Statistics
| Branch: | Revision:

root / hw / m48t59.c @ a08d4367

History | View | Annotate | Download (16.5 kB)

1
/*
2
 * QEMU M48T59 and M48T08 NVRAM emulation for PPC PREP and Sparc platforms
3
 *
4
 * Copyright (c) 2003-2005, 2007 Jocelyn Mayer
5
 *
6
 * Permission is hereby granted, free of charge, to any person obtaining a copy
7
 * of this software and associated documentation files (the "Software"), to deal
8
 * in the Software without restriction, including without limitation the rights
9
 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10
 * copies of the Software, and to permit persons to whom the Software is
11
 * furnished to do so, subject to the following conditions:
12
 *
13
 * The above copyright notice and this permission notice shall be included in
14
 * all copies or substantial portions of the Software.
15
 *
16
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21
 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22
 * THE SOFTWARE.
23
 */
24
#include "hw.h"
25
#include "nvram.h"
26
#include "isa.h"
27
#include "qemu-timer.h"
28
#include "sysemu.h"
29

    
30
//#define DEBUG_NVRAM
31

    
32
#if defined(DEBUG_NVRAM)
33
#define NVRAM_PRINTF(fmt, ...) do { printf(fmt , ## __VA_ARGS__); } while (0)
34
#else
35
#define NVRAM_PRINTF(fmt, ...) do { } while (0)
36
#endif
37

    
38
/*
39
 * The M48T02, M48T08 and M48T59 chips are very similar. The newer '59 has
40
 * alarm and a watchdog timer and related control registers. In the
41
 * PPC platform there is also a nvram lock function.
42
 */
43
struct m48t59_t {
44
    /* Model parameters */
45
    int type; // 2 = m48t02, 8 = m48t08, 59 = m48t59
46
    /* Hardware parameters */
47
    qemu_irq IRQ;
48
    int mem_index;
49
    uint32_t io_base;
50
    uint16_t size;
51
    /* RTC management */
52
    time_t   time_offset;
53
    time_t   stop_time;
54
    /* Alarm & watchdog */
55
    struct tm alarm;
56
    struct QEMUTimer *alrm_timer;
57
    struct QEMUTimer *wd_timer;
58
    /* NVRAM storage */
59
    uint8_t  lock;
60
    uint16_t addr;
61
    uint8_t *buffer;
62
};
63

    
64
/* Fake timer functions */
65
/* Generic helpers for BCD */
66
static inline uint8_t toBCD (uint8_t value)
67
{
68
    return (((value / 10) % 10) << 4) | (value % 10);
69
}
70

    
71
static inline uint8_t fromBCD (uint8_t BCD)
72
{
73
    return ((BCD >> 4) * 10) + (BCD & 0x0F);
74
}
75

    
76
/* Alarm management */
77
static void alarm_cb (void *opaque)
78
{
79
    struct tm tm;
80
    uint64_t next_time;
81
    m48t59_t *NVRAM = opaque;
82

    
83
    qemu_set_irq(NVRAM->IRQ, 1);
84
    if ((NVRAM->buffer[0x1FF5] & 0x80) == 0 &&
85
        (NVRAM->buffer[0x1FF4] & 0x80) == 0 &&
86
        (NVRAM->buffer[0x1FF3] & 0x80) == 0 &&
87
        (NVRAM->buffer[0x1FF2] & 0x80) == 0) {
88
        /* Repeat once a month */
89
        qemu_get_timedate(&tm, NVRAM->time_offset);
90
        tm.tm_mon++;
91
        if (tm.tm_mon == 13) {
92
            tm.tm_mon = 1;
93
            tm.tm_year++;
94
        }
95
        next_time = qemu_timedate_diff(&tm) - NVRAM->time_offset;
96
    } else if ((NVRAM->buffer[0x1FF5] & 0x80) != 0 &&
97
               (NVRAM->buffer[0x1FF4] & 0x80) == 0 &&
98
               (NVRAM->buffer[0x1FF3] & 0x80) == 0 &&
99
               (NVRAM->buffer[0x1FF2] & 0x80) == 0) {
100
        /* Repeat once a day */
101
        next_time = 24 * 60 * 60;
102
    } else if ((NVRAM->buffer[0x1FF5] & 0x80) != 0 &&
103
               (NVRAM->buffer[0x1FF4] & 0x80) != 0 &&
104
               (NVRAM->buffer[0x1FF3] & 0x80) == 0 &&
105
               (NVRAM->buffer[0x1FF2] & 0x80) == 0) {
106
        /* Repeat once an hour */
107
        next_time = 60 * 60;
108
    } else if ((NVRAM->buffer[0x1FF5] & 0x80) != 0 &&
109
               (NVRAM->buffer[0x1FF4] & 0x80) != 0 &&
110
               (NVRAM->buffer[0x1FF3] & 0x80) != 0 &&
111
               (NVRAM->buffer[0x1FF2] & 0x80) == 0) {
112
        /* Repeat once a minute */
113
        next_time = 60;
114
    } else {
115
        /* Repeat once a second */
116
        next_time = 1;
117
    }
118
    qemu_mod_timer(NVRAM->alrm_timer, qemu_get_clock(vm_clock) +
119
                    next_time * 1000);
120
    qemu_set_irq(NVRAM->IRQ, 0);
121
}
122

