root / target-ppc / op_helper.c @ a11b8151
History | View | Annotate | Download (76.2 kB)
1 |
/*
|
---|---|
2 |
* PowerPC emulation helpers for qemu.
|
3 |
*
|
4 |
* Copyright (c) 2003-2007 Jocelyn Mayer
|
5 |
*
|
6 |
* This library is free software; you can redistribute it and/or
|
7 |
* modify it under the terms of the GNU Lesser General Public
|
8 |
* License as published by the Free Software Foundation; either
|
9 |
* version 2 of the License, or (at your option) any later version.
|
10 |
*
|
11 |
* This library is distributed in the hope that it will be useful,
|
12 |
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
13 |
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
14 |
* Lesser General Public License for more details.
|
15 |
*
|
16 |
* You should have received a copy of the GNU Lesser General Public
|
17 |
* License along with this library; if not, write to the Free Software
|
18 |
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
|
19 |
*/
|
20 |
#include "exec.h" |
21 |
|
22 |
#include "helper_regs.h" |
23 |
#include "op_helper.h" |
24 |
|
25 |
#define MEMSUFFIX _raw
|
26 |
#include "op_helper.h" |
27 |
#include "op_helper_mem.h" |
28 |
#if !defined(CONFIG_USER_ONLY)
|
29 |
#define MEMSUFFIX _user
|
30 |
#include "op_helper.h" |
31 |
#include "op_helper_mem.h" |
32 |
#define MEMSUFFIX _kernel
|
33 |
#include "op_helper.h" |
34 |
#include "op_helper_mem.h" |
35 |
#if defined(TARGET_PPC64H)
|
36 |
#define MEMSUFFIX _hypv
|
37 |
#include "op_helper.h" |
38 |
#include "op_helper_mem.h" |
39 |
#endif
|
40 |
#endif
|
41 |
|
42 |
//#define DEBUG_OP
|
43 |
//#define DEBUG_EXCEPTIONS
|
44 |
//#define DEBUG_SOFTWARE_TLB
|
45 |
|
46 |
/*****************************************************************************/
|
47 |
/* Exceptions processing helpers */
|
48 |
|
49 |
void do_raise_exception_err (uint32_t exception, int error_code) |
50 |
{ |
51 |
#if 0
|
52 |
printf("Raise exception %3x code : %d\n", exception, error_code);
|
53 |
#endif
|
54 |
env->exception_index = exception; |
55 |
env->error_code = error_code; |
56 |
cpu_loop_exit(); |
57 |
} |
58 |
|
59 |
void do_raise_exception (uint32_t exception)
|
60 |
{ |
61 |
do_raise_exception_err(exception, 0);
|
62 |
} |
63 |
|
64 |
void cpu_dump_EA (target_ulong EA);
|
65 |
void do_print_mem_EA (target_ulong EA)
|
66 |
{ |
67 |
cpu_dump_EA(EA); |
68 |
} |
69 |
|
70 |
/*****************************************************************************/
|
71 |
/* Registers load and stores */
|
72 |
void do_load_cr (void) |
73 |
{ |
74 |
T0 = (env->crf[0] << 28) | |
75 |
(env->crf[1] << 24) | |
76 |
(env->crf[2] << 20) | |
77 |
(env->crf[3] << 16) | |
78 |
(env->crf[4] << 12) | |
79 |
(env->crf[5] << 8) | |
80 |
(env->crf[6] << 4) | |
81 |
(env->crf[7] << 0); |
82 |
} |
83 |
|
84 |
void do_store_cr (uint32_t mask)
|
85 |
{ |
86 |
int i, sh;
|
87 |
|
88 |
for (i = 0, sh = 7; i < 8; i++, sh--) { |
89 |
if (mask & (1 << sh)) |
90 |
env->crf[i] = (T0 >> (sh * 4)) & 0xFUL; |
91 |
} |
92 |
} |
93 |
|
94 |
#if defined(TARGET_PPC64)
|
95 |
void do_store_pri (int prio) |
96 |
{ |
97 |
env->spr[SPR_PPR] &= ~0x001C000000000000ULL;
|
98 |
env->spr[SPR_PPR] |= ((uint64_t)prio & 0x7) << 50; |
99 |
} |
100 |
#endif
|
101 |
|
102 |
target_ulong ppc_load_dump_spr (int sprn)
|
103 |
{ |
104 |
if (loglevel != 0) { |
105 |
fprintf(logfile, "Read SPR %d %03x => " ADDRX "\n", |
106 |
sprn, sprn, env->spr[sprn]); |
107 |
} |
108 |
|
109 |
return env->spr[sprn];
|
110 |
} |
111 |
|
112 |
void ppc_store_dump_spr (int sprn, target_ulong val) |
113 |
{ |
114 |
if (loglevel != 0) { |
115 |
fprintf(logfile, "Write SPR %d %03x => " ADDRX " <= " ADDRX "\n", |
116 |
sprn, sprn, env->spr[sprn], val); |
117 |
} |
118 |
env->spr[sprn] = val; |
119 |
} |
120 |
|
121 |
/*****************************************************************************/
|
122 |
/* Fixed point operations helpers */
|
123 |
void do_adde (void) |
124 |
{ |
125 |
T2 = T0; |
126 |
T0 += T1 + xer_ca; |
127 |
if (likely(!((uint32_t)T0 < (uint32_t)T2 ||
|
128 |
(xer_ca == 1 && (uint32_t)T0 == (uint32_t)T2)))) {
|
129 |
xer_ca = 0;
|
130 |
} else {
|
131 |
xer_ca = 1;
|
132 |
} |
133 |
} |
134 |
|
135 |
#if defined(TARGET_PPC64)
|
136 |
void do_adde_64 (void) |
137 |
{ |
138 |
T2 = T0; |
139 |
T0 += T1 + xer_ca; |
140 |
if (likely(!((uint64_t)T0 < (uint64_t)T2 ||
|
141 |
(xer_ca == 1 && (uint64_t)T0 == (uint64_t)T2)))) {
|
142 |
xer_ca = 0;
|
143 |
} else {
|
144 |
xer_ca = 1;
|
145 |
} |
146 |
} |
147 |
#endif
|
148 |
|
149 |
void do_addmeo (void) |
150 |
{ |
151 |
T1 = T0; |
152 |
T0 += xer_ca + (-1);
|
153 |
if (likely(!((uint32_t)T1 &
|
154 |
((uint32_t)T1 ^ (uint32_t)T0) & (1UL << 31)))) { |
155 |
xer_ov = 0;
|
156 |
} else {
|
157 |
xer_ov = 1;
|
158 |
xer_so = 1;
|
159 |
} |
160 |
if (likely(T1 != 0)) |
161 |
xer_ca = 1;
|
162 |
} |
163 |
|
164 |
#if defined(TARGET_PPC64)
|
165 |
void do_addmeo_64 (void) |
166 |
{ |
167 |
T1 = T0; |
168 |
T0 += xer_ca + (-1);
|
169 |
if (likely(!((uint64_t)T1 &
|
170 |
((uint64_t)T1 ^ (uint64_t)T0) & (1ULL << 63)))) { |
171 |
xer_ov = 0;
|
172 |
} else {
|
173 |
xer_ov = 1;
|
174 |
xer_so = 1;
|
175 |
} |
176 |
if (likely(T1 != 0)) |
177 |
xer_ca = 1;
|
178 |
} |
179 |
#endif
|
180 |
|
181 |
void do_divwo (void) |
182 |
{ |
183 |
if (likely(!(((int32_t)T0 == INT32_MIN && (int32_t)T1 == -1) || |
184 |
(int32_t)T1 == 0))) {
|
185 |
xer_ov = 0;
|
186 |
T0 = (int32_t)T0 / (int32_t)T1; |
187 |
} else {
|
188 |
xer_ov = 1;
|
189 |
xer_so = 1;
|
190 |
T0 = (-1) * ((uint32_t)T0 >> 31); |
191 |
} |
192 |
} |
193 |
|
194 |
#if defined(TARGET_PPC64)
|
195 |
void do_divdo (void) |
196 |
{ |
197 |
if (likely(!(((int64_t)T0 == INT64_MIN && (int64_t)T1 == -1ULL) || |
198 |
(int64_t)T1 == 0))) {
|
199 |
xer_ov = 0;
|
200 |
T0 = (int64_t)T0 / (int64_t)T1; |
201 |
} else {
|
202 |
xer_ov = 1;
|
203 |
xer_so = 1;
|
204 |
T0 = (-1ULL) * ((uint64_t)T0 >> 63); |
205 |
} |
206 |
} |
207 |
#endif
|
208 |
|
209 |
void do_divwuo (void) |
210 |
{ |
211 |
if (likely((uint32_t)T1 != 0)) { |
212 |
xer_ov = 0;
|
213 |
T0 = (uint32_t)T0 / (uint32_t)T1; |
214 |
} else {
|
215 |
xer_ov = 1;
|
216 |
xer_so = 1;
|
217 |
T0 = 0;
|
218 |
} |
219 |
} |
220 |
|
221 |
#if defined(TARGET_PPC64)
|
222 |
void do_divduo (void) |
223 |
{ |
224 |
if (likely((uint64_t)T1 != 0)) { |
225 |
xer_ov = 0;
|
226 |
T0 = (uint64_t)T0 / (uint64_t)T1; |
227 |
} else {
|
228 |
xer_ov = 1;
|
229 |
xer_so = 1;
|
230 |
T0 = 0;
|
231 |
} |
232 |
} |
233 |
#endif
|
234 |
|
235 |
void do_mullwo (void) |
236 |
{ |
237 |
int64_t res = (int64_t)T0 * (int64_t)T1; |
238 |
|
239 |
if (likely((int32_t)res == res)) {
|
240 |
xer_ov = 0;
|
241 |
} else {
|
242 |
xer_ov = 1;
|
243 |
xer_so = 1;
|
244 |
} |
245 |
T0 = (int32_t)res; |
246 |
} |
247 |
|
248 |
#if defined(TARGET_PPC64)
|
249 |
void do_mulldo (void) |
250 |
{ |
251 |
int64_t th; |
252 |
uint64_t tl; |
253 |
|
254 |
muls64(&tl, &th, T0, T1); |
255 |
/* If th != 0 && th != -1, then we had an overflow */
|
256 |
if (likely((th + 1) <= 1)) { |
257 |
xer_ov = 0;
|
258 |
} else {
|
259 |
xer_ov = 1;
|
260 |
xer_so = 1;
|
261 |
} |
262 |
T0 = (int64_t)tl; |
263 |
} |
264 |
#endif
|
265 |
|
266 |
void do_nego (void) |
267 |
{ |
268 |
if (likely((int32_t)T0 != INT32_MIN)) {
|
269 |
xer_ov = 0;
|
270 |
T0 = -(int32_t)T0; |
271 |
} else {
|
272 |
xer_ov = 1;
|
273 |
xer_so = 1;
|
274 |
} |
275 |
} |
276 |
|
277 |
#if defined(TARGET_PPC64)
|
278 |
void do_nego_64 (void) |
279 |
{ |
280 |
if (likely((int64_t)T0 != INT64_MIN)) {
|
281 |
xer_ov = 0;
|
282 |
T0 = -(int64_t)T0; |
283 |
} else {
|
284 |
xer_ov = 1;
|
285 |
xer_so = 1;
|
286 |
} |
287 |
} |
288 |
#endif
|
289 |
|
290 |
void do_subfe (void) |
291 |
{ |
292 |
T0 = T1 + ~T0 + xer_ca; |
293 |
if (likely((uint32_t)T0 >= (uint32_t)T1 &&
|
294 |
(xer_ca == 0 || (uint32_t)T0 != (uint32_t)T1))) {
|
295 |
xer_ca = 0;
|
296 |
} else {
|
297 |
xer_ca = 1;
|
298 |
} |
299 |
} |
300 |
|
301 |
#if defined(TARGET_PPC64)
|
302 |
void do_subfe_64 (void) |
303 |
{ |
304 |
T0 = T1 + ~T0 + xer_ca; |
305 |
if (likely((uint64_t)T0 >= (uint64_t)T1 &&
|
306 |
(xer_ca == 0 || (uint64_t)T0 != (uint64_t)T1))) {
|
307 |
xer_ca = 0;
|
308 |
} else {
|
309 |
xer_ca = 1;
|
310 |
} |
311 |
} |
312 |
#endif
|
313 |
|
314 |
void do_subfmeo (void) |
315 |
{ |
316 |
T1 = T0; |
317 |
T0 = ~T0 + xer_ca - 1;
|
318 |
if (likely(!((uint32_t)~T1 & ((uint32_t)~T1 ^ (uint32_t)T0) &
|
319 |
(1UL << 31)))) { |
320 |
xer_ov = 0;
|
321 |
} else {
|
322 |
xer_ov = 1;
|
323 |
xer_so = 1;
|
324 |
} |
325 |
if (likely((uint32_t)T1 != UINT32_MAX))
|
326 |
xer_ca = 1;
|
327 |
} |
328 |
|
329 |
#if defined(TARGET_PPC64)
|
330 |
void do_subfmeo_64 (void) |
331 |
{ |
332 |
T1 = T0; |
333 |
T0 = ~T0 + xer_ca - 1;
|
334 |
if (likely(!((uint64_t)~T1 & ((uint64_t)~T1 ^ (uint64_t)T0) &
|
335 |
(1ULL << 63)))) { |
336 |
xer_ov = 0;
|
337 |
} else {
|
338 |
xer_ov = 1;
|
339 |
xer_so = 1;
|
340 |
} |
341 |
if (likely((uint64_t)T1 != UINT64_MAX))
|
342 |
xer_ca = 1;
|
343 |
} |
344 |
#endif
|
345 |
|
346 |
void do_subfzeo (void) |
347 |
{ |
348 |
T1 = T0; |
349 |
T0 = ~T0 + xer_ca; |
350 |
if (likely(!(((uint32_t)~T1 ^ UINT32_MAX) &
|
351 |
((uint32_t)(~T1) ^ (uint32_t)T0) & (1UL << 31)))) { |
352 |
xer_ov = 0;
|
353 |
} else {
|
354 |
xer_ov = 1;
|
355 |
xer_so = 1;
|
356 |
} |
357 |
if (likely((uint32_t)T0 >= (uint32_t)~T1)) {
|
358 |
xer_ca = 0;
|
359 |
} else {
|
360 |
xer_ca = 1;
|
361 |
} |
362 |
} |
363 |
|
364 |
#if defined(TARGET_PPC64)
|
365 |
void do_subfzeo_64 (void) |
366 |
{ |
367 |
T1 = T0; |
368 |
T0 = ~T0 + xer_ca; |
369 |
if (likely(!(((uint64_t)~T1 ^ UINT64_MAX) &
|
370 |
((uint64_t)(~T1) ^ (uint64_t)T0) & (1ULL << 63)))) { |
371 |
xer_ov = 0;
|
372 |
} else {
|
373 |
xer_ov = 1;
|
374 |
xer_so = 1;
|
375 |
} |
376 |
if (likely((uint64_t)T0 >= (uint64_t)~T1)) {
|
377 |
xer_ca = 0;
|
378 |
} else {
|
379 |
xer_ca = 1;
|
380 |
} |
381 |
} |
382 |
#endif
|
383 |
|
384 |
/* shift right arithmetic helper */
|
385 |
void do_sraw (void) |
386 |
{ |
387 |
int32_t ret; |
388 |
|
389 |
if (likely(!(T1 & 0x20UL))) { |
390 |
if (likely((uint32_t)T1 != 0)) { |
391 |
ret = (int32_t)T0 >> (T1 & 0x1fUL);
|
392 |
if (likely(ret >= 0 || ((int32_t)T0 & ((1 << T1) - 1)) == 0)) { |
393 |
xer_ca = 0;
|
394 |
} else {
|
395 |
xer_ca = 1;
|
396 |
} |
397 |
} else {
|
398 |
ret = T0; |
399 |
xer_ca = 0;
|
400 |
} |
401 |
} else {
|
402 |
ret = (-1) * ((uint32_t)T0 >> 31); |
403 |
if (likely(ret >= 0 || ((uint32_t)T0 & ~0x80000000UL) == 0)) { |
404 |
xer_ca = 0;
|
405 |
} else {
|
406 |
xer_ca = 1;
|
407 |
} |
408 |
} |
409 |
T0 = ret; |
410 |
} |
411 |
|
412 |
#if defined(TARGET_PPC64)
|
413 |
void do_srad (void) |
414 |
{ |
415 |
int64_t ret; |
416 |
|
417 |
if (likely(!(T1 & 0x40UL))) { |
418 |
if (likely((uint64_t)T1 != 0)) { |
419 |
ret = (int64_t)T0 >> (T1 & 0x3FUL);
|
420 |
if (likely(ret >= 0 || ((int64_t)T0 & ((1 << T1) - 1)) == 0)) { |
421 |
xer_ca = 0;
|
422 |
} else {
|
423 |
xer_ca = 1;
|
424 |
} |
425 |
} else {
|
426 |
ret = T0; |
427 |
xer_ca = 0;
|
428 |
} |
429 |
} else {
|
430 |
ret = (-1) * ((uint64_t)T0 >> 63); |
431 |
if (likely(ret >= 0 || ((uint64_t)T0 & ~0x8000000000000000ULL) == 0)) { |
432 |
xer_ca = 0;
|
433 |
} else {
|
434 |
xer_ca = 1;
|
435 |
} |
436 |
} |
437 |
T0 = ret; |
438 |
} |
439 |
#endif
|
440 |
|
441 |
static always_inline int popcnt (uint32_t val) |
442 |
