEntry *e)
7713
{
7714
    LIST_REMOVE (e, entries);
7715
    qemu_free (e);
7716
}
7717

    
7718
static void vm_state_notify(int running)
7719
{
7720
    VMChangeStateEntry *e;
7721

    
7722
    for (e = vm_change_state_head.lh_first; e; e = e->entries.le_next) {
7723
        e->cb(e->opaque, running);
7724
    }
7725
}
7726

    
7727
/* XXX: support several handlers */
7728
static VMStopHandler *vm_stop_cb;
7729
static void *vm_stop_opaque;
7730

    
7731
int qemu_add_vm_stop_handler(VMStopHandler *cb, void *opaque)
7732
{
7733
    vm_stop_cb = cb;
7734
    vm_stop_opaque = opaque;
7735
    return 0;
7736
}
7737

    
7738
void qemu_del_vm_stop_handler(VMStopHandler *cb, void *opaque)
7739
{
7740
    vm_stop_cb = NULL;
7741
}
7742

    
7743
void vm_start(void)
7744
{
7745
    if (!vm_running) {
7746
        cpu_enable_ticks();
7747
        vm_running = 1;
7748
        vm_state_notify(1);
7749
        qemu_rearm_alarm_timer(alarm_timer);
7750
    }
7751
}
7752

    
7753
void vm_stop(int reason)
7754
{
7755
    if (vm_running) {
7756
        cpu_disable_ticks();
7757
        vm_running = 0;
7758
        if (reason != 0) {
7759
            if (vm_stop_cb) {
7760
                vm_stop_cb(vm_stop_opaque, reason);
7761
            }
7762
        }
7763
        vm_state_notify(0);
7764
    }
7765
}
7766

    
7767
/* reset/shutdown handler */
7768

    
7769
typedef struct QEMUResetEntry {
7770
    QEMUResetHandler *func;
7771
    void *opaque;
7772
    struct QEMUResetEntry *next;
7773
} QEMUResetEntry;
7774

    
7775
static QEMUResetEntry *first_reset_entry;
7776
static int reset_requested;
7777
static int shutdown_requested;
7778
static int powerdown_requested;
7779

    
7780
int qemu_shutdown_requested(void)
7781
{
7782
    int r = shutdown_requested;
7783
    shutdown_requested = 0;
7784
    return r;
7785
}
7786

    
7787
int qemu_reset_requested(void)
7788
{
7789
    int r = reset_requested;
7790
    reset_requested = 0;
7791
    return r;
7792
}
7793

    
7794
int qemu_powerdown_requested(void)
7795
{
7796
    int r = powerdown_requested;
7797
    powerdown_requested = 0;
7798
    return r;
7799
}
7800

    
7801
void qemu_register_reset(QEMUResetHandler *func, void *opaque)
7802
{
7803
    QEMUResetEntry **pre, *re;
7804

    
7805
    pre = &first_reset_entry;
7806
    while (*pre != NULL)
7807
        pre = &(*pre)->next;
7808
    re = qemu_mallocz(sizeof(QEMUResetEntry));
7809
    re->func = func;
7810
    re->opaque = opaque;
7811
    re->next = NULL;
7812
    *pre = re;
7813
}
7814

    
7815
void qemu_system_reset(void)
7816
{
7817
    QEMUResetEntry *re;
7818

    
7819
    /* reset all devices */
7820
    for(re = first_reset_entry; re != NULL; re = re->next) {
7821
        re->func(re->opaque);
7822
    }
7823
}
7824

    
7825
void qemu_system_reset_request(void)
7826
{
7827
    if (no_reboot) {
7828
        shutdown_requested = 1;
7829
    } else {
7830
        reset_requested = 1;
7831
    }
7832
    if (cpu_single_env)
7833
        cpu_interrupt(cpu_single_env, CPU_INTERRUPT_EXIT);
7834
}
7835

    
7836
void qemu_system_shutdown_request(void)
7837
{
7838
    shutdown_requested = 1;
7839
    if (cpu_single_env)
7840
        cpu_interrupt(cpu_single_env, CPU_INTERRUPT_EXIT);
7841
}
7842

    
7843
void qemu_system_powerdown_request(void)
7844
{
7845
    powerdown_requested = 1;
7846
    if (cpu_single_env)
7847
        cpu_interrupt(cpu_single_env, CPU_INTERRUPT_EXIT);
7848
}
7849

    
7850
void main_loop_wait(int timeout)
7851
{
7852
    IOHandlerRecord *ioh;
7853
    fd_set rfds, wfds, xfds;
7854
    int ret, nfds;
7855
#ifdef _WIN32
7856
    int ret2, i;
7857
#endif
7858
    struct timeval tv;
7859
    PollingEntry *pe;
7860

    
7861

    
7862
    /* XXX: need to suppress polling by better using win32 events */
7863
    ret = 0;
7864
    for(pe = first_polling_entry; pe != NULL; pe = pe->next) {
7865
        ret |= pe->func(pe->opaque);
7866
    }
7867
#ifdef _WIN32
7868
    if (ret == 0) {
7869
        int err;
7870
        WaitObjects *w = &wait_objects;
7871

    
7872
        ret = WaitForMultipleObjects(w->num, w->events, FALSE, timeout);
7873
        if (WAIT_OBJECT_0 + 0 <= ret && ret <= WAIT_OBJECT_0 + w->num - 1) {
7874
            if (w->func[ret - WAIT_OBJECT_0])
7875
                w->func[ret - WAIT_OBJECT_0](w->opaque[ret - WAIT_OBJECT_0]);
7876

    
7877
            /* Check for additional signaled events */
7878
            for(i = (ret - WAIT_OBJECT_0 + 1); i < w->num; i++) {
7879

    
7880
                /* Check if event is signaled */
7881
                ret2 = WaitForSingleObject(w->events[i], 0);
7882
                if(ret2 == WAIT_OBJECT_0) {
7883
                    if (w->func[i])
7884
                        w->func[i](w->opaque[i]);
7885
                } else if (ret2 == WAIT_TIMEOUT) {
7886
                } else {
7887
                    err = GetLastError();
7888
                    fprintf(stderr, "WaitForSingleObject error %d %d\n", i, err);
7889
                }
7890
            }
7891
        } else if (ret == WAIT_TIMEOUT) {
7892
        } else {
7893
            err = GetLastError();
7894
            fprintf(stderr, "WaitForMultipleObjects error %d %d\n", ret, err);
7895
        }
7896
    }
7897
#endif
7898
    /* poll any events */
7899
    /* XXX: separate device handlers from system ones */
7900
    nfds = -1;
7901
    FD_ZERO(&rfds);
7902
    FD_ZERO(&wfds);
7903
    FD_ZERO(&xfds);
7904
    for(ioh = first_io_handler; ioh != NULL; ioh = ioh->next) {
7905
        if (ioh->deleted)
7906
            continue;
7907
        if (ioh->fd_read &&
7908
            (!ioh->fd_read_poll ||
7909
             ioh->fd_read_poll(ioh->opaque) != 0)) {
7910
            FD_SET(ioh->fd, &rfds);
7911
            if (ioh->fd > nfds)
7912
                nfds = ioh->fd;
7913
        }
7914
        if (ioh->fd_write) {
7915
            FD_SET(ioh->fd, &wfds);
7916
            if (ioh->fd > nfds)
7917
                nfds = ioh->fd;
7918
        }
7919
    }
7920

    
7921
    tv.tv_sec = 0;
7922
#ifdef _WIN32
7923
    tv.tv_usec = 0;
7924
#else
7925
    tv.tv_usec = timeout * 1000;
7926
#endif
7927
#if defined(CONFIG_SLIRP)
7928
    if (slirp_inited) {
7929
        slirp_select_fill(&nfds, &rfds, &wfds, &xfds);
7930
    }
7931
#endif
7932
    ret = select(nfds + 1, &rfds, &wfds, &xfds, &tv);
7933
    if (ret > 0) {
7934
        IOHandlerRecord **pioh;
7935

    
7936
        for(ioh = first_io_handler; ioh != NULL; ioh = ioh->next) {
7937
            if (!ioh->deleted && ioh->fd_read && FD_ISSET(ioh->fd, &rfds)) {
7938
                ioh->fd_read(ioh->opaque);
7939
            }
7940
            if (!ioh->deleted && ioh->fd_write && FD_ISSET(ioh->fd, &wfds)) {
7941
                ioh->fd_write(ioh->opaque);
7942
            }
7943
        }
7944

    
7945
        /* remove deleted IO handlers */
7946
        pioh = &first_io_handler;
7947
        while (*pioh) {
7948
            ioh = *pioh;
7949
            if (ioh->deleted) {
7950
                *pioh = ioh->next;
7951
                qemu_free(ioh);
7952
            } else
7953
                pioh = &ioh->next;
7954
        }
7955
    }
7956
#if defined(CONFIG_SLIRP)
7957
    if (slirp_inited) {
7958
        if (ret < 0) {
7959
            FD_ZERO(&rfds);
7960
            FD_ZERO(&wfds);
7961
            FD_ZERO(&xfds);
7962
        }
7963
        slirp_select_poll(&rfds, &wfds, &xfds);
7964
    }
7965
#endif
7966

    
7967
    if (vm_running) {
7968
        if (likely(!(cur_cpu->singlestep_enabled & SSTEP_NOTIMER)))
7969
        qemu_run_timers(&active_timers[QEMU_TIMER_VIRTUAL],
7970
                        qemu_get_clock(vm_clock));
7971
        /* run dma transfers, if any */
7972
        DMA_run();
7973
    }
7974

    
7975
    /* real time timers */
7976
    qemu_run_timers(&active_timers[QEMU_TIMER_REALTIME],
7977
                    qemu_get_clock(rt_clock));
7978

    
7979
    if (alarm_timer->flags & ALARM_FLAG_EXPIRED) {
7980
        alarm_timer->flags &= ~(ALARM_FLAG_EXPIRED);
7981
        qemu_rearm_alarm_timer(alarm_timer);
7982
    }
7983

    
7984
    /* Check bottom-halves last in case any of the earlier events triggered
7985
       them.  */
7986
    qemu_bh_poll();
7987

    
7988
}
7989

    
7990
static int main_loop(void)
7991
{
7992
    int ret, timeout;
7993
#ifdef CONFIG_PROFILER
7994
    int64_t ti;
7995
#endif
7996
    CPUState *env;
7997

    
7998
    cur_cpu = first_cpu;
7999
    next_cpu = cur_cpu->next_cpu ?: first_cpu;
8000
    for(;;) {
8001
        if (vm_running) {
8002

