Statistics
| Branch: | Revision:

root / vl.c @ a11d070e

History | View | Annotate | Download (234.1 kB)

1
/*
2
 * QEMU System Emulator
3
 *
4
 * Copyright (c) 2003-2008 Fabrice Bellard
5
 *
6
 * Permission is hereby granted, free of charge, to any person obtaining a copy
7
 * of this software and associated documentation files (the "Software"), to deal
8
 * in the Software without restriction, including without limitation the rights
9
 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10
 * copies of the Software, and to permit persons to whom the Software is
11
 * furnished to do so, subject to the following conditions:
12
 *
13
 * The above copyright notice and this permission notice shall be included in
14
 * all copies or substantial portions of the Software.
15
 *
16
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21
 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22
 * THE SOFTWARE.
23
 */
24
#include "hw/hw.h"
25
#include "hw/boards.h"
26
#include "hw/usb.h"
27
#include "hw/pcmcia.h"
28
#include "hw/pc.h"
29
#include "hw/fdc.h"
30
#include "hw/audiodev.h"
31
#include "hw/isa.h"
32
#include "net.h"
33
#include "console.h"
34
#include "sysemu.h"
35
#include "gdbstub.h"
36
#include "qemu-timer.h"
37
#include "qemu-char.h"
38
#include "block.h"
39
#include "audio/audio.h"
40

    
41
#include <unistd.h>
42
#include <fcntl.h>
43
#include <signal.h>
44
#include <time.h>
45
#include <errno.h>
46
#include <sys/time.h>
47
#include <zlib.h>
48

    
49
#ifndef _WIN32
50
#include <sys/times.h>
51
#include <sys/wait.h>
52
#include <termios.h>
53
#include <sys/poll.h>
54
#include <sys/mman.h>
55
#include <sys/ioctl.h>
56
#include <sys/socket.h>
57
#include <netinet/in.h>
58
#include <dirent.h>
59
#include <netdb.h>
60
#include <sys/select.h>
61
#include <arpa/inet.h>
62
#ifdef _BSD
63
#include <sys/stat.h>
64
#ifndef __APPLE__
65
#include <libutil.h>
66
#endif
67
#elif defined (__GLIBC__) && defined (__FreeBSD_kernel__)
68
#include <freebsd/stdlib.h>
69
#else
70
#ifndef __sun__
71
#include <linux/if.h>
72
#include <linux/if_tun.h>
73
#include <pty.h>
74
#include <malloc.h>
75
#include <linux/rtc.h>
76

    
77
/* For the benefit of older linux systems which don't supply it,
78
   we use a local copy of hpet.h. */
79
/* #include <linux/hpet.h> */
80
#include "hpet.h"
81

    
82
#include <linux/ppdev.h>
83
#include <linux/parport.h>
84
#else
85
#include <sys/stat.h>
86
#include <sys/ethernet.h>
87
#include <sys/sockio.h>
88
#include <netinet/arp.h>
89
#include <netinet/in.h>
90
#include <netinet/in_systm.h>
91
#include <netinet/ip.h>
92
#include <netinet/ip_icmp.h> // must come after ip.h
93
#include <netinet/udp.h>
94
#include <netinet/tcp.h>
95
#include <net/if.h>
96
#include <syslog.h>
97
#include <stropts.h>
98
#endif
99
#endif
100
#else
101
#include <winsock2.h>
102
int inet_aton(const char *cp, struct in_addr *ia);
103
#endif
104

    
105
#if defined(CONFIG_SLIRP)
106
#include "libslirp.h"
107
#endif
108

    
109
#ifdef _WIN32
110
#include <malloc.h>
111
#include <sys/timeb.h>
112
#include <mmsystem.h>
113
#define getopt_long_only getopt_long
114
#define memalign(align, size) malloc(size)
115
#endif
116

    
117
#include "qemu_socket.h"
118

    
119
#ifdef CONFIG_SDL
120
#ifdef __APPLE__
121
#include <SDL/SDL.h>
122
#endif
123
#endif /* CONFIG_SDL */
124

    
125
#ifdef CONFIG_COCOA
126
#undef main
127
#define main qemu_main
128
#endif /* CONFIG_COCOA */
129

    
130
#include "disas.h"
131

    
132
#include "exec-all.h"
133

    
134
#define DEFAULT_NETWORK_SCRIPT "/etc/qemu-ifup"
135
#define DEFAULT_NETWORK_DOWN_SCRIPT "/etc/qemu-ifdown"
136
#ifdef __sun__
137
#define SMBD_COMMAND "/usr/sfw/sbin/smbd"
138
#else
139
#define SMBD_COMMAND "/usr/sbin/smbd"
140
#endif
141

    
142
//#define DEBUG_UNUSED_IOPORT
143
//#define DEBUG_IOPORT
144

    
145
#define PHYS_RAM_MAX_SIZE (2047 * 1024 * 1024)
146

    
147
#ifdef TARGET_PPC
148
#define DEFAULT_RAM_SIZE 144
149
#else
150
#define DEFAULT_RAM_SIZE 128
151
#endif
152
/* in ms */
153
#define GUI_REFRESH_INTERVAL 30
154

    
155
/* Max number of USB devices that can be specified on the commandline.  */
156
#define MAX_USB_CMDLINE 8
157

    
158
/* XXX: use a two level table to limit memory usage */
159
#define MAX_IOPORTS 65536
160

    
161
const char *bios_dir = CONFIG_QEMU_SHAREDIR;
162
const char *bios_name = NULL;
163
void *ioport_opaque[MAX_IOPORTS];
164
IOPortReadFunc *ioport_read_table[3][MAX_IOPORTS];
165
IOPortWriteFunc *ioport_write_table[3][MAX_IOPORTS];
166
/* Note: drives_table[MAX_DRIVES] is a dummy block driver if none available
167
   to store the VM snapshots */
168
DriveInfo drives_table[MAX_DRIVES+1];
169
int nb_drives;
170
/* point to the block driver where the snapshots are managed */
171
BlockDriverState *bs_snapshots;
172
int vga_ram_size;
173
static DisplayState display_state;
174
int nographic;
175
const char* keyboard_layout = NULL;
176
int64_t ticks_per_sec;
177
int ram_size;
178
int pit_min_timer_count = 0;
179
int nb_nics;
180
NICInfo nd_table[MAX_NICS];
181
int vm_running;
182
int rtc_utc = 1;
183
int rtc_start_date = -1; /* -1 means now */
184
int cirrus_vga_enabled = 1;
185
int vmsvga_enabled = 0;
186
#ifdef TARGET_SPARC
187
int graphic_width = 1024;
188
int graphic_height = 768;
189
int graphic_depth = 8;
190
#else
191
int graphic_width = 800;
192
int graphic_height = 600;
193
int graphic_depth = 15;
194
#endif
195
int full_screen = 0;
196
int no_frame = 0;
197
int no_quit = 0;
198
CharDriverState *serial_hds[MAX_SERIAL_PORTS];
199
CharDriverState *parallel_hds[MAX_PARALLEL_PORTS];
200
#ifdef TARGET_I386
201
int win2k_install_hack = 0;
202
#endif
203
int usb_enabled = 0;
204
static VLANState *first_vlan;
205
int smp_cpus = 1;
206
const char *vnc_display;
207
#if defined(TARGET_SPARC)
208
#define MAX_CPUS 16
209
#elif defined(TARGET_I386)
210
#define MAX_CPUS 255
211
#else
212
#define MAX_CPUS 1
213
#endif
214
int acpi_enabled = 1;
215
int fd_bootchk = 1;
216
int no_reboot = 0;
217
int cursor_hide = 1;
218
int graphic_rotate = 0;
219
int daemonize = 0;
220
const char *option_rom[MAX_OPTION_ROMS];
221
int nb_option_roms;
222
int semihosting_enabled = 0;
223
int autostart = 1;
224
#ifdef TARGET_ARM
225
int old_param = 0;
226
#endif
227
const char *qemu_name;
228
int alt_grab = 0;
229
#ifdef TARGET_SPARC
230
unsigned int nb_prom_envs = 0;
231
const char *prom_envs[MAX_PROM_ENVS];
232
#endif
233
int nb_drives_opt;
234
struct drive_opt {
235
    const char *file;
236
    char opt[1024];
237
} drives_opt[MAX_DRIVES];
238

    
239
static CPUState *cur_cpu;
240
static CPUState *next_cpu;
241
static int event_pending = 1;
242

    
243
#define TFR(expr) do { if ((expr) != -1) break; } while (errno == EINTR)
244

    
245
/***********************************************************/
246
/* x86 ISA bus support */
247

    
248
target_phys_addr_t isa_mem_base = 0;
249
PicState2 *isa_pic;
250

    
251
static uint32_t default_ioport_readb(void *opaque, uint32_t address)
252
{
253
#ifdef DEBUG_UNUSED_IOPORT
254
    fprintf(stderr, "unused inb: port=0x%04x\n", address);
255
#endif
256
    return 0xff;
257
}
258

    
259
static void default_ioport_writeb(void *opaque, uint32_t address, uint32_t data)
260
{
261
#ifdef DEBUG_UNUSED_IOPORT
262
    fprintf(stderr, "unused outb: port=0x%04x data=0x%02x\n", address, data);
263
#endif
264
}
265

    
266
/* default is to make two byte accesses */
267
static uint32_t default_ioport_readw(void *opaque, uint32_t address)
268
{
269
    uint32_t data;
270
    data = ioport_read_table[0][address](ioport_opaque[address], address);
271
    address = (address + 1) & (MAX_IOPORTS - 1);
272
    data |= ioport_read_table[0][address](ioport_opaque[address], address) << 8;
273
    return data;
274
}
275

    
276
static void default_ioport_writew(void *opaque, uint32_t address, uint32_t data)
277
{
278
    ioport_write_table[0][address](ioport_opaque[address], address, data & 0xff);
279
    address = (address + 1) & (MAX_IOPORTS - 1);
280
    ioport_write_table[0][address](ioport_opaque[address], address, (data >> 8) & 0xff);
281
}
282

    
283
static uint32_t default_ioport_readl(void *opaque, uint32_t address)
284
{
285
#ifdef DEBUG_UNUSED_IOPORT
286
    fprintf(stderr, "unused inl: port=0x%04x\n", address);
287
#endif
288
    return 0xffffffff;
289
}
290

    
291
static void default_ioport_writel(void *opaque, uint32_t address, uint32_t data)
292
{
293
#ifdef DEBUG_UNUSED_IOPORT
294
    fprintf(stderr, "unused outl: port=0x%04x data=0x%02x\n", address, data);
295
#endif
296
}
297

    
298
static void init_ioports(void)
299
{
300
    int i;
301

    
302
    for(i = 0; i < MAX_IOPORTS; i++) {
303
        ioport_read_table[0][i] = default_ioport_readb;
304
        ioport_write_table[0][i] = default_ioport_writeb;
305
        ioport_read_table[1][i] = default_ioport_readw;
306
        ioport_write_table[1][i] = default_ioport_writew;
307
        ioport_read_table[2][i] = default_ioport_readl;
308
        ioport_write_table[2][i] = default_ioport_writel;
309
    }
310
}
311

    
312
/* size is the word size in byte */
313
int register_ioport_read(int start, int length, int size,
314
                         IOPortReadFunc *func, void *opaque)
315
{
316
    int i, bsize;
317

    
318
    if (size == 1) {
319
        bsize = 0;
320
    } else if (size == 2) {
321
        bsize = 1;
322
    } else if (size == 4) {
323
        bsize = 2;
324
    } else {
325
        hw_error("register_ioport_read: invalid size");
326
        return -1;
327
    }
328
    for(i = start; i < start + length; i += size) {
329
        ioport_read_table[bsize][i] = func;
330
        if (ioport_opaque[i] != NULL && ioport_opaque[i] != opaque)
331
            hw_error("register_ioport_read: invalid opaque");
332
        ioport_opaque[i] = opaque;
333
    }
334
    return 0;
335
}
336

    
337
/* size is the word size in byte */
338
int register_ioport_write(int start, int length, int size,
339
                          IOPortWriteFunc *func, void *opaque)
340
{
341
    int i, bsize;
342

    
343
    if (size == 1) {
344
        bsize = 0;
345
    } else if (size == 2) {
346
        bsize = 1;
347
    } else if (size == 4) {
348
        bsize = 2;
349
    } else {
350
        hw_error("register_ioport_write: invalid size");
351
        return -1;
352
    }
353
    for(i = start; i < start + length; i += size) {
354
        ioport_write_table[bsize][i] = func;
355
        if (ioport_opaque[i] != NULL && ioport_opaque[i] != opaque)
356
            hw_error("register_ioport_write: invalid opaque");
357
        ioport_opaque[i] = opaque;
358
    }
359
    return 0;
360
}
361

    
362
void isa_unassign_ioport(int start, int length)
363
{
364
    int i;
365

    
366
    for(i = start; i < start + length; i++) {
367
        ioport_read_table[0][i] = default_ioport_readb;
368
        ioport_read_table[1][i] = default_ioport_readw;
369
        ioport_read_table[2][i] = default_ioport_readl;
370

    
371
        ioport_write_table[0][i] = default_ioport_writeb;
372
        ioport_write_table[1][i] = default_ioport_writew;
373
        ioport_write_table[2][i] = default_ioport_writel;
374
    }
375
}
376

    
377
/***********************************************************/
378

    
379
void cpu_outb(CPUState *env, int addr, int val)
380
{
381
#ifdef DEBUG_IOPORT
382
    if (loglevel & CPU_LOG_IOPORT)
383
        fprintf(logfile, "outb: %04x %02x\n", addr, val);
384
#endif
385
    ioport_write_table[0][addr](ioport_opaque[addr], addr, val);
386
#ifdef USE_KQEMU
387
    if (env)
388
        env->last_io_time = cpu_get_time_fast();
389
#endif
390
}
391

    
392
void cpu_outw(CPUState *env, int addr, int val)
393
{
394
#ifdef DEBUG_IOPORT
395
    if (loglevel & CPU_LOG_IOPORT)
396
        fprintf(logfile, "outw: %04x %04x\n", addr, val);
397
#endif
398
    ioport_write_table[1][addr](ioport_opaque[addr], addr, val);
399
#ifdef USE_KQEMU
400
    if (env)
401
        env->last_io_time = cpu_get_time_fast();
402
#endif
403
}
404

    
405
void cpu_outl(CPUState *env, int addr, int val)
406
{
407
#ifdef DEBUG_IOPORT
408
    if (loglevel & CPU_LOG_IOPORT)
409
        fprintf(logfile, "outl: %04x %08x\n", addr, val);
410
#endif
411
    ioport_write_table[2][addr](ioport_opaque[addr], addr, val);
412
#ifdef USE_KQEMU
413
    if (env)
414
        env->last_io_time = cpu_get_time_fast();
415
#endif
416
}
417

    
418
int cpu_inb(CPUState *env, int addr)
419
{
420
    int val;
421
    val = ioport_read_table[0][addr](ioport_opaque[addr], addr);
422
#ifdef DEBUG_IOPORT
423
    if (loglevel & CPU_LOG_IOPORT)
424
        fprintf(logfile, "inb : %04x %02x\n", addr, val);
425
#endif
426
#ifdef USE_KQEMU
427
    if (env)
428
        env->last_io_time = cpu_get_time_fast();
429
#endif
430
    return val;
431
}
432

    
433
int cpu_inw(CPUState *env, int addr)
434
{
435
    int val;
436
    val = ioport_read_table[1][addr](ioport_opaque[addr], addr);
437
#ifdef DEBUG_IOPORT
438
    if (loglevel & CPU_LOG_IOPORT)
439
        fprintf(logfile, "inw : %04x %04x\n", addr, val);
440
#endif
441
#ifdef USE_KQEMU
442
    if (env)
443
        env->last_io_time = cpu_get_time_fast();
444
#endif
445
    return val;
446
}
447

    
448
int cpu_inl(CPUState *env, int addr)
449
{
450
    int val;
451
    val = ioport_read_table[2][addr](ioport_opaque[addr], addr);
452
#ifdef DEBUG_IOPORT
453
    if (loglevel & CPU_LOG_IOPORT)
454
        fprintf(logfile, "inl : %04x %08x\n", addr, val);
455
#endif
456
#ifdef USE_KQEMU
457
    if (env)
458
        env->last_io_time = cpu_get_time_fast();
459
#endif
460
    return val;
461
}
462

    
463
/***********************************************************/
464
void hw_error(const char *fmt, ...)
465
{
466
    va_list ap;
467
    CPUState *env;
468

    
469
    va_start(ap, fmt);
470
    fprintf(stderr, "qemu: hardware error: ");
471
    vfprintf(stderr, fmt, ap);
472
    fprintf(stderr, "\n");
473
    for(env = first_cpu; env != NULL; env = env->next_cpu) {
474
        fprintf(stderr, "CPU #%d:\n", env->cpu_index);
475
#ifdef TARGET_I386
476
        cpu_dump_state(env, stderr, fprintf, X86_DUMP_FPU);
477
#else
478
        cpu_dump_state(env, stderr, fprintf, 0);
479
#endif
480
    }
481
    va_end(ap);
482
    abort();
483
}
484

