Statistics
| Branch: | Revision:

root / kvm-all.c @ a0fb002c

History | View | Annotate | Download (27.4 kB)

1
/*
2
 * QEMU KVM support
3
 *
4
 * Copyright IBM, Corp. 2008
5
 *           Red Hat, Inc. 2008
6
 *
7
 * Authors:
8
 *  Anthony Liguori   <aliguori@us.ibm.com>
9
 *  Glauber Costa     <gcosta@redhat.com>
10
 *
11
 * This work is licensed under the terms of the GNU GPL, version 2 or later.
12
 * See the COPYING file in the top-level directory.
13
 *
14
 */
15

    
16
#include <sys/types.h>
17
#include <sys/ioctl.h>
18
#include <sys/mman.h>
19
#include <stdarg.h>
20

    
21
#include <linux/kvm.h>
22

    
23
#include "qemu-common.h"
24
#include "sysemu.h"
25
#include "hw/hw.h"
26
#include "gdbstub.h"
27
#include "kvm.h"
28

    
29
/* KVM uses PAGE_SIZE in it's definition of COALESCED_MMIO_MAX */
30
#define PAGE_SIZE TARGET_PAGE_SIZE
31

    
32
//#define DEBUG_KVM
33

    
34
#ifdef DEBUG_KVM
35
#define dprintf(fmt, ...) \
36
    do { fprintf(stderr, fmt, ## __VA_ARGS__); } while (0)
37
#else
38
#define dprintf(fmt, ...) \
39
    do { } while (0)
40
#endif
41

    
42
typedef struct KVMSlot
43
{
44
    target_phys_addr_t start_addr;
45
    ram_addr_t memory_size;
46
    ram_addr_t phys_offset;
47
    int slot;
48
    int flags;
49
} KVMSlot;
50

    
51
typedef struct kvm_dirty_log KVMDirtyLog;
52

    
53
int kvm_allowed = 0;
54

    
55
struct KVMState
56
{
57
    KVMSlot slots[32];
58
    int fd;
59
    int vmfd;
60
    int regs_modified;
61
    int coalesced_mmio;
62
    int broken_set_mem_region;
63
    int migration_log;
64
    int vcpu_events;
65
#ifdef KVM_CAP_SET_GUEST_DEBUG
66
    struct kvm_sw_breakpoint_head kvm_sw_breakpoints;
67
#endif
68
    int irqchip_in_kernel;
69
    int pit_in_kernel;
70
};
71

    
72
static KVMState *kvm_state;
73

    
74
static KVMSlot *kvm_alloc_slot(KVMState *s)
75
{
76
    int i;
77

    
78
    for (i = 0; i < ARRAY_SIZE(s->slots); i++) {
79
        /* KVM private memory slots */
80
        if (i >= 8 && i < 12)
81
            continue;
82
        if (s->slots[i].memory_size == 0)
83
            return &s->slots[i];
84
    }
85

    
86
    fprintf(stderr, "%s: no free slot available\n", __func__);
87
    abort();
88
}
89

    
90
static KVMSlot *kvm_lookup_matching_slot(KVMState *s,
91
                                         target_phys_addr_t start_addr,
92
                                         target_phys_addr_t end_addr)
93
{
94
    int i;
95

    
96
    for (i = 0; i < ARRAY_SIZE(s->slots); i++) {
97
        KVMSlot *mem = &s->slots[i];
98

    
99
        if (start_addr == mem->start_addr &&
100
            end_addr == mem->start_addr + mem->memory_size) {
101
            return mem;
102
        }
103
    }
104

    
105
    return NULL;
106
}
107

    
108
/*
109
 * Find overlapping slot with lowest start address
110
 */
111
static KVMSlot *kvm_lookup_overlapping_slot(KVMState *s,
112
                                            target_phys_addr_t start_addr,
113
                                            target_phys_addr_t end_addr)
114
{
115
    KVMSlot *found = NULL;
116
    int i;
117

    
118
    for (i = 0; i < ARRAY_SIZE(s->slots); i++) {
119
        KVMSlot *mem = &s->slots[i];
120

    
121
        if (mem->memory_size == 0 ||
122
            (found && found->start_addr < mem->start_addr)) {
123
            continue;
124
        }
125

    
126
        if (end_addr > mem->start_addr &&
127
            start_addr < mem->start_addr + mem->memory_size) {
128
            found = mem;
129
        }
130
    }
131

    
132
    return found;
133
}
134

    
135
static int kvm_set_user_memory_region(KVMState *s, KVMSlot *slot)
136
{
137
    struct kvm_userspace_memory_region mem;
138