    
8003
            for(;;) {
8004
                /* get next cpu */
8005
                env = next_cpu;
8006
#ifdef CONFIG_PROFILER
8007
                ti = profile_getclock();
8008
#endif
8009
                if (use_icount) {
8010
                    int64_t count;
8011
                    int decr;
8012
                    qemu_icount -= (env->icount_decr.u16.low + env->icount_extra);
8013
                    env->icount_decr.u16.low = 0;
8014
                    env->icount_extra = 0;
8015
                    count = qemu_next_deadline();
8016
                    count = (count + (1 << icount_time_shift) - 1)
8017
                            >> icount_time_shift;
8018
                    qemu_icount += count;
8019
                    decr = (count > 0xffff) ? 0xffff : count;
8020
                    count -= decr;
8021
                    env->icount_decr.u16.low = decr;
8022
                    env->icount_extra = count;
8023
                }
8024
                ret = cpu_exec(env);
8025
#ifdef CONFIG_PROFILER
8026
                qemu_time += profile_getclock() - ti;
8027
#endif
8028
                if (use_icount) {
8029
                    /* Fold pending instructions back into the
8030
                       instruction counter, and clear the interrupt flag.  */
8031
                    qemu_icount -= (env->icount_decr.u16.low
8032
                                    + env->icount_extra);
8033
                    env->icount_decr.u32 = 0;
8034
                    env->icount_extra = 0;
8035
                }
8036
                next_cpu = env->next_cpu ?: first_cpu;
8037
                if (event_pending && likely(ret != EXCP_DEBUG)) {
8038
                    ret = EXCP_INTERRUPT;
8039
                    event_pending = 0;
8040
                    break;
8041
                }
8042
                if (ret == EXCP_HLT) {
8043
                    /* Give the next CPU a chance to run.  */
8044
                    cur_cpu = env;
8045
                    continue;
8046
                }
8047
                if (ret != EXCP_HALTED)
8048
                    break;
8049
                /* all CPUs are halted ? */
8050
                if (env == cur_cpu)
8051
                    break;
8052
            }
8053
            cur_cpu = env;
8054

    
8055
            if (shutdown_requested) {
8056
                ret = EXCP_INTERRUPT;
8057
                if (no_shutdown) {
8058
                    vm_stop(0);
8059
                    no_shutdown = 0;
8060
                }
8061
                else
8062
                    break;
8063
            }
8064
            if (reset_requested) {
8065
                reset_requested = 0;
8066
                qemu_system_reset();
8067
                ret = EXCP_INTERRUPT;
8068
            }
8069
            if (powerdown_requested) {
8070
                powerdown_requested = 0;
8071
                qemu_system_powerdown();
8072
                ret = EXCP_INTERRUPT;
8073
            }
8074
            if (unlikely(ret == EXCP_DEBUG)) {
8075
                vm_stop(EXCP_DEBUG);
8076
            }
8077
            /* If all cpus are halted then wait until the next IRQ */
8078
            /* XXX: use timeout computed from timers */
8079
            if (ret == EXCP_HALTED) {
8080
                if (use_icount) {
8081
                    int64_t add;
8082
                    int64_t delta;
8083
                    /* Advance virtual time to the next event.  */
8084
                    if (use_icount == 1) {
8085
                        /* When not using an adaptive execution frequency
8086
                           we tend to get badly out of sync with real time,
8087
                           so just delay for a reasonable amount of time.  */
8088
                        delta = 0;
8089
                    } else {
8090
                        delta = cpu_get_icount() - cpu_get_clock();
8091
                    }
8092
                    if (delta > 0) {
8093
                        /* If virtual time is ahead of real time then just
8094
                           wait for IO.  */
8095
                        timeout = (delta / 1000000) + 1;
8096
                    } else {
8097
                        /* Wait for either IO to occur or the next
8098
                           timer event.  */
8099
                        add = qemu_next_deadline();
8100
                        /* We advance the timer before checking for IO.
8101
                           Limit the amount we advance so that early IO
8102
                           activity won't get the guest too far ahead.  */
8103
                        if (add > 10000000)
8104
                            add = 10000000;
8105
                        delta += add;
8106
                        add = (add + (1 << icount_time_shift) - 1)
8107
                              >> icount_time_shift;
8108
                        qemu_icount += add;
8109
                        timeout = delta / 1000000;
8110
                        if (timeout < 0)
8111
                            timeout = 0;
8112
                    }
8113
                } else {
8114
                    timeout = 10;
8115
                }
8116
            } else {
8117
                timeout = 0;
8118
            }
8119
        } else {
8120
            if (shutdown_requested) {
8121
                ret = EXCP_INTERRUPT;
8122
                break;
8123
            }
8124
            timeout = 10;
8125
        }
8126
#ifdef CONFIG_PROFILER
8127
        ti = profile_getclock();
8128
#endif
8129
        main_loop_wait(timeout);
8130
#ifdef CONFIG_PROFILER
8131
        dev_time += profile_getclock() - ti;
8132
#endif
8133
    }
8134
    cpu_disable_ticks();
8135
    return ret;
8136
}
8137

    
8138
static void help(int exitcode)
8139
{
8140
    printf("QEMU PC emulator version " QEMU_VERSION ", Copyright (c) 2003-2008 Fabrice Bellard\n"
8141
           "usage: %s [options] [disk_image]\n"
8142
           "\n"
8143
           "'disk_image' is a raw hard image image for IDE hard disk 0\n"
8144
           "\n"
8145
           "Standard options:\n"
8146
           "-M machine      select emulated machine (-M ? for list)\n"
8147
           "-cpu cpu        select CPU (-cpu ? for list)\n"
8148
           "-fda/-fdb file  use 'file' as floppy disk 0/1 image\n"
8149
           "-hda/-hdb file  use 'file' as IDE hard disk 0/1 image\n"
8150
           "-hdc/-hdd file  use 'file' as IDE hard disk 2/3 image\n"
8151
           "-cdrom file     use 'file' as IDE cdrom image (cdrom is ide1 master)\n"
8152
           "-drive [file=file][,if=type][,bus=n][,unit=m][,media=d][,index=i]\n"
8153
           "       [,cyls=c,heads=h,secs=s[,trans=t]][,snapshot=on|off]\n"
8154
           "       [,cache=writethrough|writeback|none][,format=f]\n"
8155
           "                use 'file' as a drive image\n"
8156
           "-mtdblock file  use 'file' as on-board Flash memory image\n"
8157
           "-sd file        use 'file' as SecureDigital card image\n"
8158
           "-pflash file    use 'file' as a parallel flash image\n"
8159
           "-boot [a|c|d|n] boot on floppy (a), hard disk (c), CD-ROM (d), or network (n)\n"
8160
           "-snapshot       write to temporary files instead of disk image files\n"
8161
#ifdef CONFIG_SDL
8162
           "-no-frame       open SDL window without a frame and window decorations\n"
8163
           "-alt-grab       use Ctrl-Alt-Shift to grab mouse (instead of Ctrl-Alt)\n"
8164
           "-no-quit        disable SDL window close capability\n"
8165
#endif
8166
#ifdef TARGET_I386
8167
           "-no-fd-bootchk  disable boot signature checking for floppy disks\n"
8168
#endif
8169
           "-m megs         set virtual RAM size to megs MB [default=%d]\n"
8170
           "-smp n          set the number of CPUs to 'n' [default=1]\n"
8171
           "-nographic      disable graphical output and redirect serial I/Os to console\n"
8172
           "-portrait       rotate graphical output 90 deg left (only PXA LCD)\n"
8173
#ifndef _WIN32
8174
           "-k language     use keyboard layout (for example \"fr\" for French)\n"
8175
#endif
8176
#ifdef HAS_AUDIO
8177
           "-audio-help     print list of audio drivers and their options\n"
8178
           "-soundhw c1,... enable audio support\n"
8179
           "                and only specified sound cards (comma separated list)\n"
8180
           "                use -soundhw ? to get the list of supported cards\n"
8181
           "                use -soundhw all to enable all of them\n"
8182
#endif
8183
           "-vga [std|cirrus|vmware]\n"
8184
           "                select video card type\n"
8185
           "-localtime      set the real time clock to local time [default=utc]\n"
8186
           "-full-screen    start in full screen\n"
8187
#ifdef TARGET_I386
8188
           "-win2k-hack     use it when installing Windows 2000 to avoid a disk full bug\n"
8189
#endif
8190
           "-usb            enable the USB driver (will be the default soon)\n"
8191
           "-usbdevice name add the host or guest USB device 'name'\n"
8192
#if defined(TARGET_PPC) || defined(TARGET_SPARC)
8193
           "-g WxH[xDEPTH]  Set the initial graphical resolution and depth\n"
8194
#endif
8195
           "-name string    set the name of the guest\n"
8196
           "-uuid %%08x-%%04x-%%04x-%%04x-%%012x specify machine UUID\n"
8197
           "\n"
8198
           "Network options:\n"
8199
           "-net nic[,vlan=n][,macaddr=addr][,model=type]\n"
8200
           "                create a new Network Interface Card and connect it to VLAN 'n'\n"
8201
#ifdef CONFIG_SLIRP
8202
           "-net user[,vlan=n][,hostname=host]\n"
8203
           "                connect the user mode network stack to VLAN 'n' and send\n"
8204
           "                hostname 'host' to DHCP clients\n"
8205
#endif
8206
#ifdef _WIN32
8207
           "-net tap[,vlan=n],ifname=name\n"
8208
           "                connect the host TAP network interface to VLAN 'n'\n"
8209
#else
8210
           "-net tap[,vlan=n][,fd=h][,ifname=name][,script=file][,downscript=dfile]\n"
8211
           "                connect the host TAP network interface to VLAN 'n' and use the\n"
8212
           "                network scripts 'file' (default=%s)\n"
8213
           "                and 'dfile' (default=%s);\n"
8214
           "                use '[down]script=no' to disable script execution;\n"
8215
           "                use 'fd=h' to connect to an already opened TAP interface\n"
8216
#endif
8217
           "-net socket[,vlan=n][,fd=h][,listen=[host]:port][,connect=host:port]\n"
8218
           "                connect the vlan 'n' to another VLAN using a socket connection\n"
8219
           "-net socket[,vlan=n][,fd=h][,mcast=maddr:port]\n"
8220
           "                connect the vlan 'n' to multicast maddr and port\n"
8221
#ifdef CONFIG_VDE
8222
           "-net vde[,vlan=n][,sock=socketpath][,port=n][,group=groupname][,mode=octalmode]\n"
8223
           "                connect the vlan 'n' to port 'n' of a vde switch running\n"
8224
           "                on host and listening for incoming connections on 'socketpath'.\n"
8225
           "                Use group 'groupname' and mode 'octalmode' to change default\n"
8226
           "                ownership and permissions for communication port.\n"
8227
#endif
8228
           "-net none       use it alone to have zero network devices; if no -net option\n"
8229
           "                is provided, the default is '-net nic -net user'\n"
8230
           "\n"
8231
#ifdef CONFIG_SLIRP
8232
           "-tftp dir       allow tftp access to files in dir [-net user]\n"
8233
           "-bootp file     advertise file in BOOTP replies\n"
8234
#ifndef _WIN32
8235
           "-smb dir        allow SMB access to files in 'dir' [-net user]\n"
8236
#endif
8237
           "-redir [tcp|udp]:host-port:[guest-host]:guest-port\n"
8238
           "                redirect TCP or UDP connections from host to guest [-net user]\n"
8239
#endif
8240
           "\n"
8241
           "Linux boot specific:\n"
8242
           "-kernel bzImage use 'bzImage' as kernel image\n"
8243
           "-append cmdline use 'cmdline' as kernel command line\n"
8244
           "-initrd file    use 'file' as initial ram disk\n"
8245
           "\n"
8246
           "Debug/Expert options:\n"
8247
           "-monitor dev    redirect the monitor to char device 'dev'\n"
8248
           "-serial dev     redirect the serial port to char device 'dev'\n"
8249
           "-parallel dev   redirect the parallel port to char device 'dev'\n"
8250
           "-pidfile file   Write PID to 'file'\n"
8251
           "-S              freeze CPU at startup (use 'c' to start execution)\n"
8252
           "-s              wait gdb connection to port\n"
8253
           "-p port         set gdb connection port [default=%s]\n"
8254
           "-d item1,...    output log to %s (use -d ? for a list of log items)\n"
8255
           "-hdachs c,h,s[,t]  force hard disk 0 physical geometry and the optional BIOS\n"
8256
           "                translation (t=none or lba) (usually qemu can guess them)\n"
8257
           "-L path         set the directory for the BIOS, VGA BIOS and keymaps\n"
8258
#ifdef USE_KQEMU
8259
           "-kernel-kqemu   enable KQEMU full virtualization (default is user mode only)\n"
8260
           "-no-kqemu       disable KQEMU kernel module usage\n"
8261
#endif
8262
#ifdef TARGET_I386
8263
           "-no-acpi        disable ACPI\n"
8264
#endif
8265
#ifdef CONFIG_CURSES
8266
           "-curses         use a curses/ncurses interface instead of SDL\n"
8267
#endif
8268
           "-no-reboot      exit instead of rebooting\n"
8269
           "-no-shutdown    stop before shutdown\n"
8270
           "-loadvm [tag|id]  start right away with a saved state (loadvm in monitor)\n"
8271
           "-vnc display    start a VNC server on display\n"
8272
#ifndef _WIN32
8273
           "-daemonize      daemonize QEMU after initializing\n"
8274
#endif
8275
           "-option-rom rom load a file, rom, into the option ROM space\n"
8276
#ifdef TARGET_SPARC
8277
           "-prom-env variable=value  set OpenBIOS nvram variables\n"
8278
#endif
8279
           "-clock          force the use of the given methods for timer alarm.\n"
8280
           "                To see what timers are available use -clock ?\n"
8281
           "-startdate      select initial date of the clock\n"
8282
           "-icount [N|auto]\n"
8283
           "                Enable virtual instruction counter with 2^N clock ticks per instruction\n"
8284
           "\n"
8285
           "During emulation, the following keys are useful:\n"
8286
           "ctrl-alt-f      toggle full screen\n"
8287
           "ctrl-alt-n      switch to virtual console 'n'\n"
8288
           "ctrl-alt        toggle mouse and keyboard grab\n"
8289
           "\n"
8290
           "When using -nographic, press 'ctrl-a h' to get some help.\n"
8291
           ,
8292
           "qemu",
8293
           DEFAULT_RAM_SIZE,
8294
#ifndef _WIN32
8295
           DEFAULT_NETWORK_SCRIPT,
8296
           DEFAULT_NETWORK_DOWN_SCRIPT,
8297
#endif
8298
           DEFAULT_GDBSTUB_PORT,
8299
           "/tmp/qemu.log");
8300
    exit(exitcode);
8301
}
8302