{ |
443 |
int i;
|
444 |
|
445 |
for (i = 0; val != 0;) |
446 |
val = val ^ (val - 1);
|
447 |
|
448 |
return i;
|
449 |
} |
450 |
|
451 |
void do_popcntb (void) |
452 |
{ |
453 |
uint32_t ret; |
454 |
int i;
|
455 |
|
456 |
ret = 0;
|
457 |
for (i = 0; i < 32; i += 8) |
458 |
ret |= popcnt((T0 >> i) & 0xFF) << i;
|
459 |
T0 = ret; |
460 |
} |
461 |
|
462 |
#if defined(TARGET_PPC64)
|
463 |
void do_popcntb_64 (void) |
464 |
{ |
465 |
uint64_t ret; |
466 |
int i;
|
467 |
|
468 |
ret = 0;
|
469 |
for (i = 0; i < 64; i += 8) |
470 |
ret |= popcnt((T0 >> i) & 0xFF) << i;
|
471 |
T0 = ret; |
472 |
} |
473 |
#endif
|
474 |
|
475 |
/*****************************************************************************/
|
476 |
/* Floating point operations helpers */
|
477 |
static always_inline int fpisneg (float64 f) |
478 |
{ |
479 |
union {
|
480 |
float64 f; |
481 |
uint64_t u; |
482 |
} u; |
483 |
|
484 |
u.f = f; |
485 |
|
486 |
return u.u >> 63 != 0; |
487 |
} |
488 |
|
489 |
static always_inline int isden (float f) |
490 |
{ |
491 |
union {
|
492 |
float64 f; |
493 |
uint64_t u; |
494 |
} u; |
495 |
|
496 |
u.f = f; |
497 |
|
498 |
return ((u.u >> 52) & 0x7FF) == 0; |
499 |
} |
500 |
|
501 |
static always_inline int iszero (float64 f) |
502 |
{ |
503 |
union {
|
504 |
float64 f; |
505 |
uint64_t u; |
506 |
} u; |
507 |
|
508 |
u.f = f; |
509 |
|
510 |
return (u.u & ~0x8000000000000000ULL) == 0; |
511 |
} |
512 |
|
513 |
static always_inline int isinfinity (float64 f) |
514 |
{ |
515 |
union {
|
516 |
float64 f; |
517 |
uint64_t u; |
518 |
} u; |
519 |
|
520 |
u.f = f; |
521 |
|
522 |
return ((u.u >> 52) & 0x3FF) == 0x3FF && |
523 |
(u.u & 0x000FFFFFFFFFFFFFULL) == 0; |
524 |
} |
525 |
|
526 |
void do_compute_fprf (int set_fprf) |
527 |
{ |
528 |
int isneg;
|
529 |
|
530 |
isneg = fpisneg(FT0); |
531 |
if (unlikely(float64_is_nan(FT0))) {
|
532 |
if (float64_is_signaling_nan(FT0)) {
|
533 |
/* Signaling NaN: flags are undefined */
|
534 |
T0 = 0x00;
|
535 |
} else {
|
536 |
/* Quiet NaN */
|
537 |
T0 = 0x11;
|
538 |
} |
539 |
} else if (unlikely(isinfinity(FT0))) { |
540 |
/* +/- infinity */
|
541 |
if (isneg)
|
542 |
T0 = 0x09;
|
543 |
else
|
544 |
T0 = 0x05;
|
545 |
} else {
|
546 |
if (iszero(FT0)) {
|
547 |
/* +/- zero */
|
548 |
if (isneg)
|
549 |
T0 = 0x12;
|
550 |
else
|
551 |
T0 = 0x02;
|
552 |
} else {
|
553 |
if (isden(FT0)) {
|
554 |
/* Denormalized numbers */
|
555 |
T0 = 0x10;
|
556 |
} else {
|
557 |
/* Normalized numbers */
|
558 |
T0 = 0x00;
|
559 |
} |
560 |
if (isneg) {
|
561 |
T0 |= 0x08;
|
562 |
} else {
|
563 |
T0 |= 0x04;
|
564 |
} |
565 |
} |
566 |
} |
567 |
if (set_fprf) {
|
568 |
/* We update FPSCR_FPRF */
|
569 |
env->fpscr &= ~(0x1F << FPSCR_FPRF);
|
570 |
env->fpscr |= T0 << FPSCR_FPRF; |
571 |
} |
572 |
/* We just need fpcc to update Rc1 */
|
573 |
T0 &= 0xF;
|
574 |
} |
575 |
|
576 |
/* Floating-point invalid operations exception */
|
577 |
static always_inline void fload_invalid_op_excp (int op) |
578 |
{ |
579 |
int ve;
|
580 |
|
581 |
ve = fpscr_ve; |
582 |
if (op & POWERPC_EXCP_FP_VXSNAN) {
|
583 |
/* Operation on signaling NaN */
|
584 |
env->fpscr |= 1 << FPSCR_VXSNAN;
|
585 |
} |
586 |
if (op & POWERPC_EXCP_FP_VXSOFT) {
|
587 |
/* Software-defined condition */
|
588 |
env->fpscr |= 1 << FPSCR_VXSOFT;
|
589 |
} |
590 |
switch (op & ~(POWERPC_EXCP_FP_VXSOFT | POWERPC_EXCP_FP_VXSNAN)) {
|
591 |
case POWERPC_EXCP_FP_VXISI:
|
592 |
/* Magnitude subtraction of infinities */
|
593 |
env->fpscr |= 1 << FPSCR_VXISI;
|
594 |
goto update_arith;
|
595 |
case POWERPC_EXCP_FP_VXIDI:
|
596 |
/* Division of infinity by infinity */
|
597 |
env->fpscr |= 1 << FPSCR_VXIDI;
|
598 |
goto update_arith;
|
599 |
case POWERPC_EXCP_FP_VXZDZ:
|
600 |
/* Division of zero by zero */
|
601 |
env->fpscr |= 1 << FPSCR_VXZDZ;
|
602 |
goto update_arith;
|
603 |
case POWERPC_EXCP_FP_VXIMZ:
|
604 |
/* Multiplication of zero by infinity */
|
605 |
env->fpscr |= 1 << FPSCR_VXIMZ;
|
606 |
goto update_arith;
|
607 |
case POWERPC_EXCP_FP_VXVC:
|
608 |
/* Ordered comparison of NaN */
|
609 |
env->fpscr |= 1 << FPSCR_VXVC;
|
610 |
env->fpscr &= ~(0xF << FPSCR_FPCC);
|
611 |
env->fpscr |= 0x11 << FPSCR_FPCC;
|
612 |
/* We must update the target FPR before raising the exception */
|
613 |
if (ve != 0) { |
614 |
env->exception_index = POWERPC_EXCP_PROGRAM; |
615 |
env->error_code = POWERPC_EXCP_FP | POWERPC_EXCP_FP_VXVC; |
616 |
/* Update the floating-point enabled exception summary */
|
617 |
env->fpscr |= 1 << FPSCR_FEX;
|
618 |
/* Exception is differed */
|
619 |
ve = 0;
|
620 |
} |
621 |
break;
|
622 |
case POWERPC_EXCP_FP_VXSQRT:
|
623 |
/* Square root of a negative number */
|
624 |
env->fpscr |= 1 << FPSCR_VXSQRT;
|
625 |
update_arith:
|
626 |
env->fpscr &= ~((1 << FPSCR_FR) | (1 << FPSCR_FI)); |
627 |
if (ve == 0) { |
628 |
/* Set the result to quiet NaN */
|
629 |
FT0 = (uint64_t)-1;
|
630 |
env->fpscr &= ~(0xF << FPSCR_FPCC);
|
631 |
env->fpscr |= 0x11 << FPSCR_FPCC;
|
632 |
} |
633 |
break;
|
634 |
case POWERPC_EXCP_FP_VXCVI:
|
635 |
/* Invalid conversion */
|
636 |
env->fpscr |= 1 << FPSCR_VXCVI;
|
637 |
env->fpscr &= ~((1 << FPSCR_FR) | (1 << FPSCR_FI)); |
638 |
if (ve == 0) { |
639 |
/* Set the result to quiet NaN */
|
640 |
FT0 = (uint64_t)-1;
|
641 |
env->fpscr &= ~(0xF << FPSCR_FPCC);
|
642 |
env->fpscr |= 0x11 << FPSCR_FPCC;
|
643 |
} |
644 |
break;
|
645 |
} |
646 |
/* Update the floating-point invalid operation summary */
|
647 |
env->fpscr |= 1 << FPSCR_VX;
|
648 |
/* Update the floating-point exception summary */
|
649 |
env->fpscr |= 1 << FPSCR_FX;
|
650 |
if (ve != 0) { |
651 |
/* Update the floating-point enabled exception summary */
|
652 |
env->fpscr |= 1 << FPSCR_FEX;
|
653 |
if (msr_fe0 != 0 || msr_fe1 != 0) |
654 |
do_raise_exception_err(POWERPC_EXCP_PROGRAM, POWERPC_EXCP_FP | op); |
655 |
} |
656 |
} |
657 |
|
658 |
static always_inline void float_zero_divide_excp (void) |
659 |
{ |
660 |
union {
|
661 |
float64 f; |
662 |
uint64_t u; |
663 |
} u0, u1; |
664 |
|
665 |
env->fpscr |= 1 << FPSCR_ZX;
|
666 |
env->fpscr &= ~((1 << FPSCR_FR) | (1 << FPSCR_FI)); |
667 |
/* Update the floating-point exception summary */
|
668 |
env->fpscr |= 1 << FPSCR_FX;
|
669 |
if (fpscr_ze != 0) { |
670 |
/* Update the floating-point enabled exception summary */
|
671 |
env->fpscr |= 1 << FPSCR_FEX;
|
672 |
if (msr_fe0 != 0 || msr_fe1 != 0) { |
673 |
do_raise_exception_err(POWERPC_EXCP_PROGRAM, |
674 |
POWERPC_EXCP_FP | POWERPC_EXCP_FP_ZX); |
675 |
} |
676 |
} else {
|
677 |
/* Set the result to infinity */
|
678 |
u0.f = FT0; |
679 |
u1.f = FT1; |
680 |
u0.u = ((u0.u ^ u1.u) & 0x8000000000000000ULL);
|
681 |
u0.u |= 0x3FFULL << 52; |
682 |
FT0 = u0.f; |
683 |
} |
684 |
} |
685 |
|
686 |
static always_inline void float_overflow_excp (void) |
687 |
{ |
688 |
env->fpscr |= 1 << FPSCR_OX;
|
689 |
/* Update the floating-point exception summary */
|
690 |
env->fpscr |= 1 << FPSCR_FX;
|
691 |
if (fpscr_oe != 0) { |
692 |
/* XXX: should adjust the result */
|
693 |
/* Update the floating-point enabled exception summary */
|
694 |
env->fpscr |= 1 << FPSCR_FEX;
|
695 |
/* We must update the target FPR before raising the exception */
|
696 |
env->exception_index = POWERPC_EXCP_PROGRAM; |
697 |
env->error_code = POWERPC_EXCP_FP | POWERPC_EXCP_FP_OX; |
698 |
} else {
|
699 |
env->fpscr |= 1 << FPSCR_XX;
|
700 |
env->fpscr |= 1 << FPSCR_FI;
|
701 |
} |
702 |
} |
703 |
|
704 |
static always_inline void float_underflow_excp (void) |
705 |
{ |
706 |
env->fpscr |= 1 << FPSCR_UX;
|
707 |
/* Update the floating-point exception summary */
|
708 |
env->fpscr |= 1 << FPSCR_FX;
|
709 |
if (fpscr_ue != 0) { |
710 |
/* XXX: should adjust the result */
|
711 |
/* Update the floating-point enabled exception summary */
|
712 |
env->fpscr |= 1 << FPSCR_FEX;
|
713 |
/* We must update the target FPR before raising the exception */
|
714 |
env->exception_index = POWERPC_EXCP_PROGRAM; |
715 |
env->error_code = POWERPC_EXCP_FP | POWERPC_EXCP_FP_UX; |
716 |
} |
717 |
} |
718 |
|
719 |
static always_inline void float_inexact_excp (void) |
720 |
{ |
721 |
env->fpscr |= 1 << FPSCR_XX;
|
722 |
/* Update the floating-point exception summary */
|
723 |
env->fpscr |= 1 << FPSCR_FX;
|
724 |
if (fpscr_xe != 0) { |
725 |
/* Update the floating-point enabled exception summary */
|
726 |
env->fpscr |= 1 << FPSCR_FEX;
|
727 |
/* We must update the target FPR before raising the exception */
|
728 |
env->exception_index = POWERPC_EXCP_PROGRAM; |
729 |
env->error_code = POWERPC_EXCP_FP | POWERPC_EXCP_FP_XX; |
730 |
} |
731 |
} |
732 |
|
733 |
static always_inline void fpscr_set_rounding_mode (void) |
734 |
{ |
735 |
int rnd_type;
|
736 |
|
737 |
/* Set rounding mode */
|
738 |
switch (fpscr_rn) {
|
739 |
case 0: |
740 |
/* Best approximation (round to nearest) */
|
741 |
rnd_type = float_round_nearest_even; |
742 |
break;
|
743 |
case 1: |
744 |
/* Smaller magnitude (round toward zero) */
|
745 |
rnd_type = float_round_to_zero; |
746 |
break;
|
747 |
case 2: |
748 |
/* Round toward +infinite */
|
749 |
rnd_type = float_round_up; |
750 |
break;
|
751 |
default:
|
752 |
case 3: |
753 |
/* Round toward -infinite */
|
754 |
rnd_type = float_round_down; |
755 |
break;
|
756 |
} |
757 |
set_float_rounding_mode(rnd_type, &env->fp_status); |
758 |
} |
759 |
|
760 |
void do_fpscr_setbit (int bit) |
761 |
{ |
762 |
int prev;
|
763 |
|
764 |
prev = (env->fpscr >> bit) & 1;
|
765 |
env->fpscr |= 1 << bit;
|
766 |
if (prev == 0) { |
767 |
switch (bit) {
|
768 |
case FPSCR_VX:
|
769 |
env->fpscr |= 1 << FPSCR_FX;
|
770 |
if (fpscr_ve)
|
771 |
goto raise_ve;
|
772 |
case FPSCR_OX:
|
773 |
env->fpscr |= 1 << FPSCR_FX;
|
774 |
if (fpscr_oe)
|
775 |
goto raise_oe;
|
776 |
break;
|
777 |
case FPSCR_UX:
|
778 |
env->fpscr |= 1 << FPSCR_FX;
|
779 |
if (fpscr_ue)
|
780 |
goto raise_ue;
|
781 |
break;
|
782 |
case FPSCR_ZX:
|
783 |
env->fpscr |= 1 << FPSCR_FX;
|
784 |
if (fpscr_ze)
|
785 |
goto raise_ze;
|
786 |
break;
|
787 |
case FPSCR_XX:
|
788 |
env->fpscr |= 1 << FPSCR_FX;
|
789 |
if (fpscr_xe)
|
790 |
goto raise_xe;
|
791 |
break;
|
792 |
case FPSCR_VXSNAN:
|
793 |
case FPSCR_VXISI:
|
794 |
case FPSCR_VXIDI:
|
795 |
case FPSCR_VXZDZ:
|
796 |
case FPSCR_VXIMZ:
|
797 |
case FPSCR_VXVC:
|
798 |
case FPSCR_VXSOFT:
|
799 |
case FPSCR_VXSQRT:
|
800 |
case FPSCR_VXCVI:
|
801 |
env->fpscr |= 1 << FPSCR_VX;
|
802 |
env->fpscr |= 1 << FPSCR_FX;
|
803 |
if (fpscr_ve != 0) |
804 |
goto raise_ve;
|
805 |
break;
|
806 |
case FPSCR_VE:
|
807 |
if (fpscr_vx != 0) { |
808 |
raise_ve:
|
809 |
env->error_code = POWERPC_EXCP_FP; |
810 |
if (fpscr_vxsnan)
|
811 |
env->error_code |= POWERPC_EXCP_FP_VXSNAN; |
812 |
if (fpscr_vxisi)
|
813 |
env->error_code |= POWERPC_EXCP_FP_VXISI; |
814 |
if (fpscr_vxidi)
|
815 |
env->error_code |= POWERPC_EXCP_FP_VXIDI; |
816 |
if (fpscr_vxzdz)
|
817 |
env->error_code |= POWERPC_EXCP_FP_VXZDZ; |
818 |
if (fpscr_vximz)
|
819 |
env->error_code |= POWERPC_EXCP_FP_VXIMZ; |
820 |
if (fpscr_vxvc)
|
821 |
env->error_code |= POWERPC_EXCP_FP_VXVC; |
822 |
if (fpscr_vxsoft)
|
823 |
env->error_code |= POWERPC_EXCP_FP_VXSOFT; |
824 |
if (fpscr_vxsqrt)
|
825 |
env->error_code |= POWERPC_EXCP_FP_VXSQRT; |
826 |
if (fpscr_vxcvi)
|
827 |
env->error_code |= POWERPC_EXCP_FP_VXCVI; |
828 |
goto raise_excp;
|
829 |
} |
830 |
break;
|
831 |
case FPSCR_OE:
|
832 |