    
139
    mem.slot = slot->slot;
140
    mem.guest_phys_addr = slot->start_addr;
141
    mem.memory_size = slot->memory_size;
142
    mem.userspace_addr = (unsigned long)qemu_get_ram_ptr(slot->phys_offset);
143
    mem.flags = slot->flags;
144
    if (s->migration_log) {
145
        mem.flags |= KVM_MEM_LOG_DIRTY_PAGES;
146
    }
147
    return kvm_vm_ioctl(s, KVM_SET_USER_MEMORY_REGION, &mem);
148
}
149

    
150
static void kvm_reset_vcpu(void *opaque)
151
{
152
    CPUState *env = opaque;
153

    
154
    kvm_arch_reset_vcpu(env);
155
    if (kvm_arch_put_registers(env)) {
156
        fprintf(stderr, "Fatal: kvm vcpu reset failed\n");
157
        abort();
158
    }
159
}
160

    
161
int kvm_irqchip_in_kernel(void)
162
{
163
    return kvm_state->irqchip_in_kernel;
164
}
165

    
166
int kvm_pit_in_kernel(void)
167
{
168
    return kvm_state->pit_in_kernel;
169
}
170

    
171

    
172
int kvm_init_vcpu(CPUState *env)
173
{
174
    KVMState *s = kvm_state;
175
    long mmap_size;
176
    int ret;
177

    
178
    dprintf("kvm_init_vcpu\n");
179

    
180
    ret = kvm_vm_ioctl(s, KVM_CREATE_VCPU, env->cpu_index);
181
    if (ret < 0) {
182
        dprintf("kvm_create_vcpu failed\n");
183
        goto err;
184
    }
185

    
186
    env->kvm_fd = ret;
187
    env->kvm_state = s;
188

    
189
    mmap_size = kvm_ioctl(s, KVM_GET_VCPU_MMAP_SIZE, 0);
190
    if (mmap_size < 0) {
191
        dprintf("KVM_GET_VCPU_MMAP_SIZE failed\n");
192
        goto err;
193
    }
194

    
195
    env->kvm_run = mmap(NULL, mmap_size, PROT_READ | PROT_WRITE, MAP_SHARED,
196
                        env->kvm_fd, 0);
197
    if (env->kvm_run == MAP_FAILED) {
198
        ret = -errno;
199
        dprintf("mmap'ing vcpu state failed\n");
200
        goto err;
201
    }
202

    
203
    ret = kvm_arch_init_vcpu(env);
204
    if (ret == 0) {
205
        qemu_register_reset(kvm_reset_vcpu, env);
206
        kvm_arch_reset_vcpu(env);
207
        ret = kvm_arch_put_registers(env);
208
    }
209
err:
210
    return ret;
211
}
212

    
213
/*
214
 * dirty pages logging control
215
 */
216
static int kvm_dirty_pages_log_change(target_phys_addr_t phys_addr,
217
                                      ram_addr_t size, int flags, int mask)
218
{
219
    KVMState *s = kvm_state;
220
    KVMSlot *mem = kvm_lookup_matching_slot(s, phys_addr, phys_addr + size);
221
    int old_flags;
222

    
223
    if (mem == NULL)  {
224
            fprintf(stderr, "BUG: %s: invalid parameters " TARGET_FMT_plx "-"
225
                    TARGET_FMT_plx "\n", __func__, phys_addr,
226
                    (target_phys_addr_t)(phys_addr + size - 1));
227
            return -EINVAL;
228
    }
229

    
230
    old_flags = mem->flags;
231

    
232
    flags = (mem->flags & ~mask) | flags;
233
    mem->flags = flags;
234

    
235
    /* If nothing changed effectively, no need to issue ioctl */
236
    if (s->migration_log) {
237
        flags |= KVM_MEM_LOG_DIRTY_PAGES;
238
    }
239
    if (flags == old_flags) {
240
            return 0;
241
    }
242

    
243
    return kvm_set_user_memory_region(s, mem);
244
}
245

    
246
int kvm_log_start(target_phys_addr_t phys_addr, ram_addr_t size)
247
{
248
        return kvm_dirty_pages_log_change(phys_addr, size,
249
                                          KVM_MEM_LOG_DIRTY_PAGES,
250
                                          KVM_MEM_LOG_DIRTY_PAGES);
251
}
252

    
253
int kvm_log_stop(target_phys_addr_t phys_addr, ram_addr_t size)
254
{
255
        return kvm_dirty_pages_log_change(phys_addr, size,
256
                                          0,
257
                                          KVM_MEM_LOG_DIRTY_PAGES);
258
}
259

    
260
int kvm_set_migration_log(int enable)
261
{
262
    KVMState *s = kvm_state;
263
    KVMSlot *mem;
264
    int i, err;
265

    
266
    s->migration_log = enable;
267

    
268
    for (i = 0; i < ARRAY_SIZE(s->slots); i++) {
269
        mem = &s->slots[i];
270

    
271
        if (!!(mem->flags & KVM_MEM_LOG_DIRTY_PAGES) == enable) {
272
            continue;
273
        }
274
        err = kvm_set_user_memory_region(s, mem);
275
        if (err) {
276
            return err;
277
        }
278
    }
279
    return 0;
280
}
281