    
8303
#define HAS_ARG 0x0001
8304

    
8305
enum {
8306
    QEMU_OPTION_h,
8307

    
8308
    QEMU_OPTION_M,
8309
    QEMU_OPTION_cpu,
8310
    QEMU_OPTION_fda,
8311
    QEMU_OPTION_fdb,
8312
    QEMU_OPTION_hda,
8313
    QEMU_OPTION_hdb,
8314
    QEMU_OPTION_hdc,
8315
    QEMU_OPTION_hdd,
8316
    QEMU_OPTION_drive,
8317
    QEMU_OPTION_cdrom,
8318
    QEMU_OPTION_mtdblock,
8319
    QEMU_OPTION_sd,
8320
    QEMU_OPTION_pflash,
8321
    QEMU_OPTION_boot,
8322
    QEMU_OPTION_snapshot,
8323
#ifdef TARGET_I386
8324
    QEMU_OPTION_no_fd_bootchk,
8325
#endif
8326
    QEMU_OPTION_m,
8327
    QEMU_OPTION_nographic,
8328
    QEMU_OPTION_portrait,
8329
#ifdef HAS_AUDIO
8330
    QEMU_OPTION_audio_help,
8331
    QEMU_OPTION_soundhw,
8332
#endif
8333

    
8334
    QEMU_OPTION_net,
8335
    QEMU_OPTION_tftp,
8336
    QEMU_OPTION_bootp,
8337
    QEMU_OPTION_smb,
8338
    QEMU_OPTION_redir,
8339

    
8340
    QEMU_OPTION_kernel,
8341
    QEMU_OPTION_append,
8342
    QEMU_OPTION_initrd,
8343

    
8344
    QEMU_OPTION_S,
8345
    QEMU_OPTION_s,
8346
    QEMU_OPTION_p,
8347
    QEMU_OPTION_d,
8348
    QEMU_OPTION_hdachs,
8349
    QEMU_OPTION_L,
8350
    QEMU_OPTION_bios,
8351
    QEMU_OPTION_k,
8352
    QEMU_OPTION_localtime,
8353
    QEMU_OPTION_g,
8354
    QEMU_OPTION_vga,
8355
    QEMU_OPTION_echr,
8356
    QEMU_OPTION_monitor,
8357
    QEMU_OPTION_serial,
8358
    QEMU_OPTION_parallel,
8359
    QEMU_OPTION_loadvm,
8360
    QEMU_OPTION_full_screen,
8361
    QEMU_OPTION_no_frame,
8362
    QEMU_OPTION_alt_grab,
8363
    QEMU_OPTION_no_quit,
8364
    QEMU_OPTION_pidfile,
8365
    QEMU_OPTION_no_kqemu,
8366
    QEMU_OPTION_kernel_kqemu,
8367
    QEMU_OPTION_win2k_hack,
8368
    QEMU_OPTION_usb,
8369
    QEMU_OPTION_usbdevice,
8370
    QEMU_OPTION_smp,
8371
    QEMU_OPTION_vnc,
8372
    QEMU_OPTION_no_acpi,
8373
    QEMU_OPTION_curses,
8374
    QEMU_OPTION_no_reboot,
8375
    QEMU_OPTION_no_shutdown,
8376
    QEMU_OPTION_show_cursor,
8377
    QEMU_OPTION_daemonize,
8378
    QEMU_OPTION_option_rom,
8379
    QEMU_OPTION_semihosting,
8380
    QEMU_OPTION_name,
8381
    QEMU_OPTION_prom_env,
8382
    QEMU_OPTION_old_param,
8383
    QEMU_OPTION_clock,
8384
    QEMU_OPTION_startdate,
8385
    QEMU_OPTION_tb_size,
8386
    QEMU_OPTION_icount,
8387
    QEMU_OPTION_uuid,
8388
    QEMU_OPTION_incoming,
8389
};
8390

    
8391
typedef struct QEMUOption {
8392
    const char *name;
8393
    int flags;
8394
    int index;
8395
} QEMUOption;
8396

    
8397
static const QEMUOption qemu_options[] = {
8398
    { "h", 0, QEMU_OPTION_h },
8399
    { "help", 0, QEMU_OPTION_h },
8400

    
8401
    { "M", HAS_ARG, QEMU_OPTION_M },
8402
    { "cpu", HAS_ARG, QEMU_OPTION_cpu },
8403
    { "fda", HAS_ARG, QEMU_OPTION_fda },
8404
    { "fdb", HAS_ARG, QEMU_OPTION_fdb },
8405
    { "hda", HAS_ARG, QEMU_OPTION_hda },
8406
    { "hdb", HAS_ARG, QEMU_OPTION_hdb },
8407
    { "hdc", HAS_ARG, QEMU_OPTION_hdc },
8408
    { "hdd", HAS_ARG, QEMU_OPTION_hdd },
8409
    { "drive", HAS_ARG, QEMU_OPTION_drive },
8410
    { "cdrom", HAS_ARG, QEMU_OPTION_cdrom },
8411
    { "mtdblock", HAS_ARG, QEMU_OPTION_mtdblock },
8412
    { "sd", HAS_ARG, QEMU_OPTION_sd },
8413
    { "pflash", HAS_ARG, QEMU_OPTION_pflash },
8414
    { "boot", HAS_ARG, QEMU_OPTION_boot },
8415
    { "snapshot", 0, QEMU_OPTION_snapshot },
8416
#ifdef TARGET_I386
8417
    { "no-fd-bootchk", 0, QEMU_OPTION_no_fd_bootchk },
8418
#endif
8419
    { "m", HAS_ARG, QEMU_OPTION_m },
8420
    { "nographic", 0, QEMU_OPTION_nographic },
8421
    { "portrait", 0, QEMU_OPTION_portrait },
8422
    { "k", HAS_ARG, QEMU_OPTION_k },
8423
#ifdef HAS_AUDIO
8424
    { "audio-help", 0, QEMU_OPTION_audio_help },
8425
    { "soundhw", HAS_ARG, QEMU_OPTION_soundhw },
8426
#endif
8427