    
123
static void set_alarm (m48t59_t *NVRAM)
124
{
125
    int diff;
126
    if (NVRAM->alrm_timer != NULL) {
127
        qemu_del_timer(NVRAM->alrm_timer);
128
        diff = qemu_timedate_diff(&NVRAM->alarm) - NVRAM->time_offset;
129
        if (diff > 0)
130
            qemu_mod_timer(NVRAM->alrm_timer, diff * 1000);
131
    }
132
}
133

    
134
/* RTC management helpers */
135
static inline void get_time (m48t59_t *NVRAM, struct tm *tm)
136
{
137
    qemu_get_timedate(tm, NVRAM->time_offset);
138
}
139

    
140
static void set_time (m48t59_t *NVRAM, struct tm *tm)
141
{
142
    NVRAM->time_offset = qemu_timedate_diff(tm);
143
    set_alarm(NVRAM);
144
}
145

    
146
/* Watchdog management */
147
static void watchdog_cb (void *opaque)
148
{
149
    m48t59_t *NVRAM = opaque;
150

    
151
    NVRAM->buffer[0x1FF0] |= 0x80;
152
    if (NVRAM->buffer[0x1FF7] & 0x80) {
153
        NVRAM->buffer[0x1FF7] = 0x00;
154
        NVRAM->buffer[0x1FFC] &= ~0x40;
155
        /* May it be a hw CPU Reset instead ? */
156
        qemu_system_reset_request();
157
    } else {
158
        qemu_set_irq(NVRAM->IRQ, 1);
159
        qemu_set_irq(NVRAM->IRQ, 0);
160
    }
161
}
162

    
163
static void set_up_watchdog (m48t59_t *NVRAM, uint8_t value)
164
{
165
    uint64_t interval; /* in 1/16 seconds */
166

    
167
    NVRAM->buffer[0x1FF0] &= ~0x80;
168
    if (NVRAM->wd_timer != NULL) {
169
        qemu_del_timer(NVRAM->wd_timer);
170
        if (value != 0) {
171
            interval = (1 << (2 * (value & 0x03))) * ((value >> 2) & 0x1F);
172
            qemu_mod_timer(NVRAM->wd_timer, ((uint64_t)time(NULL) * 1000) +
173
                           ((interval * 1000) >> 4));
174
        }
175
    }
176
}
177

    
178
/* Direct access to NVRAM */
179
void m48t59_write (void *opaque, uint32_t addr, uint32_t val)
180
{
181
    m48t59_t *NVRAM = opaque;
182
    struct tm tm;
183
    int tmp;
184

    
185
    if (addr > 0x1FF8 && addr < 0x2000)
186
        NVRAM_PRINTF("%s: 0x%08x => 0x%08x\n", __func__, addr, val);
187

    
188
    /* check for NVRAM access */
189
    if ((NVRAM->type == 2 && addr < 0x7f8) ||
190
        (NVRAM->type == 8 && addr < 0x1ff8) ||
191
        (NVRAM->type == 59 && addr < 0x1ff0))
192
        goto do_write;
193