if (fpscr_ox != 0) { |
833 |
raise_oe:
|
834 |
env->error_code = POWERPC_EXCP_FP | POWERPC_EXCP_FP_OX; |
835 |
goto raise_excp;
|
836 |
} |
837 |
break;
|
838 |
case FPSCR_UE:
|
839 |
if (fpscr_ux != 0) { |
840 |
raise_ue:
|
841 |
env->error_code = POWERPC_EXCP_FP | POWERPC_EXCP_FP_UX; |
842 |
goto raise_excp;
|
843 |
} |
844 |
break;
|
845 |
case FPSCR_ZE:
|
846 |
if (fpscr_zx != 0) { |
847 |
raise_ze:
|
848 |
env->error_code = POWERPC_EXCP_FP | POWERPC_EXCP_FP_ZX; |
849 |
goto raise_excp;
|
850 |
} |
851 |
break;
|
852 |
case FPSCR_XE:
|
853 |
if (fpscr_xx != 0) { |
854 |
raise_xe:
|
855 |
env->error_code = POWERPC_EXCP_FP | POWERPC_EXCP_FP_XX; |
856 |
goto raise_excp;
|
857 |
} |
858 |
break;
|
859 |
case FPSCR_RN1:
|
860 |
case FPSCR_RN:
|
861 |
fpscr_set_rounding_mode(); |
862 |
break;
|
863 |
default:
|
864 |
break;
|
865 |
raise_excp:
|
866 |
/* Update the floating-point enabled exception summary */
|
867 |
env->fpscr |= 1 << FPSCR_FEX;
|
868 |
/* We have to update Rc1 before raising the exception */
|
869 |
env->exception_index = POWERPC_EXCP_PROGRAM; |
870 |
break;
|
871 |
} |
872 |
} |
873 |
} |
874 |
|
875 |
#if defined(WORDS_BIGENDIAN)
|
876 |
#define WORD0 0 |
877 |
#define WORD1 1 |
878 |
#else
|
879 |
#define WORD0 1 |
880 |
#define WORD1 0 |
881 |
#endif
|
882 |
void do_store_fpscr (uint32_t mask)
|
883 |
{ |
884 |
/*
|
885 |
* We use only the 32 LSB of the incoming fpr
|
886 |
*/
|
887 |
union {
|
888 |
double d;
|
889 |
struct {
|
890 |
uint32_t u[2];
|
891 |
} s; |
892 |
} u; |
893 |
uint32_t prev, new; |
894 |
int i;
|
895 |
|
896 |
u.d = FT0; |
897 |
prev = env->fpscr; |
898 |
new = u.s.u[WORD1]; |
899 |
new &= ~0x90000000;
|
900 |
new |= prev & 0x90000000;
|
901 |
for (i = 0; i < 7; i++) { |
902 |
if (mask & (1 << i)) { |
903 |
env->fpscr &= ~(0xF << (4 * i)); |
904 |
env->fpscr |= new & (0xF << (4 * i)); |
905 |
} |
906 |
} |
907 |
/* Update VX and FEX */
|
908 |
if (fpscr_ix != 0) |
909 |
env->fpscr |= 1 << FPSCR_VX;
|
910 |
if ((fpscr_ex & fpscr_eex) != 0) { |
911 |
env->fpscr |= 1 << FPSCR_FEX;
|
912 |
env->exception_index = POWERPC_EXCP_PROGRAM; |
913 |
/* XXX: we should compute it properly */
|
914 |
env->error_code = POWERPC_EXCP_FP; |
915 |
} |
916 |
fpscr_set_rounding_mode(); |
917 |
} |
918 |
#undef WORD0
|
919 |
#undef WORD1
|
920 |
|
921 |
#ifdef CONFIG_SOFTFLOAT
|
922 |
void do_float_check_status (void) |
923 |
{ |
924 |
if (env->exception_index == POWERPC_EXCP_PROGRAM &&
|
925 |
(env->error_code & POWERPC_EXCP_FP)) { |
926 |
/* Differred floating-point exception after target FPR update */
|
927 |
if (msr_fe0 != 0 || msr_fe1 != 0) |
928 |
do_raise_exception_err(env->exception_index, env->error_code); |
929 |
} else if (env->fp_status.float_exception_flags & float_flag_overflow) { |
930 |
float_overflow_excp(); |
931 |
} else if (env->fp_status.float_exception_flags & float_flag_underflow) { |
932 |
float_underflow_excp(); |
933 |
} else if (env->fp_status.float_exception_flags & float_flag_inexact) { |
934 |
float_inexact_excp(); |
935 |
} |
936 |
} |
937 |
#endif
|
938 |
|
939 |
#if USE_PRECISE_EMULATION
|
940 |
void do_fadd (void) |
941 |
{ |
942 |
if (unlikely(float64_is_signaling_nan(FT0) ||
|
943 |
float64_is_signaling_nan(FT1))) { |
944 |
/* sNaN addition */
|
945 |
fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN); |
946 |
} else if (likely(isfinite(FT0) || isfinite(FT1) || |
947 |
fpisneg(FT0) == fpisneg(FT1))) { |
948 |
FT0 = float64_add(FT0, FT1, &env->fp_status); |
949 |
} else {
|
950 |
/* Magnitude subtraction of infinities */
|
951 |
fload_invalid_op_excp(POWERPC_EXCP_FP_VXISI); |
952 |
} |
953 |
} |
954 |
|
955 |
void do_fsub (void) |
956 |
{ |
957 |
if (unlikely(float64_is_signaling_nan(FT0) ||
|
958 |
float64_is_signaling_nan(FT1))) { |
959 |
/* sNaN subtraction */
|
960 |
fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN); |
961 |
} else if (likely(isfinite(FT0) || isfinite(FT1) || |
962 |
fpisneg(FT0) != fpisneg(FT1))) { |
963 |
FT0 = float64_sub(FT0, FT1, &env->fp_status); |
964 |
} else {
|
965 |
/* Magnitude subtraction of infinities */
|
966 |
fload_invalid_op_excp(POWERPC_EXCP_FP_VXISI); |
967 |
} |
968 |
} |
969 |
|
970 |
void do_fmul (void) |
971 |
{ |
972 |
if (unlikely(float64_is_signaling_nan(FT0) ||
|
973 |
float64_is_signaling_nan(FT1))) { |
974 |
/* sNaN multiplication */
|
975 |
fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN); |
976 |
} else if (unlikely((isinfinity(FT0) && iszero(FT1)) || |
977 |
(iszero(FT0) && isinfinity(FT1)))) { |
978 |
/* Multiplication of zero by infinity */
|
979 |
fload_invalid_op_excp(POWERPC_EXCP_FP_VXIMZ); |
980 |
} else {
|
981 |
FT0 = float64_mul(FT0, FT1, &env->fp_status); |
982 |
} |
983 |
} |
984 |
|
985 |
void do_fdiv (void) |
986 |
{ |
987 |
if (unlikely(float64_is_signaling_nan(FT0) ||
|
988 |
float64_is_signaling_nan(FT1))) { |
989 |
/* sNaN division */
|
990 |
fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN); |
991 |
} else if (unlikely(isinfinity(FT0) && isinfinity(FT1))) { |
992 |
/* Division of infinity by infinity */
|
993 |
fload_invalid_op_excp(POWERPC_EXCP_FP_VXIDI); |
994 |
} else if (unlikely(iszero(FT1))) { |
995 |
if (iszero(FT0)) {
|
996 |
/* Division of zero by zero */
|
997 |
fload_invalid_op_excp(POWERPC_EXCP_FP_VXZDZ); |
998 |
} else {
|
999 |
/* Division by zero */
|
1000 |
float_zero_divide_excp(); |
1001 |
} |
1002 |
} else {
|
1003 |
FT0 = float64_div(FT0, FT1, &env->fp_status); |
1004 |
} |
1005 |
} |
1006 |
#endif /* USE_PRECISE_EMULATION */ |
1007 |
|
1008 |
void do_fctiw (void) |
1009 |
{ |
1010 |
union {
|
1011 |
double d;
|
1012 |
uint64_t i; |
1013 |
} p; |
1014 |
|
1015 |
if (unlikely(float64_is_signaling_nan(FT0))) {
|
1016 |
/* sNaN conversion */
|
1017 |
fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN | POWERPC_EXCP_FP_VXCVI); |
1018 |
} else if (unlikely(float64_is_nan(FT0) || isinfinity(FT0))) { |
1019 |
/* qNan / infinity conversion */
|
1020 |
fload_invalid_op_excp(POWERPC_EXCP_FP_VXCVI); |
1021 |
} else {
|
1022 |
p.i = float64_to_int32(FT0, &env->fp_status); |
1023 |
#if USE_PRECISE_EMULATION
|
1024 |
/* XXX: higher bits are not supposed to be significant.
|
1025 |
* to make tests easier, return the same as a real PowerPC 750
|
1026 |
*/
|
1027 |
p.i |= 0xFFF80000ULL << 32; |
1028 |
#endif
|
1029 |
FT0 = p.d; |
1030 |
} |
1031 |
} |
1032 |
|
1033 |
void do_fctiwz (void) |
1034 |
{ |
1035 |
union {
|
1036 |
double d;
|
1037 |
uint64_t i; |
1038 |
} p; |
1039 |
|
1040 |
if (unlikely(float64_is_signaling_nan(FT0))) {
|
1041 |
/* sNaN conversion */
|
1042 |
fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN | POWERPC_EXCP_FP_VXCVI); |
1043 |
} else if (unlikely(float64_is_nan(FT0) || isinfinity(FT0))) { |
1044 |
/* qNan / infinity conversion */
|
1045 |
fload_invalid_op_excp(POWERPC_EXCP_FP_VXCVI); |
1046 |
} else {
|
1047 |
p.i = float64_to_int32_round_to_zero(FT0, &env->fp_status); |
1048 |
#if USE_PRECISE_EMULATION
|
1049 |
/* XXX: higher bits are not supposed to be significant.
|
1050 |
* to make tests easier, return the same as a real PowerPC 750
|
1051 |
*/
|
1052 |
p.i |= 0xFFF80000ULL << 32; |
1053 |
#endif
|
1054 |
FT0 = p.d; |
1055 |
} |
1056 |
} |
1057 |
|
1058 |
#if defined(TARGET_PPC64)
|
1059 |
void do_fcfid (void) |
1060 |
{ |
1061 |
union {
|
1062 |
double d;
|
1063 |
uint64_t i; |
1064 |
} p; |
1065 |
|
1066 |
p.d = FT0; |
1067 |
FT0 = int64_to_float64(p.i, &env->fp_status); |
1068 |
} |
1069 |
|
1070 |
void do_fctid (void) |
1071 |
{ |
1072 |
union {
|
1073 |
double d;
|
1074 |
uint64_t i; |
1075 |
} p; |
1076 |
|
1077 |
if (unlikely(float64_is_signaling_nan(FT0))) {
|
1078 |
/* sNaN conversion */
|
1079 |
fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN | POWERPC_EXCP_FP_VXCVI); |
1080 |
} else if (unlikely(float64_is_nan(FT0) || isinfinity(FT0))) { |
1081 |
/* qNan / infinity conversion */
|
1082 |
fload_invalid_op_excp(POWERPC_EXCP_FP_VXCVI); |
1083 |
} else {
|
1084 |
p.i = float64_to_int64(FT0, &env->fp_status); |
1085 |
FT0 = p.d; |
1086 |
} |
1087 |
} |
1088 |
|
1089 |
void do_fctidz (void) |
1090 |
{ |
1091 |
union {
|
1092 |
double d;
|
1093 |
uint64_t i; |
1094 |
} p; |
1095 |
|
1096 |
if (unlikely(float64_is_signaling_nan(FT0))) {
|
1097 |
/* sNaN conversion */
|
1098 |
fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN | POWERPC_EXCP_FP_VXCVI); |
1099 |
} else if (unlikely(float64_is_nan(FT0) || isinfinity(FT0))) { |
1100 |
/* qNan / infinity conversion */
|
1101 |
fload_invalid_op_excp(POWERPC_EXCP_FP_VXCVI); |
1102 |
} else {
|
1103 |
p.i = float64_to_int64_round_to_zero(FT0, &env->fp_status); |
1104 |
FT0 = p.d; |
1105 |
} |
1106 |
} |
1107 |
|
1108 |
#endif
|
1109 |
|
1110 |
static always_inline void do_fri (int rounding_mode) |
1111 |
{ |
1112 |
if (unlikely(float64_is_signaling_nan(FT0))) {
|
1113 |
/* sNaN round */
|
1114 |
fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN | POWERPC_EXCP_FP_VXCVI); |
1115 |
} else if (unlikely(float64_is_nan(FT0) || isinfinity(FT0))) { |
1116 |
/* qNan / infinity round */
|
1117 |
fload_invalid_op_excp(POWERPC_EXCP_FP_VXCVI); |
1118 |
} else {
|
1119 |
set_float_rounding_mode(rounding_mode, &env->fp_status); |
1120 |
FT0 = float64_round_to_int(FT0, &env->fp_status); |
1121 |
/* Restore rounding mode from FPSCR */
|
1122 |
fpscr_set_rounding_mode(); |
1123 |
} |
1124 |
} |
1125 |
|
1126 |
void do_frin (void) |
1127 |
{ |
1128 |
do_fri(float_round_nearest_even); |
1129 |
} |
1130 |
|
1131 |
void do_friz (void) |
1132 |
{ |
1133 |
do_fri(float_round_to_zero); |
1134 |
} |
1135 |
|
1136 |
void do_frip (void) |
1137 |
{ |
1138 |
do_fri(float_round_up); |
1139 |
} |
1140 |
|
1141 |
void do_frim (void) |
1142 |
{ |
1143 |
do_fri(float_round_down); |
1144 |
} |
1145 |
|
1146 |
#if USE_PRECISE_EMULATION
|
1147 |
void do_fmadd (void) |
1148 |
{ |
1149 |
if (unlikely(float64_is_signaling_nan(FT0) ||
|
1150 |
float64_is_signaling_nan(FT1) || |
1151 |
float64_is_signaling_nan(FT2))) { |
1152 |
/* sNaN operation */
|
1153 |
fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN); |
1154 |
} else {
|
1155 |
#ifdef FLOAT128
|
1156 |
/* This is the way the PowerPC specification defines it */
|
1157 |
float128 ft0_128, ft1_128; |
1158 |
|
1159 |
ft0_128 = float64_to_float128(FT0, &env->fp_status); |
1160 |
ft1_128 = float64_to_float128(FT1, &env->fp_status); |
1161 |
ft0_128 = float128_mul(ft0_128, ft1_128, &env->fp_status); |
1162 |
ft1_128 = float64_to_float128(FT2, &env->fp_status); |
1163 |
ft0_128 = float128_add(ft0_128, ft1_128, &env->fp_status); |
1164 |
FT0 = float128_to_float64(ft0_128, &env->fp_status); |
1165 |
#else
|
1166 |
/* This is OK on x86 hosts */
|
1167 |
FT0 = (FT0 * FT1) + FT2; |
1168 |
#endif
|
1169 |
} |
1170 |
} |
1171 |
|
1172 |
void do_fmsub (void) |
1173 |
{ |
1174 |
if (unlikely(float64_is_signaling_nan(FT0) ||
|
1175 |
float64_is_signaling_nan(FT1) || |
1176 |
float64_is_signaling_nan(FT2))) { |
1177 |
/* sNaN operation */
|
1178 |
fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN); |
1179 |
} else {
|
1180 |
#ifdef FLOAT128
|
1181 |
/* This is the way the PowerPC specification defines it */
|
1182 |
float128 ft0_128, ft1_128; |
1183 |
|
1184 |
ft0_128 = float64_to_float128(FT0, &env->fp_status); |
1185 |
ft1_128 = float64_to_float128(FT1, &env->fp_status); |
1186 |
ft0_128 = float128_mul(ft0_128, ft1_128, &env->fp_status); |
