Statistics
| Branch: | Revision:

root / hw / slavio_timer.c @ a08d4367

History | View | Annotate | Download (13.5 kB)

1
/*
2
 * QEMU Sparc SLAVIO timer controller emulation
3
 *
4
 * Copyright (c) 2003-2005 Fabrice Bellard
5
 *
6
 * Permission is hereby granted, free of charge, to any person obtaining a copy
7
 * of this software and associated documentation files (the "Software"), to deal
8
 * in the Software without restriction, including without limitation the rights
9
 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10
 * copies of the Software, and to permit persons to whom the Software is
11
 * furnished to do so, subject to the following conditions:
12
 *
13
 * The above copyright notice and this permission notice shall be included in
14
 * all copies or substantial portions of the Software.
15
 *
16
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21
 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22
 * THE SOFTWARE.
23
 */
24
#include "hw.h"
25
#include "sun4m.h"
26
#include "qemu-timer.h"
27

    
28
//#define DEBUG_TIMER
29

    
30
#ifdef DEBUG_TIMER
31
#define DPRINTF(fmt, ...)                                       \
32
    do { printf("TIMER: " fmt , ## __VA_ARGS__); } while (0)
33
#else
34
#define DPRINTF(fmt, ...) do {} while (0)
35
#endif
36

    
37
/*
38
 * Registers of hardware timer in sun4m.
39
 *
40
 * This is the timer/counter part of chip STP2001 (Slave I/O), also
41
 * produced as NCR89C105. See
42
 * http://www.ibiblio.org/pub/historic-linux/early-ports/Sparc/NCR/NCR89C105.txt
43
 *
44
 * The 31-bit counter is incremented every 500ns by bit 9. Bits 8..0
45
 * are zero. Bit 31 is 1 when count has been reached.
46
 *
47
 * Per-CPU timers interrupt local CPU, system timer uses normal
48
 * interrupt routing.
49
 *
50
 */
51

    
52
#define MAX_CPUS 16
53

    
54
typedef struct SLAVIO_TIMERState {
55
    qemu_irq irq;
56
    ptimer_state *timer;
57
    uint32_t count, counthigh, reached;
58
    uint64_t limit;
59
    // processor only
60
    uint32_t running;
61
    struct SLAVIO_TIMERState *master;
62
    uint32_t slave_index;
63
    // system only
64
    uint32_t num_slaves;
65
    struct SLAVIO_TIMERState *slave[MAX_CPUS];
66
    uint32_t slave_mode;
67
} SLAVIO_TIMERState;
68

    
69
#define SYS_TIMER_SIZE 0x14
70
#define CPU_TIMER_SIZE 0x10
71

    
72
#define SYS_TIMER_OFFSET      0x10000ULL
73
#define CPU_TIMER_OFFSET(cpu) (0x1000ULL * cpu)
74

    
75
#define TIMER_LIMIT         0
76
#define TIMER_COUNTER       1
77
#define TIMER_COUNTER_NORST 2
78
#define TIMER_STATUS        3
79
#define TIMER_MODE          4
80

    
81
#define TIMER_COUNT_MASK32 0xfffffe00
82
#define TIMER_LIMIT_MASK32 0x7fffffff
83
#define TIMER_MAX_COUNT64  0x7ffffffffffffe00ULL
84
#define TIMER_MAX_COUNT32  0x7ffffe00ULL
85
#define TIMER_REACHED      0x80000000
86
#define TIMER_PERIOD       500ULL // 500ns
87
#define LIMIT_TO_PERIODS(l) ((l) >> 9)
88
#define PERIODS_TO_LIMIT(l) ((l) << 9)
89

    
90
static int slavio_timer_is_user(SLAVIO_TIMERState *s)
91
{
92
    return s->master && (s->master->slave_mode & (1 << s->slave_index));
93
}
94

    
95
// Update count, set irq, update expire_time
96
// Convert from ptimer countdown units
97
static void slavio_timer_get_out(SLAVIO_TIMERState *s)
98
{
99
    uint64_t count, limit;
100

    
101
    if (s->limit == 0) /* free-run processor or system counter */
102
        limit = TIMER_MAX_COUNT32;
103
    else
104
        limit = s->limit;
105