    
282
static int test_le_bit(unsigned long nr, unsigned char *addr)
283
{
284
    return (addr[nr >> 3] >> (nr & 7)) & 1;
285
}
286

    
287
/**
288
 * kvm_physical_sync_dirty_bitmap - Grab dirty bitmap from kernel space
289
 * This function updates qemu's dirty bitmap using cpu_physical_memory_set_dirty().
290
 * This means all bits are set to dirty.
291
 *
292
 * @start_add: start of logged region.
293
 * @end_addr: end of logged region.
294
 */
295
int kvm_physical_sync_dirty_bitmap(target_phys_addr_t start_addr,
296
                                   target_phys_addr_t end_addr)
297
{
298
    KVMState *s = kvm_state;
299
    unsigned long size, allocated_size = 0;
300
    target_phys_addr_t phys_addr;
301
    ram_addr_t addr;
302
    KVMDirtyLog d;
303
    KVMSlot *mem;
304
    int ret = 0;
305

    
306
    d.dirty_bitmap = NULL;
307
    while (start_addr < end_addr) {
308
        mem = kvm_lookup_overlapping_slot(s, start_addr, end_addr);
309
        if (mem == NULL) {
310
            break;
311
        }
312

    
313
        size = ((mem->memory_size >> TARGET_PAGE_BITS) + 7) / 8;
314
        if (!d.dirty_bitmap) {
315
            d.dirty_bitmap = qemu_malloc(size);
316
        } else if (size > allocated_size) {
317
            d.dirty_bitmap = qemu_realloc(d.dirty_bitmap, size);
318
        }
319
        allocated_size = size;
320
        memset(d.dirty_bitmap, 0, allocated_size);
321

    
322
        d.slot = mem->slot;
323

    
324
        if (kvm_vm_ioctl(s, KVM_GET_DIRTY_LOG, &d) == -1) {
325
            dprintf("ioctl failed %d\n", errno);
326
            ret = -1;
327
            break;
328
        }
329

    
330
        for (phys_addr = mem->start_addr, addr = mem->phys_offset;
331
             phys_addr < mem->start_addr + mem->memory_size;
332
             phys_addr += TARGET_PAGE_SIZE, addr += TARGET_PAGE_SIZE) {
333
            unsigned char *bitmap = (unsigned char *)d.dirty_bitmap;
334
            unsigned nr = (phys_addr - mem->start_addr) >> TARGET_PAGE_BITS;
335

    
336
            if (test_le_bit(nr, bitmap)) {
337
                cpu_physical_memory_set_dirty(addr);
338
            }
339
        }
340
        start_addr = phys_addr;
341
    }
342
    qemu_free(d.dirty_bitmap);
343

    
344
    return ret;
345
}
346

    
347
int kvm_coalesce_mmio_region(target_phys_addr_t start, ram_addr_t size)
348
{
349
    int ret = -ENOSYS;
350
#ifdef KVM_CAP_COALESCED_MMIO
351
    KVMState *s = kvm_state;
352

    
353
    if (s->coalesced_mmio) {
354
        struct kvm_coalesced_mmio_zone zone;
355

    
356
        zone.addr = start;
357
        zone.size = size;
358

    
359
        ret = kvm_vm_ioctl(s, KVM_REGISTER_COALESCED_MMIO, &zone);
360
    }
361
#endif
362

    
363
    return ret;
364
}
365

    
366
int kvm_uncoalesce_mmio_region(target_phys_addr_t start, ram_addr_t size)
367
{
368
    int ret = -ENOSYS;
369
#ifdef KVM_CAP_COALESCED_MMIO
370
    KVMState *s = kvm_state;
371

    
372
    if (s->coalesced_mmio) {
373
        struct kvm_coalesced_mmio_zone zone;
374

    
375
        zone.addr = start;
376
        zone.size = size;
377

    
378
        ret = kvm_vm_ioctl(s, KVM_UNREGISTER_COALESCED_MMIO, &zone);
379
    }
380
#endif
381

    
382
    return ret;
383
}
384

    
385
int kvm_check_extension(KVMState *s, unsigned int extension)
386
{
387
    int ret;
388

    
389
    ret = kvm_ioctl(s, KVM_CHECK_EXTENSION, extension);
390
    if (ret < 0) {
391
        ret = 0;
392
    }
393

    
394
    return ret;
395
}
396

    
397
int kvm_init(int smp_cpus)
398
{
399
    static const char upgrade_note[] =
400
        "Please upgrade to at least kernel 2.6.29 or recent kvm-kmod\n"
401
        "(see http://sourceforge.net/projects/kvm).\n";
402
    KVMState *s;
403
    int ret;
404
    int i;
405