1187 |
ft1_128 = float64_to_float128(FT2, &env->fp_status); |
1188 |
ft0_128 = float128_sub(ft0_128, ft1_128, &env->fp_status); |
1189 |
FT0 = float128_to_float64(ft0_128, &env->fp_status); |
1190 |
#else
|
1191 |
/* This is OK on x86 hosts */
|
1192 |
FT0 = (FT0 * FT1) - FT2; |
1193 |
#endif
|
1194 |
} |
1195 |
} |
1196 |
#endif /* USE_PRECISE_EMULATION */ |
1197 |
|
1198 |
void do_fnmadd (void) |
1199 |
{ |
1200 |
if (unlikely(float64_is_signaling_nan(FT0) ||
|
1201 |
float64_is_signaling_nan(FT1) || |
1202 |
float64_is_signaling_nan(FT2))) { |
1203 |
/* sNaN operation */
|
1204 |
fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN); |
1205 |
} else {
|
1206 |
#if USE_PRECISE_EMULATION
|
1207 |
#ifdef FLOAT128
|
1208 |
/* This is the way the PowerPC specification defines it */
|
1209 |
float128 ft0_128, ft1_128; |
1210 |
|
1211 |
ft0_128 = float64_to_float128(FT0, &env->fp_status); |
1212 |
ft1_128 = float64_to_float128(FT1, &env->fp_status); |
1213 |
ft0_128 = float128_mul(ft0_128, ft1_128, &env->fp_status); |
1214 |
ft1_128 = float64_to_float128(FT2, &env->fp_status); |
1215 |
ft0_128 = float128_add(ft0_128, ft1_128, &env->fp_status); |
1216 |
FT0 = float128_to_float64(ft0_128, &env->fp_status); |
1217 |
#else
|
1218 |
/* This is OK on x86 hosts */
|
1219 |
FT0 = (FT0 * FT1) + FT2; |
1220 |
#endif
|
1221 |
#else
|
1222 |
FT0 = float64_mul(FT0, FT1, &env->fp_status); |
1223 |
FT0 = float64_add(FT0, FT2, &env->fp_status); |
1224 |
#endif
|
1225 |
if (likely(!isnan(FT0)))
|
1226 |
FT0 = float64_chs(FT0); |
1227 |
} |
1228 |
} |
1229 |
|
1230 |
void do_fnmsub (void) |
1231 |
{ |
1232 |
if (unlikely(float64_is_signaling_nan(FT0) ||
|
1233 |
float64_is_signaling_nan(FT1) || |
1234 |
float64_is_signaling_nan(FT2))) { |
1235 |
/* sNaN operation */
|
1236 |
fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN); |
1237 |
} else {
|
1238 |
#if USE_PRECISE_EMULATION
|
1239 |
#ifdef FLOAT128
|
1240 |
/* This is the way the PowerPC specification defines it */
|
1241 |
float128 ft0_128, ft1_128; |
1242 |
|
1243 |
ft0_128 = float64_to_float128(FT0, &env->fp_status); |
1244 |
ft1_128 = float64_to_float128(FT1, &env->fp_status); |
1245 |
ft0_128 = float128_mul(ft0_128, ft1_128, &env->fp_status); |
1246 |
ft1_128 = float64_to_float128(FT2, &env->fp_status); |
1247 |
ft0_128 = float128_sub(ft0_128, ft1_128, &env->fp_status); |
1248 |
FT0 = float128_to_float64(ft0_128, &env->fp_status); |
1249 |
#else
|
1250 |
/* This is OK on x86 hosts */
|
1251 |
FT0 = (FT0 * FT1) - FT2; |
1252 |
#endif
|
1253 |
#else
|
1254 |
FT0 = float64_mul(FT0, FT1, &env->fp_status); |
1255 |
FT0 = float64_sub(FT0, FT2, &env->fp_status); |
1256 |
#endif
|
1257 |
if (likely(!isnan(FT0)))
|
1258 |
FT0 = float64_chs(FT0); |
1259 |
} |
1260 |
} |
1261 |
|
1262 |
#if USE_PRECISE_EMULATION
|
1263 |
void do_frsp (void) |
1264 |
{ |
1265 |
if (unlikely(float64_is_signaling_nan(FT0))) {
|
1266 |
/* sNaN square root */
|
1267 |
fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN); |
1268 |
} else {
|
1269 |
FT0 = float64_to_float32(FT0, &env->fp_status); |
1270 |
} |
1271 |
} |
1272 |
#endif /* USE_PRECISE_EMULATION */ |
1273 |
|
1274 |
void do_fsqrt (void) |
1275 |
{ |
1276 |
if (unlikely(float64_is_signaling_nan(FT0))) {
|
1277 |
/* sNaN square root */
|
1278 |
fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN); |
1279 |
} else if (unlikely(fpisneg(FT0) && !iszero(FT0))) { |
1280 |
/* Square root of a negative nonzero number */
|
1281 |
fload_invalid_op_excp(POWERPC_EXCP_FP_VXSQRT); |
1282 |
} else {
|
1283 |
FT0 = float64_sqrt(FT0, &env->fp_status); |
1284 |
} |
1285 |
} |
1286 |
|
1287 |
void do_fre (void) |
1288 |
{ |
1289 |
union {
|
1290 |
double d;
|
1291 |
uint64_t i; |
1292 |
} p; |
1293 |
|
1294 |
if (unlikely(float64_is_signaling_nan(FT0))) {
|
1295 |
/* sNaN reciprocal */
|
1296 |
fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN); |
1297 |
} else if (unlikely(iszero(FT0))) { |
1298 |
/* Zero reciprocal */
|
1299 |
float_zero_divide_excp(); |
1300 |
} else if (likely(isnormal(FT0))) { |
1301 |
FT0 = float64_div(1.0, FT0, &env->fp_status); |
1302 |
} else {
|
1303 |
p.d = FT0; |
1304 |
if (p.i == 0x8000000000000000ULL) { |
1305 |
p.i = 0xFFF0000000000000ULL;
|
1306 |
} else if (p.i == 0x0000000000000000ULL) { |
1307 |
p.i = 0x7FF0000000000000ULL;
|
1308 |
} else if (isnan(FT0)) { |
1309 |
p.i = 0x7FF8000000000000ULL;
|
1310 |
} else if (fpisneg(FT0)) { |
1311 |
p.i = 0x8000000000000000ULL;
|
1312 |
} else {
|
1313 |
p.i = 0x0000000000000000ULL;
|
1314 |
} |
1315 |
FT0 = p.d; |
1316 |
} |
1317 |
} |
1318 |
|
1319 |
void do_fres (void) |
1320 |
{ |
1321 |
union {
|
1322 |
double d;
|
1323 |
uint64_t i; |
1324 |
} p; |
1325 |
|
1326 |
if (unlikely(float64_is_signaling_nan(FT0))) {
|
1327 |
/* sNaN reciprocal */
|
1328 |
fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN); |
1329 |
} else if (unlikely(iszero(FT0))) { |
1330 |
/* Zero reciprocal */
|
1331 |
float_zero_divide_excp(); |
1332 |
} else if (likely(isnormal(FT0))) { |
1333 |
#if USE_PRECISE_EMULATION
|
1334 |
FT0 = float64_div(1.0, FT0, &env->fp_status); |
1335 |
FT0 = float64_to_float32(FT0, &env->fp_status); |
1336 |
#else
|
1337 |
FT0 = float32_div(1.0, FT0, &env->fp_status); |
1338 |
#endif
|
1339 |
} else {
|
1340 |
p.d = FT0; |
1341 |
if (p.i == 0x8000000000000000ULL) { |
1342 |
p.i = 0xFFF0000000000000ULL;
|
1343 |
} else if (p.i == 0x0000000000000000ULL) { |
1344 |
p.i = 0x7FF0000000000000ULL;
|
1345 |
} else if (isnan(FT0)) { |
1346 |
p.i = 0x7FF8000000000000ULL;
|
1347 |
} else if (fpisneg(FT0)) { |
1348 |
p.i = 0x8000000000000000ULL;
|
1349 |
} else {
|
1350 |
p.i = 0x0000000000000000ULL;
|
1351 |
} |
1352 |
FT0 = p.d; |
1353 |
} |
1354 |
} |
1355 |
|
1356 |
void do_frsqrte (void) |
1357 |
{ |
1358 |
union {
|
1359 |
double d;
|
1360 |
uint64_t i; |
1361 |
} p; |
1362 |
|
1363 |
if (unlikely(float64_is_signaling_nan(FT0))) {
|
1364 |
/* sNaN reciprocal square root */
|
1365 |
fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN); |
1366 |
} else if (unlikely(fpisneg(FT0) && !iszero(FT0))) { |
1367 |
/* Reciprocal square root of a negative nonzero number */
|
1368 |
fload_invalid_op_excp(POWERPC_EXCP_FP_VXSQRT); |
1369 |
} else if (likely(isnormal(FT0))) { |
1370 |
FT0 = float64_sqrt(FT0, &env->fp_status); |
1371 |
FT0 = float32_div(1.0, FT0, &env->fp_status); |
1372 |
} else {
|
1373 |
p.d = FT0; |
1374 |
if (p.i == 0x8000000000000000ULL) { |
1375 |
p.i = 0xFFF0000000000000ULL;
|
1376 |
} else if (p.i == 0x0000000000000000ULL) { |
1377 |
p.i = 0x7FF0000000000000ULL;
|
1378 |
} else if (isnan(FT0)) { |
1379 |
p.i |= 0x000FFFFFFFFFFFFFULL;
|
1380 |
} else if (fpisneg(FT0)) { |
1381 |
p.i = 0x7FF8000000000000ULL;
|
1382 |
} else {
|
1383 |
p.i = 0x0000000000000000ULL;
|
1384 |
} |
1385 |
FT0 = p.d; |
1386 |
} |
1387 |
} |
1388 |
|
1389 |
void do_fsel (void) |
1390 |
{ |
1391 |
if (!fpisneg(FT0) || iszero(FT0))
|
1392 |
FT0 = FT1; |
1393 |
else
|
1394 |
FT0 = FT2; |
1395 |
} |
1396 |
|
1397 |
void do_fcmpu (void) |
1398 |
{ |
1399 |
if (unlikely(float64_is_signaling_nan(FT0) ||
|
1400 |
float64_is_signaling_nan(FT1))) { |
1401 |
/* sNaN comparison */
|
1402 |
fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN); |
1403 |
} else {
|
1404 |
if (float64_lt(FT0, FT1, &env->fp_status)) {
|
1405 |
T0 = 0x08UL;
|
1406 |
} else if (!float64_le(FT0, FT1, &env->fp_status)) { |
1407 |
T0 = 0x04UL;
|
1408 |
} else {
|
1409 |
T0 = 0x02UL;
|
1410 |
} |
1411 |
} |
1412 |
env->fpscr &= ~(0x0F << FPSCR_FPRF);
|
1413 |
env->fpscr |= T0 << FPSCR_FPRF; |
1414 |
} |
1415 |
|
1416 |
void do_fcmpo (void) |
1417 |
{ |
1418 |
if (unlikely(float64_is_nan(FT0) ||
|
1419 |
float64_is_nan(FT1))) { |
1420 |
if (float64_is_signaling_nan(FT0) ||
|
1421 |
float64_is_signaling_nan(FT1)) { |
1422 |
/* sNaN comparison */
|
1423 |
fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN | |
1424 |
POWERPC_EXCP_FP_VXVC); |
1425 |
} else {
|
1426 |
/* qNaN comparison */
|
1427 |
fload_invalid_op_excp(POWERPC_EXCP_FP_VXVC); |
1428 |
} |
1429 |
} else {
|
1430 |
if (float64_lt(FT0, FT1, &env->fp_status)) {
|
1431 |
T0 = 0x08UL;
|
1432 |
} else if (!float64_le(FT0, FT1, &env->fp_status)) { |
1433 |
T0 = 0x04UL;
|
1434 |
} else {
|
1435 |
T0 = 0x02UL;
|
1436 |
} |
1437 |
} |
1438 |
env->fpscr &= ~(0x0F << FPSCR_FPRF);
|
1439 |
env->fpscr |= T0 << FPSCR_FPRF; |
1440 |
} |
1441 |
|
1442 |
#if !defined (CONFIG_USER_ONLY)
|
1443 |
void cpu_dump_rfi (target_ulong RA, target_ulong msr);
|
1444 |
|
1445 |
void do_store_msr (void) |
1446 |
{ |
1447 |
T0 = hreg_store_msr(env, T0); |
1448 |
if (T0 != 0) { |
1449 |
env->interrupt_request |= CPU_INTERRUPT_EXITTB; |
1450 |
do_raise_exception(T0); |
1451 |
} |
1452 |
} |
1453 |
|
1454 |
static always_inline void __do_rfi (target_ulong nip, target_ulong msr, |
1455 |
target_ulong msrm, int keep_msrh)
|
1456 |
{ |
1457 |
#if defined(TARGET_PPC64)
|
1458 |
if (msr & (1ULL << MSR_SF)) { |
1459 |
nip = (uint64_t)nip; |
1460 |
msr &= (uint64_t)msrm; |
1461 |
} else {
|
1462 |
nip = (uint32_t)nip; |
1463 |
msr = (uint32_t)(msr & msrm); |
1464 |
if (keep_msrh)
|
1465 |
msr |= env->msr & ~((uint64_t)0xFFFFFFFF);
|
1466 |
} |
1467 |
#else
|
1468 |
nip = (uint32_t)nip; |
1469 |
msr &= (uint32_t)msrm; |
1470 |
#endif
|
1471 |
/* XXX: beware: this is false if VLE is supported */
|
1472 |
env->nip = nip & ~((target_ulong)0x00000003);
|
1473 |
hreg_store_msr(env, msr); |
1474 |
#if defined (DEBUG_OP)
|
1475 |
cpu_dump_rfi(env->nip, env->msr); |
1476 |
#endif
|
1477 |
/* No need to raise an exception here,
|
1478 |
* as rfi is always the last insn of a TB
|
1479 |
*/
|
1480 |
env->interrupt_request |= CPU_INTERRUPT_EXITTB; |
1481 |
} |
1482 |
|
1483 |
void do_rfi (void) |
1484 |
{ |
1485 |
__do_rfi(env->spr[SPR_SRR0], env->spr[SPR_SRR1], |
1486 |
~((target_ulong)0xFFFF0000), 1); |
1487 |
} |
1488 |
|
1489 |
#if defined(TARGET_PPC64)
|
1490 |
void do_rfid (void) |
1491 |
{ |
1492 |
__do_rfi(env->spr[SPR_SRR0], env->spr[SPR_SRR1], |
1493 |
~((target_ulong)0xFFFF0000), 0); |
1494 |
} |
1495 |
#endif
|
1496 |
#if defined(TARGET_PPC64H)
|
1497 |
void do_hrfid (void) |
1498 |
{ |
1499 |
__do_rfi(env->spr[SPR_HSRR0], env->spr[SPR_HSRR1], |
1500 |
~((target_ulong)0xFFFF0000), 0); |
1501 |
} |
1502 |
#endif
|
1503 |
#endif
|
1504 |
|
1505 |
void do_tw (int flags) |
1506 |
{ |
1507 |
if (!likely(!(((int32_t)T0 < (int32_t)T1 && (flags & 0x10)) || |
1508 |
((int32_t)T0 > (int32_t)T1 && (flags & 0x08)) ||
|
1509 |
((int32_t)T0 == (int32_t)T1 && (flags & 0x04)) ||
|
1510 |
((uint32_t)T0 < (uint32_t)T1 && (flags & 0x02)) ||
|
1511 |
((uint32_t)T0 > (uint32_t)T1 && (flags & 0x01))))) {
|
1512 |
do_raise_exception_err(POWERPC_EXCP_PROGRAM, POWERPC_EXCP_TRAP); |
1513 |
} |
1514 |
} |
1515 |
|
1516 |
#if defined(TARGET_PPC64)
|
1517 |
void do_td (int flags) |
1518 |
{ |
1519 |
if (!likely(!(((int64_t)T0 < (int64_t)T1 && (flags & 0x10)) || |
1520 |
((int64_t)T0 > (int64_t)T1 && (flags & 0x08)) ||
|
1521 |
((int64_t)T0 == (int64_t)T1 && (flags & 0x04)) ||
|
1522 |
((uint64_t)T0 < (uint64_t)T1 && (flags & 0x02)) ||
|
1523 |
((uint64_t)T0 > (uint64_t)T1 && (flags & 0x01)))))
|
1524 |
do_raise_exception_err(POWERPC_EXCP_PROGRAM, POWERPC_EXCP_TRAP); |
1525 |
} |
1526 |
#endif
|
1527 |
|
1528 |
/*****************************************************************************/