    
8428
    { "net", HAS_ARG, QEMU_OPTION_net},
8429
#ifdef CONFIG_SLIRP
8430
    { "tftp", HAS_ARG, QEMU_OPTION_tftp },
8431
    { "bootp", HAS_ARG, QEMU_OPTION_bootp },
8432
#ifndef _WIN32
8433
    { "smb", HAS_ARG, QEMU_OPTION_smb },
8434
#endif
8435
    { "redir", HAS_ARG, QEMU_OPTION_redir },
8436
#endif
8437

    
8438
    { "kernel", HAS_ARG, QEMU_OPTION_kernel },
8439
    { "append", HAS_ARG, QEMU_OPTION_append },
8440
    { "initrd", HAS_ARG, QEMU_OPTION_initrd },
8441

    
8442
    { "S", 0, QEMU_OPTION_S },
8443
    { "s", 0, QEMU_OPTION_s },
8444
    { "p", HAS_ARG, QEMU_OPTION_p },
8445
    { "d", HAS_ARG, QEMU_OPTION_d },
8446
    { "hdachs", HAS_ARG, QEMU_OPTION_hdachs },
8447
    { "L", HAS_ARG, QEMU_OPTION_L },
8448
    { "bios", HAS_ARG, QEMU_OPTION_bios },
8449
#ifdef USE_KQEMU
8450
    { "no-kqemu", 0, QEMU_OPTION_no_kqemu },
8451
    { "kernel-kqemu", 0, QEMU_OPTION_kernel_kqemu },
8452
#endif
8453
#if defined(TARGET_PPC) || defined(TARGET_SPARC)
8454
    { "g", 1, QEMU_OPTION_g },
8455
#endif
8456
    { "localtime", 0, QEMU_OPTION_localtime },
8457
    { "vga", HAS_ARG, QEMU_OPTION_vga },
8458
    { "echr", HAS_ARG, QEMU_OPTION_echr },
8459
    { "monitor", HAS_ARG, QEMU_OPTION_monitor },
8460
    { "serial", HAS_ARG, QEMU_OPTION_serial },
8461
    { "parallel", HAS_ARG, QEMU_OPTION_parallel },
8462
    { "loadvm", HAS_ARG, QEMU_OPTION_loadvm },
8463
    { "full-screen", 0, QEMU_OPTION_full_screen },
8464
#ifdef CONFIG_SDL
8465
    { "no-frame", 0, QEMU_OPTION_no_frame },
8466
    { "alt-grab", 0, QEMU_OPTION_alt_grab },
8467
    { "no-quit", 0, QEMU_OPTION_no_quit },
8468
#endif
8469
    { "pidfile", HAS_ARG, QEMU_OPTION_pidfile },
8470
    { "win2k-hack", 0, QEMU_OPTION_win2k_hack },
8471
    { "usbdevice", HAS_ARG, QEMU_OPTION_usbdevice },
8472
    { "smp", HAS_ARG, QEMU_OPTION_smp },
8473
    { "vnc", HAS_ARG, QEMU_OPTION_vnc },
8474
#ifdef CONFIG_CURSES
8475
    { "curses", 0, QEMU_OPTION_curses },
8476
#endif
8477
    { "uuid", HAS_ARG, QEMU_OPTION_uuid },
8478

    
8479
    /* temporary options */
8480
    { "usb", 0, QEMU_OPTION_usb },
8481
    { "no-acpi", 0, QEMU_OPTION_no_acpi },
8482
    { "no-reboot", 0, QEMU_OPTION_no_reboot },
8483
    { "no-shutdown", 0, QEMU_OPTION_no_shutdown },
8484
    { "show-cursor", 0, QEMU_OPTION_show_cursor },
8485
    { "daemonize", 0, QEMU_OPTION_daemonize },
8486
    { "option-rom", HAS_ARG, QEMU_OPTION_option_rom },
8487
#if defined(TARGET_ARM) || defined(TARGET_M68K)
8488
    { "semihosting", 0, QEMU_OPTION_semihosting },
8489
#endif
8490
    { "name", HAS_ARG, QEMU_OPTION_name },
8491
#if defined(TARGET_SPARC)
8492
    { "prom-env", HAS_ARG, QEMU_OPTION_prom_env },
8493
#endif
8494
#if defined(TARGET_ARM)
8495
    { "old-param", 0, QEMU_OPTION_old_param },
8496
#endif
8497
    { "clock", HAS_ARG, QEMU_OPTION_clock },
8498
    { "startdate", HAS_ARG, QEMU_OPTION_startdate },
8499
    { "tb-size", HAS_ARG, QEMU_OPTION_tb_size },
8500
    { "icount", HAS_ARG, QEMU_OPTION_icount },
8501
    { "incoming", HAS_ARG, QEMU_OPTION_incoming },
8502
    { NULL },
8503
};
8504

    
8505
/* password input */
8506

    
8507
int qemu_key_check(BlockDriverState *bs, const char *name)
8508
{
8509
    char password[256];
8510
    int i;
8511

    
8512
    if (!bdrv_is_encrypted(bs))
8513
        return 0;
8514

    
8515
    term_printf("%s is encrypted.\n", name);
8516
    for(i = 0; i < 3; i++) {
8517
        monitor_readline("Password: ", 1, password, sizeof(password));
8518
        if (bdrv_set_key(bs, password) == 0)
8519
            return 0;
8520
        term_printf("invalid password\n");
8521
    }
8522
    return -EPERM;
8523
}
8524

    
8525
static BlockDriverState *get_bdrv(int index)
8526
{
8527
    if (index > nb_drives)
8528
        return NULL;
8529
    return drives_table[index].bdrv;
8530
}
8531

    
8532
static void read_passwords(void)
8533
{
8534
    BlockDriverState *bs;
8535
    int i;
8536

    
8537
    for(i = 0; i < 6; i++) {
8538
        bs = get_bdrv(i);
8539
        if (bs)
8540
            qemu_key_check(bs, bdrv_get_device_name(bs));
8541
    }
8542
}
8543

    
8544
#ifdef HAS_AUDIO
8545
struct soundhw soundhw[] = {
8546
#ifdef HAS_AUDIO_CHOICE
8547
#if defined(TARGET_I386) || defined(TARGET_MIPS)
8548
    {
8549
        "pcspk",
8550
        "PC speaker",
8551
        0,
8552
        1,
8553
        { .init_isa = pcspk_audio_init }
8554
    },
8555
#endif
8556
    {
8557
        "sb16",
8558
        "Creative Sound Blaster 16",
8559
        0,
8560
        1,
8561
        { .init_isa = SB16_init }
8562
    },
8563

    
8564
#ifdef CONFIG_CS4231A
8565
    {
8566
        "cs4231a",
8567
        "CS4231A",
8568
        0,
8569
        1,
8570
        { .init_isa = cs4231a_init }
8571
    },
8572
#endif
8573

    
8574
#ifdef CONFIG_ADLIB
8575
    {
8576
        "adlib",
8577
#ifdef HAS_YMF262
8578
        "Yamaha YMF262 (OPL3)",
8579
#else
8580
        "Yamaha YM3812 (OPL2)",
8581
#endif
8582
        0,
8583
        1,
8584
        { .init_isa = Adlib_init }
8585
    },
8586
#endif
8587

    
8588
#ifdef CONFIG_GUS
8589
    {
8590
        "gus",
8591
        "Gravis Ultrasound GF1",
8592
        0,
8593
        1,
8594
        { .init_isa = GUS_init }
8595
    },
8596
#endif
8597

    
8598
#ifdef CONFIG_AC97
8599
    {
8600
        "ac97",
8601
        "Intel 82801AA AC97 Audio",
8602
        0,
8603
        0,
8604
        { .init_pci = ac97_init }
8605
    },
8606
#endif
8607

    
8608
    {
8609
        "es1370",
8610
        "ENSONIQ AudioPCI ES1370",
8611
        0,
8612
        0,
8613
        { .init_pci = es1370_init }
8614
    },
8615
#endif
8616

    
8617
    { NULL, NULL, 0, 0, { NULL } }
8618
};
8619

    
8620
static void select_soundhw (const char *optarg)
8621
{
8622
    struct soundhw *c;
8623

    
8624
    if (*optarg == '?') {
8625
    show_valid_cards:
8626

    
8627
        printf ("Valid sound card names (comma separated):\n");
8628
        for (c = soundhw; c->name; ++c) {
8629
            printf ("%-11s %s\n", c->name, c->descr);
8630
        }
8631
        printf ("\n-soundhw all will enable all of the above\n");
8632
        exit (*optarg != '?');
8633
    }
8634
    else {
8635
        size_t l;
8636
        const char *p;
8637
        char *e;
8638
        int bad_card = 0;
8639

    
8640
        if (!strcmp (optarg, "all")) {
8641
            for (c = soundhw; c->name; ++c) {
8642
                c->enabled = 1;
8643
            }
8644
            return;
8645
        }
8646

    
8647
        p = optarg;
8648
        while (*p) {
8649
            e = strchr (p, ',');
8650
            l = !e ? strlen (p) : (size_t) (e - p);
8651

    
8652
            for (c = soundhw; c->name; ++c) {
8653
                if (!strncmp (c->name, p, l)) {
8654
                    c->enabled = 1;
8655
                    break;
8656
                }
8657
            }
8658

    
8659
            if (!c->name) {
8660
                if (l > 80) {
8661
                    fprintf (stderr,
8662
                             "Unknown sound card name (too big to show)\n");
8663
                }
8664
                else {
8665
                    fprintf (stderr, "Unknown sound card name `%.*s'\n",
8666
                             (int) l, p);
8667
                }
8668
                bad_card = 1;
8669
            }
8670
            p += l + (e != NULL);
8671
        }
8672

    
8673
        if (bad_card)
8674
            goto show_valid_cards;
8675
    }
8676
}
8677
#endif
8678

    
8679
static void select_vgahw (const char *p)
8680
{
8681
    const char *opts;
8682

    
8683
    if (strstart(p, "std", &opts)) {
8684
        cirrus_vga_enabled = 0;
8685
        vmsvga_enabled = 0;
8686
    } else if (strstart(p, "cirrus", &opts)) {
8687
        cirrus_vga_enabled = 1;
8688
        vmsvga_enabled = 0;
8689
    } else if (strstart(p, "vmware", &opts)) {
8690
        cirrus_vga_enabled = 0;
8691
        vmsvga_enabled = 1;
8692
    } else {
8693
    invalid_vga:
8694
        fprintf(stderr, "Unknown vga type: %s\n", p);
8695
        exit(1);
8696
    }
8697
    while (*opts) {
8698
        const char *nextopt;
8699