    
485
/***********************************************************/
486
/* keyboard/mouse */
487

    
488
static QEMUPutKBDEvent *qemu_put_kbd_event;
489
static void *qemu_put_kbd_event_opaque;
490
static QEMUPutMouseEntry *qemu_put_mouse_event_head;
491
static QEMUPutMouseEntry *qemu_put_mouse_event_current;
492

    
493
void qemu_add_kbd_event_handler(QEMUPutKBDEvent *func, void *opaque)
494
{
495
    qemu_put_kbd_event_opaque = opaque;
496
    qemu_put_kbd_event = func;
497
}
498

    
499
QEMUPutMouseEntry *qemu_add_mouse_event_handler(QEMUPutMouseEvent *func,
500
                                                void *opaque, int absolute,
501
                                                const char *name)
502
{
503
    QEMUPutMouseEntry *s, *cursor;
504

    
505
    s = qemu_mallocz(sizeof(QEMUPutMouseEntry));
506
    if (!s)
507
        return NULL;
508

    
509
    s->qemu_put_mouse_event = func;
510
    s->qemu_put_mouse_event_opaque = opaque;
511
    s->qemu_put_mouse_event_absolute = absolute;
512
    s->qemu_put_mouse_event_name = qemu_strdup(name);
513
    s->next = NULL;
514

    
515
    if (!qemu_put_mouse_event_head) {
516
        qemu_put_mouse_event_head = qemu_put_mouse_event_current = s;
517
        return s;
518
    }
519

    
520
    cursor = qemu_put_mouse_event_head;
521
    while (cursor->next != NULL)
522
        cursor = cursor->next;
523

    
524
    cursor->next = s;
525
    qemu_put_mouse_event_current = s;
526

    
527
    return s;
528
}
529

    
530
void qemu_remove_mouse_event_handler(QEMUPutMouseEntry *entry)
531
{
532
    QEMUPutMouseEntry *prev = NULL, *cursor;
533

    
534
    if (!qemu_put_mouse_event_head || entry == NULL)
535
        return;
536

    
537
    cursor = qemu_put_mouse_event_head;
538
    while (cursor != NULL && cursor != entry) {
539
        prev = cursor;
540
        cursor = cursor->next;
541
    }
542

    
543
    if (cursor == NULL) // does not exist or list empty
544
        return;
545
    else if (prev == NULL) { // entry is head
546
        qemu_put_mouse_event_head = cursor->next;
547
        if (qemu_put_mouse_event_current == entry)
548
            qemu_put_mouse_event_current = cursor->next;
549
        qemu_free(entry->qemu_put_mouse_event_name);
550
        qemu_free(entry);
551
        return;
552
    }
553

    
554
    prev->next = entry->next;
555

    
556
    if (qemu_put_mouse_event_current == entry)
557
        qemu_put_mouse_event_current = prev;
558

    
559
    qemu_free(entry->qemu_put_mouse_event_name);
560
    qemu_free(entry);
561
}
562

    
563
void kbd_put_keycode(int keycode)
564
{
565
    if (qemu_put_kbd_event) {
566
        qemu_put_kbd_event(qemu_put_kbd_event_opaque, keycode);
567
    }
568
}
569

    
570
void kbd_mouse_event(int dx, int dy, int dz, int buttons_state)
571
{
572
    QEMUPutMouseEvent *mouse_event;
573
    void *mouse_event_opaque;
574
    int width;
575

    
576
    if (!qemu_put_mouse_event_current) {
577
        return;
578
    }
579

    
580
    mouse_event =
581
        qemu_put_mouse_event_current->qemu_put_mouse_event;
582
    mouse_event_opaque =
583
        qemu_put_mouse_event_current->qemu_put_mouse_event_opaque;
584

    
585
    if (mouse_event) {
586
        if (graphic_rotate) {
587
            if (qemu_put_mouse_event_current->qemu_put_mouse_event_absolute)
588
                width = 0x7fff;
589
            else
590
                width = graphic_width;
591
            mouse_event(mouse_event_opaque,
592
                                 width - dy, dx, dz, buttons_state);
593
        } else
594
            mouse_event(mouse_event_opaque,
595
                                 dx, dy, dz, buttons_state);
596
    }
597
}
598

    
599
int kbd_mouse_is_absolute(void)
600
{
601
    if (!qemu_put_mouse_event_current)
602
        return 0;
603

    
604
    return qemu_put_mouse_event_current->qemu_put_mouse_event_absolute;
605
}
606

    
607
void do_info_mice(void)
608
{
609
    QEMUPutMouseEntry *cursor;
610
    int index = 0;
611

    
612
    if (!qemu_put_mouse_event_head) {
613
        term_printf("No mouse devices connected\n");
614
        return;
615
    }
616

    
617
    term_printf("Mouse devices available:\n");
618
    cursor = qemu_put_mouse_event_head;
619
    while (cursor != NULL) {
620
        term_printf("%c Mouse #%d: %s\n",
621
                    (cursor == qemu_put_mouse_event_current ? '*' : ' '),
622
                    index, cursor->qemu_put_mouse_event_name);
623
        index++;
624
        cursor = cursor->next;
625
    }
626
}
627

    
628
void do_mouse_set(int index)
629
{
630
    QEMUPutMouseEntry *cursor;
631
    int i = 0;
632

    
633
    if (!qemu_put_mouse_event_head) {
634
        term_printf("No mouse devices connected\n");
635
        return;
636
    }
637

    
638
    cursor = qemu_put_mouse_event_head;
639
    while (cursor != NULL && index != i) {
640
        i++;
641
        cursor = cursor->next;
642
    }
643

    
644
    if (cursor != NULL)
645
        qemu_put_mouse_event_current = cursor;
646
    else
647
        term_printf("Mouse at given index not found\n");
648
}
649

    
650
/* compute with 96 bit intermediate result: (a*b)/c */
651
uint64_t muldiv64(uint64_t a, uint32_t b, uint32_t c)
652
{
653
    union {
654
        uint64_t ll;
655
        struct {
656
#ifdef WORDS_BIGENDIAN
657
            uint32_t high, low;
658
#else
659
            uint32_t low, high;
660
#endif
661
        } l;
662
    } u, res;
663
    uint64_t rl, rh;
664

    
665
    u.ll = a;
666
    rl = (uint64_t)u.l.low * (uint64_t)b;
667
    rh = (uint64_t)u.l.high * (uint64_t)b;
668
    rh += (rl >> 32);
669
    res.l.high = rh / c;
670
    res.l.low = (((rh % c) << 32) + (rl & 0xffffffff)) / c;
671
    return res.ll;
672
}
673

    
674
/***********************************************************/
675
/* real time host monotonic timer */
676

    
677
#define QEMU_TIMER_BASE 1000000000LL
678

    
679
#ifdef WIN32
680

    
681
static int64_t clock_freq;
682

    
683
static void init_get_clock(void)
684
{
685
    LARGE_INTEGER freq;
686
    int ret;
687
    ret = QueryPerformanceFrequency(&freq);
688
    if (ret == 0) {
689
        fprintf(stderr, "Could not calibrate ticks\n");
690
        exit(1);
691
    }
692
    clock_freq = freq.QuadPart;
693
}
694

    
695
static int64_t get_clock(void)
696
{
697
    LARGE_INTEGER ti;
698
    QueryPerformanceCounter(&ti);
699
    return muldiv64(ti.QuadPart, QEMU_TIMER_BASE, clock_freq);
700
}
701

    
702
#else
703

    
704
static int use_rt_clock;
705

    
706
static void init_get_clock(void)
707
{
708
    use_rt_clock = 0;
709
#if defined(__linux__)
710
    {
711
        struct timespec ts;
712
        if (clock_gettime(CLOCK_MONOTONIC, &ts) == 0) {
713
            use_rt_clock = 1;
714
        }
715
    }
716
#endif
717
}
718

    
719
static int64_t get_clock(void)
720
{
721
#if defined(__linux__)
722
    if (use_rt_clock) {
723
        struct timespec ts;
724
        clock_gettime(CLOCK_MONOTONIC, &ts);
725
        return ts.tv_sec * 1000000000LL + ts.tv_nsec;
726
    } else
727
#endif
728
    {
729
        /* XXX: using gettimeofday leads to problems if the date
730
           changes, so it should be avoided. */
731
        struct timeval tv;
732
        gettimeofday(&tv, NULL);
733
        return tv.tv_sec * 1000000000LL + (tv.tv_usec * 1000);
734
    }
735
}
736

    
737
#endif
738

    
739
/***********************************************************/
740
/* guest cycle counter */
741

    
742
static int64_t cpu_ticks_prev;
743
static int64_t cpu_ticks_offset;
744
static int64_t cpu_clock_offset;
745
static int cpu_ticks_enabled;
746

    
747
/* return the host CPU cycle counter and handle stop/restart */
748
int64_t cpu_get_ticks(void)
749
{
750
    if (!cpu_ticks_enabled) {
751
        return cpu_ticks_offset;
752
    } else {
753
        int64_t ticks;
754
        ticks = cpu_get_real_ticks();
755
        if (cpu_ticks_prev > ticks) {
756
            /* Note: non increasing ticks may happen if the host uses
757
               software suspend */
758
            cpu_ticks_offset += cpu_ticks_prev - ticks;
759
        }
760
        cpu_ticks_prev = ticks;
761
        return ticks + cpu_ticks_offset;
762
    }
763
}
764

    
765
/* return the host CPU monotonic timer and handle stop/restart */
766
static int64_t cpu_get_clock(void)
767
{
768
    int64_t ti;
769
    if (!cpu_ticks_enabled) {
770
        return cpu_clock_offset;
771
    } else {
772
        ti = get_clock();
773
        return ti + cpu_clock_offset;
774
    }
775
}
776

    
777
/* enable cpu_get_ticks() */
778
void cpu_enable_ticks(void)
779
{
780
    if (!cpu_ticks_enabled) {
781
        cpu_ticks_offset -= cpu_get_real_ticks();
782
        cpu_clock_offset -= get_clock();
783
        cpu_ticks_enabled = 1;
784
    }
785
}
786

    
787
/* disable cpu_get_ticks() : the clock is stopped. You must not call
788
   cpu_get_ticks() after that.  */
789
void cpu_disable_ticks(void)
790
{
791
    if (cpu_ticks_enabled) {
792
        cpu_ticks_offset = cpu_get_ticks();
793
        cpu_clock_offset = cpu_get_clock();
794
        cpu_ticks_enabled = 0;
795
    }
796
}
797

    
798
/***********************************************************/
799
/* timers */
800

    
801
#define QEMU_TIMER_REALTIME 0
802
#define QEMU_TIMER_VIRTUAL  1
803

    
804
struct QEMUClock {
805
    int type;
806
    /* XXX: add frequency */
807
};
808

    
809
struct QEMUTimer {
810
    QEMUClock *clock;
811
    int64_t expire_time;
812
    QEMUTimerCB *cb;
813
    void *opaque;
814
    struct QEMUTimer *next;
815
};
816

    
817
struct qemu_alarm_timer {
818
    char const *name;
819
    unsigned int flags;
820

    
821
    int (*start)(struct qemu_alarm_timer *t);
822
    void (*stop)(struct qemu_alarm_timer *t);
823
    void (*rearm)(struct qemu_alarm_timer *t);
824
    void *priv;
825
};
826

    
827
#define ALARM_FLAG_DYNTICKS  0x1
828
#define ALARM_FLAG_EXPIRED   0x2
829

    
830
static inline int alarm_has_dynticks(struct qemu_alarm_timer *t)
831
{
832
    return t->flags & ALARM_FLAG_DYNTICKS;
833
}
834

    
835
static void qemu_rearm_alarm_timer(struct qemu_alarm_timer *t)
836
{
837
    if (!alarm_has_dynticks(t))
838
        return;
839

    
840
    t->rearm(t);
841
}
842

    
843
/* TODO: MIN_TIMER_REARM_US should be optimized */
844
#define MIN_TIMER_REARM_US 250
845

    
846
static struct qemu_alarm_timer *alarm_timer;
847

    
848
#ifdef _WIN32
849

    
850
struct qemu_alarm_win32 {
851
    MMRESULT timerId;
852
    HANDLE host_alarm;
853
    unsigned int period;
854
} alarm_win32_data = {0, NULL, -1};
855

    
856
static int win32_start_timer(struct qemu_alarm_timer *t);
857
static void win32_stop_timer(struct qemu_alarm_timer *t);
858
static void win32_rearm_timer(struct qemu_alarm_timer *t);
859

    
860
#else
861

    
862
static int unix_start_timer(struct qemu_alarm_timer *t);
863
static void unix_stop_timer(struct qemu_alarm_timer *t);
864

    
865
#ifdef __linux__
866

    
867
static int dynticks_start_timer(struct qemu_alarm_timer *t);
868
static void dynticks_stop_timer(struct qemu_alarm_timer *t);
869
static void dynticks_rearm_timer(struct qemu_alarm_timer *t);
870

    
871
static int hpet_start_timer(struct qemu_alarm_timer *t);
872
static void hpet_stop_timer(struct qemu_alarm_timer *t);
873

    
874
static int rtc_start_timer(struct qemu_alarm_timer *t);
875
static void rtc_stop_timer(struct qemu_alarm_timer *t);
876

    
877
#endif /* __linux__ */
878

    
879
#endif /* _WIN32 */
880

    
881
static struct qemu_alarm_timer alarm_timers[] = {
882
#ifndef _WIN32
883
#ifdef __linux__
884
    {"dynticks", ALARM_FLAG_DYNTICKS, dynticks_start_timer,
885
     dynticks_stop_timer, dynticks_rearm_timer, NULL},
886
    /* HPET - if available - is preferred */
887
    {"hpet", 0, hpet_start_timer, hpet_stop_timer, NULL, NULL},
888
    /* ...otherwise try RTC */
889
    {"rtc", 0, rtc_start_timer, rtc_stop_timer, NULL, NULL},
890
#endif
891
    {"unix", 0, unix_start_timer, unix_stop_timer, NULL, NULL},
892
#else
893
    {"dynticks", ALARM_FLAG_DYNTICKS, win32_start_timer,
894
     win32_stop_timer, win32_rearm_timer, &alarm_win32_data},
895
    {"win32", 0, win32_start_timer,
896
     win32_stop_timer, NULL, &alarm_win32_data},
897
#endif
898
    {NULL, }
899
};
900

    
901
static void show_available_alarms()
902
{
903
    int i;
904

    
905
    printf("Available alarm timers, in order of precedence:\n");
906
    for (i = 0; alarm_timers[i].name; i++)
907
        printf("%s\n", alarm_timers[i].name);
908
}
909

    
910
static void configure_alarms(char const *opt)
911
{
912
    int i;
913
    int cur = 0;
914
    int count = (sizeof(alarm_timers) / sizeof(*alarm_timers)) - 1;
915
    char *arg;
916
    char *name;
917

    
918
    if (!strcmp(opt, "help")) {
919
        show_available_alarms();
920
        exit(0);
921
    }
922

    
923
    arg = strdup(opt);
924

    
925
    /* Reorder the array */
926
    name = strtok(arg, ",");
927
    while (name) {
928
        struct qemu_alarm_timer tmp;
929

    
930
        for (i = 0; i < count && alarm_timers[i].name; i++) {
931
            if (!strcmp(alarm_timers[i].name, name))
932
                break;
933
        }
934

    
935
        if (i == count) {
936
            fprintf(stderr, "Unknown clock %s\n", name);
937
            goto next;
938
        }
939

    
940
        if (i < cur)
941
            /* Ignore */
942
            goto next;
943

    
944
        /* Swap */
945
        tmp = alarm_timers[i];
946
        alarm_timers[i] = alarm_timers[cur];
947
        alarm_timers[cur] = tmp;
948

    
949
        cur++;
950
next:
951
        name = strtok(NULL, ",");
952
    }
953

    
954
    free(arg);
955

    
956
    if (cur) {
957
        /* Disable remaining timers */
958
        for (i = cur; i < count; i++)
959
            alarm_timers[i].name = NULL;
960
    }
961

    
962
    /* debug */
963
    show_available_alarms();
964
}
965

    
966
QEMUClock *rt_clock;
967
QEMUClock *vm_clock;
968

    
969
static QEMUTimer *active_timers[2];
970

    
971
static QEMUClock *qemu_new_clock(int type)
972
{
973
    QEMUClock *clock;
974
    clock = qemu_mallocz(sizeof(QEMUClock));
975
    if (!clock)
976
        return NULL;
977
    clock->type = type;
978
    return clock;
979
}
980

    
981
QEMUTimer *qemu_new_timer(QEMUClock *clock, QEMUTimerCB *cb, void *opaque)
982
{
983
    QEMUTimer *ts;
984

    
985
    ts = qemu_mallocz(sizeof(QEMUTimer));
986
    ts->clock = clock;
987
    ts->cb = cb;
988
    ts->opaque = opaque;
989
    return ts;
990
}
991