    
406
    if (smp_cpus > 1) {
407
        fprintf(stderr, "No SMP KVM support, use '-smp 1'\n");
408
        return -EINVAL;
409
    }
410

    
411
    s = qemu_mallocz(sizeof(KVMState));
412

    
413
#ifdef KVM_CAP_SET_GUEST_DEBUG
414
    QTAILQ_INIT(&s->kvm_sw_breakpoints);
415
#endif
416
    for (i = 0; i < ARRAY_SIZE(s->slots); i++)
417
        s->slots[i].slot = i;
418

    
419
    s->vmfd = -1;
420
    s->fd = qemu_open("/dev/kvm", O_RDWR);
421
    if (s->fd == -1) {
422
        fprintf(stderr, "Could not access KVM kernel module: %m\n");
423
        ret = -errno;
424
        goto err;
425
    }
426

    
427
    ret = kvm_ioctl(s, KVM_GET_API_VERSION, 0);
428
    if (ret < KVM_API_VERSION) {
429
        if (ret > 0)
430
            ret = -EINVAL;
431
        fprintf(stderr, "kvm version too old\n");
432
        goto err;
433
    }
434

    
435
    if (ret > KVM_API_VERSION) {
436
        ret = -EINVAL;
437
        fprintf(stderr, "kvm version not supported\n");
438
        goto err;
439
    }
440

    
441
    s->vmfd = kvm_ioctl(s, KVM_CREATE_VM, 0);
442
    if (s->vmfd < 0)
443
        goto err;
444

    
445
    /* initially, KVM allocated its own memory and we had to jump through
446
     * hooks to make phys_ram_base point to this.  Modern versions of KVM
447
     * just use a user allocated buffer so we can use regular pages
448
     * unmodified.  Make sure we have a sufficiently modern version of KVM.
449
     */
450
    if (!kvm_check_extension(s, KVM_CAP_USER_MEMORY)) {
451
        ret = -EINVAL;
452
        fprintf(stderr, "kvm does not support KVM_CAP_USER_MEMORY\n%s",
453
                upgrade_note);
454
        goto err;
455
    }
456

    
457
    /* There was a nasty bug in < kvm-80 that prevents memory slots from being
458
     * destroyed properly.  Since we rely on this capability, refuse to work
459
     * with any kernel without this capability. */
460
    if (!kvm_check_extension(s, KVM_CAP_DESTROY_MEMORY_REGION_WORKS)) {
461
        ret = -EINVAL;
462

    
463
        fprintf(stderr,
464
                "KVM kernel module broken (DESTROY_MEMORY_REGION).\n%s",
465
                upgrade_note);
466
        goto err;
467
    }
468

    
469
#ifdef KVM_CAP_COALESCED_MMIO
470
    s->coalesced_mmio = kvm_check_extension(s, KVM_CAP_COALESCED_MMIO);
471
#else
472
    s->coalesced_mmio = 0;
473
#endif
474

    
475
    s->broken_set_mem_region = 1;
476
#ifdef KVM_CAP_JOIN_MEMORY_REGIONS_WORKS
477
    ret = kvm_ioctl(s, KVM_CHECK_EXTENSION, KVM_CAP_JOIN_MEMORY_REGIONS_WORKS);
478
    if (ret > 0) {
479
        s->broken_set_mem_region = 0;
480
    }
481
#endif
482

    
483
    s->vcpu_events = 0;
484
#ifdef KVM_CAP_VCPU_EVENTS
485
    s->vcpu_events = kvm_check_extension(s, KVM_CAP_VCPU_EVENTS);
486
#endif
487

    
488
    ret = kvm_arch_init(s, smp_cpus);
489
    if (ret < 0)
490
        goto err;
491

    
492
    kvm_state = s;
493

    
494
    return 0;
495

    
496
err:
497
    if (s) {
498
        if (s->vmfd != -1)
499
            close(s->vmfd);
500
        if (s->fd != -1)
501
            close(s->fd);
502
    }
503
    qemu_free(s);
504

    
505
    return ret;
506
}
507

    
508
static int kvm_handle_io(uint16_t port, void *data, int direction, int size,
509
                         uint32_t count)
510
{
511
    int i;
512
    uint8_t *ptr = data;
513

    
514
    for (i = 0; i < count; i++) {
515
        if (direction == KVM_EXIT_IO_IN) {
516
            switch (size) {
517
            case 1:
518
                stb_p(ptr, cpu_inb(port));
519
                break;
520
            case 2:
521
                stw_p(ptr, cpu_inw(port));
522
                break;
523
            case 4:
524
                stl_p(ptr, cpu_inl(port));
525
                break;
526
            }
527
        } else {
528
            switch (size) {
529
            case 1:
530
                cpu_outb(port, ldub_p(ptr));
531
                break;
532
            case 2:
533
                cpu_outw(port, lduw_p(ptr));
534
                break;
535
            case 4:
536
                cpu_outl(port, ldl_p(ptr));
537
                break;
538
            }
539
        }
540