    
8700
        if (strstart(opts, ",retrace=", &nextopt)) {
8701
            opts = nextopt;
8702
            if (strstart(opts, "dumb", &nextopt))
8703
                vga_retrace_method = VGA_RETRACE_DUMB;
8704
            else if (strstart(opts, "precise", &nextopt))
8705
                vga_retrace_method = VGA_RETRACE_PRECISE;
8706
            else goto invalid_vga;
8707
        } else goto invalid_vga;
8708
        opts = nextopt;
8709
    }
8710
}
8711

    
8712
#ifdef _WIN32
8713
static BOOL WINAPI qemu_ctrl_handler(DWORD type)
8714
{
8715
    exit(STATUS_CONTROL_C_EXIT);
8716
    return TRUE;
8717
}
8718
#endif
8719

    
8720
static int qemu_uuid_parse(const char *str, uint8_t *uuid)
8721
{
8722
    int ret;
8723

    
8724
    if(strlen(str) != 36)
8725
        return -1;
8726

    
8727
    ret = sscanf(str, UUID_FMT, &uuid[0], &uuid[1], &uuid[2], &uuid[3],
8728
            &uuid[4], &uuid[5], &uuid[6], &uuid[7], &uuid[8], &uuid[9],
8729
            &uuid[10], &uuid[11], &uuid[12], &uuid[13], &uuid[14], &uuid[15]);
8730

    
8731
    if(ret != 16)
8732
        return -1;
8733

    
8734
    return 0;
8735
}
8736

    
8737
#define MAX_NET_CLIENTS 32
8738

    
8739
#ifndef _WIN32
8740

    
8741
static void termsig_handler(int signal)
8742
{
8743
    qemu_system_shutdown_request();
8744
}
8745

    
8746
static void termsig_setup(void)
8747
{
8748
    struct sigaction act;
8749

    
8750
    memset(&act, 0, sizeof(act));
8751
    act.sa_handler = termsig_handler;
8752
    sigaction(SIGINT,  &act, NULL);
8753
    sigaction(SIGHUP,  &act, NULL);
8754
    sigaction(SIGTERM, &act, NULL);
8755
}
8756

    
8757
#endif
8758

    
8759
int main(int argc, char **argv)
8760
{
8761
#ifdef CONFIG_GDBSTUB
8762
    int use_gdbstub;
8763
    const char *gdbstub_port;
8764
#endif
8765
    uint32_t boot_devices_bitmap = 0;
8766
    int i;
8767
    int snapshot, linux_boot, net_boot;
8768
    const char *initrd_filename;
8769
    const char *kernel_filename, *kernel_cmdline;
8770
    const char *boot_devices = "";
8771
    DisplayState *ds = &display_state;
8772
    int cyls, heads, secs, translation;
8773
    const char *net_clients[MAX_NET_CLIENTS];
8774
    int nb_net_clients;
8775
    int hda_index;
8776
    int optind;
8777
    const char *r, *optarg;
8778
    CharDriverState *monitor_hd;
8779
    const char *monitor_device;
8780
    const char *serial_devices[MAX_SERIAL_PORTS];
8781
    int serial_device_index;
8782
    const char *parallel_devices[MAX_PARALLEL_PORTS];
8783
    int parallel_device_index;
8784
    const char *loadvm = NULL;
8785
    QEMUMachine *machine;
8786
    const char *cpu_model;
8787
    const char *usb_devices[MAX_USB_CMDLINE];
8788
    int usb_devices_index;
8789
    int fds[2];
8790
    int tb_size;
8791
    const char *pid_file = NULL;
8792
    VLANState *vlan;
8793
    int autostart;
8794
    const char *incoming = NULL;
8795

    
8796
    LIST_INIT (&vm_change_state_head);
8797
#ifndef _WIN32
8798
    {
8799
        struct sigaction act;
8800
        sigfillset(&act.sa_mask);
8801
        act.sa_flags = 0;
8802
        act.sa_handler = SIG_IGN;
8803
        sigaction(SIGPIPE, &act, NULL);
8804
    }
8805
#else
8806
    SetConsoleCtrlHandler(qemu_ctrl_handler, TRUE);
8807
    /* Note: cpu_interrupt() is currently not SMP safe, so we force
8808
       QEMU to run on a single CPU */
8809
    {
8810
        HANDLE h;
8811
        DWORD mask, smask;
8812
        int i;
8813
        h = GetCurrentProcess();
8814
        if (GetProcessAffinityMask(h, &mask, &smask)) {
8815
            for(i = 0; i < 32; i++) {
8816
                if (mask & (1 << i))
8817
                    break;
8818
            }
8819
            if (i != 32) {
8820
                mask = 1 << i;
8821
                SetProcessAffinityMask(h, mask);
8822
            }
8823
        }
8824
    }
8825
#endif
8826

    
8827
    register_machines();
8828
    machine = first_machine;
8829
    cpu_model = NULL;
8830
    initrd_filename = NULL;
8831
    ram_size = 0;
8832
    vga_ram_size = VGA_RAM_SIZE;
8833
#ifdef CONFIG_GDBSTUB
8834
    use_gdbstub = 0;
8835
    gdbstub_port = DEFAULT_GDBSTUB_PORT;
8836
#endif
8837
    snapshot = 0;
8838
    nographic = 0;
8839
    curses = 0;
8840
    kernel_filename = NULL;
8841
    kernel_cmdline = "";
8842
    cyls = heads = secs = 0;
8843
    translation = BIOS_ATA_TRANSLATION_AUTO;
8844
    monitor_device = "vc";
8845

    
8846
    serial_devices[0] = "vc:80Cx24C";
8847
    for(i = 1; i < MAX_SERIAL_PORTS; i++)
8848
        serial_devices[i] = NULL;
8849
    serial_device_index = 0;
8850

    
8851
    parallel_devices[0] = "vc:640x480";
8852
    for(i = 1; i < MAX_PARALLEL_PORTS; i++)
8853
        parallel_devices[i] = NULL;
8854
    parallel_device_index = 0;
8855

    
8856
    usb_devices_index = 0;
8857

    
8858
    nb_net_clients = 0;
8859
    nb_drives = 0;
8860
    nb_drives_opt = 0;
8861
    hda_index = -1;
8862

    
8863
    nb_nics = 0;
8864

    
8865
    tb_size = 0;
8866
    autostart= 1;
8867

    
8868
    optind = 1;
8869
    for(;;) {
8870
        if (optind >= argc)
8871
            break;
8872
        r = argv[optind];
8873
        if (r[0] != '-') {
8874
            hda_index = drive_add(argv[optind++], HD_ALIAS, 0);
8875
        } else {
8876
            const QEMUOption *popt;
8877

    
8878
            optind++;
8879
            /* Treat --foo the same as -foo.  */
8880
            if (r[1] == '-')
8881
                r++;
8882
            popt = qemu_options;
8883
            for(;;) {
8884
                if (!popt->name) {
8885
                    fprintf(stderr, "%s: invalid option -- '%s'\n",
8886
                            argv[0], r);
8887
                    exit(1);
8888
                }
8889
                if (!strcmp(popt->name, r + 1))
8890
                    break;
8891
                popt++;
8892
            }
8893
            if (popt->flags & HAS_ARG) {
8894
                if (optind >= argc) {
8895
                    fprintf(stderr, "%s: option '%s' requires an argument\n",
8896
                            argv[0], r);
8897
                    exit(1);
8898
                }
8899
                optarg = argv[optind++];
8900
            } else {
8901
                optarg = NULL;
8902
            }
8903

    
8904
            switch(popt->index) {
8905
            case QEMU_OPTION_M:
8906
                machine = find_machine(optarg);
8907
                if (!machine) {
8908
                    QEMUMachine *m;
8909
                    printf("Supported machines are:\n");
8910
                    for(m = first_machine; m != NULL; m = m->next) {
8911
                        printf("%-10s %s%s\n",
8912
                               m->name, m->desc,
8913
                               m == first_machine ? " (default)" : "");
8914
                    }
8915
                    exit(*optarg != '?');
8916
                }
8917
                break;
8918
            case QEMU_OPTION_cpu:
8919
                /* hw initialization will check this */
8920
                if (*optarg == '?') {
8921
/* XXX: implement xxx_cpu_list for targets that still miss it */
8922
#if defined(cpu_list)
8923
                    cpu_list(stdout, &fprintf);
8924
#endif
8925
                    exit(0);
8926
                } else {
8927
                    cpu_model = optarg;
8928
                }
8929
                break;
8930
            case QEMU_OPTION_initrd:
8931
                initrd_filename = optarg;
8932
                break;
8933
            case QEMU_OPTION_hda:
8934
                if (cyls == 0)
8935
                    hda_index = drive_add(optarg, HD_ALIAS, 0);
8936
                else
8937
                    hda_index = drive_add(optarg, HD_ALIAS
8938
                             ",cyls=%d,heads=%d,secs=%d%s",
8939
                             0, cyls, heads, secs,
8940
                             translation == BIOS_ATA_TRANSLATION_LBA ?
8941
                                 ",trans=lba" :
8942
                             translation == BIOS_ATA_TRANSLATION_NONE ?
8943
                                 ",trans=none" : "");
8944
                 break;
8945
            case QEMU_OPTION_hdb:
8946
            case QEMU_OPTION_hdc:
8947
            case QEMU_OPTION_hdd:
8948
                drive_add(optarg, HD_ALIAS, popt->index - QEMU_OPTION_hda);
8949
                break;
8950
            case QEMU_OPTION_drive:
8951
                drive_add(NULL, "%s", optarg);
8952
                break;
8953
            case QEMU_OPTION_mtdblock:
8954
                drive_add(optarg, MTD_ALIAS);
8955
                break;
8956
            case QEMU_OPTION_sd:
8957
                drive_add(optarg, SD_ALIAS);
8958
                break;
8959
            case QEMU_OPTION_pflash:
8960
                drive_add(optarg, PFLASH_ALIAS);
8961
                break;
8962
            case QEMU_OPTION_snapshot:
8963
                snapshot = 1;
8964
                break;
8965
            case QEMU_OPTION_hdachs:
8966
                {
8967
                    const char *p;
8968
                    p = optarg;
8969
                    cyls = strtol(p, (char **)&p, 0);
8970
                    if (cyls < 1 || cyls > 16383)
8971
                        goto chs_fail;
8972
                    if (*p != ',')
8973
                        goto chs_fail;
8974
                    p++;
8975
                    heads = strtol(p, (char **)&p, 0);
8976
                    if (heads < 1 || heads > 16)
8977
                        goto chs_fail;
8978
                    if (*p != ',')
8979
                        goto chs_fail;
8980
                    p++;
8981
                    secs = strtol(p, (char **)&p, 0);
8982
                    if (secs < 1 || secs > 63)
8983
                        goto chs_fail;
8984
                    if (*p == ',') {
8985
                        p++;
8986
                        if (!strcmp(p, "none"))
8987
                            translation = BIOS_ATA_TRANSLATION_NONE;
8988
                        else if (!strcmp(p, "lba"))
8989
                            translation = BIOS_ATA_TRANSLATION_LBA;
8990
                        else if (!strcmp(p, "auto"))
8991
                            translation = BIOS_ATA_TRANSLATION_AUTO;
8992
                        else
8993
                            goto chs_fail;
8994
                    } else if (*p != '\0') {
8995
                    chs_fail:
8996
                        fprintf(stderr, "qemu: invalid physical CHS format\n");
8997
                        exit(1);
8998
                    }
8999
                    if (hda_index != -1)
9000
                        snprintf(drives_opt[hda_index].opt,
9001
                                 sizeof(drives_opt[hda_index].opt),
9002
                                 HD_ALIAS ",cyls=%d,heads=%d,secs=%d%s",
9003
                                 0, cyls, heads, secs,
9004
                                 translation == BIOS_ATA_TRANSLATION_LBA ?
9005
                                         ",trans=lba" :
9006
                                 translation == BIOS_ATA_TRANSLATION_NONE ?
9007
                                     ",trans=none" : "");
9008
                }
9009
                break;
9010
            case QEMU_OPTION_nographic:
9011
                nographic = 1;
9012
                break;
9013
#ifdef CONFIG_CURSES
9014
            case QEMU_OPTION_curses:
9015
                curses = 1;
9016
                break;
9017
#endif
9018
            case QEMU_OPTION_portrait:
9019
                graphic_rotate = 1;
9020
                break;
9021
            case QEMU_OPTION_kernel:
9022
                kernel_filename = optarg;
9023
                break;
9024
            case QEMU_OPTION_append:
9025
                kernel_cmdline = optarg;
9026
                break;
9027
            case QEMU_OPTION_cdrom:
9028
                drive_add(optarg, CDROM_ALIAS);
9029
                break;
9030
            case QEMU_OPTION_boot:
9031
                boot_devices = optarg;
9032
                /* We just do some generic consistency checks */
9033
                {
9034
                    /* Could easily be extended to 64 devices if needed */
9035
                    const char *p;
9036
                    