    
992
void qemu_free_timer(QEMUTimer *ts)
993
{
994
    qemu_free(ts);
995
}
996

    
997
/* stop a timer, but do not dealloc it */
998
void qemu_del_timer(QEMUTimer *ts)
999
{
1000
    QEMUTimer **pt, *t;
1001

    
1002
    /* NOTE: this code must be signal safe because
1003
       qemu_timer_expired() can be called from a signal. */
1004
    pt = &active_timers[ts->clock->type];
1005
    for(;;) {
1006
        t = *pt;
1007
        if (!t)
1008
            break;
1009
        if (t == ts) {
1010
            *pt = t->next;
1011
            break;
1012
        }
1013
        pt = &t->next;
1014
    }
1015
}
1016

    
1017
/* modify the current timer so that it will be fired when current_time
1018
   >= expire_time. The corresponding callback will be called. */
1019
void qemu_mod_timer(QEMUTimer *ts, int64_t expire_time)
1020
{
1021
    QEMUTimer **pt, *t;
1022

    
1023
    qemu_del_timer(ts);
1024

    
1025
    /* add the timer in the sorted list */
1026
    /* NOTE: this code must be signal safe because
1027
       qemu_timer_expired() can be called from a signal. */
1028
    pt = &active_timers[ts->clock->type];
1029
    for(;;) {
1030
        t = *pt;
1031
        if (!t)
1032
            break;
1033
        if (t->expire_time > expire_time)
1034
            break;
1035
        pt = &t->next;
1036
    }
1037
    ts->expire_time = expire_time;
1038
    ts->next = *pt;
1039
    *pt = ts;
1040

    
1041
    /* Rearm if necessary  */
1042
    if ((alarm_timer->flags & ALARM_FLAG_EXPIRED) == 0 &&
1043
        pt == &active_timers[ts->clock->type])
1044
        qemu_rearm_alarm_timer(alarm_timer);
1045
}
1046

    
1047
int qemu_timer_pending(QEMUTimer *ts)
1048
{
1049
    QEMUTimer *t;
1050
    for(t = active_timers[ts->clock->type]; t != NULL; t = t->next) {
1051
        if (t == ts)
1052
            return 1;
1053
    }
1054
    return 0;
1055
}
1056

    
1057
static inline int qemu_timer_expired(QEMUTimer *timer_head, int64_t current_time)
1058
{
1059
    if (!timer_head)
1060
        return 0;
1061
    return (timer_head->expire_time <= current_time);
1062
}
1063

    
1064
static void qemu_run_timers(QEMUTimer **ptimer_head, int64_t current_time)
1065
{
1066
    QEMUTimer *ts;
1067

    
1068
    for(;;) {
1069
        ts = *ptimer_head;
1070
        if (!ts || ts->expire_time > current_time)
1071
            break;
1072
        /* remove timer from the list before calling the callback */
1073
        *ptimer_head = ts->next;
1074
        ts->next = NULL;
1075

    
1076
        /* run the callback (the timer list can be modified) */
1077
        ts->cb(ts->opaque);
1078
    }
1079
}
1080

    
1081
int64_t qemu_get_clock(QEMUClock *clock)
1082
{
1083
    switch(clock->type) {
1084
    case QEMU_TIMER_REALTIME:
1085
        return get_clock() / 1000000;
1086
    default:
1087
    case QEMU_TIMER_VIRTUAL:
1088
        return cpu_get_clock();
1089
    }
1090
}
1091

    
1092
static void init_timers(void)
1093
{
1094
    init_get_clock();
1095
    ticks_per_sec = QEMU_TIMER_BASE;
1096
    rt_clock = qemu_new_clock(QEMU_TIMER_REALTIME);
1097
    vm_clock = qemu_new_clock(QEMU_TIMER_VIRTUAL);
1098
}
1099

    
1100
/* save a timer */
1101
void qemu_put_timer(QEMUFile *f, QEMUTimer *ts)
1102
{
1103
    uint64_t expire_time;
1104

    
1105
    if (qemu_timer_pending(ts)) {
1106
        expire_time = ts->expire_time;
1107
    } else {
1108
        expire_time = -1;
1109
    }
1110
    qemu_put_be64(f, expire_time);
1111
}
1112

    
1113
void qemu_get_timer(QEMUFile *f, QEMUTimer *ts)
1114
{
1115
    uint64_t expire_time;
1116

    
1117
    expire_time = qemu_get_be64(f);
1118
    if (expire_time != -1) {
1119
        qemu_mod_timer(ts, expire_time);
1120
    } else {
1121
        qemu_del_timer(ts);
1122
    }
1123
}
1124

    
1125
static void timer_save(QEMUFile *f, void *opaque)
1126
{
1127
    if (cpu_ticks_enabled) {
1128
        hw_error("cannot save state if virtual timers are running");
1129
    }
1130
    qemu_put_be64(f, cpu_ticks_offset);
1131
    qemu_put_be64(f, ticks_per_sec);
1132
    qemu_put_be64(f, cpu_clock_offset);
1133
}
1134

    
1135
static int timer_load(QEMUFile *f, void *opaque, int version_id)
1136
{
1137
    if (version_id != 1 && version_id != 2)
1138
        return -EINVAL;
1139
    if (cpu_ticks_enabled) {
1140
        return -EINVAL;
1141
    }
1142
    cpu_ticks_offset=qemu_get_be64(f);
1143
    ticks_per_sec=qemu_get_be64(f);
1144
    if (version_id == 2) {
1145
        cpu_clock_offset=qemu_get_be64(f);
1146
    }
1147
    return 0;
1148
}
1149

    
1150
#ifdef _WIN32
1151
void CALLBACK host_alarm_handler(UINT uTimerID, UINT uMsg,
1152
                                 DWORD_PTR dwUser, DWORD_PTR dw1, DWORD_PTR dw2)
1153
#else
1154
static void host_alarm_handler(int host_signum)
1155
#endif
1156
{
1157
#if 0
1158
#define DISP_FREQ 1000
1159
    {
1160
        static int64_t delta_min = INT64_MAX;
1161
        static int64_t delta_max, delta_cum, last_clock, delta, ti;
1162
        static int count;
1163
        ti = qemu_get_clock(vm_clock);
1164
        if (last_clock != 0) {
1165
            delta = ti - last_clock;
1166
            if (delta < delta_min)
1167
                delta_min = delta;
1168
            if (delta > delta_max)
1169
                delta_max = delta;
1170
            delta_cum += delta;
1171
            if (++count == DISP_FREQ) {
1172
                printf("timer: min=%" PRId64 " us max=%" PRId64 " us avg=%" PRId64 " us avg_freq=%0.3f Hz\n",
1173
                       muldiv64(delta_min, 1000000, ticks_per_sec),
1174
                       muldiv64(delta_max, 1000000, ticks_per_sec),
1175
                       muldiv64(delta_cum, 1000000 / DISP_FREQ, ticks_per_sec),
1176
                       (double)ticks_per_sec / ((double)delta_cum / DISP_FREQ));
1177
                count = 0;
1178
                delta_min = INT64_MAX;
1179
                delta_max = 0;
1180
                delta_cum = 0;
1181
            }
1182
        }
1183
        last_clock = ti;
1184
    }
1185
#endif
1186
    if (alarm_has_dynticks(alarm_timer) ||
1187
        qemu_timer_expired(active_timers[QEMU_TIMER_VIRTUAL],
1188
                           qemu_get_clock(vm_clock)) ||
1189
        qemu_timer_expired(active_timers[QEMU_TIMER_REALTIME],
1190
                           qemu_get_clock(rt_clock))) {
1191
#ifdef _WIN32
1192
        struct qemu_alarm_win32 *data = ((struct qemu_alarm_timer*)dwUser)->priv;
1193
        SetEvent(data->host_alarm);
1194
#endif
1195
        CPUState *env = next_cpu;
1196

    
1197
        alarm_timer->flags |= ALARM_FLAG_EXPIRED;
1198

    
1199
        if (env) {
1200
            /* stop the currently executing cpu because a timer occured */
1201
            cpu_interrupt(env, CPU_INTERRUPT_EXIT);
1202
#ifdef USE_KQEMU
1203
            if (env->kqemu_enabled) {
1204
                kqemu_cpu_interrupt(env);
1205
            }
1206
#endif
1207
        }
1208
        event_pending = 1;
1209
    }
1210
}
1211

    
1212
static uint64_t qemu_next_deadline(void)
1213
{
1214
    int64_t nearest_delta_us = INT64_MAX;
1215
    int64_t vmdelta_us;
1216

    
1217
    if (active_timers[QEMU_TIMER_REALTIME])
1218
        nearest_delta_us = (active_timers[QEMU_TIMER_REALTIME]->expire_time -
1219
                            qemu_get_clock(rt_clock))*1000;
1220

    
1221
    if (active_timers[QEMU_TIMER_VIRTUAL]) {
1222
        /* round up */
1223
        vmdelta_us = (active_timers[QEMU_TIMER_VIRTUAL]->expire_time -
1224
                      qemu_get_clock(vm_clock)+999)/1000;
1225
        if (vmdelta_us < nearest_delta_us)
1226
            nearest_delta_us = vmdelta_us;
1227
    }
1228

    
1229
    /* Avoid arming the timer to negative, zero, or too low values */
1230
    if (nearest_delta_us <= MIN_TIMER_REARM_US)
1231
        nearest_delta_us = MIN_TIMER_REARM_US;
1232

    
1233
    return nearest_delta_us;
1234
}
1235

    
1236
#ifndef _WIN32
1237

    
1238
#if defined(__linux__)
1239

    
1240
#define RTC_FREQ 1024
1241

    
1242
static void enable_sigio_timer(int fd)
1243
{
1244
    struct sigaction act;
1245

    
1246
    /* timer signal */
1247
    sigfillset(&act.sa_mask);
1248
    act.sa_flags = 0;
1249
    act.sa_handler = host_alarm_handler;
1250

    
1251
    sigaction(SIGIO, &act, NULL);
1252
    fcntl(fd, F_SETFL, O_ASYNC);
1253
    fcntl(fd, F_SETOWN, getpid());
1254
}
1255

    
1256
static int hpet_start_timer(struct qemu_alarm_timer *t)
1257
{
1258
    struct hpet_info info;
1259
    int r, fd;
1260

    
1261
    fd = open("/dev/hpet", O_RDONLY);
1262
    if (fd < 0)
1263
        return -1;
1264

    
1265
    /* Set frequency */
1266
    r = ioctl(fd, HPET_IRQFREQ, RTC_FREQ);
1267
    if (r < 0) {
1268
        fprintf(stderr, "Could not configure '/dev/hpet' to have a 1024Hz timer. This is not a fatal\n"
1269
                "error, but for better emulation accuracy type:\n"
1270
                "'echo 1024 > /proc/sys/dev/hpet/max-user-freq' as root.\n");
1271
        goto fail;
1272
    }
1273

    
1274
    /* Check capabilities */
1275
    r = ioctl(fd, HPET_INFO, &info);
1276
    if (r < 0)
1277
        goto fail;
1278

    
1279
    /* Enable periodic mode */
1280
    r = ioctl(fd, HPET_EPI, 0);
1281
    if (info.hi_flags && (r < 0))
1282
        goto fail;
1283

    
1284
    /* Enable interrupt */
1285
    r = ioctl(fd, HPET_IE_ON, 0);
1286
    if (r < 0)
1287
        goto fail;
1288

    
1289
    enable_sigio_timer(fd);
1290
    t->priv = (void *)(long)fd;
1291

    
1292
    return 0;
1293
fail:
1294
    close(fd);
1295
    return -1;
1296
}
1297

    
1298
static void hpet_stop_timer(struct qemu_alarm_timer *t)
1299
{
1300
    int fd = (long)t->priv;
1301

    
1302
    close(fd);
1303
}
1304

    
1305
static int rtc_start_timer(struct qemu_alarm_timer *t)
1306
{
1307
    int rtc_fd;
1308

    
1309
    TFR(rtc_fd = open("/dev/rtc", O_RDONLY));
1310
    if (rtc_fd < 0)
1311
        return -1;
1312
    if (ioctl(rtc_fd, RTC_IRQP_SET, RTC_FREQ) < 0) {
1313
        fprintf(stderr, "Could not configure '/dev/rtc' to have a 1024 Hz timer. This is not a fatal\n"
1314
                "error, but for better emulation accuracy either use a 2.6 host Linux kernel or\n"
1315
                "type 'echo 1024 > /proc/sys/dev/rtc/max-user-freq' as root.\n");
1316
        goto fail;
1317
    }
1318
    if (ioctl(rtc_fd, RTC_PIE_ON, 0) < 0) {
1319
    fail:
1320
        close(rtc_fd);
1321
        return -1;
1322
    }
1323

    
1324
    enable_sigio_timer(rtc_fd);
1325

    
1326
    t->priv = (void *)(long)rtc_fd;
1327

    
1328
    return 0;
1329
}
1330

    
1331
static void rtc_stop_timer(struct qemu_alarm_timer *t)
1332
{
1333
    int rtc_fd = (long)t->priv;
1334

    
1335
    close(rtc_fd);
1336
}
1337

    
1338
static int dynticks_start_timer(struct qemu_alarm_timer *t)
1339
{
1340
    struct sigevent ev;
1341
    timer_t host_timer;
1342
    struct sigaction act;
1343

    
1344
    sigfillset(&act.sa_mask);
1345
    act.sa_flags = 0;
1346
    act.sa_handler = host_alarm_handler;
1347

    
1348
    sigaction(SIGALRM, &act, NULL);
1349

    
1350
    ev.sigev_value.sival_int = 0;
1351
    ev.sigev_notify = SIGEV_SIGNAL;
1352
    ev.sigev_signo = SIGALRM;
1353

    
1354
    if (timer_create(CLOCK_REALTIME, &ev, &host_timer)) {
1355
        perror("timer_create");
1356

    
1357
        /* disable dynticks */
1358
        fprintf(stderr, "Dynamic Ticks disabled\n");
1359

    
1360
        return -1;
1361
    }
1362

    
1363
    t->priv = (void *)host_timer;
1364

    
1365
    return 0;
1366
}
1367

    
1368
static void dynticks_stop_timer(struct qemu_alarm_timer *t)
1369
{
1370
    timer_t host_timer = (timer_t)t->priv;
1371

    
1372
    timer_delete(host_timer);
1373
}
1374

    
1375
static void dynticks_rearm_timer(struct qemu_alarm_timer *t)
1376
{
1377
    timer_t host_timer = (timer_t)t->priv;
1378
    struct itimerspec timeout;
1379
    int64_t nearest_delta_us = INT64_MAX;
1380
    int64_t current_us;
1381

    
1382
    if (!active_timers[QEMU_TIMER_REALTIME] &&
1383
                !active_timers[QEMU_TIMER_VIRTUAL])
1384
        return;
1385

    
1386
    nearest_delta_us = qemu_next_deadline();
1387

    
1388
    /* check whether a timer is already running */
1389
    if (timer_gettime(host_timer, &timeout)) {
1390
        perror("gettime");
1391
        fprintf(stderr, "Internal timer error: aborting\n");
1392
        exit(1);
1393
    }
1394
    current_us = timeout.it_value.tv_sec * 1000000 + timeout.it_value.tv_nsec/1000;
1395
    if (current_us && current_us <= nearest_delta_us)
1396
        return;
1397

    
1398
    timeout.it_interval.tv_sec = 0;
1399
    timeout.it_interval.tv_nsec = 0; /* 0 for one-shot timer */
1400
    timeout.it_value.tv_sec =  nearest_delta_us / 1000000;
1401
    timeout.it_value.tv_nsec = (nearest_delta_us % 1000000) * 1000;
1402
    if (timer_settime(host_timer, 0 /* RELATIVE */, &timeout, NULL)) {
1403
        perror("settime");
1404
        fprintf(stderr, "Internal timer error: aborting\n");
1405
        exit(1);
1406
    }
1407
}
1408

    
1409
#endif /* defined(__linux__) */
1410

    
1411
static int unix_start_timer(struct qemu_alarm_timer *t)
1412
{
1413
    struct sigaction act;
1414
    struct itimerval itv;
1415
    int err;
1416

    
1417
    /* timer signal */
1418
    sigfillset(&act.sa_mask);
1419
    act.sa_flags = 0;
1420
    act.sa_handler = host_alarm_handler;
1421

    
1422
    sigaction(SIGALRM, &act, NULL);
1423

    
1424
    itv.it_interval.tv_sec = 0;
1425
    /* for i386 kernel 2.6 to get 1 ms */
1426
    itv.it_interval.tv_usec = 999;
1427
    itv.it_value.tv_sec = 0;
1428
    itv.it_value.tv_usec = 10 * 1000;
1429

    
1430
    err = setitimer(ITIMER_REAL, &itv, NULL);
1431
    if (err)
1432
        return -1;
1433

    
1434
    return 0;
1435
}
1436

    
1437
static void unix_stop_timer(struct qemu_alarm_timer *t)
1438
{
1439
    struct itimerval itv;
1440

    
1441
    memset(&itv, 0, sizeof(itv));
1442
    setitimer(ITIMER_REAL, &itv, NULL);
1443
}
1444

