Statistics
| Branch: | Revision:

root / hw / i8254.c @ a08d4367

History | View | Annotate | Download (13.3 kB)

1
/*
2
 * QEMU 8253/8254 interval timer emulation
3
 *
4
 * Copyright (c) 2003-2004 Fabrice Bellard
5
 *
6
 * Permission is hereby granted, free of charge, to any person obtaining a copy
7
 * of this software and associated documentation files (the "Software"), to deal
8
 * in the Software without restriction, including without limitation the rights
9
 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10
 * copies of the Software, and to permit persons to whom the Software is
11
 * furnished to do so, subject to the following conditions:
12
 *
13
 * The above copyright notice and this permission notice shall be included in
14
 * all copies or substantial portions of the Software.
15
 *
16
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21
 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22
 * THE SOFTWARE.
23
 */
24
#include "hw.h"
25
#include "pc.h"
26
#include "isa.h"
27
#include "qemu-timer.h"
28

    
29
//#define DEBUG_PIT
30

    
31
#define RW_STATE_LSB 1
32
#define RW_STATE_MSB 2
33
#define RW_STATE_WORD0 3
34
#define RW_STATE_WORD1 4
35

    
36
typedef struct PITChannelState {
37
    int count; /* can be 65536 */
38
    uint16_t latched_count;
39
    uint8_t count_latched;
40
    uint8_t status_latched;
41
    uint8_t status;
42
    uint8_t read_state;
43
    uint8_t write_state;
44
    uint8_t write_latch;
45
    uint8_t rw_mode;
46
    uint8_t mode;
47
    uint8_t bcd; /* not supported */
48
    uint8_t gate; /* timer start */
49
    int64_t count_load_time;
50
    /* irq handling */
51
    int64_t next_transition_time;
52
    QEMUTimer *irq_timer;
53
    qemu_irq irq;
54
} PITChannelState;
55

    
56
struct PITState {
57
    PITChannelState channels[3];
58
};
59

    
60
static PITState pit_state;
61

    
62
static void pit_irq_timer_update(PITChannelState *s, int64_t current_time);
63

    
64
static int pit_get_count(PITChannelState *s)
65
{
66
    uint64_t d;
67
    int counter;
68

    
69
    d = muldiv64(qemu_get_clock(vm_clock) - s->count_load_time, PIT_FREQ, ticks_per_sec);
70
    switch(s->mode) {
71
    case 0:
72
    case 1:
73
    case 4:
74
    case 5:
75
        counter = (s->count - d) & 0xffff;
76
        break;
77
    case 3:
78
        /* XXX: may be incorrect for odd counts */
79
        counter = s->count - ((2 * d) % s->count);
80
        break;
81
    default:
82
        counter = s->count - (d % s->count);
83
        break;
84
    }
85
    return counter;
86
}
87

    
88
/* get pit output bit */
89
static int pit_get_out1(PITChannelState *s, int64_t current_time)
90
{
91
    uint64_t d;
92
    int out;
93

    
94
    d = muldiv64(current_time - s->count_load_time, PIT_FREQ, ticks_per_sec);
95
    switch(s->mode) {
96
    default:
97
    case 0:
98
        out = (d >= s->count);
99
        break;
100
    case 1:
101
        out = (d < s->count);
102
        break;
103
    case 2:
104
        if ((d % s->count) == 0 && d != 0)
105
            out = 1;
106
        else
107
            out = 0;
108
        break;
109
    case 3:
110
        out = (d % s->count) < ((s->count + 1) >> 1);
111
        break;
112
    case 4:
113
    case 5:
114
        out = (d == s->count);
115
        break;
116
    }
117
    return out;
118
}
119

    
120
int pit_get_out(PITState *pit, int channel, int64_t current_time)
121
{
122
    PITChannelState *s = &pit->channels[channel];
123
    return pit_get_out1(s, current_time);
124
}
125

    
126
/* return -1 if no transition will occur.  */
127
static int64_t pit_get_next_transition_time(PITChannelState *s,
128
                                            int64_t current_time)
129
{
130
    uint64_t d, next_time, base;
131
    int period2;
132