    
106
    if (s->timer)
107
        count = limit - PERIODS_TO_LIMIT(ptimer_get_count(s->timer));
108
    else
109
        count = 0;
110

    
111
    DPRINTF("get_out: limit %" PRIx64 " count %x%08x\n", s->limit,
112
            s->counthigh, s->count);
113
    s->count = count & TIMER_COUNT_MASK32;
114
    s->counthigh = count >> 32;
115
}
116

    
117
// timer callback
118
static void slavio_timer_irq(void *opaque)
119
{
120
    SLAVIO_TIMERState *s = opaque;
121

    
122
    slavio_timer_get_out(s);
123
    DPRINTF("callback: count %x%08x\n", s->counthigh, s->count);
124
    s->reached = TIMER_REACHED;
125
    if (!slavio_timer_is_user(s))
126
        qemu_irq_raise(s->irq);
127
}
128

    
129
static uint32_t slavio_timer_mem_readl(void *opaque, target_phys_addr_t addr)
130
{
131
    SLAVIO_TIMERState *s = opaque;
132
    uint32_t saddr, ret;
133

    
134
    saddr = addr >> 2;
135
    switch (saddr) {
136
    case TIMER_LIMIT:
137
        // read limit (system counter mode) or read most signifying
138
        // part of counter (user mode)
139
        if (slavio_timer_is_user(s)) {
140
            // read user timer MSW
141
            slavio_timer_get_out(s);
142
            ret = s->counthigh | s->reached;
143
        } else {
144
            // read limit
145
            // clear irq
146
            qemu_irq_lower(s->irq);
147
            s->reached = 0;
148
            ret = s->limit & TIMER_LIMIT_MASK32;
149
        }
150
        break;
151
    case TIMER_COUNTER:
152
        // read counter and reached bit (system mode) or read lsbits
153
        // of counter (user mode)
154
        slavio_timer_get_out(s);
155
        if (slavio_timer_is_user(s)) // read user timer LSW
156
            ret = s->count & TIMER_MAX_COUNT64;
157
        else // read limit
158
            ret = (s->count & TIMER_MAX_COUNT32) | s->reached;
159
        break;
160
    case TIMER_STATUS:
161
        // only available in processor counter/timer
162
        // read start/stop status
163
        ret = s->running;
164
        break;
165
    case TIMER_MODE:
166
        // only available in system counter
167
        // read user/system mode
168
        ret = s->slave_mode;
169
        break;
170
    default:
171
        DPRINTF("invalid read address " TARGET_FMT_plx "\n", addr);
172
        ret = 0;
173
        break;
174
    }
175
    DPRINTF("read " TARGET_FMT_plx " = %08x\n", addr, ret);
176

    
177
    return ret;
178
}
179

    
180
static void slavio_timer_mem_writel(void *opaque, target_phys_addr_t addr,
181
                                    uint32_t val)
182
{
183
    SLAVIO_TIMERState *s = opaque;
184
    uint32_t saddr;
185

    
186
    DPRINTF("write " TARGET_FMT_plx " %08x\n", addr, val);
187
    saddr = addr >> 2;
188
    switch (saddr) {
189
    case TIMER_LIMIT:
190
        if (slavio_timer_is_user(s)) {
191
            uint64_t count;
192

    
193
            // set user counter MSW, reset counter
194
            s->limit = TIMER_MAX_COUNT64;
195
            s->counthigh = val & (TIMER_MAX_COUNT64 >> 32);
196
            s->reached = 0;
197
            count = ((uint64_t)s->counthigh << 32) | s->count;
198
            DPRINTF("processor %d user timer set to %016llx\n", s->slave_index,
199
                    count);
200
            if (s->timer)
201
                ptimer_set_count(s->timer, LIMIT_TO_PERIODS(s->limit - count));
202
        } else {
203
            // set limit, reset counter
204
            qemu_irq_lower(s->irq);
205
            s->limit = val & TIMER_MAX_COUNT32;
206
            if (s->timer) {
207
                if (s->limit == 0) /* free-run */
208
                    ptimer_set_limit(s->timer,
209
                                     LIMIT_TO_PERIODS(TIMER_MAX_COUNT32), 1);
210
                else
211
                    ptimer_set_limit(s->timer, LIMIT_TO_PERIODS(s->limit), 1);
212
            }
213
        }
214
        break;
215
    case TIMER_COUNTER:
216
        if (slavio_timer_is_user(s)) {
217
            uint64_t count;
218