    
194
    /* TOD access */
195
    switch (addr) {
196
    case 0x1FF0:
197
        /* flags register : read-only */
198
        break;
199
    case 0x1FF1:
200
        /* unused */
201
        break;
202
    case 0x1FF2:
203
        /* alarm seconds */
204
        tmp = fromBCD(val & 0x7F);
205
        if (tmp >= 0 && tmp <= 59) {
206
            NVRAM->alarm.tm_sec = tmp;
207
            NVRAM->buffer[0x1FF2] = val;
208
            set_alarm(NVRAM);
209
        }
210
        break;
211
    case 0x1FF3:
212
        /* alarm minutes */
213
        tmp = fromBCD(val & 0x7F);
214
        if (tmp >= 0 && tmp <= 59) {
215
            NVRAM->alarm.tm_min = tmp;
216
            NVRAM->buffer[0x1FF3] = val;
217
            set_alarm(NVRAM);
218
        }
219
        break;
220
    case 0x1FF4:
221
        /* alarm hours */
222
        tmp = fromBCD(val & 0x3F);
223
        if (tmp >= 0 && tmp <= 23) {
224
            NVRAM->alarm.tm_hour = tmp;
225
            NVRAM->buffer[0x1FF4] = val;
226
            set_alarm(NVRAM);
227
        }
228
        break;
229
    case 0x1FF5:
230
        /* alarm date */
231
        tmp = fromBCD(val & 0x1F);
232
        if (tmp != 0) {
233
            NVRAM->alarm.tm_mday = tmp;
234
            NVRAM->buffer[0x1FF5] = val;
235
            set_alarm(NVRAM);
236
        }
237
        break;
238
    case 0x1FF6:
239
        /* interrupts */
240
        NVRAM->buffer[0x1FF6] = val;
241
        break;
242
    case 0x1FF7:
243
        /* watchdog */
244
        NVRAM->buffer[0x1FF7] = val;
245
        set_up_watchdog(NVRAM, val);
246
        break;
247
    case 0x1FF8:
248
    case 0x07F8:
249
        /* control */
250
       NVRAM->buffer[addr] = (val & ~0xA0) | 0x90;
251
        break;
252
    case 0x1FF9:
253
    case 0x07F9:
254
        /* seconds (BCD) */
255
        tmp = fromBCD(val & 0x7F);
256
        if (tmp >= 0 && tmp <= 59) {
257
            get_time(NVRAM, &tm);
258
            tm.tm_sec = tmp;
259
            set_time(NVRAM, &tm);
260
        }
261
        if ((val & 0x80) ^ (NVRAM->buffer[addr] & 0x80)) {
262
            if (val & 0x80) {
263
                NVRAM->stop_time = time(NULL);
264
            } else {
265
                NVRAM->time_offset += NVRAM->stop_time - time(NULL);
266
                NVRAM->stop_time = 0;
267
            }
268
        }
269
        NVRAM->buffer[addr] = val & 0x80;
270
        break;
271
    case 0x1FFA:
272
    case 0x07FA:
273
        /* minutes (BCD) */
274
        tmp = fromBCD(val & 0x7F);
275
        if (tmp >= 0 && tmp <= 59) {
276
            get_time(NVRAM, &tm);
277
            tm.tm_min = tmp;
278
            set_time(NVRAM, &tm);
279
        }
280
        break;
281
    case 0x1FFB:
282
    case 0x07FB:
283
        /* hours (BCD) */
284
        tmp = fromBCD(val & 0x3F);
285
        if (tmp >= 0 && tmp <= 23) {
286
            get_time(NVRAM, &tm);
287
            tm.tm_hour = tmp;
288
            set_time(NVRAM, &tm);
289
        }
290
        break;
291
    case 0x1FFC:
292
    case 0x07FC:
293
        /* day of the week / century */
294
        tmp = fromBCD(val & 0x07);
295
        get_time(NVRAM, &tm);
296
        tm.tm_wday = tmp;
297
        set_time(NVRAM, &tm);
298
        NVRAM->buffer[addr] = val & 0x40;
299
        break;
300
    case 0x1FFD:
301
    case 0x07FD:
302
        /* date */
303
        tmp = fromBCD(val & 0x1F);
304
        if (tmp != 0) {
305
            get_time(NVRAM, &tm);
306
            tm.tm_mday = tmp;
307
            set_time(NVRAM, &tm);
308
        }
309
        break;
310
    case 0x1FFE:
311
    case 0x07FE:
312
        /* month */
313
        tmp = fromBCD(val & 0x1F);
314
        if (tmp >= 1 && tmp <= 12) {
315
            get_time(NVRAM, &tm);
316
            tm.tm_mon = tmp - 1;
317
            set_time(NVRAM, &tm);
318
        }
319
        break;
320
    case 0x1FFF:
321
    case 0x07FF:
322
        /* year */
323
        tmp = fromBCD(val);
324
        if (tmp >= 0 && tmp <= 99) {
325
            get_time(NVRAM, &tm);
326
            if (NVRAM->type == 8)
327
                tm.tm_year = fromBCD(val) + 68; // Base year is 1968
328
            else
329
                tm.tm_year = fromBCD(val);
330
            set_time(NVRAM, &tm);
331
        }
332
        break;
333
    default:
334
        /* Check lock registers state */
335
        if (addr >= 0x20 && addr <= 0x2F && (NVRAM->lock & 1))
336
            break;
337
        if (addr >= 0x30 && addr <= 0x3F && (NVRAM->lock & 2))
338
            break;
339
    do_write:
340
        if (addr < NVRAM->size) {
341
            NVRAM->buffer[addr] = val & 0xFF;
342
        }
343
        break;
344
    }
345
}
346