    
133
    d = muldiv64(current_time - s->count_load_time, PIT_FREQ, ticks_per_sec);
134
    switch(s->mode) {
135
    default:
136
    case 0:
137
    case 1:
138
        if (d < s->count)
139
            next_time = s->count;
140
        else
141
            return -1;
142
        break;
143
    case 2:
144
        base = (d / s->count) * s->count;
145
        if ((d - base) == 0 && d != 0)
146
            next_time = base + s->count;
147
        else
148
            next_time = base + s->count + 1;
149
        break;
150
    case 3:
151
        base = (d / s->count) * s->count;
152
        period2 = ((s->count + 1) >> 1);
153
        if ((d - base) < period2)
154
            next_time = base + period2;
155
        else
156
            next_time = base + s->count;
157
        break;
158
    case 4:
159
    case 5:
160
        if (d < s->count)
161
            next_time = s->count;
162
        else if (d == s->count)
163
            next_time = s->count + 1;
164
        else
165
            return -1;
166
        break;
167
    }
168
    /* convert to timer units */
169
    next_time = s->count_load_time + muldiv64(next_time, ticks_per_sec, PIT_FREQ);
170
    /* fix potential rounding problems */
171
    /* XXX: better solution: use a clock at PIT_FREQ Hz */
172
    if (next_time <= current_time)
173
        next_time = current_time + 1;
174
    return next_time;
175
}
176

    
177
/* val must be 0 or 1 */
178
void pit_set_gate(PITState *pit, int channel, int val)
179
{
180
    PITChannelState *s = &pit->channels[channel];
181

    
182
    switch(s->mode) {
183
    default:
184
    case 0:
185
    case 4:
186
        /* XXX: just disable/enable counting */
187
        break;
188
    case 1:
189
    case 5:
190
        if (s->gate < val) {
191
            /* restart counting on rising edge */
192
            s->count_load_time = qemu_get_clock(vm_clock);
193
            pit_irq_timer_update(s, s->count_load_time);
194
        }
195
        break;
196
    case 2:
197
    case 3:
198
        if (s->gate < val) {
199
            /* restart counting on rising edge */
200
            s->count_load_time = qemu_get_clock(vm_clock);
201
            pit_irq_timer_update(s, s->count_load_time);
202
        }
203
        /* XXX: disable/enable counting */
204
        break;
205
    }
206
    s->gate = val;
207
}
208

    
209
int pit_get_gate(PITState *pit, int channel)
210
{
211
    PITChannelState *s = &pit->channels[channel];
212
    return s->gate;
213
}
214

    
215
int pit_get_initial_count(PITState *pit, int channel)
216
{
217
    PITChannelState *s = &pit->channels[channel];
218
    return s->count;
219
}
220

    
221
int pit_get_mode(PITState *pit, int channel)
222
{
223
    PITChannelState *s = &pit->channels[channel];
224
    return s->mode;
225
}
226

    
227
static inline void pit_load_count(PITChannelState *s, int val)
228
{
229
    if (val == 0)
230
        val = 0x10000;
231
    s->count_load_time = qemu_get_clock(vm_clock);
232
    s->count = val;
233
    pit_irq_timer_update(s, s->count_load_time);
234
}
235

    
236
/* if already latched, do not latch again */
237
static void pit_latch_count(PITChannelState *s)
238
{
239
    if (!s->count_latched) {
240
        s->latched_count = pit_get_count(s);
241
        s->count_latched = s->rw_mode;
242
    }
243
}
244

    
245
static void pit_ioport_write(void *opaque, uint32_t addr, uint32_t val)
246
{
247
    PITState *pit = opaque;
248
    int channel, access;
249
    PITChannelState *s;
250

    
251
    addr &= 3;
252
    if (addr == 3) {
253
        channel = val >> 6;
254
        if (channel == 3) {
255
            /* read back command */
256
            for(channel = 0; channel < 3; channel++) {
257
                s = &pit->channels[channel];
258
                if (val & (2 << channel)) {
259
                    if (!(val & 0x20)) {
260
                        pit_latch_count(s);
261
                    }
262
                    if (!(val & 0x10) && !s->status_latched) {
263
                        /* status latch */
264
                        /* XXX: add BCD and null count */
265
                        s->status =  (pit_get_out1(s, qemu_get_clock(vm_clock)) << 7) |
266
                            (s->rw_mode << 4) |
267
                            (s->mode << 1) |
268
                            s->bcd;
269
                        s->status_latched = 1;
270
                    }
271
                }
272
            }
273
        } else {
274
            s = &pit->channels[channel];
275
            access = (val >> 4) & 3;
276
            if (access == 0) {
277
                pit_latch_count(s);
278
            } else {
279
                s->rw_mode = access;
280
                s->read_state = access;
281
                s->write_state = access;
282