    
219
            // set user counter LSW, reset counter
220
            s->limit = TIMER_MAX_COUNT64;
221
            s->count = val & TIMER_MAX_COUNT64;
222
            s->reached = 0;
223
            count = ((uint64_t)s->counthigh) << 32 | s->count;
224
            DPRINTF("processor %d user timer set to %016llx\n", s->slave_index,
225
                    count);
226
            if (s->timer)
227
                ptimer_set_count(s->timer, LIMIT_TO_PERIODS(s->limit - count));
228
        } else
229
            DPRINTF("not user timer\n");
230
        break;
231
    case TIMER_COUNTER_NORST:
232
        // set limit without resetting counter
233
        s->limit = val & TIMER_MAX_COUNT32;
234
        if (s->timer) {
235
            if (s->limit == 0)        /* free-run */
236
                ptimer_set_limit(s->timer,
237
                                 LIMIT_TO_PERIODS(TIMER_MAX_COUNT32), 0);
238
            else
239
                ptimer_set_limit(s->timer, LIMIT_TO_PERIODS(s->limit), 0);
240
        }
241
        break;
242
    case TIMER_STATUS:
243
        if (slavio_timer_is_user(s)) {
244
            // start/stop user counter
245
            if ((val & 1) && !s->running) {
246
                DPRINTF("processor %d user timer started\n", s->slave_index);
247
                if (s->timer)
248
                    ptimer_run(s->timer, 0);
249
                s->running = 1;
250
            } else if (!(val & 1) && s->running) {
251
                DPRINTF("processor %d user timer stopped\n", s->slave_index);
252
                if (s->timer)
253
                    ptimer_stop(s->timer);
254
                s->running = 0;
255
            }
256
        }
257
        break;
258
    case TIMER_MODE:
259
        if (s->master == NULL) {
260
            unsigned int i;
261

    
262
            for (i = 0; i < s->num_slaves; i++) {
263
                unsigned int processor = 1 << i;
264

    
265
                // check for a change in timer mode for this processor
266
                if ((val & processor) != (s->slave_mode & processor)) {
267
                    if (val & processor) { // counter -> user timer
268
                        qemu_irq_lower(s->slave[i]->irq);
269
                        // counters are always running
270
                        ptimer_stop(s->slave[i]->timer);
271
                        s->slave[i]->running = 0;
272
                        // user timer limit is always the same
273
                        s->slave[i]->limit = TIMER_MAX_COUNT64;
274
                        ptimer_set_limit(s->slave[i]->timer,
275
                                         LIMIT_TO_PERIODS(s->slave[i]->limit),
276
                                         1);
277
                        // set this processors user timer bit in config
278
                        // register
279
                        s->slave_mode |= processor;
280
                        DPRINTF("processor %d changed from counter to user "
281
                                "timer\n", s->slave[i]->slave_index);
282
                    } else { // user timer -> counter
283
                        // stop the user timer if it is running
284
                        if (s->slave[i]->running)
285
                            ptimer_stop(s->slave[i]->timer);
286
                        // start the counter
287
                        ptimer_run(s->slave[i]->timer, 0);
288
                        s->slave[i]->running = 1;
289
                        // clear this processors user timer bit in config
290
                        // register
291
                        s->slave_mode &= ~processor;
292
                        DPRINTF("processor %d changed from user timer to "
293
                                "counter\n", s->slave[i]->slave_index);
294
                    }
295
                }
296
            }
297
        } else
298
            DPRINTF("not system timer\n");
299
        break;
300
    default:
301
        DPRINTF("invalid write address " TARGET_FMT_plx "\n", addr);
302
        break;
303
    }
304
}
305

    
306
static CPUReadMemoryFunc *slavio_timer_mem_read[3] = {
307
    NULL,
308
    NULL,
309
    slavio_timer_mem_readl,
310
};
311