    
347
uint32_t m48t59_read (void *opaque, uint32_t addr)
348
{
349
    m48t59_t *NVRAM = opaque;
350
    struct tm tm;
351
    uint32_t retval = 0xFF;
352

    
353
    /* check for NVRAM access */
354
    if ((NVRAM->type == 2 && addr < 0x078f) ||
355
        (NVRAM->type == 8 && addr < 0x1ff8) ||
356
        (NVRAM->type == 59 && addr < 0x1ff0))
357
        goto do_read;
358

    
359
    /* TOD access */
360
    switch (addr) {
361
    case 0x1FF0:
362
        /* flags register */
363
        goto do_read;
364
    case 0x1FF1:
365
        /* unused */
366
        retval = 0;
367
        break;
368
    case 0x1FF2:
369
        /* alarm seconds */
370
        goto do_read;
371
    case 0x1FF3:
372
        /* alarm minutes */
373
        goto do_read;
374
    case 0x1FF4:
375
        /* alarm hours */
376
        goto do_read;
377
    case 0x1FF5:
378
        /* alarm date */
379
        goto do_read;
380
    case 0x1FF6:
381
        /* interrupts */
382
        goto do_read;
383
    case 0x1FF7:
384
        /* A read resets the watchdog */
385
        set_up_watchdog(NVRAM, NVRAM->buffer[0x1FF7]);
386
        goto do_read;
387
    case 0x1FF8:
388
    case 0x07F8:
389
        /* control */
390
        goto do_read;
391
    case 0x1FF9:
392
    case 0x07F9:
393
        /* seconds (BCD) */
394
        get_time(NVRAM, &tm);
395
        retval = (NVRAM->buffer[addr] & 0x80) | toBCD(tm.tm_sec);
396
        break;
397
    case 0x1FFA:
398
    case 0x07FA:
399
        /* minutes (BCD) */
400
        get_time(NVRAM, &tm);
401
        retval = toBCD(tm.tm_min);
402
        break;
403
    case 0x1FFB:
404
    case 0x07FB:
405
        /* hours (BCD) */
406
        get_time(NVRAM, &tm);
407
        retval = toBCD(tm.tm_hour);
408
        break;
409
    case 0x1FFC:
410
    case 0x07FC:
411
        /* day of the week / century */
412
        get_time(NVRAM, &tm);
413
        retval = NVRAM->buffer[addr] | tm.tm_wday;
414
        break;
415
    case 0x1FFD:
416
    case 0x07FD:
417
        /* date */
418
        get_time(NVRAM, &tm);
419
        retval = toBCD(tm.tm_mday);
420
        break;
421
    case 0x1FFE:
422
    case 0x07FE:
423
        /* month */
424
        get_time(NVRAM, &tm);
425
        retval = toBCD(tm.tm_mon + 1);
426
        break;
427
    case 0x1FFF:
428
    case 0x07FF:
429
        /* year */
430
        get_time(NVRAM, &tm);
431
        if (NVRAM->type == 8)
432
            retval = toBCD(tm.tm_year - 68); // Base year is 1968
433
        else
434
            retval = toBCD(tm.tm_year);
435
        break;
436
    default:
437
        /* Check lock registers state */
438
        if (addr >= 0x20 && addr <= 0x2F && (NVRAM->lock & 1))
439
            break;
440
        if (addr >= 0x30 && addr <= 0x3F && (NVRAM->lock & 2))
441
            break;
442
    do_read:
443
        if (addr < NVRAM->size) {
444
            retval = NVRAM->buffer[addr];
445
        }
446
        break;
447
    }
448
    if (addr > 0x1FF9 && addr < 0x2000)
449
       NVRAM_PRINTF("%s: 0x%08x <= 0x%08x\n", __func__, addr, retval);
450