    
283
                s->mode = (val >> 1) & 7;
284
                s->bcd = val & 1;
285
                /* XXX: update irq timer ? */
286
            }
287
        }
288
    } else {
289
        s = &pit->channels[addr];
290
        switch(s->write_state) {
291
        default:
292
        case RW_STATE_LSB:
293
            pit_load_count(s, val);
294
            break;
295
        case RW_STATE_MSB:
296
            pit_load_count(s, val << 8);
297
            break;
298
        case RW_STATE_WORD0:
299
            s->write_latch = val;
300
            s->write_state = RW_STATE_WORD1;
301
            break;
302
        case RW_STATE_WORD1:
303
            pit_load_count(s, s->write_latch | (val << 8));
304
            s->write_state = RW_STATE_WORD0;
305
            break;
306
        }
307
    }
308
}
309

    
310
static uint32_t pit_ioport_read(void *opaque, uint32_t addr)
311
{
312
    PITState *pit = opaque;
313
    int ret, count;
314
    PITChannelState *s;
315

    
316
    addr &= 3;
317
    s = &pit->channels[addr];
318
    if (s->status_latched) {
319
        s->status_latched = 0;
320
        ret = s->status;
321
    } else if (s->count_latched) {
322
        switch(s->count_latched) {
323
        default:
324
        case RW_STATE_LSB:
325
            ret = s->latched_count & 0xff;
326
            s->count_latched = 0;
327
            break;
328
        case RW_STATE_MSB:
329
            ret = s->latched_count >> 8;
330
            s->count_latched = 0;
331
            break;
332
        case RW_STATE_WORD0:
333
            ret = s->latched_count & 0xff;
334
            s->count_latched = RW_STATE_MSB;
335
            break;
336
        }
337
    } else {
338
        switch(s->read_state) {
339
        default:
340
        case RW_STATE_LSB:
341
            count = pit_get_count(s);
342
            ret = count & 0xff;
343
            break;
344
        case RW_STATE_MSB:
345
            count = pit_get_count(s);
346
            ret = (count >> 8) & 0xff;
347
            break;
348
        case RW_STATE_WORD0:
349
            count = pit_get_count(s);
350
            ret = count & 0xff;
351
            s->read_state = RW_STATE_WORD1;
352
            break;
353
        case RW_STATE_WORD1:
354
            count = pit_get_count(s);
355
            ret = (count >> 8) & 0xff;
356
            s->read_state = RW_STATE_WORD0;
357
            break;
358
        }
359
    }
360
    return ret;
361
}
362

    
363
static void pit_irq_timer_update(PITChannelState *s, int64_t current_time)
364
{
365
    int64_t expire_time;
366
    int irq_level;
367

    
368
    if (!s->irq_timer)
369
        return;
370
    expire_time = pit_get_next_transition_time(s, current_time);
371
    irq_level = pit_get_out1(s, current_time);
372
    qemu_set_irq(s->irq, irq_level);
373
#ifdef DEBUG_PIT
374
    printf("irq_level=%d next_delay=%f\n",
375
           irq_level,
376
           (double)(expire_time - current_time) / ticks_per_sec);
377
#endif
378
    s->next_transition_time = expire_time;
379
    if (expire_time != -1)
380
        qemu_mod_timer(s->irq_timer, expire_time);
381
    else
382
        qemu_del_timer(s->irq_timer);
383
}
384

    
385
static void pit_irq_timer(void *opaque)
386
{
387
    PITChannelState *s = opaque;
388

    
389
    pit_irq_timer_update(s, s->next_transition_time);
390
}
391

    
392
static void pit_save(QEMUFile *f, void *opaque)
393
{
394
    PITState *pit = opaque;
395
    PITChannelState *s;
396
    int i;
397