|
1529 |
/* PowerPC 601 specific instructions (POWER bridge) */
|
1530 |
void do_POWER_abso (void) |
1531 |
{ |
1532 |
if ((uint32_t)T0 == INT32_MIN) {
|
1533 |
T0 = INT32_MAX; |
1534 |
xer_ov = 1;
|
1535 |
xer_so = 1;
|
1536 |
} else {
|
1537 |
T0 = -T0; |
1538 |
xer_ov = 0;
|
1539 |
} |
1540 |
} |
1541 |
|
1542 |
void do_POWER_clcs (void) |
1543 |
{ |
1544 |
switch (T0) {
|
1545 |
case 0x0CUL: |
1546 |
/* Instruction cache line size */
|
1547 |
T0 = env->icache_line_size; |
1548 |
break;
|
1549 |
case 0x0DUL: |
1550 |
/* Data cache line size */
|
1551 |
T0 = env->dcache_line_size; |
1552 |
break;
|
1553 |
case 0x0EUL: |
1554 |
/* Minimum cache line size */
|
1555 |
T0 = env->icache_line_size < env->dcache_line_size ? |
1556 |
env->icache_line_size : env->dcache_line_size; |
1557 |
break;
|
1558 |
case 0x0FUL: |
1559 |
/* Maximum cache line size */
|
1560 |
T0 = env->icache_line_size > env->dcache_line_size ? |
1561 |
env->icache_line_size : env->dcache_line_size; |
1562 |
break;
|
1563 |
default:
|
1564 |
/* Undefined */
|
1565 |
break;
|
1566 |
} |
1567 |
} |
1568 |
|
1569 |
void do_POWER_div (void) |
1570 |
{ |
1571 |
uint64_t tmp; |
1572 |
|
1573 |
if (((int32_t)T0 == INT32_MIN && (int32_t)T1 == -1) || (int32_t)T1 == 0) { |
1574 |
T0 = (long)((-1) * (T0 >> 31)); |
1575 |
env->spr[SPR_MQ] = 0;
|
1576 |
} else {
|
1577 |
tmp = ((uint64_t)T0 << 32) | env->spr[SPR_MQ];
|
1578 |
env->spr[SPR_MQ] = tmp % T1; |
1579 |
T0 = tmp / (int32_t)T1; |
1580 |
} |
1581 |
} |
1582 |
|
1583 |
void do_POWER_divo (void) |
1584 |
{ |
1585 |
int64_t tmp; |
1586 |
|
1587 |
if (((int32_t)T0 == INT32_MIN && (int32_t)T1 == -1) || (int32_t)T1 == 0) { |
1588 |
T0 = (long)((-1) * (T0 >> 31)); |
1589 |
env->spr[SPR_MQ] = 0;
|
1590 |
xer_ov = 1;
|
1591 |
xer_so = 1;
|
1592 |
} else {
|
1593 |
tmp = ((uint64_t)T0 << 32) | env->spr[SPR_MQ];
|
1594 |
env->spr[SPR_MQ] = tmp % T1; |
1595 |
tmp /= (int32_t)T1; |
1596 |
if (tmp > (int64_t)INT32_MAX || tmp < (int64_t)INT32_MIN) {
|
1597 |
xer_ov = 1;
|
1598 |
xer_so = 1;
|
1599 |
} else {
|
1600 |
xer_ov = 0;
|
1601 |
} |
1602 |
T0 = tmp; |
1603 |
} |
1604 |
} |
1605 |
|
1606 |
void do_POWER_divs (void) |
1607 |
{ |
1608 |
if (((int32_t)T0 == INT32_MIN && (int32_t)T1 == -1) || (int32_t)T1 == 0) { |
1609 |
T0 = (long)((-1) * (T0 >> 31)); |
1610 |
env->spr[SPR_MQ] = 0;
|
1611 |
} else {
|
1612 |
env->spr[SPR_MQ] = T0 % T1; |
1613 |
T0 = (int32_t)T0 / (int32_t)T1; |
1614 |
} |
1615 |
} |
1616 |
|
1617 |
void do_POWER_divso (void) |
1618 |
{ |
1619 |
if (((int32_t)T0 == INT32_MIN && (int32_t)T1 == -1) || (int32_t)T1 == 0) { |
1620 |
T0 = (long)((-1) * (T0 >> 31)); |
1621 |
env->spr[SPR_MQ] = 0;
|
1622 |
xer_ov = 1;
|
1623 |
xer_so = 1;
|
1624 |
} else {
|
1625 |
T0 = (int32_t)T0 / (int32_t)T1; |
1626 |
env->spr[SPR_MQ] = (int32_t)T0 % (int32_t)T1; |
1627 |
xer_ov = 0;
|
1628 |
} |
1629 |
} |
1630 |
|
1631 |
void do_POWER_dozo (void) |
1632 |
{ |
1633 |
if ((int32_t)T1 > (int32_t)T0) {
|
1634 |
T2 = T0; |
1635 |
T0 = T1 - T0; |
1636 |
if (((uint32_t)(~T2) ^ (uint32_t)T1 ^ UINT32_MAX) &
|
1637 |
((uint32_t)(~T2) ^ (uint32_t)T0) & (1UL << 31)) { |
1638 |
xer_ov = 1;
|
1639 |
xer_so = 1;
|
1640 |
} else {
|
1641 |
xer_ov = 0;
|
1642 |
} |
1643 |
} else {
|
1644 |
T0 = 0;
|
1645 |
xer_ov = 0;
|
1646 |
} |
1647 |
} |
1648 |
|
1649 |
void do_POWER_maskg (void) |
1650 |
{ |
1651 |
uint32_t ret; |
1652 |
|
1653 |
if ((uint32_t)T0 == (uint32_t)(T1 + 1)) { |
1654 |
ret = -1;
|
1655 |
} else {
|
1656 |
ret = (((uint32_t)(-1)) >> ((uint32_t)T0)) ^
|
1657 |
(((uint32_t)(-1) >> ((uint32_t)T1)) >> 1); |
1658 |
if ((uint32_t)T0 > (uint32_t)T1)
|
1659 |
ret = ~ret; |
1660 |
} |
1661 |
T0 = ret; |
1662 |
} |
1663 |
|
1664 |
void do_POWER_mulo (void) |
1665 |
{ |
1666 |
uint64_t tmp; |
1667 |
|
1668 |
tmp = (uint64_t)T0 * (uint64_t)T1; |
1669 |
env->spr[SPR_MQ] = tmp >> 32;
|
1670 |
T0 = tmp; |
1671 |
if (tmp >> 32 != ((uint64_t)T0 >> 16) * ((uint64_t)T1 >> 16)) { |
1672 |
xer_ov = 1;
|
1673 |
xer_so = 1;
|
1674 |
} else {
|
1675 |
xer_ov = 0;
|
1676 |
} |
1677 |
} |
1678 |
|
1679 |
#if !defined (CONFIG_USER_ONLY)
|
1680 |
void do_POWER_rac (void) |
1681 |
{ |
1682 |
#if 0
|
1683 |
mmu_ctx_t ctx;
|
1684 |
|
1685 |
/* We don't have to generate many instances of this instruction,
|
1686 |
* as rac is supervisor only.
|
1687 |
*/
|
1688 |
if (get_physical_address(env, &ctx, T0, 0, ACCESS_INT, 1) == 0)
|
1689 |
T0 = ctx.raddr;
|
1690 |
#endif
|
1691 |
} |
1692 |
|
1693 |
void do_POWER_rfsvc (void) |
1694 |
{ |
1695 |
__do_rfi(env->lr, env->ctr, 0x0000FFFF, 0); |
1696 |
} |
1697 |
|
1698 |
/* PowerPC 601 BAT management helper */
|
1699 |
void do_store_601_batu (int nr) |
1700 |
{ |
1701 |
do_store_ibatu(env, nr, (uint32_t)T0); |
1702 |
env->DBAT[0][nr] = env->IBAT[0][nr]; |
1703 |
env->DBAT[1][nr] = env->IBAT[1][nr]; |
1704 |
} |
1705 |
#endif
|
1706 |
|
1707 |
/*****************************************************************************/
|
1708 |
/* 602 specific instructions */
|
1709 |
/* mfrom is the most crazy instruction ever seen, imho ! */
|
1710 |
/* Real implementation uses a ROM table. Do the same */
|
1711 |
#define USE_MFROM_ROM_TABLE
|
1712 |
void do_op_602_mfrom (void) |
1713 |
{ |
1714 |
if (likely(T0 < 602)) { |
1715 |
#if defined(USE_MFROM_ROM_TABLE)
|
1716 |
#include "mfrom_table.c" |
1717 |
T0 = mfrom_ROM_table[T0]; |
1718 |
#else
|
1719 |
double d;
|
1720 |
/* Extremly decomposed:
|
1721 |
* -T0 / 256
|
1722 |
* T0 = 256 * log10(10 + 1.0) + 0.5
|
1723 |
*/
|
1724 |
d = T0; |
1725 |
d = float64_div(d, 256, &env->fp_status);
|
1726 |
d = float64_chs(d); |
1727 |
d = exp10(d); // XXX: use float emulation function
|
1728 |
d = float64_add(d, 1.0, &env->fp_status); |
1729 |
d = log10(d); // XXX: use float emulation function
|
1730 |
d = float64_mul(d, 256, &env->fp_status);
|
1731 |
d = float64_add(d, 0.5, &env->fp_status); |
1732 |
T0 = float64_round_to_int(d, &env->fp_status); |
1733 |
#endif
|
1734 |
} else {
|
1735 |
T0 = 0;
|
1736 |
} |
1737 |
} |
1738 |
|
1739 |
/*****************************************************************************/
|
1740 |
/* Embedded PowerPC specific helpers */
|
1741 |
void do_405_check_ov (void) |
1742 |
{ |
1743 |
if (likely((((uint32_t)T1 ^ (uint32_t)T2) >> 31) || |
1744 |
!(((uint32_t)T0 ^ (uint32_t)T2) >> 31))) {
|
1745 |
xer_ov = 0;
|
1746 |
} else {
|
1747 |
xer_ov = 1;
|
1748 |
xer_so = 1;
|
1749 |
} |
1750 |
} |
1751 |
|
1752 |
void do_405_check_sat (void) |
1753 |
{ |
1754 |
if (!likely((((uint32_t)T1 ^ (uint32_t)T2) >> 31) || |
1755 |
!(((uint32_t)T0 ^ (uint32_t)T2) >> 31))) {
|
1756 |
/* Saturate result */
|
1757 |
if (T2 >> 31) { |
1758 |
T0 = INT32_MIN; |
1759 |
} else {
|
1760 |
T0 = INT32_MAX; |
1761 |
} |
1762 |
} |
1763 |
} |
1764 |
|
1765 |
/* XXX: to be improved to check access rights when in user-mode */
|
1766 |
void do_load_dcr (void) |
1767 |
{ |
1768 |
target_ulong val; |
1769 |
|
1770 |
if (unlikely(env->dcr_env == NULL)) { |
1771 |
if (loglevel != 0) { |
1772 |
fprintf(logfile, "No DCR environment\n");
|
1773 |
} |
1774 |
do_raise_exception_err(POWERPC_EXCP_PROGRAM, |
1775 |
POWERPC_EXCP_INVAL | POWERPC_EXCP_INVAL_INVAL); |
1776 |
} else if (unlikely(ppc_dcr_read(env->dcr_env, T0, &val) != 0)) { |
1777 |
if (loglevel != 0) { |
1778 |
fprintf(logfile, "DCR read error %d %03x\n", (int)T0, (int)T0); |
1779 |
} |
1780 |
do_raise_exception_err(POWERPC_EXCP_PROGRAM, |
1781 |
POWERPC_EXCP_INVAL | POWERPC_EXCP_PRIV_REG); |
1782 |
} else {
|
1783 |
T0 = val; |
1784 |
} |
1785 |
} |
1786 |
|
1787 |
void do_store_dcr (void) |
1788 |
{ |
1789 |
if (unlikely(env->dcr_env == NULL)) { |
1790 |
if (loglevel != 0) { |
1791 |
fprintf(logfile, "No DCR environment\n");
|
1792 |
} |
1793 |
do_raise_exception_err(POWERPC_EXCP_PROGRAM, |
1794 |
POWERPC_EXCP_INVAL | POWERPC_EXCP_INVAL_INVAL); |
1795 |
} else if (unlikely(ppc_dcr_write(env->dcr_env, T0, T1) != 0)) { |
1796 |
if (loglevel != 0) { |
1797 |
fprintf(logfile, "DCR write error %d %03x\n", (int)T0, (int)T0); |
1798 |
} |
1799 |
do_raise_exception_err(POWERPC_EXCP_PROGRAM, |
1800 |
POWERPC_EXCP_INVAL | POWERPC_EXCP_PRIV_REG); |
1801 |
} |
1802 |
} |
1803 |
|
1804 |
#if !defined(CONFIG_USER_ONLY)
|
1805 |
void do_40x_rfci (void) |
1806 |
{ |
1807 |
__do_rfi(env->spr[SPR_40x_SRR2], env->spr[SPR_40x_SRR3], |
1808 |
~((target_ulong)0xFFFF0000), 0); |
1809 |
} |
1810 |
|
1811 |
void do_rfci (void) |
1812 |
{ |
1813 |
__do_rfi(env->spr[SPR_BOOKE_CSRR0], SPR_BOOKE_CSRR1, |
1814 |
~((target_ulong)0x3FFF0000), 0); |
1815 |
} |
1816 |
|
1817 |
void do_rfdi (void) |
1818 |
{ |
1819 |
__do_rfi(env->spr[SPR_BOOKE_DSRR0], SPR_BOOKE_DSRR1, |
1820 |
~((target_ulong)0x3FFF0000), 0); |
1821 |
} |
1822 |
|
1823 |
void do_rfmci (void) |
1824 |
{ |
1825 |
__do_rfi(env->spr[SPR_BOOKE_MCSRR0], SPR_BOOKE_MCSRR1, |
1826 |
~((target_ulong)0x3FFF0000), 0); |
1827 |
} |
1828 |
|
1829 |
void do_load_403_pb (int num) |
1830 |
{ |
1831 |
T0 = env->pb[num]; |
1832 |
} |
1833 |
|
1834 |
void do_store_403_pb (int num) |
1835 |
{ |
1836 |
if (likely(env->pb[num] != T0)) {
|
1837 |
env->pb[num] = T0; |
1838 |
/* Should be optimized */
|
1839 |
tlb_flush(env, 1);
|
1840 |
} |
1841 |
} |
1842 |
#endif
|
1843 |
|
1844 |
/* 440 specific */
|
1845 |
void do_440_dlmzb (void) |
1846 |
{ |
1847 |
target_ulong mask; |
1848 |
int i;
|
1849 |
|
1850 |
i = 1;
|
1851 |
for (mask = 0xFF000000; mask != 0; mask = mask >> 8) { |
1852 |
if ((T0 & mask) == 0) |
1853 |
goto done;
|
1854 |
i++; |
1855 |
} |
1856 |
for (mask = 0xFF000000; mask != 0; mask = mask >> 8) { |
1857 |
if ((T1 & mask) == 0) |
1858 |
break;
|
1859 |
i++; |
1860 |
} |
1861 |
done:
|
1862 |
T0 = i; |
1863 |
} |
1864 |
|
1865 |
#if defined(TARGET_PPCEMB)
|
1866 |
/* SPE extension helpers */
|
1867 |
/* Use a table to make this quicker */
|
1868 |
static uint8_t hbrev[16] = { |
1869 |
0x0, 0x8, 0x4, 0xC, 0x2, 0xA, 0x6, 0xE, |
1870 |
0x1, 0x9, 0x5, 0xD, 0x3, 0xB, 0x7, 0xF, |
1871 |
}; |
1872 |
|
1873 |
static always_inline uint8_t byte_reverse (uint8_t val)
|
1874 |
{ |
1875 |
return hbrev[val >> 4] | (hbrev[val & 0xF] << 4); |
1876 |
} |
1877 |
|
1878 |
static always_inline uint32_t word_reverse (uint32_t val)
|
1879 |
{ |
1880 |
return byte_reverse(val >> 24) | (byte_reverse(val >> 16) << 8) | |
1881 |
(byte_reverse(val >> 8) << 16) | (byte_reverse(val) << 24); |
1882 |
} |
1883 |
|
1884 |
#define MASKBITS 16 // Random value - to be fixed |
1885 |
void do_brinc (void) |
1886 |
{ |
1887 |
uint32_t a, b, d, mask; |
1888 |
|
1889 |
mask = (uint32_t)(-1UL) >> MASKBITS;
|
1890 |
b = T1_64 & mask; |
1891 |
a = T0_64 & mask; |
1892 |
d = word_reverse(1 + word_reverse(a | ~mask));
|
1893 |
T0_64 = (T0_64 & ~mask) | (d & mask); |
1894 |
} |
1895 |
|
1896 |
#define DO_SPE_OP2(name) \
|
1897 |
void do_ev##name (void) \ |
1898 |
{ \ |
1899 |
T0_64 = ((uint64_t)_do_e##name(T0_64 >> 32, T1_64 >> 32) << 32) | \ |
1900 |
(uint64_t)_do_e##name(T0_64, T1_64); \ |
1901 |
} |
1902 |
|
1903 |
#define DO_SPE_OP1(name) \
|
1904 |
void do_ev##name (void) \ |
1905 |
{ \ |
1906 |
T0_64 = ((uint64_t)_do_e##name(T0_64 >> 32) << 32) | \ |
1907 |
(uint64_t)_do_e##name(T0_64); \ |
1908 |
} |
1909 |
|
1910 |
/* Fixed-point vector arithmetic */
|
1911 |
static always_inline uint32_t _do_eabs (uint32_t val)
|
1912 |
{ |
1913 |
if (val != 0x80000000) |
1914 |
val &= ~0x80000000;
|
1915 |
|
1916 |
return val;
|