    
541
        ptr += size;
542
    }
543

    
544
    return 1;
545
}
546

    
547
static void kvm_run_coalesced_mmio(CPUState *env, struct kvm_run *run)
548
{
549
#ifdef KVM_CAP_COALESCED_MMIO
550
    KVMState *s = kvm_state;
551
    if (s->coalesced_mmio) {
552
        struct kvm_coalesced_mmio_ring *ring;
553

    
554
        ring = (void *)run + (s->coalesced_mmio * TARGET_PAGE_SIZE);
555
        while (ring->first != ring->last) {
556
            struct kvm_coalesced_mmio *ent;
557

    
558
            ent = &ring->coalesced_mmio[ring->first];
559

    
560
            cpu_physical_memory_write(ent->phys_addr, ent->data, ent->len);
561
            /* FIXME smp_wmb() */
562
            ring->first = (ring->first + 1) % KVM_COALESCED_MMIO_MAX;
563
        }
564
    }
565
#endif
566
}
567

    
568
void kvm_cpu_synchronize_state(CPUState *env)
569
{
570
    if (!env->kvm_state->regs_modified) {
571
        kvm_arch_get_registers(env);
572
        env->kvm_state->regs_modified = 1;
573
    }
574
}
575

    
576
int kvm_cpu_exec(CPUState *env)
577
{
578
    struct kvm_run *run = env->kvm_run;
579
    int ret;
580

    
581
    dprintf("kvm_cpu_exec()\n");
582

    
583
    do {
584
        if (env->exit_request) {
585
            dprintf("interrupt exit requested\n");
586
            ret = 0;
587
            break;
588
        }
589

    
590
        if (env->kvm_state->regs_modified) {
591
            kvm_arch_put_registers(env);
592
            env->kvm_state->regs_modified = 0;
593
        }
594

    
595
        kvm_arch_pre_run(env, run);
596
        qemu_mutex_unlock_iothread();
597
        ret = kvm_vcpu_ioctl(env, KVM_RUN, 0);
598
        qemu_mutex_lock_iothread();
599
        kvm_arch_post_run(env, run);
600

    
601
        if (ret == -EINTR || ret == -EAGAIN) {
602
            dprintf("io window exit\n");
603
            ret = 0;
604
            break;
605
        }
606

    
607
        if (ret < 0) {
608
            dprintf("kvm run failed %s\n", strerror(-ret));
609
            abort();
610
        }
611

    
612
        kvm_run_coalesced_mmio(env, run);
613

    
614
        ret = 0; /* exit loop */
615
        switch (run->exit_reason) {
616
        case KVM_EXIT_IO:
617
            dprintf("handle_io\n");
618
            ret = kvm_handle_io(run->io.port,
619
                                (uint8_t *)run + run->io.data_offset,
620
                                run->io.direction,
621
                                run->io.size,
622
                                run->io.count);
623
            break;
624
        case KVM_EXIT_MMIO:
625
            dprintf("handle_mmio\n");
626
            cpu_physical_memory_rw(run->mmio.phys_addr,
627
                                   run->mmio.data,
628
                                   run->mmio.len,
629
                                   run->mmio.is_write);
630
            ret = 1;
631
            break;
632
        case KVM_EXIT_IRQ_WINDOW_OPEN:
633
            dprintf("irq_window_open\n");
634
            break;
635
        case KVM_EXIT_SHUTDOWN:
636
            dprintf("shutdown\n");
637
            qemu_system_reset_request();
638
            ret = 1;
639
            break;
640
        case KVM_EXIT_UNKNOWN:
641
            dprintf("kvm_exit_unknown\n");
642
            break;
643
        case KVM_EXIT_FAIL_ENTRY:
644
            dprintf("kvm_exit_fail_entry\n");
645
            break;
646
        case KVM_EXIT_EXCEPTION:
647
            dprintf("kvm_exit_exception\n");
648
            break;
649
        case KVM_EXIT_DEBUG:
650
            dprintf("kvm_exit_debug\n");
651
#ifdef KVM_CAP_SET_GUEST_DEBUG
652
            if (kvm_arch_debug(&run->debug.arch)) {
653
                gdb_set_stop_cpu(env);
654
                vm_stop(EXCP_DEBUG);
655
                env->exception_index = EXCP_DEBUG;
656
                return 0;
657
            }
658
            /* re-enter, this exception was guest-internal */
659
            ret = 1;
660
#endif /* KVM_CAP_SET_GUEST_DEBUG */
661
            break;
662
        default:
663
            dprintf("kvm_arch_handle_exit\n");
664
            ret = kvm_arch_handle_exit(env, run);
665
            break;
666
        }
667
    } while (ret > 0);
668