    
1445
#endif /* !defined(_WIN32) */
1446

    
1447
#ifdef _WIN32
1448

    
1449
static int win32_start_timer(struct qemu_alarm_timer *t)
1450
{
1451
    TIMECAPS tc;
1452
    struct qemu_alarm_win32 *data = t->priv;
1453
    UINT flags;
1454

    
1455
    data->host_alarm = CreateEvent(NULL, FALSE, FALSE, NULL);
1456
    if (!data->host_alarm) {
1457
        perror("Failed CreateEvent");
1458
        return -1;
1459
    }
1460

    
1461
    memset(&tc, 0, sizeof(tc));
1462
    timeGetDevCaps(&tc, sizeof(tc));
1463

    
1464
    if (data->period < tc.wPeriodMin)
1465
        data->period = tc.wPeriodMin;
1466

    
1467
    timeBeginPeriod(data->period);
1468

    
1469
    flags = TIME_CALLBACK_FUNCTION;
1470
    if (alarm_has_dynticks(t))
1471
        flags |= TIME_ONESHOT;
1472
    else
1473
        flags |= TIME_PERIODIC;
1474

    
1475
    data->timerId = timeSetEvent(1,         // interval (ms)
1476
                        data->period,       // resolution
1477
                        host_alarm_handler, // function
1478
                        (DWORD)t,           // parameter
1479
                        flags);
1480

    
1481
    if (!data->timerId) {
1482
        perror("Failed to initialize win32 alarm timer");
1483

    
1484
        timeEndPeriod(data->period);
1485
        CloseHandle(data->host_alarm);
1486
        return -1;
1487
    }
1488

    
1489
    qemu_add_wait_object(data->host_alarm, NULL, NULL);
1490

    
1491
    return 0;
1492
}
1493

    
1494
static void win32_stop_timer(struct qemu_alarm_timer *t)
1495
{
1496
    struct qemu_alarm_win32 *data = t->priv;
1497

    
1498
    timeKillEvent(data->timerId);
1499
    timeEndPeriod(data->period);
1500

    
1501
    CloseHandle(data->host_alarm);
1502
}
1503

    
1504
static void win32_rearm_timer(struct qemu_alarm_timer *t)
1505
{
1506
    struct qemu_alarm_win32 *data = t->priv;
1507
    uint64_t nearest_delta_us;
1508

    
1509
    if (!active_timers[QEMU_TIMER_REALTIME] &&
1510
                !active_timers[QEMU_TIMER_VIRTUAL])
1511
        return;
1512

    
1513
    nearest_delta_us = qemu_next_deadline();
1514
    nearest_delta_us /= 1000;
1515

    
1516
    timeKillEvent(data->timerId);
1517

    
1518
    data->timerId = timeSetEvent(1,
1519
                        data->period,
1520
                        host_alarm_handler,
1521
                        (DWORD)t,
1522
                        TIME_ONESHOT | TIME_PERIODIC);
1523

    
1524
    if (!data->timerId) {
1525
        perror("Failed to re-arm win32 alarm timer");
1526

    
1527
        timeEndPeriod(data->period);
1528
        CloseHandle(data->host_alarm);
1529
        exit(1);
1530
    }
1531
}
1532

    
1533
#endif /* _WIN32 */
1534

    
1535
static void init_timer_alarm(void)
1536
{
1537
    struct qemu_alarm_timer *t;
1538
    int i, err = -1;
1539

    
1540
    for (i = 0; alarm_timers[i].name; i++) {
1541
        t = &alarm_timers[i];
1542

    
1543
        err = t->start(t);
1544
        if (!err)
1545
            break;
1546
    }
1547

    
1548
    if (err) {
1549
        fprintf(stderr, "Unable to find any suitable alarm timer.\n");
1550
        fprintf(stderr, "Terminating\n");
1551
        exit(1);
1552
    }
1553

    
1554
    alarm_timer = t;
1555
}
1556

    
1557
static void quit_timers(void)
1558
{
1559
    alarm_timer->stop(alarm_timer);
1560
    alarm_timer = NULL;
1561
}
1562

    
1563
/***********************************************************/
1564
/* character device */
1565

    
1566
static void qemu_chr_event(CharDriverState *s, int event)
1567
{
1568
    if (!s->chr_event)
1569
        return;
1570
    s->chr_event(s->handler_opaque, event);
1571
}
1572

    
1573
static void qemu_chr_reset_bh(void *opaque)
1574
{
1575
    CharDriverState *s = opaque;
1576
    qemu_chr_event(s, CHR_EVENT_RESET);
1577
    qemu_bh_delete(s->bh);
1578
    s->bh = NULL;
1579
}
1580

    
1581
void qemu_chr_reset(CharDriverState *s)
1582
{
1583
    if (s->bh == NULL) {
1584
        s->bh = qemu_bh_new(qemu_chr_reset_bh, s);
1585
        qemu_bh_schedule(s->bh);
1586
    }
1587
}
1588

    
1589
int qemu_chr_write(CharDriverState *s, const uint8_t *buf, int len)
1590
{
1591
    return s->chr_write(s, buf, len);
1592
}
1593

    
1594
int qemu_chr_ioctl(CharDriverState *s, int cmd, void *arg)
1595
{
1596
    if (!s->chr_ioctl)
1597
        return -ENOTSUP;
1598
    return s->chr_ioctl(s, cmd, arg);
1599
}
1600

    
1601
int qemu_chr_can_read(CharDriverState *s)
1602
{
1603
    if (!s->chr_can_read)
1604
        return 0;
1605
    return s->chr_can_read(s->handler_opaque);
1606
}
1607

    
1608
void qemu_chr_read(CharDriverState *s, uint8_t *buf, int len)
1609
{
1610
    s->chr_read(s->handler_opaque, buf, len);
1611
}
1612

    
1613
void qemu_chr_accept_input(CharDriverState *s)
1614
{
1615
    if (s->chr_accept_input)
1616
        s->chr_accept_input(s);
1617
}
1618

    
1619
void qemu_chr_printf(CharDriverState *s, const char *fmt, ...)
1620
{
1621
    char buf[4096];
1622
    va_list ap;
1623
    va_start(ap, fmt);
1624
    vsnprintf(buf, sizeof(buf), fmt, ap);
1625
    qemu_chr_write(s, (uint8_t *)buf, strlen(buf));
1626
    va_end(ap);
1627
}
1628

    
1629
void qemu_chr_send_event(CharDriverState *s, int event)
1630
{
1631
    if (s->chr_send_event)
1632
        s->chr_send_event(s, event);
1633
}
1634

    
1635
void qemu_chr_add_handlers(CharDriverState *s,
1636
                           IOCanRWHandler *fd_can_read,
1637
                           IOReadHandler *fd_read,
1638
                           IOEventHandler *fd_event,
1639
                           void *opaque)
1640
{
1641
    s->chr_can_read = fd_can_read;
1642
    s->chr_read = fd_read;
1643
    s->chr_event = fd_event;
1644
    s->handler_opaque = opaque;
1645
    if (s->chr_update_read_handler)
1646
        s->chr_update_read_handler(s);
1647
}
1648

    
1649
static int null_chr_write(CharDriverState *chr, const uint8_t *buf, int len)
1650
{
1651
    return len;
1652
}
1653

    
1654
static CharDriverState *qemu_chr_open_null(void)
1655
{
1656
    CharDriverState *chr;
1657

    
1658
    chr = qemu_mallocz(sizeof(CharDriverState));
1659
    if (!chr)
1660
        return NULL;
1661
    chr->chr_write = null_chr_write;
1662
    return chr;
1663
}
1664

    
1665
/* MUX driver for serial I/O splitting */
1666
static int term_timestamps;
1667
static int64_t term_timestamps_start;
1668
#define MAX_MUX 4
1669
#define MUX_BUFFER_SIZE 32        /* Must be a power of 2.  */
1670
#define MUX_BUFFER_MASK (MUX_BUFFER_SIZE - 1)
1671
typedef struct {
1672
    IOCanRWHandler *chr_can_read[MAX_MUX];
1673
    IOReadHandler *chr_read[MAX_MUX];
1674
    IOEventHandler *chr_event[MAX_MUX];
1675
    void *ext_opaque[MAX_MUX];
1676
    CharDriverState *drv;
1677
    unsigned char buffer[MUX_BUFFER_SIZE];
1678
    int prod;
1679
    int cons;
1680
    int mux_cnt;
1681
    int term_got_escape;
1682
    int max_size;
1683
} MuxDriver;
1684

    
1685

    
1686
static int mux_chr_write(CharDriverState *chr, const uint8_t *buf, int len)
1687
{
1688
    MuxDriver *d = chr->opaque;
1689
    int ret;
1690
    if (!term_timestamps) {
1691
        ret = d->drv->chr_write(d->drv, buf, len);
1692
    } else {
1693
        int i;
1694

    
1695
        ret = 0;
1696
        for(i = 0; i < len; i++) {
1697
            ret += d->drv->chr_write(d->drv, buf+i, 1);
1698
            if (buf[i] == '\n') {
1699
                char buf1[64];
1700
                int64_t ti;
1701
                int secs;
1702

    
1703
                ti = get_clock();
1704
                if (term_timestamps_start == -1)
1705
                    term_timestamps_start = ti;
1706
                ti -= term_timestamps_start;
1707
                secs = ti / 1000000000;
1708
                snprintf(buf1, sizeof(buf1),
1709
                         "[%02d:%02d:%02d.%03d] ",
1710
                         secs / 3600,
1711
                         (secs / 60) % 60,
1712
                         secs % 60,
1713
                         (int)((ti / 1000000) % 1000));
1714
                d->drv->chr_write(d->drv, (uint8_t *)buf1, strlen(buf1));
1715
            }
1716
        }
1717
    }
1718
    return ret;
1719
}
1720

    
1721
static char *mux_help[] = {
1722
    "% h    print this help\n\r",
1723
    "% x    exit emulator\n\r",
1724
    "% s    save disk data back to file (if -snapshot)\n\r",
1725
    "% t    toggle console timestamps\n\r"
1726
    "% b    send break (magic sysrq)\n\r",
1727
    "% c    switch between console and monitor\n\r",
1728
    "% %  sends %\n\r",
1729
    NULL
1730
};
1731

    
1732
static int term_escape_char = 0x01; /* ctrl-a is used for escape */
1733
static void mux_print_help(CharDriverState *chr)
1734
{
1735
    int i, j;
1736
    char ebuf[15] = "Escape-Char";
1737
    char cbuf[50] = "\n\r";
1738

    
1739
    if (term_escape_char > 0 && term_escape_char < 26) {
1740
        sprintf(cbuf,"\n\r");
1741
        sprintf(ebuf,"C-%c", term_escape_char - 1 + 'a');
1742
    } else {
1743
        sprintf(cbuf,"\n\rEscape-Char set to Ascii: 0x%02x\n\r\n\r",
1744
            term_escape_char);
1745
    }
1746
    chr->chr_write(chr, (uint8_t *)cbuf, strlen(cbuf));
1747
    for (i = 0; mux_help[i] != NULL; i++) {
1748
        for (j=0; mux_help[i][j] != '\0'; j++) {
1749
            if (mux_help[i][j] == '%')
1750
                chr->chr_write(chr, (uint8_t *)ebuf, strlen(ebuf));
1751
            else
1752
                chr->chr_write(chr, (uint8_t *)&mux_help[i][j], 1);
1753
        }
1754
    }
1755
}
1756

    
1757
static int mux_proc_byte(CharDriverState *chr, MuxDriver *d, int ch)
1758
{
1759
    if (d->term_got_escape) {
1760
        d->term_got_escape = 0;
1761
        if (ch == term_escape_char)
1762
            goto send_char;
1763
        switch(ch) {
1764
        case '?':
1765
        case 'h':
1766
            mux_print_help(chr);
1767
            break;
1768
        case 'x':
1769
            {
1770
                 char *term =  "QEMU: Terminated\n\r";
1771
                 chr->chr_write(chr,(uint8_t *)term,strlen(term));
1772
                 exit(0);
1773
                 break;
1774
            }
1775
        case 's':
1776
            {
1777
                int i;
1778
                for (i = 0; i < nb_drives; i++) {
1779
                        bdrv_commit(drives_table[i].bdrv);
1780
                }
1781
            }
1782
            break;
1783
        case 'b':
1784
            qemu_chr_event(chr, CHR_EVENT_BREAK);
1785
            break;
1786
        case 'c':
1787
            /* Switch to the next registered device */
1788
            chr->focus++;
1789
            if (chr->focus >= d->mux_cnt)
1790
                chr->focus = 0;
1791
            break;
1792
       case 't':
1793
           term_timestamps = !term_timestamps;
1794
           term_timestamps_start = -1;
1795
           break;
1796
        }
1797
    } else if (ch == term_escape_char) {
1798
        d->term_got_escape = 1;
1799
    } else {
1800
    send_char:
1801
        return 1;
1802
    }
1803
    return 0;
1804
}
1805

    
1806
static void mux_chr_accept_input(CharDriverState *chr)
1807
{
1808
    int m = chr->focus;
1809
    MuxDriver *d = chr->opaque;
1810

    
1811
    while (d->prod != d->cons &&
1812
           d->chr_can_read[m] &&
1813
           d->chr_can_read[m](d->ext_opaque[m])) {
1814
        d->chr_read[m](d->ext_opaque[m],
1815
                       &d->buffer[d->cons++ & MUX_BUFFER_MASK], 1);
1816
    }
1817
}
1818

    
1819
static int mux_chr_can_read(void *opaque)
1820
{
1821
    CharDriverState *chr = opaque;
1822
    MuxDriver *d = chr->opaque;
1823

    
1824
    if ((d->prod - d->cons) < MUX_BUFFER_SIZE)
1825
        return 1;
1826
    if (d->chr_can_read[chr->focus])
1827
        return d->chr_can_read[chr->focus](d->ext_opaque[chr->focus]);
1828
    return 0;
1829
}
1830

    
1831
static void mux_chr_read(void *opaque, const uint8_t *buf, int size)
1832
{
1833
    CharDriverState *chr = opaque;
1834
    MuxDriver *d = chr->opaque;
1835
    int m = chr->focus;
1836
    int i;
1837

    
1838
    mux_chr_accept_input (opaque);
1839

    
1840
    for(i = 0; i < size; i++)
1841
        if (mux_proc_byte(chr, d, buf[i])) {
1842
            if (d->prod == d->cons &&
1843
                d->chr_can_read[m] &&
1844
                d->chr_can_read[m](d->ext_opaque[m]))
1845
                d->chr_read[m](d->ext_opaque[m], &buf[i], 1);
1846
            else
1847
                d->buffer[d->prod++ & MUX_BUFFER_MASK] = buf[i];
1848
        }
1849
}
1850

    
1851
static void mux_chr_event(void *opaque, int event)
1852
{
1853
    CharDriverState *chr = opaque;
1854
    MuxDriver *d = chr->opaque;
1855
    int i;
1856

    
1857
    /* Send the event to all registered listeners */
1858
    for (i = 0; i < d->mux_cnt; i++)
1859
        if (d->chr_event[i])
1860
            d->chr_event[i](d->ext_opaque[i], event);
1861
}
1862

    
1863
static void mux_chr_update_read_handler(CharDriverState *chr)
1864
{
1865
    MuxDriver *d = chr->opaque;
1866

    
1867
    if (d->mux_cnt >= MAX_MUX) {
1868
        fprintf(stderr, "Cannot add I/O handlers, MUX array is full\n");
1869
        return;
1870
    }
1871
    d->ext_opaque[d->mux_cnt] = chr->handler_opaque;
1872
    d->chr_can_read[d->mux_cnt] = chr->chr_can_read;
1873
    d->chr_read[d->mux_cnt] = chr->chr_read;
1874
    d->chr_event[d->mux_cnt] = chr->chr_event;
1875
    /* Fix up the real driver with mux routines */
1876
    if (d->mux_cnt == 0) {
1877
        qemu_chr_add_handlers(d->drv, mux_chr_can_read, mux_chr_read,
1878
                              mux_chr_event, chr);
1879
    }
1880
    chr->focus = d->mux_cnt;
1881
    d->mux_cnt++;
1882
}
1883

    
1884
static CharDriverState *qemu_chr_open_mux(CharDriverState *drv)
1885
{
1886
    CharDriverState *chr;
1887
    MuxDriver *d;
1888

    
1889
    chr = qemu_mallocz(sizeof(CharDriverState));
1890
    if (!chr)
1891
        return NULL;
1892
    d = qemu_mallocz(sizeof(MuxDriver));
1893
    if (!d) {
1894
        free(chr);
1895
        return NULL;
1896
    }
1897

    
1898
    chr->opaque = d;
1899
    d->drv = drv;
1900
    chr->focus = -1;
1901
    chr->chr_write = mux_chr_write;
1902
    chr->chr_update_read_handler = mux_chr_update_read_handler;
1903
    chr->chr_accept_input = mux_chr_accept_input;
1904
    return chr;
1905
}
1906

    
1907

    
1908
#ifdef _WIN32
1909

    
1910
static void socket_cleanup(void)
1911
{
1912
    WSACleanup();
1913
}
1914

    
1915
static int socket_init(void)
1916
{
1917
    WSADATA Data;
1918
    int ret, err;
1919