    
398
    for(i = 0; i < 3; i++) {
399
        s = &pit->channels[i];
400
        qemu_put_be32(f, s->count);
401
        qemu_put_be16s(f, &s->latched_count);
402
        qemu_put_8s(f, &s->count_latched);
403
        qemu_put_8s(f, &s->status_latched);
404
        qemu_put_8s(f, &s->status);
405
        qemu_put_8s(f, &s->read_state);
406
        qemu_put_8s(f, &s->write_state);
407
        qemu_put_8s(f, &s->write_latch);
408
        qemu_put_8s(f, &s->rw_mode);
409
        qemu_put_8s(f, &s->mode);
410
        qemu_put_8s(f, &s->bcd);
411
        qemu_put_8s(f, &s->gate);
412
        qemu_put_be64(f, s->count_load_time);
413
        if (s->irq_timer) {
414
            qemu_put_be64(f, s->next_transition_time);
415
            qemu_put_timer(f, s->irq_timer);
416
        }
417
    }
418
}
419

    
420
static int pit_load(QEMUFile *f, void *opaque, int version_id)
421
{
422
    PITState *pit = opaque;
423
    PITChannelState *s;
424
    int i;
425

    
426
    if (version_id != 1)
427
        return -EINVAL;
428

    
429
    for(i = 0; i < 3; i++) {
430
        s = &pit->channels[i];
431
        s->count=qemu_get_be32(f);
432
        qemu_get_be16s(f, &s->latched_count);
433
        qemu_get_8s(f, &s->count_latched);
434
        qemu_get_8s(f, &s->status_latched);
435
        qemu_get_8s(f, &s->status);
436
        qemu_get_8s(f, &s->read_state);
437
        qemu_get_8s(f, &s->write_state);
438
        qemu_get_8s(f, &s->write_latch);
439
        qemu_get_8s(f, &s->rw_mode);
440
        qemu_get_8s(f, &s->mode);
441
        qemu_get_8s(f, &s->bcd);
442
        qemu_get_8s(f, &s->gate);
443
        s->count_load_time=qemu_get_be64(f);
444
        if (s->irq_timer) {
445
            s->next_transition_time=qemu_get_be64(f);
446
            qemu_get_timer(f, s->irq_timer);
447
        }
448
    }
449
    return 0;
450
}
451

    
452
static void pit_reset(void *opaque)
453
{
454
    PITState *pit = opaque;
455
    PITChannelState *s;
456
    int i;
457

    
458
    for(i = 0;i < 3; i++) {
459
        s = &pit->channels[i];
460
        s->mode = 3;
461
        s->gate = (i != 2);
462
        pit_load_count(s, 0);
463
    }
464
}
465

    
466
/* When HPET is operating in legacy mode, i8254 timer0 is disabled */
467
void hpet_pit_disable(void) {
468
    PITChannelState *s;
469
    s = &pit_state.channels[0];
470
    if (s->irq_timer)
471
        qemu_del_timer(s->irq_timer);
472
}
473

    
474
/* When HPET is reset or leaving legacy mode, it must reenable i8254
475
 * timer 0
476
 */
477

    
478
void hpet_pit_enable(void)
479
{
480
    PITState *pit = &pit_state;
481
    PITChannelState *s;
482
    s = &pit->channels[0];
483
    s->mode = 3;
484
    s->gate = 1;
485
    pit_load_count(s, 0);
486
}
487

    
488
PITState *pit_init(int base, qemu_irq irq)
489
{
490
    PITState *pit = &pit_state;
491
    PITChannelState *s;
492

    
493
    s = &pit->channels[0];
494
    /* the timer 0 is connected to an IRQ */
495
    s->irq_timer = qemu_new_timer(vm_clock, pit_irq_timer, s);
496
    s->irq = irq;
497

    
498
    register_savevm("i8254", base, 1, pit_save, pit_load, pit);
499

    
500
    qemu_register_reset(pit_reset, pit);
501
    register_ioport_write(base, 4, 1, pit_ioport_write, pit);
502
    register_ioport_read(base, 3, 1, pit_ioport_read, pit);
503

    
504
    pit_reset(pit);
505

    
506
    return pit;
507
}