    
669
    if (env->exit_request) {
670
        env->exit_request = 0;
671
        env->exception_index = EXCP_INTERRUPT;
672
    }
673

    
674
    return ret;
675
}
676

    
677
void kvm_set_phys_mem(target_phys_addr_t start_addr,
678
                      ram_addr_t size,
679
                      ram_addr_t phys_offset)
680
{
681
    KVMState *s = kvm_state;
682
    ram_addr_t flags = phys_offset & ~TARGET_PAGE_MASK;
683
    KVMSlot *mem, old;
684
    int err;
685

    
686
    if (start_addr & ~TARGET_PAGE_MASK) {
687
        if (flags >= IO_MEM_UNASSIGNED) {
688
            if (!kvm_lookup_overlapping_slot(s, start_addr,
689
                                             start_addr + size)) {
690
                return;
691
            }
692
            fprintf(stderr, "Unaligned split of a KVM memory slot\n");
693
        } else {
694
            fprintf(stderr, "Only page-aligned memory slots supported\n");
695
        }
696
        abort();
697
    }
698

    
699
    /* KVM does not support read-only slots */
700
    phys_offset &= ~IO_MEM_ROM;
701

    
702
    while (1) {
703
        mem = kvm_lookup_overlapping_slot(s, start_addr, start_addr + size);
704
        if (!mem) {
705
            break;
706
        }
707

    
708
        if (flags < IO_MEM_UNASSIGNED && start_addr >= mem->start_addr &&
709
            (start_addr + size <= mem->start_addr + mem->memory_size) &&
710
            (phys_offset - start_addr == mem->phys_offset - mem->start_addr)) {
711
            /* The new slot fits into the existing one and comes with
712
             * identical parameters - nothing to be done. */
713
            return;
714
        }
715

    
716
        old = *mem;
717

    
718
        /* unregister the overlapping slot */
719
        mem->memory_size = 0;
720
        err = kvm_set_user_memory_region(s, mem);
721
        if (err) {
722
            fprintf(stderr, "%s: error unregistering overlapping slot: %s\n",
723
                    __func__, strerror(-err));
724
            abort();
725
        }
726

    
727
        /* Workaround for older KVM versions: we can't join slots, even not by
728
         * unregistering the previous ones and then registering the larger
729
         * slot. We have to maintain the existing fragmentation. Sigh.
730
         *
731
         * This workaround assumes that the new slot starts at the same
732
         * address as the first existing one. If not or if some overlapping
733
         * slot comes around later, we will fail (not seen in practice so far)
734
         * - and actually require a recent KVM version. */
735
        if (s->broken_set_mem_region &&
736
            old.start_addr == start_addr && old.memory_size < size &&
737
            flags < IO_MEM_UNASSIGNED) {
738
            mem = kvm_alloc_slot(s);
739
            mem->memory_size = old.memory_size;
740
            mem->start_addr = old.start_addr;
741
            mem->phys_offset = old.phys_offset;
742
            mem->flags = 0;
743

    
744
            err = kvm_set_user_memory_region(s, mem);
745
            if (err) {
746
                fprintf(stderr, "%s: error updating slot: %s\n", __func__,
747
                        strerror(-err));
748
                abort();
749
            }
750

    
751
            start_addr += old.memory_size;
752
            phys_offset += old.memory_size;
753
            size -= old.memory_size;
754
            continue;
755
        }
756

    
757
        /* register prefix slot */
758
        if (old.start_addr < start_addr) {
759
            mem = kvm_alloc_slot(s);
760
            mem->memory_size = start_addr - old.start_addr;
761
            mem->start_addr = old.start_addr;
762
            mem->phys_offset = old.phys_offset;
763
            mem->flags = 0;
764

    
765
            err = kvm_set_user_memory_region(s, mem);
766
            if (err) {
767
                fprintf(stderr, "%s: error registering prefix slot: %s\n",
768
                        __func__, strerror(-err));
769
                abort();
770
            }
771
        }
772

    
773
        /* register suffix slot */
774
        if (old.start_addr + old.memory_size > start_addr + size) {
775
            ram_addr_t size_delta;
776

    
777
            mem = kvm_alloc_slot(s);
778
            mem->start_addr = start_addr + size;
779
            size_delta = mem->start_addr - old.start_addr;
780
            mem->memory_size = old.memory_size - size_delta;
781
            mem->phys_offset = old.phys_offset + size_delta;
782
            mem->flags = 0;
783

    
784
            err = kvm_set_user_memory_region(s, mem);
785
            if (err) {
786
                fprintf(stderr, "%s: error registering suffix slot: %s\n",
787
                        __func__, strerror(-err));
788
                abort();
789
            }
790
        }
791
    }
792

    
793
    /* in case the KVM bug workaround already "consumed" the new slot */
794
    if (!size)
795
        return;
796

    
797
    /* KVM does not need to know about this memory */
798
    if (flags >= IO_MEM_UNASSIGNED)
799
        return;
800