9037
                    boot_devices_bitmap = 0;
9038
                    for (p = boot_devices; *p != '\0'; p++) {
9039
                        /* Allowed boot devices are:
9040
                         * a b     : floppy disk drives
9041
                         * c ... f : IDE disk drives
9042
                         * g ... m : machine implementation dependant drives
9043
                         * n ... p : network devices
9044
                         * It's up to each machine implementation to check
9045
                         * if the given boot devices match the actual hardware
9046
                         * implementation and firmware features.
9047
                         */
9048
                        if (*p < 'a' || *p > 'q') {
9049
                            fprintf(stderr, "Invalid boot device '%c'\n", *p);
9050
                            exit(1);
9051
                        }
9052
                        if (boot_devices_bitmap & (1 << (*p - 'a'))) {
9053
                            fprintf(stderr,
9054
                                    "Boot device '%c' was given twice\n",*p);
9055
                            exit(1);
9056
                        }
9057
                        boot_devices_bitmap |= 1 << (*p - 'a');
9058
                    }
9059
                }
9060
                break;
9061
            case QEMU_OPTION_fda:
9062
            case QEMU_OPTION_fdb:
9063
                drive_add(optarg, FD_ALIAS, popt->index - QEMU_OPTION_fda);
9064
                break;
9065
#ifdef TARGET_I386
9066
            case QEMU_OPTION_no_fd_bootchk:
9067
                fd_bootchk = 0;
9068
                break;
9069
#endif
9070
            case QEMU_OPTION_net:
9071
                if (nb_net_clients >= MAX_NET_CLIENTS) {
9072
                    fprintf(stderr, "qemu: too many network clients\n");
9073
                    exit(1);
9074
                }
9075
                net_clients[nb_net_clients] = optarg;
9076
                nb_net_clients++;
9077
                break;
9078
#ifdef CONFIG_SLIRP
9079
            case QEMU_OPTION_tftp:
9080
                tftp_prefix = optarg;
9081
                break;
9082
            case QEMU_OPTION_bootp:
9083
                bootp_filename = optarg;
9084
                break;
9085
#ifndef _WIN32
9086
            case QEMU_OPTION_smb:
9087
                net_slirp_smb(optarg);
9088
                break;
9089
#endif
9090
            case QEMU_OPTION_redir:
9091
                net_slirp_redir(optarg);
9092
                break;
9093
#endif
9094
#ifdef HAS_AUDIO
9095
            case QEMU_OPTION_audio_help:
9096
                AUD_help ();
9097
                exit (0);
9098
                break;
9099
            case QEMU_OPTION_soundhw:
9100
                select_soundhw (optarg);
9101
                break;
9102
#endif
9103
            case QEMU_OPTION_h:
9104
                help(0);
9105
                break;
9106
            case QEMU_OPTION_m: {
9107
                uint64_t value;
9108
                char *ptr;
9109

    
9110
                value = strtoul(optarg, &ptr, 10);
9111
                switch (*ptr) {
9112
                case 0: case 'M': case 'm':
9113
                    value <<= 20;
9114
                    break;
9115
                case 'G': case 'g':
9116
                    value <<= 30;
9117
                    break;
9118
                default:
9119
                    fprintf(stderr, "qemu: invalid ram size: %s\n", optarg);
9120
                    exit(1);
9121
                }
9122

    
9123
                /* On 32-bit hosts, QEMU is limited by virtual address space */
9124
                if (value > (2047 << 20)
9125
#ifndef USE_KQEMU
9126
                    && HOST_LONG_BITS == 32
9127
#endif
9128
                    ) {
9129
                    fprintf(stderr, "qemu: at most 2047 MB RAM can be simulated\n");
9130
                    exit(1);
9131
                }
9132
                if (value != (uint64_t)(ram_addr_t)value) {
9133
                    fprintf(stderr, "qemu: ram size too large\n");
9134
                    exit(1);
9135
                }
9136
                ram_size = value;
9137
                break;
9138
            }
9139
            case QEMU_OPTION_d:
9140
                {
9141
                    int mask;
9142
                    const CPULogItem *item;
9143

    
9144
                    mask = cpu_str_to_log_mask(optarg);
9145
                    if (!mask) {
9146
                        printf("Log items (comma separated):\n");
9147
                    for(item = cpu_log_items; item->mask != 0; item++) {
9148
                        printf("%-10s %s\n", item->name, item->help);
9149
                    }
9150
                    exit(1);
9151
                    }
9152
                    cpu_set_log(mask);
9153
                }
9154
                break;
9155
#ifdef CONFIG_GDBSTUB
9156
            case QEMU_OPTION_s:
9157
                use_gdbstub = 1;
9158
                break;
9159
            case QEMU_OPTION_p:
9160
                gdbstub_port = optarg;
9161
                break;
9162
#endif
9163
            case QEMU_OPTION_L:
9164
                bios_dir = optarg;
9165
                break;
9166
            case QEMU_OPTION_bios:
9167
                bios_name = optarg;
9168
                break;
9169
            case QEMU_OPTION_S:
9170
                autostart = 0;
9171
                break;
9172
            case QEMU_OPTION_k:
9173
                keyboard_layout = optarg;
9174
                break;
9175
            case QEMU_OPTION_localtime:
9176
                rtc_utc = 0;
9177
                break;
9178
            case QEMU_OPTION_vga:
9179
                select_vgahw (optarg);
9180
                break;
9181
            case QEMU_OPTION_g:
9182
                {
9183
                    const char *p;
9184
                    int w, h, depth;
9185
                    p = optarg;
9186
                    w = strtol(p, (char **)&p, 10);
9187
                    if (w <= 0) {
9188
                    graphic_error:
9189
                        fprintf(stderr, "qemu: invalid resolution or depth\n");
9190
                        exit(1);
9191
                    }
9192
                    if (*p != 'x')
9193
                        goto graphic_error;
9194
                    p++;
9195
                    h = strtol(p, (char **)&p, 10);
9196
                    if (h <= 0)
9197
                        goto graphic_error;
9198
                    if (*p == 'x') {
9199
                        p++;
9200
                        depth = strtol(p, (char **)&p, 10);
9201
                        if (depth != 8 && depth != 15 && depth != 16 &&
9202
                            depth != 24 && depth != 32)
9203
                            goto graphic_error;
9204
                    } else if (*p == '\0') {
9205
                        depth = graphic_depth;
9206
                    } else {
9207
                        goto graphic_error;
9208
                    }
9209