1917 |
} |
1918 |
|
1919 |
static always_inline uint32_t _do_eaddw (uint32_t op1, uint32_t op2)
|
1920 |
{ |
1921 |
return op1 + op2;
|
1922 |
} |
1923 |
|
1924 |
static always_inline int _do_ecntlsw (uint32_t val) |
1925 |
{ |
1926 |
if (val & 0x80000000) |
1927 |
return _do_cntlzw(~val);
|
1928 |
else
|
1929 |
return _do_cntlzw(val);
|
1930 |
} |
1931 |
|
1932 |
static always_inline int _do_ecntlzw (uint32_t val) |
1933 |
{ |
1934 |
return _do_cntlzw(val);
|
1935 |
} |
1936 |
|
1937 |
static always_inline uint32_t _do_eneg (uint32_t val)
|
1938 |
{ |
1939 |
if (val != 0x80000000) |
1940 |
val ^= 0x80000000;
|
1941 |
|
1942 |
return val;
|
1943 |
} |
1944 |
|
1945 |
static always_inline uint32_t _do_erlw (uint32_t op1, uint32_t op2)
|
1946 |
{ |
1947 |
return rotl32(op1, op2);
|
1948 |
} |
1949 |
|
1950 |
static always_inline uint32_t _do_erndw (uint32_t val)
|
1951 |
{ |
1952 |
return (val + 0x000080000000) & 0xFFFF0000; |
1953 |
} |
1954 |
|
1955 |
static always_inline uint32_t _do_eslw (uint32_t op1, uint32_t op2)
|
1956 |
{ |
1957 |
/* No error here: 6 bits are used */
|
1958 |
return op1 << (op2 & 0x3F); |
1959 |
} |
1960 |
|
1961 |
static always_inline int32_t _do_esrws (int32_t op1, uint32_t op2)
|
1962 |
{ |
1963 |
/* No error here: 6 bits are used */
|
1964 |
return op1 >> (op2 & 0x3F); |
1965 |
} |
1966 |
|
1967 |
static always_inline uint32_t _do_esrwu (uint32_t op1, uint32_t op2)
|
1968 |
{ |
1969 |
/* No error here: 6 bits are used */
|
1970 |
return op1 >> (op2 & 0x3F); |
1971 |
} |
1972 |
|
1973 |
static always_inline uint32_t _do_esubfw (uint32_t op1, uint32_t op2)
|
1974 |
{ |
1975 |
return op2 - op1;
|
1976 |
} |
1977 |
|
1978 |
/* evabs */
|
1979 |
DO_SPE_OP1(abs); |
1980 |
/* evaddw */
|
1981 |
DO_SPE_OP2(addw); |
1982 |
/* evcntlsw */
|
1983 |
DO_SPE_OP1(cntlsw); |
1984 |
/* evcntlzw */
|
1985 |
DO_SPE_OP1(cntlzw); |
1986 |
/* evneg */
|
1987 |
DO_SPE_OP1(neg); |
1988 |
/* evrlw */
|
1989 |
DO_SPE_OP2(rlw); |
1990 |
/* evrnd */
|
1991 |
DO_SPE_OP1(rndw); |
1992 |
/* evslw */
|
1993 |
DO_SPE_OP2(slw); |
1994 |
/* evsrws */
|
1995 |
DO_SPE_OP2(srws); |
1996 |
/* evsrwu */
|
1997 |
DO_SPE_OP2(srwu); |
1998 |
/* evsubfw */
|
1999 |
DO_SPE_OP2(subfw); |
2000 |
|
2001 |
/* evsel is a little bit more complicated... */
|
2002 |
static always_inline uint32_t _do_esel (uint32_t op1, uint32_t op2, int n) |
2003 |
{ |
2004 |
if (n)
|
2005 |
return op1;
|
2006 |
else
|
2007 |
return op2;
|
2008 |
} |
2009 |
|
2010 |
void do_evsel (void) |
2011 |
{ |
2012 |
T0_64 = ((uint64_t)_do_esel(T0_64 >> 32, T1_64 >> 32, T0 >> 3) << 32) | |
2013 |
(uint64_t)_do_esel(T0_64, T1_64, (T0 >> 2) & 1); |
2014 |
} |
2015 |
|
2016 |
/* Fixed-point vector comparisons */
|
2017 |
#define DO_SPE_CMP(name) \
|
2018 |
void do_ev##name (void) \ |
2019 |
{ \ |
2020 |
T0 = _do_evcmp_merge((uint64_t)_do_e##name(T0_64 >> 32, \ |
2021 |
T1_64 >> 32) << 32, \ |
2022 |
_do_e##name(T0_64, T1_64)); \ |
2023 |
} |
2024 |
|
2025 |
static always_inline uint32_t _do_evcmp_merge (int t0, int t1) |
2026 |
{ |
2027 |
return (t0 << 3) | (t1 << 2) | ((t0 | t1) << 1) | (t0 & t1); |
2028 |
} |
2029 |
static always_inline int _do_ecmpeq (uint32_t op1, uint32_t op2) |
2030 |
{ |
2031 |
return op1 == op2 ? 1 : 0; |
2032 |
} |
2033 |
|
2034 |
static always_inline int _do_ecmpgts (int32_t op1, int32_t op2) |
2035 |
{ |
2036 |
return op1 > op2 ? 1 : 0; |
2037 |
} |
2038 |
|
2039 |
static always_inline int _do_ecmpgtu (uint32_t op1, uint32_t op2) |
2040 |
{ |
2041 |
return op1 > op2 ? 1 : 0; |
2042 |
} |
2043 |
|
2044 |
static always_inline int _do_ecmplts (int32_t op1, int32_t op2) |
2045 |
{ |
2046 |
return op1 < op2 ? 1 : 0; |
2047 |
} |
2048 |
|
2049 |
static always_inline int _do_ecmpltu (uint32_t op1, uint32_t op2) |
2050 |
{ |
2051 |
return op1 < op2 ? 1 : 0; |
2052 |
} |
2053 |
|
2054 |
/* evcmpeq */
|
2055 |
DO_SPE_CMP(cmpeq); |
2056 |
/* evcmpgts */
|
2057 |
DO_SPE_CMP(cmpgts); |
2058 |
/* evcmpgtu */
|
2059 |
DO_SPE_CMP(cmpgtu); |
2060 |
/* evcmplts */
|
2061 |
DO_SPE_CMP(cmplts); |
2062 |
/* evcmpltu */
|
2063 |
DO_SPE_CMP(cmpltu); |
2064 |
|
2065 |
/* Single precision floating-point conversions from/to integer */
|
2066 |
static always_inline uint32_t _do_efscfsi (int32_t val)
|
2067 |
{ |
2068 |
union {
|
2069 |
uint32_t u; |
2070 |
float32 f; |
2071 |
} u; |
2072 |
|
2073 |
u.f = int32_to_float32(val, &env->spe_status); |
2074 |
|
2075 |
return u.u;
|
2076 |
} |
2077 |
|
2078 |
static always_inline uint32_t _do_efscfui (uint32_t val)
|
2079 |
{ |
2080 |
union {
|
2081 |
uint32_t u; |
2082 |
float32 f; |
2083 |
} u; |
2084 |
|
2085 |
u.f = uint32_to_float32(val, &env->spe_status); |
2086 |
|
2087 |
return u.u;
|
2088 |
} |
2089 |
|
2090 |
static always_inline int32_t _do_efsctsi (uint32_t val)
|
2091 |
{ |
2092 |
union {
|
2093 |
int32_t u; |
2094 |
float32 f; |
2095 |
} u; |
2096 |
|
2097 |
u.u = val; |
2098 |
/* NaN are not treated the same way IEEE 754 does */
|
2099 |
if (unlikely(isnan(u.f)))
|
2100 |
return 0; |
2101 |
|
2102 |
return float32_to_int32(u.f, &env->spe_status);
|
2103 |
} |
2104 |
|
2105 |
static always_inline uint32_t _do_efsctui (uint32_t val)
|
2106 |
{ |
2107 |
union {
|
2108 |
int32_t u; |
2109 |
float32 f; |
2110 |
} u; |
2111 |
|
2112 |
u.u = val; |
2113 |
/* NaN are not treated the same way IEEE 754 does */
|
2114 |
if (unlikely(isnan(u.f)))
|
2115 |
return 0; |
2116 |
|
2117 |
return float32_to_uint32(u.f, &env->spe_status);
|
2118 |
} |
2119 |
|
2120 |
static always_inline int32_t _do_efsctsiz (uint32_t val)
|
2121 |
{ |
2122 |
union {
|
2123 |
int32_t u; |
2124 |
float32 f; |
2125 |
} u; |
2126 |
|
2127 |
u.u = val; |
2128 |
/* NaN are not treated the same way IEEE 754 does */
|
2129 |
if (unlikely(isnan(u.f)))
|
2130 |
return 0; |
2131 |
|
2132 |
return float32_to_int32_round_to_zero(u.f, &env->spe_status);
|
2133 |
} |
2134 |
|
2135 |
static always_inline uint32_t _do_efsctuiz (uint32_t val)
|
2136 |
{ |
2137 |
union {
|
2138 |
int32_t u; |
2139 |
float32 f; |
2140 |
} u; |
2141 |
|
2142 |
u.u = val; |
2143 |
/* NaN are not treated the same way IEEE 754 does */
|
2144 |
if (unlikely(isnan(u.f)))
|
2145 |
return 0; |
2146 |
|
2147 |
return float32_to_uint32_round_to_zero(u.f, &env->spe_status);
|
2148 |
} |
2149 |
|
2150 |
void do_efscfsi (void) |
2151 |
{ |
2152 |
T0_64 = _do_efscfsi(T0_64); |
2153 |
} |
2154 |
|
2155 |
void do_efscfui (void) |
2156 |
{ |
2157 |
T0_64 = _do_efscfui(T0_64); |
2158 |
} |
2159 |
|
2160 |
void do_efsctsi (void) |
2161 |
{ |
2162 |
T0_64 = _do_efsctsi(T0_64); |
2163 |
} |
2164 |
|
2165 |
void do_efsctui (void) |
2166 |
{ |
2167 |
T0_64 = _do_efsctui(T0_64); |
2168 |
} |
2169 |
|
2170 |
void do_efsctsiz (void) |
2171 |
{ |
2172 |
T0_64 = _do_efsctsiz(T0_64); |
2173 |
} |
2174 |
|
2175 |
void do_efsctuiz (void) |
2176 |
{ |
2177 |
T0_64 = _do_efsctuiz(T0_64); |
2178 |
} |
2179 |
|
2180 |
/* Single precision floating-point conversion to/from fractional */
|
2181 |
static always_inline uint32_t _do_efscfsf (uint32_t val)
|
2182 |
{ |
2183 |
union {
|
2184 |
uint32_t u; |
2185 |
float32 f; |
2186 |
} u; |
2187 |
float32 tmp; |
2188 |
|
2189 |
u.f = int32_to_float32(val, &env->spe_status); |
2190 |
tmp = int64_to_float32(1ULL << 32, &env->spe_status); |
2191 |
u.f = float32_div(u.f, tmp, &env->spe_status); |
2192 |
|
2193 |
return u.u;
|
2194 |
} |
2195 |
|
2196 |
static always_inline uint32_t _do_efscfuf (uint32_t val)
|
2197 |
{ |
2198 |
union {
|
2199 |
uint32_t u; |
2200 |
float32 f; |
2201 |
} u; |
2202 |
float32 tmp; |
2203 |
|
2204 |
u.f = uint32_to_float32(val, &env->spe_status); |
2205 |
tmp = uint64_to_float32(1ULL << 32, &env->spe_status); |
2206 |
u.f = float32_div(u.f, tmp, &env->spe_status); |
2207 |
|
2208 |
return u.u;
|
2209 |
} |
2210 |
|
2211 |
static always_inline int32_t _do_efsctsf (uint32_t val)
|
2212 |
{ |
2213 |
union {
|
2214 |
int32_t u; |
2215 |
float32 f; |
2216 |
} u; |
2217 |
float32 tmp; |
2218 |
|
2219 |
u.u = val; |
2220 |
/* NaN are not treated the same way IEEE 754 does */
|
2221 |
if (unlikely(isnan(u.f)))
|
2222 |
return 0; |
2223 |
tmp = uint64_to_float32(1ULL << 32, &env->spe_status); |
2224 |
u.f = float32_mul(u.f, tmp, &env->spe_status); |
2225 |
|
2226 |
return float32_to_int32(u.f, &env->spe_status);
|
2227 |
} |
2228 |
|
2229 |
static always_inline uint32_t _do_efsctuf (uint32_t val)
|
2230 |
{ |
2231 |
union {
|
2232 |
int32_t u; |
2233 |
float32 f; |
2234 |
} u; |
2235 |
float32 tmp; |
2236 |
|
2237 |
u.u = val; |
2238 |
/* NaN are not treated the same way IEEE 754 does */
|
2239 |
if (unlikely(isnan(u.f)))
|
2240 |
return 0; |
2241 |
tmp = uint64_to_float32(1ULL << 32, &env->spe_status); |
2242 |
u.f = float32_mul(u.f, tmp, &env->spe_status); |
2243 |
|
2244 |
return float32_to_uint32(u.f, &env->spe_status);
|
2245 |
} |
2246 |
|
2247 |
static always_inline int32_t _do_efsctsfz (uint32_t val)
|
2248 |
{ |
2249 |
union {
|
2250 |
int32_t u; |
2251 |
float32 f; |
2252 |
} u; |
2253 |
float32 tmp; |
2254 |
|
2255 |
u.u = val; |
2256 |
/* NaN are not treated the same way IEEE 754 does */
|
2257 |
if (unlikely(isnan(u.f)))
|
2258 |
return 0; |
2259 |
tmp = uint64_to_float32(1ULL << 32, &env->spe_status); |
2260 |
u.f = float32_mul(u.f, tmp, &env->spe_status); |
2261 |
|
2262 |
return float32_to_int32_round_to_zero(u.f, &env->spe_status);
|
2263 |
} |
2264 |
|
2265 |
static always_inline uint32_t _do_efsctufz (uint32_t val)
|
2266 |
{ |
2267 |
union {
|
2268 |
int32_t u; |
2269 |
float32 f; |
2270 |
} u; |
2271 |
float32 tmp; |
2272 |
|
2273 |
u.u = val; |
2274 |
/* NaN are not treated the same way IEEE 754 does */
|
2275 |
if (unlikely(isnan(u.f)))
|
2276 |
return 0; |
2277 |
tmp = uint64_to_float32(1ULL << 32, &env->spe_status); |
2278 |
u.f = float32_mul(u.f, tmp, &env->spe_status); |
2279 |
|
2280 |
return float32_to_uint32_round_to_zero(u.f, &env->spe_status);
|
2281 |
} |
2282 |
|
2283 |
void do_efscfsf (void) |
2284 |
{ |
2285 |
T0_64 = _do_efscfsf(T0_64); |
2286 |
} |
2287 |
|
2288 |
void do_efscfuf (void) |
2289 |
{ |
2290 |
T0_64 = _do_efscfuf(T0_64); |
2291 |
} |
2292 |
|
2293 |
void do_efsctsf (void) |
2294 |
{ |
2295 |
T0_64 = _do_efsctsf(T0_64); |
2296 |
} |
2297 |
|
2298 |
void do_efsctuf (void) |
2299 |
{ |
2300 |
T0_64 = _do_efsctuf(T0_64); |
2301 |
} |
2302 |
|
2303 |
void do_efsctsfz (void) |
2304 |
{ |
2305 |
T0_64 = _do_efsctsfz(T0_64); |
2306 |
} |
2307 |
|
2308 |
void do_efsctufz (void) |
2309 |
{ |
2310 |
T0_64 = _do_efsctufz(T0_64); |
2311 |
} |
2312 |
|
2313 |
/* Double precision floating point helpers */
|
2314 |
static always_inline int _do_efdcmplt (uint64_t op1, uint64_t op2) |
2315 |
{ |
2316 |
/* XXX: TODO: test special values (NaN, infinites, ...) */
|
2317 |
return _do_efdtstlt(op1, op2);
|
2318 |
} |
2319 |
|
2320 |
static always_inline int _do_efdcmpgt (uint64_t op1, uint64_t op2) |
2321 |
{ |
2322 |
/* XXX: TODO: test special values (NaN, infinites, ...) */
|
2323 |
return _do_efdtstgt(op1, op2);
|
2324 |
} |
2325 |
|
2326 |
static always_inline int _do_efdcmpeq (uint64_t op1, uint64_t op2) |
2327 |
{ |
2328 |
/* XXX: TODO: test special values (NaN, infinites, ...) */
|
2329 |
return _do_efdtsteq(op1, op2);
|
2330 |
} |
2331 |
|
2332 |
void do_efdcmplt (void) |
2333 |
{ |
2334 |
T0 = _do_efdcmplt(T0_64, T1_64); |
2335 |
} |
2336 |
|
2337 |
void do_efdcmpgt (void) |
2338 |
{ |
2339 |