    
801
    mem = kvm_alloc_slot(s);
802
    mem->memory_size = size;
803
    mem->start_addr = start_addr;
804
    mem->phys_offset = phys_offset;
805
    mem->flags = 0;
806

    
807
    err = kvm_set_user_memory_region(s, mem);
808
    if (err) {
809
        fprintf(stderr, "%s: error registering slot: %s\n", __func__,
810
                strerror(-err));
811
        abort();
812
    }
813
}
814

    
815
int kvm_ioctl(KVMState *s, int type, ...)
816
{
817
    int ret;
818
    void *arg;
819
    va_list ap;
820

    
821
    va_start(ap, type);
822
    arg = va_arg(ap, void *);
823
    va_end(ap);
824

    
825
    ret = ioctl(s->fd, type, arg);
826
    if (ret == -1)
827
        ret = -errno;
828

    
829
    return ret;
830
}
831

    
832
int kvm_vm_ioctl(KVMState *s, int type, ...)
833
{
834
    int ret;
835
    void *arg;
836
    va_list ap;
837

    
838
    va_start(ap, type);
839
    arg = va_arg(ap, void *);
840
    va_end(ap);
841

    
842
    ret = ioctl(s->vmfd, type, arg);
843
    if (ret == -1)
844
        ret = -errno;
845

    
846
    return ret;
847
}
848

    
849
int kvm_vcpu_ioctl(CPUState *env, int type, ...)
850
{
851
    int ret;
852
    void *arg;
853
    va_list ap;
854

    
855
    va_start(ap, type);
856
    arg = va_arg(ap, void *);
857
    va_end(ap);
858

    
859
    ret = ioctl(env->kvm_fd, type, arg);
860
    if (ret == -1)
861
        ret = -errno;
862

    
863
    return ret;
864
}
865

    
866
int kvm_has_sync_mmu(void)
867
{
868
#ifdef KVM_CAP_SYNC_MMU
869
    KVMState *s = kvm_state;
870

    
871
    return kvm_check_extension(s, KVM_CAP_SYNC_MMU);
872
#else
873
    return 0;
874
#endif
875
}
876

    
877
int kvm_has_vcpu_events(void)
878
{
879
    return kvm_state->vcpu_events;
880
}
881

    
882
void kvm_setup_guest_memory(void *start, size_t size)
883
{
884
    if (!kvm_has_sync_mmu()) {
885
#ifdef MADV_DONTFORK
886
        int ret = madvise(start, size, MADV_DONTFORK);
887

    
888
        if (ret) {
889
            perror("madvice");
890
            exit(1);
891
        }
892
#else
893
        fprintf(stderr,
894
                "Need MADV_DONTFORK in absence of synchronous KVM MMU\n");
895
        exit(1);
896
#endif
897
    }
898
}
899

    
900
#ifdef KVM_CAP_SET_GUEST_DEBUG
901
static void on_vcpu(CPUState *env, void (*func)(void *data), void *data)
902
{
903
#ifdef CONFIG_IOTHREAD
904
    if (env == cpu_single_env) {
905
        func(data);
906
        return;
907
    }
908
    abort();
909
#else
910
    func(data);
911
#endif
912
}
913

    
914
struct kvm_sw_breakpoint *kvm_find_sw_breakpoint(CPUState *env,
915
                                                 target_ulong pc)
916
{
917
    struct kvm_sw_breakpoint *bp;
918

    
919
    QTAILQ_FOREACH(bp, &env->kvm_state->kvm_sw_breakpoints, entry) {
920
        if (bp->pc == pc)
921
            return bp;
922
    }
923
    return NULL;
924
}
925

    
926
int kvm_sw_breakpoints_active(CPUState *env)
927
{
928
    return !QTAILQ_EMPTY(&env->kvm_state->kvm_sw_breakpoints);
929
}
930

    
931
struct kvm_set_guest_debug_data {
932
    struct kvm_guest_debug dbg;
933
    CPUState *env;
934
    int err;
935
};
936

    
937
static void kvm_invoke_set_guest_debug(void *data)
938
{
939
    struct kvm_set_guest_debug_data *dbg_data = data;
940
    CPUState *env = dbg_data->env;
941

    
942
    if (env->kvm_state->regs_modified) {
943
        kvm_arch_put_registers(env);
944
        env->kvm_state->regs_modified = 0;
945
    }
946
    dbg_data->err = kvm_vcpu_ioctl(env, KVM_SET_GUEST_DEBUG, &dbg_data->dbg);
947
}
948

    
949
int kvm_update_guest_debug(CPUState *env, unsigned long reinject_trap)
950
{
951
    struct kvm_set_guest_debug_data data;
952

    
953
    data.dbg.control = 0;
954
    if (env->singlestep_enabled)
955
        data.dbg.control = KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_SINGLESTEP;
956