    
9210
                    graphic_width = w;
9211
                    graphic_height = h;
9212
                    graphic_depth = depth;
9213
                }
9214
                break;
9215
            case QEMU_OPTION_echr:
9216
                {
9217
                    char *r;
9218
                    term_escape_char = strtol(optarg, &r, 0);
9219
                    if (r == optarg)
9220
                        printf("Bad argument to echr\n");
9221
                    break;
9222
                }
9223
            case QEMU_OPTION_monitor:
9224
                monitor_device = optarg;
9225
                break;
9226
            case QEMU_OPTION_serial:
9227
                if (serial_device_index >= MAX_SERIAL_PORTS) {
9228
                    fprintf(stderr, "qemu: too many serial ports\n");
9229
                    exit(1);
9230
                }
9231
                serial_devices[serial_device_index] = optarg;
9232
                serial_device_index++;
9233
                break;
9234
            case QEMU_OPTION_parallel:
9235
                if (parallel_device_index >= MAX_PARALLEL_PORTS) {
9236
                    fprintf(stderr, "qemu: too many parallel ports\n");
9237
                    exit(1);
9238
                }
9239
                parallel_devices[parallel_device_index] = optarg;
9240
                parallel_device_index++;
9241
                break;
9242
            case QEMU_OPTION_loadvm:
9243
                loadvm = optarg;
9244
                break;
9245
            case QEMU_OPTION_full_screen:
9246
                full_screen = 1;
9247
                break;
9248
#ifdef CONFIG_SDL
9249
            case QEMU_OPTION_no_frame:
9250
                no_frame = 1;
9251
                break;
9252
            case QEMU_OPTION_alt_grab:
9253
                alt_grab = 1;
9254
                break;
9255
            case QEMU_OPTION_no_quit:
9256
                no_quit = 1;
9257
                break;
9258
#endif
9259
            case QEMU_OPTION_pidfile:
9260
                pid_file = optarg;
9261
                break;
9262
#ifdef TARGET_I386
9263
            case QEMU_OPTION_win2k_hack:
9264
                win2k_install_hack = 1;
9265
                break;
9266
#endif
9267
#ifdef USE_KQEMU
9268
            case QEMU_OPTION_no_kqemu:
9269
                kqemu_allowed = 0;
9270
                break;
9271
            case QEMU_OPTION_kernel_kqemu:
9272
                kqemu_allowed = 2;
9273
                break;
9274
#endif
9275
            case QEMU_OPTION_usb:
9276
                usb_enabled = 1;
9277
                break;
9278
            case QEMU_OPTION_usbdevice:
9279
                usb_enabled = 1;
9280
                if (usb_devices_index >= MAX_USB_CMDLINE) {
9281
                    fprintf(stderr, "Too many USB devices\n");
9282
                    exit(1);
9283
                }
9284
                usb_devices[usb_devices_index] = optarg;
9285
                usb_devices_index++;
9286
                break;
9287
            case QEMU_OPTION_smp:
9288
                smp_cpus = atoi(optarg);
9289
                if (smp_cpus < 1) {
9290
                    fprintf(stderr, "Invalid number of CPUs\n");
9291
                    exit(1);
9292
                }
9293
                break;
9294
            case QEMU_OPTION_vnc:
9295
                vnc_display = optarg;
9296
                break;
9297
            case QEMU_OPTION_no_acpi:
9298
                acpi_enabled = 0;
9299
                break;
9300
            case QEMU_OPTION_no_reboot:
9301
                no_reboot = 1;
9302
                break;
9303
            case QEMU_OPTION_no_shutdown:
9304
                no_shutdown = 1;
9305
                break;
9306
            case QEMU_OPTION_show_cursor:
9307
                cursor_hide = 0;
9308
                break;
9309
            case QEMU_OPTION_uuid:
9310
                if(qemu_uuid_parse(optarg, qemu_uuid) < 0) {
9311
                    fprintf(stderr, "Fail to parse UUID string."
9312
                            " Wrong format.\n");
9313
                    exit(1);
9314
                }
9315
                break;
9316
            case QEMU_OPTION_daemonize:
9317
                daemonize = 1;
9318
                break;
9319
            case QEMU_OPTION_option_rom:
9320
                if (nb_option_roms >= MAX_OPTION_ROMS) {
9321
                    fprintf(stderr, "Too many option ROMs\n");
9322
                    exit(1);
9323
                }
9324
                option_rom[nb_option_roms] = optarg;
9325
                nb_option_roms++;
9326
                break;
9327
            case QEMU_OPTION_semihosting:
9328
                semihosting_enabled = 1;
9329
                break;
9330
            case QEMU_OPTION_name:
9331
                qemu_name = optarg;
9332
                break;
9333
#ifdef TARGET_SPARC
9334
            case QEMU_OPTION_prom_env:
9335
                if (nb_prom_envs >= MAX_PROM_ENVS) {
9336
                    fprintf(stderr, "Too many prom variables\n");
9337
                    exit(1);
9338
                }
9339
                prom_envs[nb_prom_envs] = optarg;
9340
                nb_prom_envs++;
9341
                break;
9342
#endif
9343
#ifdef TARGET_ARM
9344
            case QEMU_OPTION_old_param:
9345
                old_param = 1;
9346
                break;
9347
#endif
9348
            case QEMU_OPTION_clock:
9349
                configure_alarms(optarg);
9350
                break;
9351
            case QEMU_OPTION_startdate:
9352
                {
9353
                    struct tm tm;
9354
                    time_t rtc_start_date;
9355
                    if (!strcmp(optarg, "now")) {
9356
                        rtc_date_offset = -1;
9357
                    } else {
9358
                        if (sscanf(optarg, "%d-%d-%dT%d:%d:%d",
9359
                               &tm.tm_year,
9360
                               &tm.tm_mon,
9361
                               &tm.tm_mday,
9362
                               &tm.tm_hour,
9363
                               &tm.tm_min,
9364
                               &tm.tm_sec) == 6) {
9365
                            /* OK */
9366
                        } else if (sscanf(optarg, "%d-%d-%d",
9367
                                          &tm.tm_year,
9368
                                          &tm.tm_mon,
9369
                                          &tm.tm_mday) == 3) {
9370
                            tm.tm_hour = 0;
9371
                            tm.tm_min = 0;
9372
                            tm.tm_sec = 0;
9373
                        } else {
9374
                            goto date_fail;
9375
                        }
9376
                        tm.tm_year -= 1900;
9377
                        tm.tm_mon--;
9378
                        rtc_start_date = mktimegm(&tm);
9379
                        if (rtc_start_date == -1) {
9380
                        date_fail:
9381
                            fprintf(stderr, "Invalid date format. Valid format are:\n"
9382
                                    "'now' or '2006-06-17T16:01:21' or '2006-06-17'\n");
9383
                            exit(1);
9384
                        }
9385
                        rtc_date_offset = time(NULL) - rtc_start_date;
9386
                    }
9387
                }
9388
                break;
9389
            case QEMU_OPTION_tb_size:
9390
                tb_size = strtol(optarg, NULL, 0);
9391
                if (tb_size < 0)
9392
                    tb_size = 0;
9393
                break;
9394
            case QEMU_OPTION_icount:
9395
                use_icount = 1;
9396
                if (strcmp(optarg, "auto") == 0) {
9397
                    icount_time_shift = -1;
9398
                } else {
9399
                    icount_time_shift = strtol(optarg, NULL, 0);
9400
                }
9401
                break;
9402
            case QEMU_OPTION_incoming:
9403
                incoming = optarg;
9404
                break;
9405
            }
9406
        }
9407
    }
9408

    
9409
    if (smp_cpus > machine->max_cpus) {
9410
        fprintf(stderr, "Number of SMP cpus requested (%d), exceeds max cpus "
9411
                "supported by machine `%s' (%d)\n", smp_cpus,  machine->name,
9412
                machine->max_cpus);
9413
        exit(1);
9414
    }
9415

    
9416
    if (nographic) {
9417
       if (serial_device_index == 0)
9418
           serial_devices[0] = "stdio";
9419
       if (parallel_device_index == 0)
9420
           parallel_devices[0] = "null";
9421
       if (strncmp(monitor_device, "vc", 2) == 0)
9422
           monitor_device = "stdio";
9423
    }
9424

    
9425
#ifndef _WIN32
9426
    if (daemonize) {
9427
        pid_t pid;
9428

    
9429
        if (pipe(fds) == -1)
9430
            exit(1);
9431

    
9432
        pid = fork();
9433
        if (pid > 0) {
9434
            uint8_t status;
9435
            ssize_t len;
9436

    
9437
            close(fds[1]);
9438

    
9439
        again:
9440
            len = read(fds[0], &status, 1);
9441
            if (len == -1 && (errno == EINTR))
9442
                goto again;
9443

    
9444
            if (len != 1)
9445
                exit(1);
9446
            else if (status == 1) {
9447
                fprintf(stderr, "Could not acquire pidfile\n");
9448
                exit(1);
9449
            } else
9450
                exit(0);
9451
        } else if (pid < 0)
9452
            exit(1);
9453

    
9454
        setsid();
9455

    
9456
        pid = fork();
9457
        if (pid > 0)
9458
            exit(0);
9459
        else if (pid < 0)
9460
            exit(1);
9461

    
9462
        umask(027);
9463

    
9464
        signal(SIGTSTP, SIG_IGN);
9465
        signal(SIGTTOU, SIG_IGN);
9466
        signal(SIGTTIN, SIG_IGN);
9467
    }
9468
#endif
9469

    
9470
    if (pid_file && qemu_create_pidfile(pid_file) != 0) {
9471
        if (daemonize) {
9472
            uint8_t status = 1;
9473
            write(fds[1], &status, 1);
9474
        } else
9475
            fprintf(stderr, "Could not acquire pid file\n");
9476
        exit(1);
9477
    }
9478

    
9479
#ifdef USE_KQEMU
9480
    if (smp_cpus > 1)
9481
        kqemu_allowed = 0;
9482
#endif
9483
    linux_boot = (kernel_filename != NULL);
9484
    net_boot = (boot_devices_bitmap >> ('n' - 'a')) & 0xF;
9485

    
9486
    if (!linux_boot && net_boot == 0 &&
9487
        !machine->nodisk_ok && nb_drives_opt == 0)
9488
        help(1);
9489

    
9490
    if (!linux_boot && *kernel_cmdline != '\0') {
9491
        fprintf(stderr, "-append only allowed with -kernel option\n");
9492
        exit(1);
9493
    }
9494

    
9495
    if (!linux_boot && initrd_filename != NULL) {
9496
        fprintf(stderr, "-initrd only allowed with -kernel option\n");
9497
        exit(1);
9498
    }
9499

    
9500
    /* boot to floppy or the default cd if no hard disk defined yet */
9501
    if (!boot_devices[0]) {
9502
        boot_devices = "cad";
9503
    }
9504
    setvbuf(stdout, NULL, _IOLBF, 0);
9505

    
9506
    init_timers();
9507
    init_timer_alarm();
9508
    if (use_icount && icount_time_shift < 0) {
9509
        use_icount = 2;
9510
        /* 125MIPS seems a reasonable initial guess at the guest speed.
9511
           It will be corrected fairly quickly anyway.  */
9512
        icount_time_shift = 3;
9513
        init_icount_adjust();
9514
    }
9515

    
9516
#ifdef _WIN32
9517
    socket_init();
9518
#endif
9519

    
9520
    /* init network clients */
9521
    if (nb_net_clients == 0) {
9522
        /* if no clients, we use a default config */
9523
        net_clients[nb_net_clients++] = "nic";
9524
#ifdef CONFIG_SLIRP
9525
        net_clients[nb_net_clients++] = "user";
9526
#endif
9527
    }
9528

    
9529
    for(i = 0;i < nb_net_clients; i++) {
9530
        if (net_client_parse(net_clients[i]) < 0)
9531
            exit(1);
9532
    }
9533
    for(vlan = first_vlan; vlan != NULL; vlan = vlan->next) {
9534
        if (vlan->nb_guest_devs == 0 && vlan->nb_host_devs == 0)
9535
            continue;
9536
        if (vlan->nb_guest_devs == 0)
9537
            fprintf(stderr, "Warning: vlan %d with no nics\n", vlan->id);
9538
        if (vlan->nb_host_devs == 0)
9539
            fprintf(stderr,
9540
                    "Warning: vlan %d is not connected to host network\n",
9541
                    vlan->id);
9542
    }
9543