T0 = _do_efdcmpgt(T0_64, T1_64); |
2340 |
} |
2341 |
|
2342 |
void do_efdcmpeq (void) |
2343 |
{ |
2344 |
T0 = _do_efdcmpeq(T0_64, T1_64); |
2345 |
} |
2346 |
|
2347 |
/* Double precision floating-point conversion to/from integer */
|
2348 |
static always_inline uint64_t _do_efdcfsi (int64_t val)
|
2349 |
{ |
2350 |
union {
|
2351 |
uint64_t u; |
2352 |
float64 f; |
2353 |
} u; |
2354 |
|
2355 |
u.f = int64_to_float64(val, &env->spe_status); |
2356 |
|
2357 |
return u.u;
|
2358 |
} |
2359 |
|
2360 |
static always_inline uint64_t _do_efdcfui (uint64_t val)
|
2361 |
{ |
2362 |
union {
|
2363 |
uint64_t u; |
2364 |
float64 f; |
2365 |
} u; |
2366 |
|
2367 |
u.f = uint64_to_float64(val, &env->spe_status); |
2368 |
|
2369 |
return u.u;
|
2370 |
} |
2371 |
|
2372 |
static always_inline int64_t _do_efdctsi (uint64_t val)
|
2373 |
{ |
2374 |
union {
|
2375 |
int64_t u; |
2376 |
float64 f; |
2377 |
} u; |
2378 |
|
2379 |
u.u = val; |
2380 |
/* NaN are not treated the same way IEEE 754 does */
|
2381 |
if (unlikely(isnan(u.f)))
|
2382 |
return 0; |
2383 |
|
2384 |
return float64_to_int64(u.f, &env->spe_status);
|
2385 |
} |
2386 |
|
2387 |
static always_inline uint64_t _do_efdctui (uint64_t val)
|
2388 |
{ |
2389 |
union {
|
2390 |
int64_t u; |
2391 |
float64 f; |
2392 |
} u; |
2393 |
|
2394 |
u.u = val; |
2395 |
/* NaN are not treated the same way IEEE 754 does */
|
2396 |
if (unlikely(isnan(u.f)))
|
2397 |
return 0; |
2398 |
|
2399 |
return float64_to_uint64(u.f, &env->spe_status);
|
2400 |
} |
2401 |
|
2402 |
static always_inline int64_t _do_efdctsiz (uint64_t val)
|
2403 |
{ |
2404 |
union {
|
2405 |
int64_t u; |
2406 |
float64 f; |
2407 |
} u; |
2408 |
|
2409 |
u.u = val; |
2410 |
/* NaN are not treated the same way IEEE 754 does */
|
2411 |
if (unlikely(isnan(u.f)))
|
2412 |
return 0; |
2413 |
|
2414 |
return float64_to_int64_round_to_zero(u.f, &env->spe_status);
|
2415 |
} |
2416 |
|
2417 |
static always_inline uint64_t _do_efdctuiz (uint64_t val)
|
2418 |
{ |
2419 |
union {
|
2420 |
int64_t u; |
2421 |
float64 f; |
2422 |
} u; |
2423 |
|
2424 |
u.u = val; |
2425 |
/* NaN are not treated the same way IEEE 754 does */
|
2426 |
if (unlikely(isnan(u.f)))
|
2427 |
return 0; |
2428 |
|
2429 |
return float64_to_uint64_round_to_zero(u.f, &env->spe_status);
|
2430 |
} |
2431 |
|
2432 |
void do_efdcfsi (void) |
2433 |
{ |
2434 |
T0_64 = _do_efdcfsi(T0_64); |
2435 |
} |
2436 |
|
2437 |
void do_efdcfui (void) |
2438 |
{ |
2439 |
T0_64 = _do_efdcfui(T0_64); |
2440 |
} |
2441 |
|
2442 |
void do_efdctsi (void) |
2443 |
{ |
2444 |
T0_64 = _do_efdctsi(T0_64); |
2445 |
} |
2446 |
|
2447 |
void do_efdctui (void) |
2448 |
{ |
2449 |
T0_64 = _do_efdctui(T0_64); |
2450 |
} |
2451 |
|
2452 |
void do_efdctsiz (void) |
2453 |
{ |
2454 |
T0_64 = _do_efdctsiz(T0_64); |
2455 |
} |
2456 |
|
2457 |
void do_efdctuiz (void) |
2458 |
{ |
2459 |
T0_64 = _do_efdctuiz(T0_64); |
2460 |
} |
2461 |
|
2462 |
/* Double precision floating-point conversion to/from fractional */
|
2463 |
static always_inline uint64_t _do_efdcfsf (int64_t val)
|
2464 |
{ |
2465 |
union {
|
2466 |
uint64_t u; |
2467 |
float64 f; |
2468 |
} u; |
2469 |
float64 tmp; |
2470 |
|
2471 |
u.f = int32_to_float64(val, &env->spe_status); |
2472 |
tmp = int64_to_float64(1ULL << 32, &env->spe_status); |
2473 |
u.f = float64_div(u.f, tmp, &env->spe_status); |
2474 |
|
2475 |
return u.u;
|
2476 |
} |
2477 |
|
2478 |
static always_inline uint64_t _do_efdcfuf (uint64_t val)
|
2479 |
{ |
2480 |
union {
|
2481 |
uint64_t u; |
2482 |
float64 f; |
2483 |
} u; |
2484 |
float64 tmp; |
2485 |
|
2486 |
u.f = uint32_to_float64(val, &env->spe_status); |
2487 |
tmp = int64_to_float64(1ULL << 32, &env->spe_status); |
2488 |
u.f = float64_div(u.f, tmp, &env->spe_status); |
2489 |
|
2490 |
return u.u;
|
2491 |
} |
2492 |
|
2493 |
static always_inline int64_t _do_efdctsf (uint64_t val)
|
2494 |
{ |
2495 |
union {
|
2496 |
int64_t u; |
2497 |
float64 f; |
2498 |
} u; |
2499 |
float64 tmp; |
2500 |
|
2501 |
u.u = val; |
2502 |
/* NaN are not treated the same way IEEE 754 does */
|
2503 |
if (unlikely(isnan(u.f)))
|
2504 |
return 0; |
2505 |
tmp = uint64_to_float64(1ULL << 32, &env->spe_status); |
2506 |
u.f = float64_mul(u.f, tmp, &env->spe_status); |
2507 |
|
2508 |
return float64_to_int32(u.f, &env->spe_status);
|
2509 |
} |
2510 |
|
2511 |
static always_inline uint64_t _do_efdctuf (uint64_t val)
|
2512 |
{ |
2513 |
union {
|
2514 |
int64_t u; |
2515 |
float64 f; |
2516 |
} u; |
2517 |
float64 tmp; |
2518 |
|
2519 |
u.u = val; |
2520 |
/* NaN are not treated the same way IEEE 754 does */
|
2521 |
if (unlikely(isnan(u.f)))
|
2522 |
return 0; |
2523 |
tmp = uint64_to_float64(1ULL << 32, &env->spe_status); |
2524 |
u.f = float64_mul(u.f, tmp, &env->spe_status); |
2525 |
|
2526 |
return float64_to_uint32(u.f, &env->spe_status);
|
2527 |
} |
2528 |
|
2529 |
static always_inline int64_t _do_efdctsfz (uint64_t val)
|
2530 |
{ |
2531 |
union {
|
2532 |
int64_t u; |
2533 |
float64 f; |
2534 |
} u; |
2535 |
float64 tmp; |
2536 |
|
2537 |
u.u = val; |
2538 |
/* NaN are not treated the same way IEEE 754 does */
|
2539 |
if (unlikely(isnan(u.f)))
|
2540 |
return 0; |
2541 |
tmp = uint64_to_float64(1ULL << 32, &env->spe_status); |
2542 |
u.f = float64_mul(u.f, tmp, &env->spe_status); |
2543 |
|
2544 |
return float64_to_int32_round_to_zero(u.f, &env->spe_status);
|
2545 |
} |
2546 |
|
2547 |
static always_inline uint64_t _do_efdctufz (uint64_t val)
|
2548 |
{ |
2549 |
union {
|
2550 |
int64_t u; |
2551 |
float64 f; |
2552 |
} u; |
2553 |
float64 tmp; |
2554 |
|
2555 |
u.u = val; |
2556 |
/* NaN are not treated the same way IEEE 754 does */
|
2557 |
if (unlikely(isnan(u.f)))
|
2558 |
return 0; |
2559 |
tmp = uint64_to_float64(1ULL << 32, &env->spe_status); |
2560 |
u.f = float64_mul(u.f, tmp, &env->spe_status); |
2561 |
|
2562 |
return float64_to_uint32_round_to_zero(u.f, &env->spe_status);
|
2563 |
} |
2564 |
|
2565 |
void do_efdcfsf (void) |
2566 |
{ |
2567 |
T0_64 = _do_efdcfsf(T0_64); |
2568 |
} |
2569 |
|
2570 |
void do_efdcfuf (void) |
2571 |
{ |
2572 |
T0_64 = _do_efdcfuf(T0_64); |
2573 |
} |
2574 |
|
2575 |
void do_efdctsf (void) |
2576 |
{ |
2577 |
T0_64 = _do_efdctsf(T0_64); |
2578 |
} |
2579 |
|
2580 |
void do_efdctuf (void) |
2581 |
{ |
2582 |
T0_64 = _do_efdctuf(T0_64); |
2583 |
} |
2584 |
|
2585 |
void do_efdctsfz (void) |
2586 |
{ |
2587 |
T0_64 = _do_efdctsfz(T0_64); |
2588 |
} |
2589 |
|
2590 |
void do_efdctufz (void) |
2591 |
{ |
2592 |
T0_64 = _do_efdctufz(T0_64); |
2593 |
} |
2594 |
|
2595 |
/* Floating point conversion between single and double precision */
|
2596 |
static always_inline uint32_t _do_efscfd (uint64_t val)
|
2597 |
{ |
2598 |
union {
|
2599 |
uint64_t u; |
2600 |
float64 f; |
2601 |
} u1; |
2602 |
union {
|
2603 |
uint32_t u; |
2604 |
float32 f; |
2605 |
} u2; |
2606 |
|
2607 |
u1.u = val; |
2608 |
u2.f = float64_to_float32(u1.f, &env->spe_status); |
2609 |
|
2610 |
return u2.u;
|
2611 |
} |
2612 |
|
2613 |
static always_inline uint64_t _do_efdcfs (uint32_t val)
|
2614 |
{ |
2615 |
union {
|
2616 |
uint64_t u; |
2617 |
float64 f; |
2618 |
} u2; |
2619 |
union {
|
2620 |
uint32_t u; |
2621 |
float32 f; |
2622 |
} u1; |
2623 |
|
2624 |
u1.u = val; |
2625 |
u2.f = float32_to_float64(u1.f, &env->spe_status); |
2626 |
|
2627 |
return u2.u;
|
2628 |
} |
2629 |
|
2630 |
void do_efscfd (void) |
2631 |
{ |
2632 |
T0_64 = _do_efscfd(T0_64); |
2633 |
} |
2634 |
|
2635 |
void do_efdcfs (void) |
2636 |
{ |
2637 |
T0_64 = _do_efdcfs(T0_64); |
2638 |
} |
2639 |
|
2640 |
/* Single precision fixed-point vector arithmetic */
|
2641 |
/* evfsabs */
|
2642 |
DO_SPE_OP1(fsabs); |
2643 |
/* evfsnabs */
|
2644 |
DO_SPE_OP1(fsnabs); |
2645 |
/* evfsneg */
|
2646 |
DO_SPE_OP1(fsneg); |
2647 |
/* evfsadd */
|
2648 |
DO_SPE_OP2(fsadd); |
2649 |
/* evfssub */
|
2650 |
DO_SPE_OP2(fssub); |
2651 |
/* evfsmul */
|
2652 |
DO_SPE_OP2(fsmul); |
2653 |
/* evfsdiv */
|
2654 |
DO_SPE_OP2(fsdiv); |
2655 |
|
2656 |
/* Single-precision floating-point comparisons */
|
2657 |
static always_inline int _do_efscmplt (uint32_t op1, uint32_t op2) |
2658 |
{ |
2659 |
/* XXX: TODO: test special values (NaN, infinites, ...) */
|
2660 |
return _do_efststlt(op1, op2);
|
2661 |
} |
2662 |
|
2663 |
static always_inline int _do_efscmpgt (uint32_t op1, uint32_t op2) |
2664 |
{ |
2665 |
/* XXX: TODO: test special values (NaN, infinites, ...) */
|
2666 |
return _do_efststgt(op1, op2);
|
2667 |
} |
2668 |
|
2669 |
static always_inline int _do_efscmpeq (uint32_t op1, uint32_t op2) |
2670 |
{ |
2671 |
/* XXX: TODO: test special values (NaN, infinites, ...) */
|
2672 |
return _do_efststeq(op1, op2);
|
2673 |
} |
2674 |
|
2675 |
void do_efscmplt (void) |
2676 |
{ |
2677 |
T0 = _do_efscmplt(T0_64, T1_64); |
2678 |
} |
2679 |
|
2680 |
void do_efscmpgt (void) |
2681 |
{ |
2682 |
T0 = _do_efscmpgt(T0_64, T1_64); |
2683 |
} |
2684 |
|
2685 |
void do_efscmpeq (void) |
2686 |
{ |
2687 |
T0 = _do_efscmpeq(T0_64, T1_64); |
2688 |
} |
2689 |
|
2690 |
/* Single-precision floating-point vector comparisons */
|
2691 |
/* evfscmplt */
|
2692 |
DO_SPE_CMP(fscmplt); |
2693 |
/* evfscmpgt */
|
2694 |
DO_SPE_CMP(fscmpgt); |
2695 |
/* evfscmpeq */
|
2696 |
DO_SPE_CMP(fscmpeq); |
2697 |
/* evfststlt */
|
2698 |
DO_SPE_CMP(fststlt); |
2699 |
/* evfststgt */
|
2700 |
DO_SPE_CMP(fststgt); |
2701 |
/* evfststeq */
|
2702 |
DO_SPE_CMP(fststeq); |
2703 |
|
2704 |
/* Single-precision floating-point vector conversions */
|
2705 |
/* evfscfsi */
|
2706 |
DO_SPE_OP1(fscfsi); |
2707 |
/* evfscfui */
|
2708 |
DO_SPE_OP1(fscfui); |
2709 |
/* evfscfuf */
|
2710 |
DO_SPE_OP1(fscfuf); |
2711 |
/* evfscfsf */
|
2712 |
DO_SPE_OP1(fscfsf); |
2713 |
/* evfsctsi */
|
2714 |
DO_SPE_OP1(fsctsi); |
2715 |
/* evfsctui */
|
2716 |
DO_SPE_OP1(fsctui); |
2717 |
/* evfsctsiz */
|
2718 |
DO_SPE_OP1(fsctsiz); |
2719 |
/* evfsctuiz */
|
2720 |
DO_SPE_OP1(fsctuiz); |
2721 |
/* evfsctsf */
|
2722 |
DO_SPE_OP1(fsctsf); |
2723 |
/* evfsctuf */
|
2724 |
DO_SPE_OP1(fsctuf); |
2725 |
#endif /* defined(TARGET_PPCEMB) */ |
2726 |
|
2727 |
/*****************************************************************************/
|
2728 |
/* Softmmu support */
|
2729 |
#if !defined (CONFIG_USER_ONLY)
|
2730 |
|
2731 |
#define MMUSUFFIX _mmu
|
2732 |
#define GETPC() (__builtin_return_address(0)) |
2733 |
|
2734 |
#define SHIFT 0 |
2735 |
#include "softmmu_template.h" |
2736 |
|
2737 |
#define SHIFT 1 |
2738 |
#include "softmmu_template.h" |
2739 |
|
2740 |
#define SHIFT 2 |
2741 |
#include "softmmu_template.h" |
2742 |
|
2743 |
#define SHIFT 3 |
2744 |
#include "softmmu_template.h" |
2745 |
|
2746 |
/* try to fill the TLB and return an exception if error. If retaddr is
|
2747 |
NULL, it means that the function was called in C code (i.e. not
|
2748 |
from generated code or from helper.c) */
|
2749 |
/* XXX: fix it to restore all registers */
|
2750 |
void tlb_fill (target_ulong addr, int is_write, int mmu_idx, void *retaddr) |
2751 |
{ |
2752 |
TranslationBlock *tb; |
2753 |
CPUState *saved_env; |
2754 |
target_phys_addr_t pc; |
2755 |
int ret;
|
2756 |
|
2757 |
/* XXX: hack to restore env in all cases, even if not called from
|
2758 |
generated code */
|
2759 |
saved_env = env; |
2760 |
env = cpu_single_env; |
2761 |
ret = cpu_ppc_handle_mmu_fault(env, addr, is_write, mmu_idx, 1);
|
2762 |
if (unlikely(ret != 0)) { |