    
451
    return retval;
452
}
453

    
454
void m48t59_set_addr (void *opaque, uint32_t addr)
455
{
456
    m48t59_t *NVRAM = opaque;
457

    
458
    NVRAM->addr = addr;
459
}
460

    
461
void m48t59_toggle_lock (void *opaque, int lock)
462
{
463
    m48t59_t *NVRAM = opaque;
464

    
465
    NVRAM->lock ^= 1 << lock;
466
}
467

    
468
/* IO access to NVRAM */
469
static void NVRAM_writeb (void *opaque, uint32_t addr, uint32_t val)
470
{
471
    m48t59_t *NVRAM = opaque;
472

    
473
    addr -= NVRAM->io_base;
474
    NVRAM_PRINTF("%s: 0x%08x => 0x%08x\n", __func__, addr, val);
475
    switch (addr) {
476
    case 0:
477
        NVRAM->addr &= ~0x00FF;
478
        NVRAM->addr |= val;
479
        break;
480
    case 1:
481
        NVRAM->addr &= ~0xFF00;
482
        NVRAM->addr |= val << 8;
483
        break;
484
    case 3:
485
        m48t59_write(NVRAM, val, NVRAM->addr);
486
        NVRAM->addr = 0x0000;
487
        break;
488
    default:
489
        break;
490
    }
491
}
492

    
493
static uint32_t NVRAM_readb (void *opaque, uint32_t addr)
494
{
495
    m48t59_t *NVRAM = opaque;
496
    uint32_t retval;
497

    
498
    addr -= NVRAM->io_base;
499
    switch (addr) {
500
    case 3:
501
        retval = m48t59_read(NVRAM, NVRAM->addr);
502
        break;
503
    default:
504
        retval = -1;
505
        break;
506
    }
507
    NVRAM_PRINTF("%s: 0x%08x <= 0x%08x\n", __func__, addr, retval);
508

    
509
    return retval;
510
}
511

    
512
static void nvram_writeb (void *opaque, target_phys_addr_t addr, uint32_t value)
513
{
514
    m48t59_t *NVRAM = opaque;
515

    
516
    m48t59_write(NVRAM, addr, value & 0xff);
517
}
518

    
519
static void nvram_writew (void *opaque, target_phys_addr_t addr, uint32_t value)
520
{
521
    m48t59_t *NVRAM = opaque;
522

    
523
    m48t59_write(NVRAM, addr, (value >> 8) & 0xff);
524
    m48t59_write(NVRAM, addr + 1, value & 0xff);
525
}
526

    
527
static void nvram_writel (void *opaque, target_phys_addr_t addr, uint32_t value)
528
{
529
    m48t59_t *NVRAM = opaque;
530

    
531
    m48t59_write(NVRAM, addr, (value >> 24) & 0xff);
532
    m48t59_write(NVRAM, addr + 1, (value >> 16) & 0xff);
533
    m48t59_write(NVRAM, addr + 2, (value >> 8) & 0xff);
534
    m48t59_write(NVRAM, addr + 3, value & 0xff);
535
}
536

    
537
static uint32_t nvram_readb (void *opaque, target_phys_addr_t addr)
538
{
539
    m48t59_t *NVRAM = opaque;
540
    uint32_t retval;
541