    
957
    kvm_arch_update_guest_debug(env, &data.dbg);
958
    data.dbg.control |= reinject_trap;
959
    data.env = env;
960

    
961
    on_vcpu(env, kvm_invoke_set_guest_debug, &data);
962
    return data.err;
963
}
964

    
965
int kvm_insert_breakpoint(CPUState *current_env, target_ulong addr,
966
                          target_ulong len, int type)
967
{
968
    struct kvm_sw_breakpoint *bp;
969
    CPUState *env;
970
    int err;
971

    
972
    if (type == GDB_BREAKPOINT_SW) {
973
        bp = kvm_find_sw_breakpoint(current_env, addr);
974
        if (bp) {
975
            bp->use_count++;
976
            return 0;
977
        }
978

    
979
        bp = qemu_malloc(sizeof(struct kvm_sw_breakpoint));
980
        if (!bp)
981
            return -ENOMEM;
982

    
983
        bp->pc = addr;
984
        bp->use_count = 1;
985
        err = kvm_arch_insert_sw_breakpoint(current_env, bp);
986
        if (err) {
987
            free(bp);
988
            return err;
989
        }
990

    
991
        QTAILQ_INSERT_HEAD(&current_env->kvm_state->kvm_sw_breakpoints,
992
                          bp, entry);
993
    } else {
994
        err = kvm_arch_insert_hw_breakpoint(addr, len, type);
995
        if (err)
996
            return err;
997
    }
998

    
999
    for (env = first_cpu; env != NULL; env = env->next_cpu) {
1000
        err = kvm_update_guest_debug(env, 0);
1001
        if (err)
1002
            return err;
1003
    }
1004
    return 0;
1005
}
1006

    
1007
int kvm_remove_breakpoint(CPUState *current_env, target_ulong addr,
1008
                          target_ulong len, int type)
1009
{
1010
    struct kvm_sw_breakpoint *bp;
1011
    CPUState *env;
1012
    int err;
1013

    
1014
    if (type == GDB_BREAKPOINT_SW) {
1015
        bp = kvm_find_sw_breakpoint(current_env, addr);
1016
        if (!bp)
1017
            return -ENOENT;
1018

    
1019
        if (bp->use_count > 1) {
1020
            bp->use_count--;
1021
            return 0;
1022
        }
1023

    
1024
        err = kvm_arch_remove_sw_breakpoint(current_env, bp);
1025
        if (err)
1026
            return err;
1027

    
1028
        QTAILQ_REMOVE(&current_env->kvm_state->kvm_sw_breakpoints, bp, entry);
1029
        qemu_free(bp);
1030
    } else {
1031
        err = kvm_arch_remove_hw_breakpoint(addr, len, type);
1032
        if (err)
1033
            return err;
1034
    }
1035

    
1036
    for (env = first_cpu; env != NULL; env = env->next_cpu) {
1037
        err = kvm_update_guest_debug(env, 0);
1038
        if (err)
1039
            return err;
1040
    }
1041
    return 0;
1042
}
1043

    
1044
void kvm_remove_all_breakpoints(CPUState *current_env)
1045
{
1046
    struct kvm_sw_breakpoint *bp, *next;
1047
    KVMState *s = current_env->kvm_state;
1048
    CPUState *env;
1049

    
1050
    QTAILQ_FOREACH_SAFE(bp, &s->kvm_sw_breakpoints, entry, next) {
1051
        if (kvm_arch_remove_sw_breakpoint(current_env, bp) != 0) {
1052
            /* Try harder to find a CPU that currently sees the breakpoint. */
1053
            for (env = first_cpu; env != NULL; env = env->next_cpu) {
1054
                if (kvm_arch_remove_sw_breakpoint(env, bp) == 0)
1055
                    break;
1056
            }
1057
        }
1058
    }
1059
    kvm_arch_remove_all_hw_breakpoints();
1060

    
1061
    for (env = first_cpu; env != NULL; env = env->next_cpu)
1062
        kvm_update_guest_debug(env, 0);
1063
}
1064

    
1065
#else /* !KVM_CAP_SET_GUEST_DEBUG */
1066

    
1067
int kvm_update_guest_debug(CPUState *env, unsigned long reinject_trap)
1068
{
1069
    return -EINVAL;
1070
}
1071

    
1072
int kvm_insert_breakpoint(CPUState *current_env, target_ulong addr,
1073
                          target_ulong len, int type)
1074
{
1075
    return -EINVAL;
1076
}
1077

    
1078
int kvm_remove_breakpoint(CPUState *current_env, target_ulong addr,
1079
                          target_ulong len, int type)
1080
{
1081
    return -EINVAL;
1082
}
1083

    
1084
void kvm_remove_all_breakpoints(CPUState *current_env)
1085
{
1086
}
1087
#endif /* !KVM_CAP_SET_GUEST_DEBUG */