    
1920
    ret = WSAStartup(MAKEWORD(2,2), &Data);
1921
    if (ret != 0) {
1922
        err = WSAGetLastError();
1923
        fprintf(stderr, "WSAStartup: %d\n", err);
1924
        return -1;
1925
    }
1926
    atexit(socket_cleanup);
1927
    return 0;
1928
}
1929

    
1930
static int send_all(int fd, const uint8_t *buf, int len1)
1931
{
1932
    int ret, len;
1933

    
1934
    len = len1;
1935
    while (len > 0) {
1936
        ret = send(fd, buf, len, 0);
1937
        if (ret < 0) {
1938
            int errno;
1939
            errno = WSAGetLastError();
1940
            if (errno != WSAEWOULDBLOCK) {
1941
                return -1;
1942
            }
1943
        } else if (ret == 0) {
1944
            break;
1945
        } else {
1946
            buf += ret;
1947
            len -= ret;
1948
        }
1949
    }
1950
    return len1 - len;
1951
}
1952

    
1953
void socket_set_nonblock(int fd)
1954
{
1955
    unsigned long opt = 1;
1956
    ioctlsocket(fd, FIONBIO, &opt);
1957
}
1958

    
1959
#else
1960

    
1961
static int unix_write(int fd, const uint8_t *buf, int len1)
1962
{
1963
    int ret, len;
1964

    
1965
    len = len1;
1966
    while (len > 0) {
1967
        ret = write(fd, buf, len);
1968
        if (ret < 0) {
1969
            if (errno != EINTR && errno != EAGAIN)
1970
                return -1;
1971
        } else if (ret == 0) {
1972
            break;
1973
        } else {
1974
            buf += ret;
1975
            len -= ret;
1976
        }
1977
    }
1978
    return len1 - len;
1979
}
1980

    
1981
static inline int send_all(int fd, const uint8_t *buf, int len1)
1982
{
1983
    return unix_write(fd, buf, len1);
1984
}
1985

    
1986
void socket_set_nonblock(int fd)
1987
{
1988
    fcntl(fd, F_SETFL, O_NONBLOCK);
1989
}
1990
#endif /* !_WIN32 */
1991

    
1992
#ifndef _WIN32
1993

    
1994
typedef struct {
1995
    int fd_in, fd_out;
1996
    int max_size;
1997
} FDCharDriver;
1998

    
1999
#define STDIO_MAX_CLIENTS 1
2000
static int stdio_nb_clients = 0;
2001

    
2002
static int fd_chr_write(CharDriverState *chr, const uint8_t *buf, int len)
2003
{
2004
    FDCharDriver *s = chr->opaque;
2005
    return unix_write(s->fd_out, buf, len);
2006
}
2007

    
2008
static int fd_chr_read_poll(void *opaque)
2009
{
2010
    CharDriverState *chr = opaque;
2011
    FDCharDriver *s = chr->opaque;
2012

    
2013
    s->max_size = qemu_chr_can_read(chr);
2014
    return s->max_size;
2015
}
2016

    
2017
static void fd_chr_read(void *opaque)
2018
{
2019
    CharDriverState *chr = opaque;
2020
    FDCharDriver *s = chr->opaque;
2021
    int size, len;
2022
    uint8_t buf[1024];
2023

    
2024
    len = sizeof(buf);
2025
    if (len > s->max_size)
2026
        len = s->max_size;
2027
    if (len == 0)
2028
        return;
2029
    size = read(s->fd_in, buf, len);
2030
    if (size == 0) {
2031
        /* FD has been closed. Remove it from the active list.  */
2032
        qemu_set_fd_handler2(s->fd_in, NULL, NULL, NULL, NULL);
2033
        return;
2034
    }
2035
    if (size > 0) {
2036
        qemu_chr_read(chr, buf, size);
2037
    }
2038
}
2039

    
2040
static void fd_chr_update_read_handler(CharDriverState *chr)
2041
{
2042
    FDCharDriver *s = chr->opaque;
2043

    
2044
    if (s->fd_in >= 0) {
2045
        if (nographic && s->fd_in == 0) {
2046
        } else {
2047
            qemu_set_fd_handler2(s->fd_in, fd_chr_read_poll,
2048
                                 fd_chr_read, NULL, chr);
2049
        }
2050
    }
2051
}
2052

    
2053
static void fd_chr_close(struct CharDriverState *chr)
2054
{
2055
    FDCharDriver *s = chr->opaque;
2056

    
2057
    if (s->fd_in >= 0) {
2058
        if (nographic && s->fd_in == 0) {
2059
        } else {
2060
            qemu_set_fd_handler2(s->fd_in, NULL, NULL, NULL, NULL);
2061
        }
2062
    }
2063

    
2064
    qemu_free(s);
2065
}
2066

    
2067
/* open a character device to a unix fd */
2068
static CharDriverState *qemu_chr_open_fd(int fd_in, int fd_out)
2069
{
2070
    CharDriverState *chr;
2071
    FDCharDriver *s;
2072

    
2073
    chr = qemu_mallocz(sizeof(CharDriverState));
2074
    if (!chr)
2075
        return NULL;
2076
    s = qemu_mallocz(sizeof(FDCharDriver));
2077
    if (!s) {
2078
        free(chr);
2079
        return NULL;
2080
    }
2081
    s->fd_in = fd_in;
2082
    s->fd_out = fd_out;
2083
    chr->opaque = s;
2084
    chr->chr_write = fd_chr_write;
2085
    chr->chr_update_read_handler = fd_chr_update_read_handler;
2086
    chr->chr_close = fd_chr_close;
2087

    
2088
    qemu_chr_reset(chr);
2089

    
2090
    return chr;
2091
}
2092

    
2093
static CharDriverState *qemu_chr_open_file_out(const char *file_out)
2094
{
2095
    int fd_out;
2096

    
2097
    TFR(fd_out = open(file_out, O_WRONLY | O_TRUNC | O_CREAT | O_BINARY, 0666));
2098
    if (fd_out < 0)
2099
        return NULL;
2100
    return qemu_chr_open_fd(-1, fd_out);
2101
}
2102

    
2103
static CharDriverState *qemu_chr_open_pipe(const char *filename)
2104
{
2105
    int fd_in, fd_out;
2106
    char filename_in[256], filename_out[256];
2107

    
2108
    snprintf(filename_in, 256, "%s.in", filename);
2109
    snprintf(filename_out, 256, "%s.out", filename);
2110
    TFR(fd_in = open(filename_in, O_RDWR | O_BINARY));
2111
    TFR(fd_out = open(filename_out, O_RDWR | O_BINARY));
2112
    if (fd_in < 0 || fd_out < 0) {
2113
        if (fd_in >= 0)
2114
            close(fd_in);
2115
        if (fd_out >= 0)
2116
            close(fd_out);
2117
        TFR(fd_in = fd_out = open(filename, O_RDWR | O_BINARY));
2118
        if (fd_in < 0)
2119
            return NULL;
2120
    }
2121
    return qemu_chr_open_fd(fd_in, fd_out);
2122
}
2123

    
2124

    
2125
/* for STDIO, we handle the case where several clients use it
2126
   (nographic mode) */
2127

    
2128
#define TERM_FIFO_MAX_SIZE 1
2129

    
2130
static uint8_t term_fifo[TERM_FIFO_MAX_SIZE];
2131
static int term_fifo_size;
2132

    
2133
static int stdio_read_poll(void *opaque)
2134
{
2135
    CharDriverState *chr = opaque;
2136

    
2137
    /* try to flush the queue if needed */
2138
    if (term_fifo_size != 0 && qemu_chr_can_read(chr) > 0) {
2139
        qemu_chr_read(chr, term_fifo, 1);
2140
        term_fifo_size = 0;
2141
    }
2142
    /* see if we can absorb more chars */
2143
    if (term_fifo_size == 0)
2144
        return 1;
2145
    else
2146
        return 0;
2147
}
2148

    
2149
static void stdio_read(void *opaque)
2150
{
2151
    int size;
2152
    uint8_t buf[1];
2153
    CharDriverState *chr = opaque;
2154

    
2155
    size = read(0, buf, 1);
2156
    if (size == 0) {
2157
        /* stdin has been closed. Remove it from the active list.  */
2158
        qemu_set_fd_handler2(0, NULL, NULL, NULL, NULL);
2159
        return;
2160
    }
2161
    if (size > 0) {
2162
        if (qemu_chr_can_read(chr) > 0) {
2163
            qemu_chr_read(chr, buf, 1);
2164
        } else if (term_fifo_size == 0) {
2165
            term_fifo[term_fifo_size++] = buf[0];
2166
        }
2167
    }
2168
}
2169

    
2170
/* init terminal so that we can grab keys */
2171
static struct termios oldtty;
2172
static int old_fd0_flags;
2173
static int term_atexit_done;
2174

    
2175
static void term_exit(void)
2176
{
2177
    tcsetattr (0, TCSANOW, &oldtty);
2178
    fcntl(0, F_SETFL, old_fd0_flags);
2179
}
2180

    
2181
static void term_init(void)
2182
{
2183
    struct termios tty;
2184

    
2185
    tcgetattr (0, &tty);
2186
    oldtty = tty;
2187
    old_fd0_flags = fcntl(0, F_GETFL);
2188

    
2189
    tty.c_iflag &= ~(IGNBRK|BRKINT|PARMRK|ISTRIP
2190
                          |INLCR|IGNCR|ICRNL|IXON);
2191
    tty.c_oflag |= OPOST;
2192
    tty.c_lflag &= ~(ECHO|ECHONL|ICANON|IEXTEN);
2193
    /* if graphical mode, we allow Ctrl-C handling */
2194
    if (nographic)
2195
        tty.c_lflag &= ~ISIG;
2196
    tty.c_cflag &= ~(CSIZE|PARENB);
2197
    tty.c_cflag |= CS8;
2198
    tty.c_cc[VMIN] = 1;
2199
    tty.c_cc[VTIME] = 0;
2200

    
2201
    tcsetattr (0, TCSANOW, &tty);
2202

    
2203
    if (!term_atexit_done++)
2204
        atexit(term_exit);
2205

    
2206
    fcntl(0, F_SETFL, O_NONBLOCK);
2207
}
2208

    
2209
static void qemu_chr_close_stdio(struct CharDriverState *chr)
2210
{
2211
    term_exit();
2212
    stdio_nb_clients--;
2213
    qemu_set_fd_handler2(0, NULL, NULL, NULL, NULL);
2214
    fd_chr_close(chr);
2215
}
2216

    
2217
static CharDriverState *qemu_chr_open_stdio(void)
2218
{
2219
    CharDriverState *chr;
2220

    
2221
    if (stdio_nb_clients >= STDIO_MAX_CLIENTS)
2222
        return NULL;
2223
    chr = qemu_chr_open_fd(0, 1);
2224
    chr->chr_close = qemu_chr_close_stdio;
2225
    qemu_set_fd_handler2(0, stdio_read_poll, stdio_read, NULL, chr);
2226
    stdio_nb_clients++;
2227
    term_init();
2228

    
2229
    return chr;
2230
}
2231

    
2232
#if defined(__linux__) || defined(__sun__)
2233
static CharDriverState *qemu_chr_open_pty(void)
2234
{
2235
    struct termios tty;
2236
    char slave_name[1024];
2237
    int master_fd, slave_fd;
2238

    
2239
#if defined(__linux__)
2240
    /* Not satisfying */
2241
    if (openpty(&master_fd, &slave_fd, slave_name, NULL, NULL) < 0) {
2242
        return NULL;
2243
    }
2244
#endif
2245

    
2246
    /* Disabling local echo and line-buffered output */
2247
    tcgetattr (master_fd, &tty);
2248
    tty.c_lflag &= ~(ECHO|ICANON|ISIG);
2249
    tty.c_cc[VMIN] = 1;
2250
    tty.c_cc[VTIME] = 0;
2251
    tcsetattr (master_fd, TCSAFLUSH, &tty);
2252

    
2253
    fprintf(stderr, "char device redirected to %s\n", slave_name);
2254
    return qemu_chr_open_fd(master_fd, master_fd);
2255
}
2256

    
2257
static void tty_serial_init(int fd, int speed,
2258
                            int parity, int data_bits, int stop_bits)
2259
{
2260
    struct termios tty;
2261
    speed_t spd;
2262

    
2263
#if 0
2264
    printf("tty_serial_init: speed=%d parity=%c data=%d stop=%d\n",
2265
           speed, parity, data_bits, stop_bits);
2266
#endif
2267
    tcgetattr (fd, &tty);
2268

    
2269
#define MARGIN 1.1
2270
    if (speed <= 50 * MARGIN)
2271
        spd = B50;
2272
    else if (speed <= 75 * MARGIN)
2273
        spd = B75;
2274
    else if (speed <= 300 * MARGIN)
2275
        spd = B300;
2276
    else if (speed <= 600 * MARGIN)
2277
        spd = B600;
2278
    else if (speed <= 1200 * MARGIN)
2279
        spd = B1200;
2280
    else if (speed <= 2400 * MARGIN)
2281
        spd = B2400;
2282
    else if (speed <= 4800 * MARGIN)
2283
        spd = B4800;
2284
    else if (speed <= 9600 * MARGIN)
2285
        spd = B9600;
2286
    else if (speed <= 19200 * MARGIN)
2287
        spd = B19200;
2288
    else if (speed <= 38400 * MARGIN)
2289
        spd = B38400;
2290
    else if (speed <= 57600 * MARGIN)
2291
        spd = B57600;
2292
    else if (speed <= 115200 * MARGIN)
2293
        spd = B115200;
2294
    else
2295
        spd = B115200;
2296

    
2297
    cfsetispeed(&tty, spd);
2298
    cfsetospeed(&tty, spd);
2299

    
2300
    tty.c_iflag &= ~(IGNBRK|BRKINT|PARMRK|ISTRIP
2301
                          |INLCR|IGNCR|ICRNL|IXON);
2302
    tty.c_oflag |= OPOST;
2303
    tty.c_lflag &= ~(ECHO|ECHONL|ICANON|IEXTEN|ISIG);
2304
    tty.c_cflag &= ~(CSIZE|PARENB|PARODD|CRTSCTS|CSTOPB);
2305
    switch(data_bits) {
2306
    default:
2307
    case 8:
2308
        tty.c_cflag |= CS8;
2309
        break;
2310
    case 7:
2311
        tty.c_cflag |= CS7;
2312
        break;
2313
    case 6:
2314
        tty.c_cflag |= CS6;
2315
        break;
2316
    case 5:
2317
        tty.c_cflag |= CS5;
2318
        break;
2319
    }
2320
    switch(parity) {
2321
    default:
2322
    case 'N':
2323
        break;
2324
    case 'E':
2325
        tty.c_cflag |= PARENB;
2326
        break;
2327
    case 'O':
2328
        tty.c_cflag |= PARENB | PARODD;
2329
        break;
2330
    }
2331
    if (stop_bits == 2)
2332
        tty.c_cflag |= CSTOPB;
2333

    
2334
    tcsetattr (fd, TCSANOW, &tty);
2335
}
2336

    
2337
static int tty_serial_ioctl(CharDriverState *chr, int cmd, void *arg)
2338
{
2339
    FDCharDriver *s = chr->opaque;
2340

    
2341
    switch(cmd) {
2342
    case CHR_IOCTL_SERIAL_SET_PARAMS:
2343
        {
2344
            QEMUSerialSetParams *ssp = arg;
2345
            tty_serial_init(s->fd_in, ssp->speed, ssp->parity,
2346
                            ssp->data_bits, ssp->stop_bits);
2347
        }
2348
        break;
2349
    case CHR_IOCTL_SERIAL_SET_BREAK:
2350
        {
2351
            int enable = *(int *)arg;
2352
            if (enable)
2353
                tcsendbreak(s->fd_in, 1);
2354
        }
2355
        break;
2356
    default:
2357
        return -ENOTSUP;
2358
    }
2359
    return 0;
2360
}
2361

    
2362
static CharDriverState *qemu_chr_open_tty(const char *filename)
2363
{
2364
    CharDriverState *chr;
2365
    int fd;
2366

    
2367
    TFR(fd = open(filename, O_RDWR | O_NONBLOCK));
2368
    fcntl(fd, F_SETFL, O_NONBLOCK);
2369
    tty_serial_init(fd, 115200, 'N', 8, 1);
2370
    chr = qemu_chr_open_fd(fd, fd);
2371
    if (!chr) {
2372
        close(fd);
2373
        return NULL;
2374
    }
2375
    chr->chr_ioctl = tty_serial_ioctl;
2376
    qemu_chr_reset(chr);
2377
    return chr;
2378
}
2379
#else  /* ! __linux__ && ! __sun__ */
2380
static CharDriverState *qemu_chr_open_pty(void)
2381
{
2382
    return NULL;
2383
}
2384
#endif /* __linux__ || __sun__ */
2385

    
2386
#if defined(__linux__)
2387
typedef struct {
2388
    int fd;
2389
    int mode;
2390
} ParallelCharDriver;
2391