    
9544
#ifdef TARGET_I386
9545
    /* XXX: this should be moved in the PC machine instantiation code */
9546
    if (net_boot != 0) {
9547
        int netroms = 0;
9548
        for (i = 0; i < nb_nics && i < 4; i++) {
9549
            const char *model = nd_table[i].model;
9550
            char buf[1024];
9551
            if (net_boot & (1 << i)) {
9552
                if (model == NULL)
9553
                    model = "ne2k_pci";
9554
                snprintf(buf, sizeof(buf), "%s/pxe-%s.bin", bios_dir, model);
9555
                if (get_image_size(buf) > 0) {
9556
                    if (nb_option_roms >= MAX_OPTION_ROMS) {
9557
                        fprintf(stderr, "Too many option ROMs\n");
9558
                        exit(1);
9559
                    }
9560
                    option_rom[nb_option_roms] = strdup(buf);
9561
                    nb_option_roms++;
9562
                    netroms++;
9563
                }
9564
            }
9565
        }
9566
        if (netroms == 0) {
9567
            fprintf(stderr, "No valid PXE rom found for network device\n");
9568
            exit(1);
9569
        }
9570
    }
9571
#endif
9572

    
9573
    /* init the memory */
9574
    phys_ram_size = machine->ram_require & ~RAMSIZE_FIXED;
9575

    
9576
    if (machine->ram_require & RAMSIZE_FIXED) {
9577
        if (ram_size > 0) {
9578
            if (ram_size < phys_ram_size) {
9579
                fprintf(stderr, "Machine `%s' requires %llu bytes of memory\n",
9580
                                machine->name, (unsigned long long) phys_ram_size);
9581
                exit(-1);
9582
            }
9583

    
9584
            phys_ram_size = ram_size;
9585
        } else
9586
            ram_size = phys_ram_size;
9587
    } else {
9588
        if (ram_size == 0)
9589
            ram_size = DEFAULT_RAM_SIZE * 1024 * 1024;
9590

    
9591
        phys_ram_size += ram_size;
9592
    }
9593

    
9594
    phys_ram_base = qemu_vmalloc(phys_ram_size);
9595
    if (!phys_ram_base) {
9596
        fprintf(stderr, "Could not allocate physical memory\n");
9597
        exit(1);
9598
    }
9599

    
9600
    /* init the dynamic translator */
9601
    cpu_exec_init_all(tb_size * 1024 * 1024);
9602

    
9603
    bdrv_init();
9604

    
9605
    /* we always create the cdrom drive, even if no disk is there */
9606

    
9607
    if (nb_drives_opt < MAX_DRIVES)
9608
        drive_add(NULL, CDROM_ALIAS);
9609

    
9610
    /* we always create at least one floppy */
9611

    
9612
    if (nb_drives_opt < MAX_DRIVES)
9613
        drive_add(NULL, FD_ALIAS, 0);
9614

    
9615
    /* we always create one sd slot, even if no card is in it */
9616

    
9617
    if (nb_drives_opt < MAX_DRIVES)
9618
        drive_add(NULL, SD_ALIAS);
9619

    
9620
    /* open the virtual block devices */
9621

    
9622
    for(i = 0; i < nb_drives_opt; i++)
9623
        if (drive_init(&drives_opt[i], snapshot, machine) == -1)
9624
            exit(1);
9625

    
9626
    register_savevm("timer", 0, 2, timer_save, timer_load, NULL);
9627
    register_savevm_live("ram", 0, 3, ram_save_live, NULL, ram_load, NULL);
9628

    
9629
    /* terminal init */
9630
    memset(&display_state, 0, sizeof(display_state));
9631
    if (nographic) {
9632
        if (curses) {
9633
            fprintf(stderr, "fatal: -nographic can't be used with -curses\n");
9634
            exit(1);
9635
        }
9636
        /* nearly nothing to do */
9637
        dumb_display_init(ds);
9638
    } else if (vnc_display != NULL) {
9639
        vnc_display_init(ds);
9640
        if (vnc_display_open(ds, vnc_display) < 0)
9641
            exit(1);
9642
    } else
9643
#if defined(CONFIG_CURSES)
9644
    if (curses) {
9645
        curses_display_init(ds, full_screen);
9646
    } else
9647
#endif
9648
    {
9649
#if defined(CONFIG_SDL)
9650
        sdl_display_init(ds, full_screen, no_frame);
9651
#elif defined(CONFIG_COCOA)
9652
        cocoa_display_init(ds, full_screen);
9653
#else
9654
        dumb_display_init(ds);
9655
#endif
9656
    }
9657

    
9658
#ifndef _WIN32
9659
    /* must be after terminal init, SDL library changes signal handlers */
9660
    termsig_setup();
9661
#endif
9662

    
9663
    /* Maintain compatibility with multiple stdio monitors */
9664
    if (!strcmp(monitor_device,"stdio")) {
9665
        for (i = 0; i < MAX_SERIAL_PORTS; i++) {
9666
            const char *devname = serial_devices[i];
9667
            if (devname && !strcmp(devname,"mon:stdio")) {
9668
                monitor_device = NULL;
9669
                break;
9670
            } else if (devname && !strcmp(devname,"stdio")) {
9671
                monitor_device = NULL;
9672
                serial_devices[i] = "mon:stdio";
9673
                break;
9674
            }
9675
        }
9676
    }
9677
    if (monitor_device) {
9678
        monitor_hd = qemu_chr_open(monitor_device);
9679
        if (!monitor_hd) {
9680
            fprintf(stderr, "qemu: could not open monitor device '%s'\n", monitor_device);
9681
            exit(1);
9682
        }
9683
        monitor_init(monitor_hd, !nographic);
9684
    }
9685

    
9686
    for(i = 0; i < MAX_SERIAL_PORTS; i++) {
9687
        const char *devname = serial_devices[i];
9688
        if (devname && strcmp(devname, "none")) {
9689
            serial_hds[i] = qemu_chr_open(devname);
9690
            if (!serial_hds[i]) {
9691
                fprintf(stderr, "qemu: could not open serial device '%s'\n",
9692
                        devname);
9693
                exit(1);
9694
            }
9695
            if (strstart(devname, "vc", 0))
9696
                qemu_chr_printf(serial_hds[i], "serial%d console\r\n", i);
9697
        }
9698
    }
9699

    
9700
    for(i = 0; i < MAX_PARALLEL_PORTS; i++) {
9701
        const char *devname = parallel_devices[i];
9702
        if (devname && strcmp(devname, "none")) {
9703
            parallel_hds[i] = qemu_chr_open(devname);
9704
            if (!parallel_hds[i]) {
9705
                fprintf(stderr, "qemu: could not open parallel device '%s'\n",
9706
                        devname);
9707
                exit(1);
9708
            }
9709
            if (strstart(devname, "vc", 0))
9710
                qemu_chr_printf(parallel_hds[i], "parallel%d console\r\n", i);
9711
        }
9712
    }
9713

    
9714
    machine->init(ram_size, vga_ram_size, boot_devices, ds,
9715
                  kernel_filename, kernel_cmdline, initrd_filename, cpu_model);
9716

    
9717
    /* init USB devices */
9718
    if (usb_enabled) {
9719
        for(i = 0; i < usb_devices_index; i++) {
9720
            if (usb_device_add(usb_devices[i]) < 0) {
9721
                fprintf(stderr, "Warning: could not add USB device %s\n",
9722
                        usb_devices[i]);
9723
            }
9724
        }
9725
    }
9726

    
9727
    if (display_state.dpy_refresh) {
9728
        display_state.gui_timer = qemu_new_timer(rt_clock, gui_update, &display_state);
9729
        qemu_mod_timer(display_state.gui_timer, qemu_get_clock(rt_clock));
9730
    }
9731

    
9732
#ifdef CONFIG_GDBSTUB
9733
    if (use_gdbstub) {
9734
        /* XXX: use standard host:port notation and modify options
9735
           accordingly. */
9736
        if (gdbserver_start(gdbstub_port) < 0) {
9737
            fprintf(stderr, "qemu: could not open gdbstub device on port '%s'\n",
9738
                    gdbstub_port);
9739
            exit(1);
9740
        }
9741
    }
9742
#endif
9743

    
9744
    if (loadvm)
9745
        do_loadvm(loadvm);
9746

    
9747
    if (incoming) {
9748
        autostart = 0; /* fixme how to deal with -daemonize */
9749
        qemu_start_incoming_migration(incoming);
9750
    }
9751

    
9752
    {
9753
        /* XXX: simplify init */
9754
        read_passwords();
9755
        if (autostart) {
9756
            vm_start();
9757
        }
9758
    }
9759

    
9760
    if (daemonize) {
9761
        uint8_t status = 0;
9762
        ssize_t len;
9763
        int fd;
9764

    
9765
    again1:
9766
        len = write(fds[1], &status, 1);
9767
        if (len == -1 && (errno == EINTR))
9768
            goto again1;
9769

    
9770
        if (len != 1)
9771
            exit(1);
9772

    
9773
        chdir("/");
9774
        TFR(fd = open("/dev/null", O_RDWR));
9775
        if (fd == -1)
9776
            exit(1);
9777

    
9778
        dup2(fd, 0);
9779
        dup2(fd, 1);
9780
        dup2(fd, 2);
9781

    
9782
        close(fd);
9783
    }
9784

    
9785
    main_loop();
9786
    quit_timers();
9787

    
9788
#if !defined(_WIN32)
9789
    /* close network clients */
9790
    for(vlan = first_vlan; vlan != NULL; vlan = vlan->next) {
9791
        VLANClientState *vc;
9792

    
9793
        for(vc = vlan->first_client; vc != NULL; vc = vc->next) {
9794
            if (vc->fd_read == tap_receive) {
9795
                char ifname[64];
9796
                TAPState *s = vc->opaque;
9797

    
9798
                if (sscanf(vc->info_str, "tap: ifname=%63s ", ifname) == 1 &&
9799
                    s->down_script[0])
9800
                    launch_script(s->down_script, ifname, s->fd);
9801
            }
9802
#if defined(CONFIG_VDE)
9803
            if (vc->fd_read == vde_from_qemu) {
9804
                VDEState *s = vc->opaque;
9805
                vde_close(s->vde);
9806
            }
9807
#endif
9808
        }
9809
    }
9810
#endif
9811
    return 0;
9812
}