2763 |
if (likely(retaddr)) {
|
2764 |
/* now we have a real cpu fault */
|
2765 |
pc = (target_phys_addr_t)(unsigned long)retaddr; |
2766 |
tb = tb_find_pc(pc); |
2767 |
if (likely(tb)) {
|
2768 |
/* the PC is inside the translated code. It means that we have
|
2769 |
a virtual CPU fault */
|
2770 |
cpu_restore_state(tb, env, pc, NULL);
|
2771 |
} |
2772 |
} |
2773 |
do_raise_exception_err(env->exception_index, env->error_code); |
2774 |
} |
2775 |
env = saved_env; |
2776 |
} |
2777 |
|
2778 |
/* Software driven TLBs management */
|
2779 |
/* PowerPC 602/603 software TLB load instructions helpers */
|
2780 |
void do_load_6xx_tlb (int is_code) |
2781 |
{ |
2782 |
target_ulong RPN, CMP, EPN; |
2783 |
int way;
|
2784 |
|
2785 |
RPN = env->spr[SPR_RPA]; |
2786 |
if (is_code) {
|
2787 |
CMP = env->spr[SPR_ICMP]; |
2788 |
EPN = env->spr[SPR_IMISS]; |
2789 |
} else {
|
2790 |
CMP = env->spr[SPR_DCMP]; |
2791 |
EPN = env->spr[SPR_DMISS]; |
2792 |
} |
2793 |
way = (env->spr[SPR_SRR1] >> 17) & 1; |
2794 |
#if defined (DEBUG_SOFTWARE_TLB)
|
2795 |
if (loglevel != 0) { |
2796 |
fprintf(logfile, "%s: EPN %08lx %08lx PTE0 %08lx PTE1 %08lx way %d\n",
|
2797 |
__func__, (unsigned long)T0, (unsigned long)EPN, |
2798 |
(unsigned long)CMP, (unsigned long)RPN, way); |
2799 |
} |
2800 |
#endif
|
2801 |
/* Store this TLB */
|
2802 |
ppc6xx_tlb_store(env, (uint32_t)(T0 & TARGET_PAGE_MASK), |
2803 |
way, is_code, CMP, RPN); |
2804 |
} |
2805 |
|
2806 |
void do_load_74xx_tlb (int is_code) |
2807 |
{ |
2808 |
target_ulong RPN, CMP, EPN; |
2809 |
int way;
|
2810 |
|
2811 |
RPN = env->spr[SPR_PTELO]; |
2812 |
CMP = env->spr[SPR_PTEHI]; |
2813 |
EPN = env->spr[SPR_TLBMISS] & ~0x3;
|
2814 |
way = env->spr[SPR_TLBMISS] & 0x3;
|
2815 |
#if defined (DEBUG_SOFTWARE_TLB)
|
2816 |
if (loglevel != 0) { |
2817 |
fprintf(logfile, "%s: EPN %08lx %08lx PTE0 %08lx PTE1 %08lx way %d\n",
|
2818 |
__func__, (unsigned long)T0, (unsigned long)EPN, |
2819 |
(unsigned long)CMP, (unsigned long)RPN, way); |
2820 |
} |
2821 |
#endif
|
2822 |
/* Store this TLB */
|
2823 |
ppc6xx_tlb_store(env, (uint32_t)(T0 & TARGET_PAGE_MASK), |
2824 |
way, is_code, CMP, RPN); |
2825 |
} |
2826 |
|
2827 |
static always_inline target_ulong booke_tlb_to_page_size (int size) |
2828 |
{ |
2829 |
return 1024 << (2 * size); |
2830 |
} |
2831 |
|
2832 |
static always_inline int booke_page_size_to_tlb (target_ulong page_size) |
2833 |
{ |
2834 |
int size;
|
2835 |
|
2836 |
switch (page_size) {
|
2837 |
case 0x00000400UL: |
2838 |
size = 0x0;
|
2839 |
break;
|
2840 |
case 0x00001000UL: |
2841 |
size = 0x1;
|
2842 |
break;
|
2843 |
case 0x00004000UL: |
2844 |
size = 0x2;
|
2845 |
break;
|
2846 |
case 0x00010000UL: |
2847 |
size = 0x3;
|
2848 |
break;
|
2849 |
case 0x00040000UL: |
2850 |
size = 0x4;
|
2851 |
break;
|
2852 |
case 0x00100000UL: |
2853 |
size = 0x5;
|
2854 |
break;
|
2855 |
case 0x00400000UL: |
2856 |
size = 0x6;
|
2857 |
break;
|
2858 |
case 0x01000000UL: |
2859 |
size = 0x7;
|
2860 |
break;
|
2861 |
case 0x04000000UL: |
2862 |
size = 0x8;
|
2863 |
break;
|
2864 |
case 0x10000000UL: |
2865 |
size = 0x9;
|
2866 |
break;
|
2867 |
case 0x40000000UL: |
2868 |
size = 0xA;
|
2869 |
break;
|
2870 |
#if defined (TARGET_PPC64)
|
2871 |
case 0x000100000000ULL: |
2872 |
size = 0xB;
|
2873 |
break;
|
2874 |
case 0x000400000000ULL: |
2875 |
size = 0xC;
|
2876 |
break;
|
2877 |
case 0x001000000000ULL: |
2878 |
size = 0xD;
|
2879 |
break;
|
2880 |
case 0x004000000000ULL: |
2881 |
size = 0xE;
|
2882 |
break;
|
2883 |
case 0x010000000000ULL: |
2884 |
size = 0xF;
|
2885 |
break;
|
2886 |
#endif
|
2887 |
default:
|
2888 |
size = -1;
|
2889 |
break;
|
2890 |
} |
2891 |
|
2892 |
return size;
|
2893 |
} |
2894 |
|
2895 |
/* Helpers for 4xx TLB management */
|
2896 |
void do_4xx_tlbre_lo (void) |
2897 |
{ |
2898 |
ppcemb_tlb_t *tlb; |
2899 |
int size;
|
2900 |
|
2901 |
T0 &= 0x3F;
|
2902 |
tlb = &env->tlb[T0].tlbe; |
2903 |
T0 = tlb->EPN; |
2904 |
if (tlb->prot & PAGE_VALID)
|
2905 |
T0 |= 0x400;
|
2906 |
size = booke_page_size_to_tlb(tlb->size); |
2907 |
if (size < 0 || size > 0x7) |
2908 |
size = 1;
|
2909 |
T0 |= size << 7;
|
2910 |
env->spr[SPR_40x_PID] = tlb->PID; |
2911 |
} |
2912 |
|
2913 |
void do_4xx_tlbre_hi (void) |
2914 |
{ |
2915 |
ppcemb_tlb_t *tlb; |
2916 |
|
2917 |
T0 &= 0x3F;
|
2918 |
tlb = &env->tlb[T0].tlbe; |
2919 |
T0 = tlb->RPN; |
2920 |
if (tlb->prot & PAGE_EXEC)
|
2921 |
T0 |= 0x200;
|
2922 |
if (tlb->prot & PAGE_WRITE)
|
2923 |
T0 |= 0x100;
|
2924 |
} |
2925 |
|
2926 |
void do_4xx_tlbwe_hi (void) |
2927 |
{ |
2928 |
ppcemb_tlb_t *tlb; |
2929 |
target_ulong page, end; |
2930 |
|
2931 |
#if defined (DEBUG_SOFTWARE_TLB)
|
2932 |
if (loglevel != 0) { |
2933 |
fprintf(logfile, "%s T0 " REGX " T1 " REGX "\n", __func__, T0, T1); |
2934 |
} |
2935 |
#endif
|
2936 |
T0 &= 0x3F;
|
2937 |
tlb = &env->tlb[T0].tlbe; |
2938 |
/* Invalidate previous TLB (if it's valid) */
|
2939 |
if (tlb->prot & PAGE_VALID) {
|
2940 |
end = tlb->EPN + tlb->size; |
2941 |
#if defined (DEBUG_SOFTWARE_TLB)
|
2942 |
if (loglevel != 0) { |
2943 |
fprintf(logfile, "%s: invalidate old TLB %d start " ADDRX
|
2944 |
" end " ADDRX "\n", __func__, (int)T0, tlb->EPN, end); |
2945 |
} |
2946 |
#endif
|
2947 |
for (page = tlb->EPN; page < end; page += TARGET_PAGE_SIZE)
|
2948 |
tlb_flush_page(env, page); |
2949 |
} |
2950 |
tlb->size = booke_tlb_to_page_size((T1 >> 7) & 0x7); |
2951 |
/* We cannot handle TLB size < TARGET_PAGE_SIZE.
|
2952 |
* If this ever occurs, one should use the ppcemb target instead
|
2953 |
* of the ppc or ppc64 one
|
2954 |
*/
|
2955 |
if ((T1 & 0x40) && tlb->size < TARGET_PAGE_SIZE) { |
2956 |
cpu_abort(env, "TLB size " TARGET_FMT_lu " < %u " |
2957 |
"are not supported (%d)\n",
|
2958 |
tlb->size, TARGET_PAGE_SIZE, (int)((T1 >> 7) & 0x7)); |
2959 |
} |
2960 |
tlb->EPN = T1 & ~(tlb->size - 1);
|
2961 |
if (T1 & 0x40) |
2962 |
tlb->prot |= PAGE_VALID; |
2963 |
else
|
2964 |
tlb->prot &= ~PAGE_VALID; |
2965 |
if (T1 & 0x20) { |
2966 |
/* XXX: TO BE FIXED */
|
2967 |
cpu_abort(env, "Little-endian TLB entries are not supported by now\n");
|
2968 |
} |
2969 |
tlb->PID = env->spr[SPR_40x_PID]; /* PID */
|
2970 |
tlb->attr = T1 & 0xFF;
|
2971 |
#if defined (DEBUG_SOFTWARE_TLB)
|
2972 |
if (loglevel != 0) { |
2973 |
fprintf(logfile, "%s: set up TLB %d RPN " PADDRX " EPN " ADDRX |
2974 |
" size " ADDRX " prot %c%c%c%c PID %d\n", __func__, |
2975 |
(int)T0, tlb->RPN, tlb->EPN, tlb->size,
|
2976 |
tlb->prot & PAGE_READ ? 'r' : '-', |
2977 |
tlb->prot & PAGE_WRITE ? 'w' : '-', |
2978 |
tlb->prot & PAGE_EXEC ? 'x' : '-', |
2979 |
tlb->prot & PAGE_VALID ? 'v' : '-', (int)tlb->PID); |
2980 |
} |
2981 |
#endif
|
2982 |
/* Invalidate new TLB (if valid) */
|
2983 |
if (tlb->prot & PAGE_VALID) {
|
2984 |
end = tlb->EPN + tlb->size; |
2985 |
#if defined (DEBUG_SOFTWARE_TLB)
|
2986 |
if (loglevel != 0) { |
2987 |
fprintf(logfile, "%s: invalidate TLB %d start " ADDRX
|
2988 |
" end " ADDRX "\n", __func__, (int)T0, tlb->EPN, end); |
2989 |
} |
2990 |
#endif
|
2991 |
for (page = tlb->EPN; page < end; page += TARGET_PAGE_SIZE)
|
2992 |
tlb_flush_page(env, page); |
2993 |
} |
2994 |
} |
2995 |
|
2996 |
void do_4xx_tlbwe_lo (void) |
2997 |
{ |
2998 |
ppcemb_tlb_t *tlb; |
2999 |
|
3000 |
#if defined (DEBUG_SOFTWARE_TLB)
|
3001 |
if (loglevel != 0) { |
3002 |
fprintf(logfile, "%s T0 " REGX " T1 " REGX "\n", __func__, T0, T1); |
3003 |
} |
3004 |
#endif
|
3005 |
T0 &= 0x3F;
|
3006 |
tlb = &env->tlb[T0].tlbe; |
3007 |
tlb->RPN = T1 & 0xFFFFFC00;
|
3008 |
tlb->prot = PAGE_READ; |
3009 |
if (T1 & 0x200) |
3010 |
tlb->prot |= PAGE_EXEC; |
3011 |
if (T1 & 0x100) |
3012 |
tlb->prot |= PAGE_WRITE; |
3013 |
#if defined (DEBUG_SOFTWARE_TLB)
|
3014 |
if (loglevel != 0) { |
3015 |
fprintf(logfile, "%s: set up TLB %d RPN " PADDRX " EPN " ADDRX |
3016 |
" size " ADDRX " prot %c%c%c%c PID %d\n", __func__, |
3017 |
(int)T0, tlb->RPN, tlb->EPN, tlb->size,
|
3018 |
tlb->prot & PAGE_READ ? 'r' : '-', |
3019 |
tlb->prot & PAGE_WRITE ? 'w' : '-', |
3020 |
tlb->prot & PAGE_EXEC ? 'x' : '-', |
3021 |
tlb->prot & PAGE_VALID ? 'v' : '-', (int)tlb->PID); |
3022 |
} |
3023 |
#endif
|
3024 |
} |
3025 |
|
3026 |
/* PowerPC 440 TLB management */
|
3027 |
void do_440_tlbwe (int word) |
3028 |
{ |
3029 |
ppcemb_tlb_t *tlb; |
3030 |
target_ulong EPN, RPN, size; |
3031 |
int do_flush_tlbs;
|
3032 |
|
3033 |
#if defined (DEBUG_SOFTWARE_TLB)
|
3034 |
if (loglevel != 0) { |
3035 |
fprintf(logfile, "%s word %d T0 " REGX " T1 " REGX "\n", |
3036 |
__func__, word, T0, T1); |
3037 |
} |
3038 |
#endif
|
3039 |
do_flush_tlbs = 0;
|
3040 |
T0 &= 0x3F;
|
3041 |
tlb = &env->tlb[T0].tlbe; |
3042 |
switch (word) {
|
3043 |
default:
|
3044 |
/* Just here to please gcc */
|
3045 |
case 0: |
3046 |
EPN = T1 & 0xFFFFFC00;
|
3047 |
if ((tlb->prot & PAGE_VALID) && EPN != tlb->EPN)
|
3048 |
do_flush_tlbs = 1;
|
3049 |
tlb->EPN = EPN; |
3050 |
size = booke_tlb_to_page_size((T1 >> 4) & 0xF); |
3051 |
if ((tlb->prot & PAGE_VALID) && tlb->size < size)
|
3052 |
do_flush_tlbs = 1;
|
3053 |
tlb->size = size; |
3054 |
tlb->attr &= ~0x1;
|
3055 |
tlb->attr |= (T1 >> 8) & 1; |
3056 |
if (T1 & 0x200) { |
3057 |
tlb->prot |= PAGE_VALID; |
3058 |
} else {
|
3059 |
if (tlb->prot & PAGE_VALID) {
|
3060 |
tlb->prot &= ~PAGE_VALID; |
3061 |
do_flush_tlbs = 1;
|
3062 |
} |
3063 |
} |
3064 |
tlb->PID = env->spr[SPR_440_MMUCR] & 0x000000FF;
|
3065 |
if (do_flush_tlbs)
|
3066 |
tlb_flush(env, 1);
|
3067 |
break;
|
3068 |
case 1: |
3069 |
RPN = T1 & 0xFFFFFC0F;
|
3070 |
if ((tlb->prot & PAGE_VALID) && tlb->RPN != RPN)
|
3071 |
tlb_flush(env, 1);
|
3072 |
tlb->RPN = RPN; |
3073 |
break;
|
3074 |
case 2: |
3075 |
tlb->attr = (tlb->attr & 0x1) | (T1 & 0x0000FF00); |
3076 |
tlb->prot = tlb->prot & PAGE_VALID; |
3077 |
if (T1 & 0x1) |
3078 |
tlb->prot |= PAGE_READ << 4;
|
3079 |
if (T1 & 0x2) |
3080 |
tlb->prot |= PAGE_WRITE << 4;
|
3081 |
if (T1 & 0x4) |
3082 |
tlb->prot |= PAGE_EXEC << 4;
|
3083 |
if (T1 & 0x8) |
3084 |
tlb->prot |= PAGE_READ; |
3085 |
if (T1 & 0x10) |
3086 |
tlb->prot |= PAGE_WRITE; |
3087 |
if (T1 & 0x20) |
3088 |
tlb->prot |= PAGE_EXEC; |
3089 |
break;
|
3090 |
} |
3091 |
} |
3092 |
|
3093 |
void do_440_tlbre (int word) |
3094 |
{ |
3095 |
ppcemb_tlb_t *tlb; |
3096 |
int size;
|
3097 |
|
3098 |
T0 &= 0x3F;
|
3099 |
tlb = &env->tlb[T0].tlbe; |
3100 |
switch (word) {
|
3101 |
default:
|
3102 |
/* Just here to please gcc */
|
3103 |
case 0: |
3104 |
T0 = tlb->EPN; |
3105 |
size = booke_page_size_to_tlb(tlb->size); |
3106 |
if (size < 0 || size > 0xF) |
3107 |
size = 1;
|
3108 |
T0 |= size << 4;
|
3109 |
if (tlb->attr & 0x1) |
3110 |
T0 |= 0x100;
|
3111 |
if (tlb->prot & PAGE_VALID)
|
3112 |
T0 |= 0x200;
|
3113 |
env->spr[SPR_440_MMUCR] &= ~0x000000FF;
|
3114 |
env->spr[SPR_440_MMUCR] |= tlb->PID; |
3115 |
break;
|
3116 |
case 1: |
3117 |
T0 = tlb->RPN; |
3118 |
break;
|
3119 |
case 2: |
3120 |
T0 = tlb->attr & ~0x1;
|
3121 |
if (tlb->prot & (PAGE_READ << 4)) |
3122 |
T0 |= 0x1;
|
3123 |
if (tlb->prot & (PAGE_WRITE << 4)) |
3124 |
T0 |= 0x2;
|
3125 |
if (tlb->prot & (PAGE_EXEC << 4)) |
3126 |
T0 |= 0x4;
|
3127 |
if (tlb->prot & PAGE_READ)
|
3128 |
T0 |= 0x8;
|
3129 |
if (tlb->prot & PAGE_WRITE)
|
3130 |
T0 |= 0x10;
|
3131 |
if (tlb->prot & PAGE_EXEC)
|
3132 |
T0 |= 0x20;
|
3133 |
break;
|
3134 |
} |
3135 |
} |
3136 |
#endif /* !CONFIG_USER_ONLY */ |