    
2392
static int pp_hw_mode(ParallelCharDriver *s, uint16_t mode)
2393
{
2394
    if (s->mode != mode) {
2395
        int m = mode;
2396
        if (ioctl(s->fd, PPSETMODE, &m) < 0)
2397
            return 0;
2398
        s->mode = mode;
2399
    }
2400
    return 1;
2401
}
2402

    
2403
static int pp_ioctl(CharDriverState *chr, int cmd, void *arg)
2404
{
2405
    ParallelCharDriver *drv = chr->opaque;
2406
    int fd = drv->fd;
2407
    uint8_t b;
2408

    
2409
    switch(cmd) {
2410
    case CHR_IOCTL_PP_READ_DATA:
2411
        if (ioctl(fd, PPRDATA, &b) < 0)
2412
            return -ENOTSUP;
2413
        *(uint8_t *)arg = b;
2414
        break;
2415
    case CHR_IOCTL_PP_WRITE_DATA:
2416
        b = *(uint8_t *)arg;
2417
        if (ioctl(fd, PPWDATA, &b) < 0)
2418
            return -ENOTSUP;
2419
        break;
2420
    case CHR_IOCTL_PP_READ_CONTROL:
2421
        if (ioctl(fd, PPRCONTROL, &b) < 0)
2422
            return -ENOTSUP;
2423
        /* Linux gives only the lowest bits, and no way to know data
2424
           direction! For better compatibility set the fixed upper
2425
           bits. */
2426
        *(uint8_t *)arg = b | 0xc0;
2427
        break;
2428
    case CHR_IOCTL_PP_WRITE_CONTROL:
2429
        b = *(uint8_t *)arg;
2430
        if (ioctl(fd, PPWCONTROL, &b) < 0)
2431
            return -ENOTSUP;
2432
        break;
2433
    case CHR_IOCTL_PP_READ_STATUS:
2434
        if (ioctl(fd, PPRSTATUS, &b) < 0)
2435
            return -ENOTSUP;
2436
        *(uint8_t *)arg = b;
2437
        break;
2438
    case CHR_IOCTL_PP_EPP_READ_ADDR:
2439
        if (pp_hw_mode(drv, IEEE1284_MODE_EPP|IEEE1284_ADDR)) {
2440
            struct ParallelIOArg *parg = arg;
2441
            int n = read(fd, parg->buffer, parg->count);
2442
            if (n != parg->count) {
2443
                return -EIO;
2444
            }
2445
        }
2446
        break;
2447
    case CHR_IOCTL_PP_EPP_READ:
2448
        if (pp_hw_mode(drv, IEEE1284_MODE_EPP)) {
2449
            struct ParallelIOArg *parg = arg;
2450
            int n = read(fd, parg->buffer, parg->count);
2451
            if (n != parg->count) {
2452
                return -EIO;
2453
            }
2454
        }
2455
        break;
2456
    case CHR_IOCTL_PP_EPP_WRITE_ADDR:
2457
        if (pp_hw_mode(drv, IEEE1284_MODE_EPP|IEEE1284_ADDR)) {
2458
            struct ParallelIOArg *parg = arg;
2459
            int n = write(fd, parg->buffer, parg->count);
2460
            if (n != parg->count) {
2461
                return -EIO;
2462
            }
2463
        }
2464
        break;
2465
    case CHR_IOCTL_PP_EPP_WRITE:
2466
        if (pp_hw_mode(drv, IEEE1284_MODE_EPP)) {
2467
            struct ParallelIOArg *parg = arg;
2468
            int n = write(fd, parg->buffer, parg->count);
2469
            if (n != parg->count) {
2470
                return -EIO;
2471
            }
2472
        }
2473
        break;
2474
    default:
2475
        return -ENOTSUP;
2476
    }
2477
    return 0;
2478
}
2479

    
2480
static void pp_close(CharDriverState *chr)
2481
{
2482
    ParallelCharDriver *drv = chr->opaque;
2483
    int fd = drv->fd;
2484

    
2485
    pp_hw_mode(drv, IEEE1284_MODE_COMPAT);
2486
    ioctl(fd, PPRELEASE);
2487
    close(fd);
2488
    qemu_free(drv);
2489
}
2490

    
2491
static CharDriverState *qemu_chr_open_pp(const char *filename)
2492
{
2493
    CharDriverState *chr;
2494
    ParallelCharDriver *drv;
2495
    int fd;
2496

    
2497
    TFR(fd = open(filename, O_RDWR));
2498
    if (fd < 0)
2499
        return NULL;
2500

    
2501
    if (ioctl(fd, PPCLAIM) < 0) {
2502
        close(fd);
2503
        return NULL;
2504
    }
2505

    
2506
    drv = qemu_mallocz(sizeof(ParallelCharDriver));
2507
    if (!drv) {
2508
        close(fd);
2509
        return NULL;
2510
    }
2511
    drv->fd = fd;
2512
    drv->mode = IEEE1284_MODE_COMPAT;
2513

    
2514
    chr = qemu_mallocz(sizeof(CharDriverState));
2515
    if (!chr) {
2516
        qemu_free(drv);
2517
        close(fd);
2518
        return NULL;
2519
    }
2520
    chr->chr_write = null_chr_write;
2521
    chr->chr_ioctl = pp_ioctl;
2522
    chr->chr_close = pp_close;
2523
    chr->opaque = drv;
2524

    
2525
    qemu_chr_reset(chr);
2526

    
2527
    return chr;
2528
}
2529
#endif /* __linux__ */
2530

    
2531
#else /* _WIN32 */
2532

    
2533
typedef struct {
2534
    int max_size;
2535
    HANDLE hcom, hrecv, hsend;
2536
    OVERLAPPED orecv, osend;
2537
    BOOL fpipe;
2538
    DWORD len;
2539
} WinCharState;
2540

    
2541
#define NSENDBUF 2048
2542
#define NRECVBUF 2048
2543
#define MAXCONNECT 1
2544
#define NTIMEOUT 5000
2545

    
2546
static int win_chr_poll(void *opaque);
2547
static int win_chr_pipe_poll(void *opaque);
2548

    
2549
static void win_chr_close(CharDriverState *chr)
2550
{
2551
    WinCharState *s = chr->opaque;
2552

    
2553
    if (s->hsend) {
2554
        CloseHandle(s->hsend);
2555
        s->hsend = NULL;
2556
    }
2557
    if (s->hrecv) {
2558
        CloseHandle(s->hrecv);
2559
        s->hrecv = NULL;
2560
    }
2561
    if (s->hcom) {
2562
        CloseHandle(s->hcom);
2563
        s->hcom = NULL;
2564
    }
2565
    if (s->fpipe)
2566
        qemu_del_polling_cb(win_chr_pipe_poll, chr);
2567
    else
2568
        qemu_del_polling_cb(win_chr_poll, chr);
2569
}
2570

    
2571
static int win_chr_init(CharDriverState *chr, const char *filename)
2572
{
2573
    WinCharState *s = chr->opaque;
2574
    COMMCONFIG comcfg;
2575
    COMMTIMEOUTS cto = { 0, 0, 0, 0, 0};
2576
    COMSTAT comstat;
2577
    DWORD size;
2578
    DWORD err;
2579

    
2580
    s->hsend = CreateEvent(NULL, TRUE, FALSE, NULL);
2581
    if (!s->hsend) {
2582
        fprintf(stderr, "Failed CreateEvent\n");
2583
        goto fail;
2584
    }
2585
    s->hrecv = CreateEvent(NULL, TRUE, FALSE, NULL);
2586
    if (!s->hrecv) {
2587
        fprintf(stderr, "Failed CreateEvent\n");
2588
        goto fail;
2589
    }
2590

    
2591
    s->hcom = CreateFile(filename, GENERIC_READ|GENERIC_WRITE, 0, NULL,
2592
                      OPEN_EXISTING, FILE_FLAG_OVERLAPPED, 0);
2593
    if (s->hcom == INVALID_HANDLE_VALUE) {
2594
        fprintf(stderr, "Failed CreateFile (%lu)\n", GetLastError());
2595
        s->hcom = NULL;
2596
        goto fail;
2597
    }
2598

    
2599
    if (!SetupComm(s->hcom, NRECVBUF, NSENDBUF)) {
2600
        fprintf(stderr, "Failed SetupComm\n");
2601
        goto fail;
2602
    }
2603

    
2604
    ZeroMemory(&comcfg, sizeof(COMMCONFIG));
2605
    size = sizeof(COMMCONFIG);
2606
    GetDefaultCommConfig(filename, &comcfg, &size);
2607
    comcfg.dcb.DCBlength = sizeof(DCB);
2608
    CommConfigDialog(filename, NULL, &comcfg);
2609

    
2610
    if (!SetCommState(s->hcom, &comcfg.dcb)) {
2611
        fprintf(stderr, "Failed SetCommState\n");
2612
        goto fail;
2613
    }
2614

    
2615
    if (!SetCommMask(s->hcom, EV_ERR)) {
2616
        fprintf(stderr, "Failed SetCommMask\n");
2617
        goto fail;
2618
    }
2619

    
2620
    cto.ReadIntervalTimeout = MAXDWORD;
2621
    if (!SetCommTimeouts(s->hcom, &cto)) {
2622
        fprintf(stderr, "Failed SetCommTimeouts\n");
2623
        goto fail;
2624
    }
2625

    
2626
    if (!ClearCommError(s->hcom, &err, &comstat)) {
2627
        fprintf(stderr, "Failed ClearCommError\n");
2628
        goto fail;
2629
    }
2630
    qemu_add_polling_cb(win_chr_poll, chr);
2631
    return 0;
2632

    
2633
 fail:
2634
    win_chr_close(chr);
2635
    return -1;
2636
}
2637

    
2638
static int win_chr_write(CharDriverState *chr, const uint8_t *buf, int len1)
2639
{
2640
    WinCharState *s = chr->opaque;
2641
    DWORD len, ret, size, err;
2642

    
2643
    len = len1;
2644
    ZeroMemory(&s->osend, sizeof(s->osend));
2645
    s->osend.hEvent = s->hsend;
2646
    while (len > 0) {
2647
        if (s->hsend)
2648
            ret = WriteFile(s->hcom, buf, len, &size, &s->osend);
2649
        else
2650
            ret = WriteFile(s->hcom, buf, len, &size, NULL);
2651
        if (!ret) {
2652
            err = GetLastError();
2653
            if (err == ERROR_IO_PENDING) {
2654
                ret = GetOverlappedResult(s->hcom, &s->osend, &size, TRUE);
2655
                if (ret) {
2656
                    buf += size;
2657
                    len -= size;
2658
                } else {
2659
                    break;
2660
                }
2661
            } else {
2662
                break;
2663
            }
2664
        } else {
2665
            buf += size;
2666
            len -= size;
2667
        }
2668
    }
2669
    return len1 - len;
2670
}
2671

    
2672
static int win_chr_read_poll(CharDriverState *chr)
2673
{
2674
    WinCharState *s = chr->opaque;
2675

    
2676
    s->max_size = qemu_chr_can_read(chr);
2677
    return s->max_size;
2678
}
2679

    
2680
static void win_chr_readfile(CharDriverState *chr)
2681
{
2682
    WinCharState *s = chr->opaque;
2683
    int ret, err;
2684
    uint8_t buf[1024];
2685
    DWORD size;
2686

    
2687
    ZeroMemory(&s->orecv, sizeof(s->orecv));
2688
    s->orecv.hEvent = s->hrecv;
2689
    ret = ReadFile(s->hcom, buf, s->len, &size, &s->orecv);
2690
    if (!ret) {
2691
        err = GetLastError();
2692
        if (err == ERROR_IO_PENDING) {
2693
            ret = GetOverlappedResult(s->hcom, &s->orecv, &size, TRUE);
2694
        }
2695
    }
2696

    
2697
    if (size > 0) {
2698
        qemu_chr_read(chr, buf, size);
2699
    }
2700
}
2701

    
2702
static void win_chr_read(CharDriverState *chr)
2703
{
2704
    WinCharState *s = chr->opaque;
2705

    
2706
    if (s->len > s->max_size)
2707
        s->len = s->max_size;
2708
    if (s->len == 0)
2709
        return;
2710

    
2711
    win_chr_readfile(chr);
2712
}
2713

    
2714
static int win_chr_poll(void *opaque)
2715
{
2716
    CharDriverState *chr = opaque;
2717
    WinCharState *s = chr->opaque;
2718
    COMSTAT status;
2719
    DWORD comerr;
2720

    
2721
    ClearCommError(s->hcom, &comerr, &status);
2722
    if (status.cbInQue > 0) {
2723
        s->len = status.cbInQue;
2724
        win_chr_read_poll(chr);
2725
        win_chr_read(chr);
2726
        return 1;
2727
    }
2728
    return 0;
2729
}
2730

    
2731
static CharDriverState *qemu_chr_open_win(const char *filename)
2732
{
2733
    CharDriverState *chr;
2734
    WinCharState *s;
2735

    
2736
    chr = qemu_mallocz(sizeof(CharDriverState));
2737
    if (!chr)
2738
        return NULL;
2739
    s = qemu_mallocz(sizeof(WinCharState));
2740
    if (!s) {
2741
        free(chr);
2742
        return NULL;
2743
    }
2744
    chr->opaque = s;
2745
    chr->chr_write = win_chr_write;
2746
    chr->chr_close = win_chr_close;
2747

    
2748
    if (win_chr_init(chr, filename) < 0) {
2749
        free(s);
2750
        free(chr);
2751
        return NULL;
2752
    }
2753
    qemu_chr_reset(chr);
2754
    return chr;
2755
}
2756

    
2757
static int win_chr_pipe_poll(void *opaque)
2758
{
2759
    CharDriverState *chr = opaque;
2760
    WinCharState *s = chr->opaque;
2761
    DWORD size;
2762

    
2763
    PeekNamedPipe(s->hcom, NULL, 0, NULL, &size, NULL);
2764
    if (size > 0) {
2765
        s->len = size;
2766
        win_chr_read_poll(chr);
2767
        win_chr_read(chr);
2768
        return 1;
2769
    }
2770
    return 0;
2771
}
2772

    
2773
static int win_chr_pipe_init(CharDriverState *chr, const char *filename)
2774
{
2775
    WinCharState *s = chr->opaque;
2776
    OVERLAPPED ov;
2777
    int ret;
2778
    DWORD size;
2779
    char openname[256];
2780

    
2781
    s->fpipe = TRUE;
2782

    
2783
    s->hsend = CreateEvent(NULL, TRUE, FALSE, NULL);
2784
    if (!s->hsend) {
2785
        fprintf(stderr, "Failed CreateEvent\n");
2786
        goto fail;
2787
    }
2788
    s->hrecv = CreateEvent(NULL, TRUE, FALSE, NULL);
2789
    if (!s->hrecv) {
2790
        fprintf(stderr, "Failed CreateEvent\n");
2791
        goto fail;
2792
    }
2793

    
2794
    snprintf(openname, sizeof(openname), "\\\\.\\pipe\\%s", filename);
2795
    s->hcom = CreateNamedPipe(openname, PIPE_ACCESS_DUPLEX | FILE_FLAG_OVERLAPPED,
2796
                              PIPE_TYPE_BYTE | PIPE_READMODE_BYTE |
2797
                              PIPE_WAIT,
2798
                              MAXCONNECT, NSENDBUF, NRECVBUF, NTIMEOUT, NULL);
2799
    if (s->hcom == INVALID_HANDLE_VALUE) {
2800
        fprintf(stderr, "Failed CreateNamedPipe (%lu)\n", GetLastError());
2801
        s->hcom = NULL;
2802
        goto fail;
2803
    }
2804

    
2805
    ZeroMemory(&ov, sizeof(ov));
2806
    ov.hEvent = CreateEvent(NULL, TRUE, FALSE, NULL);
2807
    ret = ConnectNamedPipe(s->hcom, &ov);
2808
    if (ret) {
2809
        fprintf(stderr, "Failed ConnectNamedPipe\n");
2810
        goto fail;
2811
    }
2812

    
2813
    ret = GetOverlappedResult(s->hcom, &ov, &size, TRUE);
2814
    if (!ret) {
2815
        fprintf(stderr, "Failed GetOverlappedResult\n");
2816
        if (ov.hEvent) {
2817
            CloseHandle(ov.hEvent);
2818
            ov.hEvent = NULL;
2819
        }
2820
        goto fail;
2821
    }
2822

    
2823
    if (ov.hEvent) {
2824
        CloseHandle(ov.hEvent);
2825
        ov.hEvent = NULL;
2826
    }
2827
    qemu_add_polling_cb(win_chr_pipe_poll, chr);
2828
    return 0;
2829

    
2830
 fail:
2831
    win_chr_close(chr);
2832
    return -1;
2833
}
2834

    
2835

    
2836
static CharDriverState *qemu_chr_open_win_pipe(const char *filename)
2837
{
2838
    CharDriverState *chr;
2839
    WinCharState *s;
2840