    
542
    retval = m48t59_read(NVRAM, addr);
543
    return retval;
544
}
545

    
546
static uint32_t nvram_readw (void *opaque, target_phys_addr_t addr)
547
{
548
    m48t59_t *NVRAM = opaque;
549
    uint32_t retval;
550

    
551
    retval = m48t59_read(NVRAM, addr) << 8;
552
    retval |= m48t59_read(NVRAM, addr + 1);
553
    return retval;
554
}
555

    
556
static uint32_t nvram_readl (void *opaque, target_phys_addr_t addr)
557
{
558
    m48t59_t *NVRAM = opaque;
559
    uint32_t retval;
560

    
561
    retval = m48t59_read(NVRAM, addr) << 24;
562
    retval |= m48t59_read(NVRAM, addr + 1) << 16;
563
    retval |= m48t59_read(NVRAM, addr + 2) << 8;
564
    retval |= m48t59_read(NVRAM, addr + 3);
565
    return retval;
566
}
567

    
568
static CPUWriteMemoryFunc *nvram_write[] = {
569
    &nvram_writeb,
570
    &nvram_writew,
571
    &nvram_writel,
572
};
573

    
574
static CPUReadMemoryFunc *nvram_read[] = {
575
    &nvram_readb,
576
    &nvram_readw,
577
    &nvram_readl,
578
};
579

    
580
static void m48t59_save(QEMUFile *f, void *opaque)
581
{
582
    m48t59_t *s = opaque;
583

    
584
    qemu_put_8s(f, &s->lock);
585
    qemu_put_be16s(f, &s->addr);
586
    qemu_put_buffer(f, s->buffer, s->size);
587
}
588

    
589
static int m48t59_load(QEMUFile *f, void *opaque, int version_id)
590
{
591
    m48t59_t *s = opaque;
592

    
593
    if (version_id != 1)
594
        return -EINVAL;
595

    
596
    qemu_get_8s(f, &s->lock);
597
    qemu_get_be16s(f, &s->addr);
598
    qemu_get_buffer(f, s->buffer, s->size);
599

    
600
    return 0;
601
}
602

    
603
static void m48t59_reset(void *opaque)
604
{
605
    m48t59_t *NVRAM = opaque;
606

    
607
    NVRAM->addr = 0;
608
    NVRAM->lock = 0;
609
    if (NVRAM->alrm_timer != NULL)
610
        qemu_del_timer(NVRAM->alrm_timer);
611

    
612
    if (NVRAM->wd_timer != NULL)
613
        qemu_del_timer(NVRAM->wd_timer);
614
}
615

    
616
/* Initialisation routine */
617
m48t59_t *m48t59_init (qemu_irq IRQ, target_phys_addr_t mem_base,
618
                       uint32_t io_base, uint16_t size,
619
                       int type)
620
{
621
    m48t59_t *s;
622
    target_phys_addr_t save_base;
623

    
624
    s = qemu_mallocz(sizeof(m48t59_t));
625
    s->buffer = qemu_mallocz(size);
626
    s->IRQ = IRQ;
627
    s->size = size;
628
    s->io_base = io_base;
629
    s->type = type;
630
    if (io_base != 0) {
631
        register_ioport_read(io_base, 0x04, 1, NVRAM_readb, s);
632
        register_ioport_write(io_base, 0x04, 1, NVRAM_writeb, s);
633
    }
634
    if (mem_base != 0) {
635
        s->mem_index = cpu_register_io_memory(nvram_read, nvram_write, s);
636
        cpu_register_physical_memory(mem_base, size, s->mem_index);
637
    }
638
    if (type == 59) {
639
        s->alrm_timer = qemu_new_timer(vm_clock, &alarm_cb, s);
640
        s->wd_timer = qemu_new_timer(vm_clock, &watchdog_cb, s);
641
    }
642
    qemu_get_timedate(&s->alarm, 0);
643

    
644
    qemu_register_reset(m48t59_reset, s);
645
    save_base = mem_base ? mem_base : io_base;
646
    register_savevm("m48t59", save_base, 1, m48t59_save, m48t59_load, s);
647

    
648
    return s;
649
}