    
312
static CPUWriteMemoryFunc *slavio_timer_mem_write[3] = {
313
    NULL,
314
    NULL,
315
    slavio_timer_mem_writel,
316
};
317

    
318
static void slavio_timer_save(QEMUFile *f, void *opaque)
319
{
320
    SLAVIO_TIMERState *s = opaque;
321

    
322
    qemu_put_be64s(f, &s->limit);
323
    qemu_put_be32s(f, &s->count);
324
    qemu_put_be32s(f, &s->counthigh);
325
    qemu_put_be32s(f, &s->reached);
326
    qemu_put_be32s(f, &s->running);
327
    if (s->timer)
328
        qemu_put_ptimer(f, s->timer);
329
}
330

    
331
static int slavio_timer_load(QEMUFile *f, void *opaque, int version_id)
332
{
333
    SLAVIO_TIMERState *s = opaque;
334

    
335
    if (version_id != 3)
336
        return -EINVAL;
337

    
338
    qemu_get_be64s(f, &s->limit);
339
    qemu_get_be32s(f, &s->count);
340
    qemu_get_be32s(f, &s->counthigh);
341
    qemu_get_be32s(f, &s->reached);
342
    qemu_get_be32s(f, &s->running);
343
    if (s->timer)
344
        qemu_get_ptimer(f, s->timer);
345

    
346
    return 0;
347
}
348

    
349
static void slavio_timer_reset(void *opaque)
350
{
351
    SLAVIO_TIMERState *s = opaque;
352

    
353
    s->limit = 0;
354
    s->count = 0;
355
    s->reached = 0;
356
    s->slave_mode = 0;
357
    if (!s->master || s->slave_index < s->master->num_slaves) {
358
        ptimer_set_limit(s->timer, LIMIT_TO_PERIODS(TIMER_MAX_COUNT32), 1);
359
        ptimer_run(s->timer, 0);
360
    }
361
    s->running = 1;
362
}
363

    
364
static SLAVIO_TIMERState *slavio_timer_init(target_phys_addr_t addr,
365
                                            qemu_irq irq,
366
                                            SLAVIO_TIMERState *master,
367
                                            uint32_t slave_index)
368
{
369
    int slavio_timer_io_memory;
370
    SLAVIO_TIMERState *s;
371
    QEMUBH *bh;
372

    
373
    s = qemu_mallocz(sizeof(SLAVIO_TIMERState));
374
    s->irq = irq;
375
    s->master = master;
376
    s->slave_index = slave_index;
377
    if (!master || slave_index < master->num_slaves) {
378
        bh = qemu_bh_new(slavio_timer_irq, s);
379
        s->timer = ptimer_init(bh);
380
        ptimer_set_period(s->timer, TIMER_PERIOD);
381
    }
382

    
383
    slavio_timer_io_memory = cpu_register_io_memory(slavio_timer_mem_read,
384
                                                    slavio_timer_mem_write, s);
385
    if (master)
386
        cpu_register_physical_memory(addr, CPU_TIMER_SIZE,
387
                                     slavio_timer_io_memory);
388
    else
389
        cpu_register_physical_memory(addr, SYS_TIMER_SIZE,
390
                                     slavio_timer_io_memory);
391
    register_savevm("slavio_timer", addr, 3, slavio_timer_save,
392
                    slavio_timer_load, s);
393
    qemu_register_reset(slavio_timer_reset, s);
394
    slavio_timer_reset(s);
395

    
396
    return s;
397
}
398

    
399
void slavio_timer_init_all(target_phys_addr_t base, qemu_irq master_irq,
400
                           qemu_irq *cpu_irqs, unsigned int num_cpus)
401
{
402
    SLAVIO_TIMERState *master;
403
    unsigned int i;
404

    
405
    master = slavio_timer_init(base + SYS_TIMER_OFFSET, master_irq, NULL, 0);
406

    
407
    master->num_slaves = num_cpus;
408

    
409
    for (i = 0; i < MAX_CPUS; i++) {
410
        master->slave[i] = slavio_timer_init(base + (target_phys_addr_t)
411
                                             CPU_TIMER_OFFSET(i),
412
                                             cpu_irqs[i], master, i);
413
    }
414
}