    
2841
    chr = qemu_mallocz(sizeof(CharDriverState));
2842
    if (!chr)
2843
        return NULL;
2844
    s = qemu_mallocz(sizeof(WinCharState));
2845
    if (!s) {
2846
        free(chr);
2847
        return NULL;
2848
    }
2849
    chr->opaque = s;
2850
    chr->chr_write = win_chr_write;
2851
    chr->chr_close = win_chr_close;
2852

    
2853
    if (win_chr_pipe_init(chr, filename) < 0) {
2854
        free(s);
2855
        free(chr);
2856
        return NULL;
2857
    }
2858
    qemu_chr_reset(chr);
2859
    return chr;
2860
}
2861

    
2862
static CharDriverState *qemu_chr_open_win_file(HANDLE fd_out)
2863
{
2864
    CharDriverState *chr;
2865
    WinCharState *s;
2866

    
2867
    chr = qemu_mallocz(sizeof(CharDriverState));
2868
    if (!chr)
2869
        return NULL;
2870
    s = qemu_mallocz(sizeof(WinCharState));
2871
    if (!s) {
2872
        free(chr);
2873
        return NULL;
2874
    }
2875
    s->hcom = fd_out;
2876
    chr->opaque = s;
2877
    chr->chr_write = win_chr_write;
2878
    qemu_chr_reset(chr);
2879
    return chr;
2880
}
2881

    
2882
static CharDriverState *qemu_chr_open_win_con(const char *filename)
2883
{
2884
    return qemu_chr_open_win_file(GetStdHandle(STD_OUTPUT_HANDLE));
2885
}
2886

    
2887
static CharDriverState *qemu_chr_open_win_file_out(const char *file_out)
2888
{
2889
    HANDLE fd_out;
2890

    
2891
    fd_out = CreateFile(file_out, GENERIC_WRITE, FILE_SHARE_READ, NULL,
2892
                        OPEN_ALWAYS, FILE_ATTRIBUTE_NORMAL, NULL);
2893
    if (fd_out == INVALID_HANDLE_VALUE)
2894
        return NULL;
2895

    
2896
    return qemu_chr_open_win_file(fd_out);
2897
}
2898
#endif /* !_WIN32 */
2899

    
2900
/***********************************************************/
2901
/* UDP Net console */
2902

    
2903
typedef struct {
2904
    int fd;
2905
    struct sockaddr_in daddr;
2906
    uint8_t buf[1024];
2907
    int bufcnt;
2908
    int bufptr;
2909
    int max_size;
2910
} NetCharDriver;
2911

    
2912
static int udp_chr_write(CharDriverState *chr, const uint8_t *buf, int len)
2913
{
2914
    NetCharDriver *s = chr->opaque;
2915

    
2916
    return sendto(s->fd, buf, len, 0,
2917
                  (struct sockaddr *)&s->daddr, sizeof(struct sockaddr_in));
2918
}
2919

    
2920
static int udp_chr_read_poll(void *opaque)
2921
{
2922
    CharDriverState *chr = opaque;
2923
    NetCharDriver *s = chr->opaque;
2924

    
2925
    s->max_size = qemu_chr_can_read(chr);
2926

    
2927
    /* If there were any stray characters in the queue process them
2928
     * first
2929
     */
2930
    while (s->max_size > 0 && s->bufptr < s->bufcnt) {
2931
        qemu_chr_read(chr, &s->buf[s->bufptr], 1);
2932
        s->bufptr++;
2933
        s->max_size = qemu_chr_can_read(chr);
2934
    }
2935
    return s->max_size;
2936
}
2937

    
2938
static void udp_chr_read(void *opaque)
2939
{
2940
    CharDriverState *chr = opaque;
2941
    NetCharDriver *s = chr->opaque;
2942

    
2943
    if (s->max_size == 0)
2944
        return;
2945
    s->bufcnt = recv(s->fd, s->buf, sizeof(s->buf), 0);
2946
    s->bufptr = s->bufcnt;
2947
    if (s->bufcnt <= 0)
2948
        return;
2949

    
2950
    s->bufptr = 0;
2951
    while (s->max_size > 0 && s->bufptr < s->bufcnt) {
2952
        qemu_chr_read(chr, &s->buf[s->bufptr], 1);
2953
        s->bufptr++;
2954
        s->max_size = qemu_chr_can_read(chr);
2955
    }
2956
}
2957

    
2958
static void udp_chr_update_read_handler(CharDriverState *chr)
2959
{
2960
    NetCharDriver *s = chr->opaque;
2961

    
2962
    if (s->fd >= 0) {
2963
        qemu_set_fd_handler2(s->fd, udp_chr_read_poll,
2964
                             udp_chr_read, NULL, chr);
2965
    }
2966
}
2967

    
2968
int parse_host_port(struct sockaddr_in *saddr, const char *str);
2969
#ifndef _WIN32
2970
static int parse_unix_path(struct sockaddr_un *uaddr, const char *str);
2971
#endif
2972
int parse_host_src_port(struct sockaddr_in *haddr,
2973
                        struct sockaddr_in *saddr,
2974
                        const char *str);
2975

    
2976
static CharDriverState *qemu_chr_open_udp(const char *def)
2977
{
2978
    CharDriverState *chr = NULL;
2979
    NetCharDriver *s = NULL;
2980
    int fd = -1;
2981
    struct sockaddr_in saddr;
2982

    
2983
    chr = qemu_mallocz(sizeof(CharDriverState));
2984
    if (!chr)
2985
        goto return_err;
2986
    s = qemu_mallocz(sizeof(NetCharDriver));
2987
    if (!s)
2988
        goto return_err;
2989

    
2990
    fd = socket(PF_INET, SOCK_DGRAM, 0);
2991
    if (fd < 0) {
2992
        perror("socket(PF_INET, SOCK_DGRAM)");
2993
        goto return_err;
2994
    }
2995

    
2996
    if (parse_host_src_port(&s->daddr, &saddr, def) < 0) {
2997
        printf("Could not parse: %s\n", def);
2998
        goto return_err;
2999
    }
3000

    
3001
    if (bind(fd, (struct sockaddr *)&saddr, sizeof(saddr)) < 0)
3002
    {
3003
        perror("bind");
3004
        goto return_err;
3005
    }
3006

    
3007
    s->fd = fd;
3008
    s->bufcnt = 0;
3009
    s->bufptr = 0;
3010
    chr->opaque = s;
3011
    chr->chr_write = udp_chr_write;
3012
    chr->chr_update_read_handler = udp_chr_update_read_handler;
3013
    return chr;
3014

    
3015
return_err:
3016
    if (chr)
3017
        free(chr);
3018
    if (s)
3019
        free(s);
3020
    if (fd >= 0)
3021
        closesocket(fd);
3022
    return NULL;
3023
}
3024

    
3025
/***********************************************************/
3026
/* TCP Net console */
3027

    
3028
typedef struct {
3029
    int fd, listen_fd;
3030
    int connected;
3031
    int max_size;
3032
    int do_telnetopt;
3033
    int do_nodelay;
3034
    int is_unix;
3035
} TCPCharDriver;
3036

    
3037
static void tcp_chr_accept(void *opaque);
3038

    
3039
static int tcp_chr_write(CharDriverState *chr, const uint8_t *buf, int len)
3040
{
3041
    TCPCharDriver *s = chr->opaque;
3042
    if (s->connected) {
3043
        return send_all(s->fd, buf, len);
3044
    } else {
3045
        /* XXX: indicate an error ? */
3046
        return len;
3047
    }
3048
}
3049

    
3050
static int tcp_chr_read_poll(void *opaque)
3051
{
3052
    CharDriverState *chr = opaque;
3053
    TCPCharDriver *s = chr->opaque;
3054
    if (!s->connected)
3055
        return 0;
3056
    s->max_size = qemu_chr_can_read(chr);
3057
    return s->max_size;
3058
}
3059

    
3060
#define IAC 255
3061
#define IAC_BREAK 243
3062
static void tcp_chr_process_IAC_bytes(CharDriverState *chr,
3063
                                      TCPCharDriver *s,
3064
                                      uint8_t *buf, int *size)
3065
{
3066
    /* Handle any telnet client's basic IAC options to satisfy char by
3067
     * char mode with no echo.  All IAC options will be removed from
3068
     * the buf and the do_telnetopt variable will be used to track the
3069
     * state of the width of the IAC information.
3070
     *
3071
     * IAC commands come in sets of 3 bytes with the exception of the
3072
     * "IAC BREAK" command and the double IAC.
3073
     */
3074

    
3075
    int i;
3076
    int j = 0;
3077

    
3078
    for (i = 0; i < *size; i++) {
3079
        if (s->do_telnetopt > 1) {
3080
            if ((unsigned char)buf[i] == IAC && s->do_telnetopt == 2) {
3081
                /* Double IAC means send an IAC */
3082
                if (j != i)
3083
                    buf[j] = buf[i];
3084
                j++;
3085
                s->do_telnetopt = 1;
3086
            } else {
3087
                if ((unsigned char)buf[i] == IAC_BREAK && s->do_telnetopt == 2) {
3088
                    /* Handle IAC break commands by sending a serial break */
3089
                    qemu_chr_event(chr, CHR_EVENT_BREAK);
3090
                    s->do_telnetopt++;
3091
                }
3092
                s->do_telnetopt++;
3093
            }
3094
            if (s->do_telnetopt >= 4) {
3095
                s->do_telnetopt = 1;
3096
            }
3097
        } else {
3098
            if ((unsigned char)buf[i] == IAC) {
3099
                s->do_telnetopt = 2;
3100
            } else {
3101
                if (j != i)
3102
                    buf[j] = buf[i];
3103
                j++;
3104
            }
3105
        }
3106
    }
3107
    *size = j;
3108
}
3109

    
3110
static void tcp_chr_read(void *opaque)
3111
{
3112
    CharDriverState *chr = opaque;
3113
    TCPCharDriver *s = chr->opaque;
3114
    uint8_t buf[1024];
3115
    int len, size;
3116

    
3117
    if (!s->connected || s->max_size <= 0)
3118
        return;
3119
    len = sizeof(buf);
3120
    if (len > s->max_size)
3121
        len = s->max_size;
3122
    size = recv(s->fd, buf, len, 0);
3123
    if (size == 0) {
3124
        /* connection closed */
3125
        s->connected = 0;
3126
        if (s->listen_fd >= 0) {
3127
            qemu_set_fd_handler(s->listen_fd, tcp_chr_accept, NULL, chr);
3128
        }
3129
        qemu_set_fd_handler(s->fd, NULL, NULL, NULL);
3130
        closesocket(s->fd);
3131
        s->fd = -1;
3132
    } else if (size > 0) {
3133
        if (s->do_telnetopt)
3134
            tcp_chr_process_IAC_bytes(chr, s, buf, &size);
3135
        if (size > 0)
3136
            qemu_chr_read(chr, buf, size);
3137
    }
3138
}
3139

    
3140
static void tcp_chr_connect(void *opaque)
3141
{
3142
    CharDriverState *chr = opaque;
3143
    TCPCharDriver *s = chr->opaque;
3144

    
3145
    s->connected = 1;
3146
    qemu_set_fd_handler2(s->fd, tcp_chr_read_poll,
3147
                         tcp_chr_read, NULL, chr);
3148
    qemu_chr_reset(chr);
3149
}
3150

    
3151
#define IACSET(x,a,b,c) x[0] = a; x[1] = b; x[2] = c;
3152
static void tcp_chr_telnet_init(int fd)
3153
{
3154
    char buf[3];
3155
    /* Send the telnet negotion to put telnet in binary, no echo, single char mode */
3156
    IACSET(buf, 0xff, 0xfb, 0x01);  /* IAC WILL ECHO */
3157
    send(fd, (char *)buf, 3, 0);
3158
    IACSET(buf, 0xff, 0xfb, 0x03);  /* IAC WILL Suppress go ahead */
3159
    send(fd, (char *)buf, 3, 0);
3160
    IACSET(buf, 0xff, 0xfb, 0x00);  /* IAC WILL Binary */
3161
    send(fd, (char *)buf, 3, 0);
3162
    IACSET(buf, 0xff, 0xfd, 0x00);  /* IAC DO Binary */
3163
    send(fd, (char *)buf, 3, 0);
3164
}
3165

    
3166
static void socket_set_nodelay(int fd)
3167
{
3168
    int val = 1;
3169
    setsockopt(fd, IPPROTO_TCP, TCP_NODELAY, (char *)&val, sizeof(val));
3170
}
3171

    
3172
static void tcp_chr_accept(void *opaque)
3173
{
3174
    CharDriverState *chr = opaque;
3175
    TCPCharDriver *s = chr->opaque;
3176
    struct sockaddr_in saddr;
3177
#ifndef _WIN32
3178
    struct sockaddr_un uaddr;
3179
#endif
3180
    struct sockaddr *addr;
3181
    socklen_t len;
3182
    int fd;
3183

    
3184
    for(;;) {
3185
#ifndef _WIN32
3186
        if (s->is_unix) {
3187
            len = sizeof(uaddr);
3188
            addr = (struct sockaddr *)&uaddr;
3189
        } else
3190
#endif
3191
        {
3192
            len = sizeof(saddr);
3193
            addr = (struct sockaddr *)&saddr;
3194
        }
3195
        fd = accept(s->listen_fd, addr, &len);
3196
        if (fd < 0 && errno != EINTR) {
3197
            return;
3198
        } else if (fd >= 0) {
3199
            if (s->do_telnetopt)
3200
                tcp_chr_telnet_init(fd);
3201
            break;
3202
        }
3203
    }
3204
    socket_set_nonblock(fd);
3205
    if (s->do_nodelay)
3206
        socket_set_nodelay(fd);
3207
    s->fd = fd;
3208
    qemu_set_fd_handler(s->listen_fd, NULL, NULL, NULL);
3209
    tcp_chr_connect(chr);
3210
}
3211

    
3212
static void tcp_chr_close(CharDriverState *chr)
3213
{
3214
    TCPCharDriver *s = chr->opaque;
3215
    if (s->fd >= 0)
3216
        closesocket(s->fd);
3217
    if (s->listen_fd >= 0)
3218
        closesocket(s->listen_fd);
3219
    qemu_free(s);
3220
}
3221

    
3222
static CharDriverState *qemu_chr_open_tcp(const char *host_str,
3223
                                          int is_telnet,
3224
                                          int is_unix)
3225
{
3226
    CharDriverState *chr = NULL;
3227
    TCPCharDriver *s = NULL;
3228
    int fd = -1, ret, err, val;
3229
    int is_listen = 0;
3230
    int is_waitconnect = 1;
3231
    int do_nodelay = 0;
3232
    const char *ptr;
3233
    struct sockaddr_in saddr;
3234
#ifndef _WIN32
3235
    struct sockaddr_un uaddr;
3236
#endif
3237
    struct sockaddr *addr;
3238
    socklen_t addrlen;
3239

    
3240
#ifndef _WIN32
3241
    if (is_unix) {
3242
        addr = (struct sockaddr *)&uaddr;
3243
        addrlen = sizeof(uaddr);
3244
        if (parse_unix_path(&uaddr, host_str) < 0)
3245
            goto fail;
3246
    } else
3247
#endif
3248
    {
3249
        addr = (struct sockaddr *)&saddr;
3250
        addrlen = sizeof(saddr);
3251
        if (parse_host_port(&saddr, host_str) < 0)
3252
            goto fail;
3253
    }
3254

    
3255
    ptr = host_str;
3256
    while((ptr = strchr(ptr,','))) {
3257
        ptr++;
3258
        if (!strncmp(ptr,"server",6)) {
3259
            is_listen = 1;
3260
        } else if (!strncmp(ptr,"nowait",6)) {
3261
            is_waitconnect = 0;
3262
        } else if (!strncmp(ptr,"nodelay",6)) {
3263
            do_nodelay = 1;
3264
        } else {
3265
            printf("Unknown option: %s\n", ptr);
3266
            goto fail;
3267
        }
3268
    }
3269
    if (!is_listen)
3270
        is_waitconnect = 0;
3271

    
3272
    chr = qemu_mallocz(sizeof(CharDriverState));
3273
    if (!chr)
3274
        goto fail;
3275
    s = qemu_mallocz(sizeof(TCPCharDriver));
3276
    if (!s)
3277
        goto fail;
3278

    
3279
#ifndef _WIN32
3280
    if (is_unix)
3281
        fd = socket(PF_UNIX, SOCK_STREAM, 0);
3282
    else
3283
#endif
3284
        fd = socket(PF_INET, SOCK_STREAM, 0);
3285

    
3286
    if (fd < 0)
3287
        goto fail;
3288

    
3289
    if (!is_waitconnect)
3290
        socket_set_nonblock(fd);
3291

    
3292
    s->connected = 0;
3293
    s->fd = -1;
3294
    s->listen_fd = -1;
3295
    s->is_unix = is_unix;
3296
    s->do_nodelay = do_nodelay && !is_unix;
3297

    
3298
    chr->opaque = s;
3299
    chr->chr_write = tcp_chr_write;
3300
    chr->chr_close = tcp_chr_close;
3301

    
3302
    if (is_listen) {
3303
        /* allow fast reuse */
3304
#ifndef _WIN32
3305
        if (is_unix) {
3306
            char path[109];
3307
            strncpy(path, uaddr.sun_path, 108);
3308
            path[108] = 0;
3309
            unlink(path);
3310
        } else
3311
#endif
3312
        {
3313
            val = 1;
3314
            setsockopt(fd, SOL_SOCKET, SO_REUSEADDR, (const char *)&val, sizeof(val));
3315
        }
3316

    
3317
        ret = bind(fd, addr, addrlen);
3318
        if (ret < 0)
3319
            goto fail;
3320

    
3321
        ret = listen(fd, 0);
3322
        if (ret < 0)
3323
            goto fail;
3324

    
3325
        s->listen_fd = fd;
3326
        qemu_set_fd_handler(s->listen_fd, tcp_chr_accept, NULL, chr);
3327
        if (is_telnet)
3328
            s->do_telnetopt = 1;
3329
    } else {
3330
        for(;;) {
3331
            ret = connect(fd, addr, addrlen);
3332
            if (ret < 0) {
3333
                err = socket_error();
3334
                if (err == EINTR || err == EWOULDBLOCK) {
3335
                } else if (err == EINPROGRESS) {
3336
                    break;
3337
#ifdef _WIN32
3338
                } else if (err == WSAEALREADY) {
3339
                    break;
3340
#endif
3341
                } else {
3342
                    goto fail;
3343
                }
3344
            } else {
3345
                s->connected = 1;
3346
                break;
3347
            }
3348
        }
3349
        s->fd = fd;
3350
        socket_set_nodelay(fd);
3351
        if (s->connected)
3352
            tcp_chr_connect(chr);
3353
        else
3354
            qemu_set_fd_handler(s->fd, NULL, tcp_chr_connect, chr);
3355
    }
3356

    
3357
    if (is_listen && is_waitconnect) {
3358
        printf("QEMU waiting for connection on: %s\n", host_str);
3359
        tcp_chr_accept(chr);
3360
        socket_set_nonblock(s->listen_fd);
3361
    }
3362

    
3363
    return chr;
3364
 fail:
3365
    if (fd >= 0)
3366
        closesocket(fd);
3367
    qemu_free(s);
3368
    qemu_free(chr);
3369
    return NULL;
3370
}
3371

    
3372
CharDriverState *qemu_chr_open(const char *filename)
3373
{
3374
    const char *p;
3375

    
3376
    if (!strcmp(filename, "vc")) {
3377
        return text_console_init(&display_state, 0);
3378
    } else if (strstart(filename, "vc:", &p)) {
3379
        return text_console_init(&display_state, p);
3380
    } else if (!strcmp(filename, "null")) {
3381
        return qemu_chr_open_null();
3382
    } else
3383
    if (strstart(filename, "tcp:", &p)) {
3384
        return qemu_chr_open_tcp(p, 0, 0);
3385
    } else
3386
    if (strstart(filename, "telnet:", &p)) {
3387
        return qemu_chr_open_tcp(p, 1, 0);
3388
    } else
3389
    if (strstart(filename, "udp:", &p)) {
3390
        return qemu_chr_open_udp(p);
3391
    } else
3392
    if (strstart(filename, "mon:", &p)) {
3393
        CharDriverState *drv = qemu_chr_open(p);
3394
        if (drv) {
3395
            drv = qemu_chr_open_mux(drv);
3396
            monitor_init(drv, !nographic);
3397
            return drv;
3398
        }
3399
        printf("Unable to open driver: %s\n", p);
3400
        return 0;
3401
    } else
3402
#ifndef _WIN32
3403
    if (strstart(filename, "unix:", &p)) {
3404
        return qemu_chr_open_tcp(p, 0, 1);
3405
    } else if (strstart(filename, "file:", &p)) {
3406
        return qemu_chr_open_file_out(p);
3407
    } else if (strstart(filename, "pipe:", &p)) {
3408
        return qemu_chr_open_pipe(p);
3409
    } else if (!strcmp(filename, "pty")) {
3410
        return qemu_chr_open_pty();
3411
    } else if (!strcmp(filename, "stdio")) {
3412
        return qemu_chr_open_stdio();
3413
    } else
3414
#if defined(__linux__)
3415
    if (strstart(filename, "/dev/parport", NULL)) {
3416
        return qemu_chr_open_pp(filename);
3417
    } else
3418
#endif
3419
#if defined(__linux__) || defined(__sun__)
3420
    if (strstart(filename, "/dev/", NULL)) {
3421
        return qemu_chr_open_tty(filename);
3422
    } else
3423
#endif
3424
#else /* !_WIN32 */
3425
    if (strstart(filename, "COM", NULL)) {
3426
        return qemu_chr_open_win(filename);
3427
    } else
3428
    if (strstart(filename, "pipe:", &p)) {
3429
        return qemu_chr_open_win_pipe(p);
3430
    } else
3431
    if (strstart(filename, "con:", NULL)) {
3432
        return qemu_chr_open_win_con(filename);
3433
    } else
3434
    if (strstart(filename, "file:", &p)) {
3435
        return qemu_chr_open_win_file_out(p);
3436
    }
3437
#endif
3438
    {
3439
        return NULL;
3440
    }
3441
}
3442

    
3443
void qemu_chr_close(CharDriverState *chr)
3444
{
3445
    if (chr->chr_close)
3446
        chr->chr_close(chr);
3447
    qemu_free(chr);
3448
}
3449

    
3450
/***********************************************************/
3451
/* network device redirectors */
3452

    
3453
__attribute__ (( unused ))
3454
static void hex_dump(FILE *f, const uint8_t *buf, int size)
3455
{
3456
    int len, i, j, c;
3457

    
3458
    for(i=0;i<size;i+=16) {
3459
        len = size - i;
3460
        if (len > 16)
3461
            len = 16;
3462
        fprintf(f, "%08x ", i);
3463
        for(j=0;j<16;j++) {
3464
            if (j < len)
3465
                fprintf(f, " %02x", buf[i+j]);
3466
            else
3467
                fprintf(f, "   ");
3468
        }
3469
        fprintf(f, " ");
3470
        for(j=0;j<len;j++) {
3471
            c = buf[i+j];
3472
            if (c < ' ' || c > '~')
3473
                c = '.';
3474
            fprintf(f, "%c", c);
3475
        }
3476
        fprintf(f, "\n");
3477
    }
3478
}
3479

    
3480
static int parse_macaddr(uint8_t *macaddr, const char *p)
3481
{
3482
    int i;
3483
    char *last_char;
3484
    long int offset;
3485

    
3486
    errno = 0;
3487
    offset = strtol(p, &last_char, 0);    
3488
    if (0 == errno && '\0' == *last_char &&
3489
            offset >= 0 && offset <= 0xFFFFFF) {
3490
        macaddr[3] = (offset & 0xFF0000) >> 16;
3491
        macaddr[4] = (offset & 0xFF00) >> 8;
3492
        macaddr[5] = offset & 0xFF;
3493
        return 0;
3494
    } else {
3495
        for(i = 0; i < 6; i++) {
3496
            macaddr[i] = strtol(p, (char **)&p, 16);
3497
            if (i == 5) {
3498
                if (*p != '\0')
3499
                    return -1;
3500
            } else {
3501
                if (*p != ':' && *p != '-')
3502
                    return -1;
3503
                p++;
3504
            }
3505
        }
3506
        return 0;    
3507
    }
3508

    
3509
    return -1;
3510
}
3511

    
3512
static int get_str_sep(char *buf, int buf_size, const char **pp, int sep)
3513
{
3514
    const char *p, *p1;
3515
    int len;
3516
    p = *pp;
3517
    p1 = strchr(p, sep);
3518
    if (!p1)
3519
        return -1;
3520
    len = p1 - p;
3521
    p1++;
3522
    if (buf_size > 0) {
3523
        if (len > buf_size - 1)
3524
            len = buf_size - 1;
3525
        memcpy(buf, p, len);
3526
        buf[len] = '\0';
3527
    }
3528
    *pp = p1;
3529
    return 0;
3530
}
3531

    
3532
int parse_host_src_port(struct sockaddr_in *haddr,
3533
                        struct sockaddr_in *saddr,
3534
                        const char *input_str)
3535
{
3536
    char *str = strdup(input_str);
3537
    char *host_str = str;
3538
    char *src_str;
3539
    char *ptr;
3540

    
3541
    /*
3542
     * Chop off any extra arguments at the end of the string which
3543
     * would start with a comma, then fill in the src port information
3544
     * if it was provided else use the "any address" and "any port".
3545
     */
3546
    if ((ptr = strchr(str,',')))
3547
        *ptr = '\0';
3548

    
3549
    if ((src_str = strchr(input_str,'@'))) {
3550
        *src_str = '\0';
3551
        src_str++;
3552
    }
3553

    
3554
    if (parse_host_port(haddr, host_str) < 0)
3555
        goto fail;
3556

    
3557
    if (!src_str || *src_str == '\0')
3558
        src_str = ":0";
3559

    
3560
    if (parse_host_port(saddr, src_str) < 0)
3561
        goto fail;
3562

    
3563
    free(str);
3564
    return(0);
3565

    
3566
fail:
3567
    free(str);
3568
    return -1;
3569
}
3570

    
3571
int parse_host_port(struct sockaddr_in *saddr, const char *str)
3572
{
3573
    char buf[512];
3574
    struct hostent *he;
3575
    const char *p, *r;
3576
    int port;
3577

    
3578
    p = str;
3579
    if (get_str_sep(buf, sizeof(buf), &p, ':') < 0)
3580
        return -1;
3581
    saddr->sin_family = AF_INET;
3582
    if (buf[0] == '\0') {
3583
        saddr->sin_addr.s_addr = 0;
3584
    } else {
3585
        if (isdigit(buf[0])) {
3586
            if (!inet_aton(buf, &saddr->sin_addr))
3587
                return -1;
3588
        } else {
3589
            if ((he = gethostbyname(buf)) == NULL)
3590
                return - 1;
3591
            saddr->sin_addr = *(struct in_addr *)he->h_addr;
3592
        }
3593
    }
3594
    port = strtol(p, (char **)&r, 0);
3595
    if (r == p)
3596
        return -1;
3597
    saddr->sin_port = htons(port);
3598
    return 0;
3599
}
3600

    
3601
#ifndef _WIN32
3602
static int parse_unix_path(struct sockaddr_un *uaddr, const char *str)
3603
{
3604
    const char *p;
3605
    int len;
3606

    
3607
    len = MIN(108, strlen(str));
3608
    p = strchr(str, ',');
3609
    if (p)
3610
        len = MIN(len, p - str);
3611

    
3612
    memset(uaddr, 0, sizeof(*uaddr));
3613

    
3614
    uaddr->sun_family = AF_UNIX;
3615
    memcpy(uaddr->sun_path, str, len);
3616

    
3617
    return 0;
3618
}
3619
#endif
3620

    
3621
/* find or alloc a new VLAN */
3622
VLANState *qemu_find_vlan(int id)
3623
{
3624
    VLANState **pvlan, *vlan;
3625
    for(vlan = first_vlan; vlan != NULL; vlan = vlan->next) {
3626
        if (vlan->id == id)
3627
            return vlan;
3628
    }
3629
    vlan = qemu_mallocz(sizeof(VLANState));
3630
    if (!vlan)
3631
        return NULL;
3632
    vlan->id = id;
3633
    vlan->next = NULL;
3634
    pvlan = &first_vlan;
3635
    while (*pvlan != NULL)
3636
        pvlan = &(*pvlan)->next;
3637
    *pvlan = vlan;
3638
    return vlan;
3639
}
3640

    
3641
VLANClientState *qemu_new_vlan_client(VLANState *vlan,
3642
                                      IOReadHandler *fd_read,
3643
                                      IOCanRWHandler *fd_can_read,
3644
                                      void *opaque)
3645
{
3646
    VLANClientState *vc, **pvc;
3647
    vc = qemu_mallocz(sizeof(VLANClientState));
3648
    if (!vc)
3649
        return NULL;
3650
    vc->fd_read = fd_read;
3651
    vc->fd_can_read = fd_can_read;
3652
    vc->opaque = opaque;
3653
    vc->vlan = vlan;
3654

    
3655
    vc->next = NULL;
3656
    pvc = &vlan->first_client;
3657
    while (*pvc != NULL)
3658
        pvc = &(*pvc)->next;
3659
    *pvc = vc;
3660
    return vc;
3661
}
3662

    
3663
int qemu_can_send_packet(VLANClientState *vc1)
3664
{
3665
    VLANState *vlan = vc1->vlan;
3666
    VLANClientState *vc;
3667

    
3668
    for(vc = vlan->first_client; vc != NULL; vc = vc->next) {
3669
        if (vc != vc1) {
3670
            if (vc->fd_can_read && vc->fd_can_read(vc->opaque))
3671
                return 1;
3672
        }
3673
    }
3674
    return 0;
3675
}
3676

    
3677
void qemu_send_packet(VLANClientState *vc1, const uint8_t *buf, int size)
3678
{
3679
    VLANState *vlan = vc1->vlan;
3680
    VLANClientState *vc;
3681

    
3682
#if 0
3683
    printf("vlan %d send:\n", vlan->id);
3684
    hex_dump(stdout, buf, size);
3685
#endif
3686
    for(vc = vlan->first_client; vc != NULL; vc = vc->next) {
3687
        if (vc != vc1) {
3688
            vc->fd_read(vc->opaque, buf, size);
3689
        }
3690
    }
3691
}
3692

    
3693
#if defined(CONFIG_SLIRP)
3694

    
3695
/* slirp network adapter */
3696

    
3697
static int slirp_inited;
3698
static VLANClientState *slirp_vc;
3699

    
3700
int slirp_can_output(void)
3701
{
3702
    return !slirp_vc || qemu_can_send_packet(slirp_vc);
3703
}
3704

    
3705
void slirp_output(const uint8_t *pkt, int pkt_len)
3706
{
3707
#if 0
3708
    printf("slirp output:\n");
3709
    hex_dump(stdout, pkt, pkt_len);
3710
#endif
3711
    if (!slirp_vc)
3712
        return;
3713
    qemu_send_packet(slirp_vc, pkt, pkt_len);
3714
}
3715

    
3716
static void slirp_receive(void *opaque, const uint8_t *buf, int size)
3717
{
3718
#if 0
3719
    printf("slirp input:\n");
3720
    hex_dump(stdout, buf, size);
3721
#endif
3722
    slirp_input(buf, size);
3723
}
3724

    
3725
static int net_slirp_init(VLANState *vlan)
3726
{
3727
    if (!slirp_inited) {
3728
        slirp_inited = 1;
3729
        slirp_init();
3730
    }
3731
    slirp_vc = qemu_new_vlan_client(vlan,
3732
                                    slirp_receive, NULL, NULL);
3733
    snprintf(slirp_vc->info_str, sizeof(slirp_vc->info_str), "user redirector");
3734
    return 0;
3735
}
3736

    
3737
static void net_slirp_redir(const char *redir_str)
3738
{
3739
    int is_udp;
3740
    char buf[256], *r;
3741
    const char *p;
3742
    struct in_addr guest_addr;
3743
    int host_port, guest_port;
3744

    
3745
    if (!slirp_inited) {
3746
        slirp_inited = 1;
3747
        slirp_init();
3748
    }
3749

    
3750
    p = redir_str;
3751
    if (get_str_sep(buf, sizeof(buf), &p, ':') < 0)
3752
        goto fail;
3753
    if (!strcmp(buf, "tcp")) {
3754
        is_udp = 0;
3755
    } else if (!strcmp(buf, "udp")) {
3756
        is_udp = 1;
3757
    } else {
3758
        goto fail;
3759
    }
3760

    
3761
    if (get_str_sep(buf, sizeof(buf), &p, ':') < 0)
3762
        goto fail;
3763
    host_port = strtol(buf, &r, 0);
3764
    if (r == buf)
3765
        goto fail;
3766

    
3767
    if (get_str_sep(buf, sizeof(buf), &p, ':') < 0)
3768
        goto fail;
3769
    if (buf[0] == '\0') {
3770
        pstrcpy(buf, sizeof(buf), "10.0.2.15");
3771
    }
3772
    if (!inet_aton(buf, &guest_addr))
3773
        goto fail;
3774

    
3775
    guest_port = strtol(p, &r, 0);
3776
    if (r == p)
3777
        goto fail;
3778

    
3779
    if (slirp_redir(is_udp, host_port, guest_addr, guest_port) < 0) {
3780
        fprintf(stderr, "qemu: could not set up redirection\n");
3781
        exit(1);
3782
    }
3783
    return;
3784
 fail:
3785
    fprintf(stderr, "qemu: syntax: -redir [tcp|udp]:host-port:[guest-host]:guest-port\n");
3786
    exit(1);
3787
}
3788

    
3789
#ifndef _WIN32
3790

    
3791
char smb_dir[1024];
3792

    
3793
static void erase_dir(char *dir_name)
3794
{
3795
    DIR *d;
3796
    struct dirent *de;
3797
    char filename[1024];
3798

    
3799
    /* erase all the files in the directory */
3800
    if ((d = opendir(dir_name)) != 0) {
3801
        for(;;) {
3802
            de = readdir(d);
3803
            if (!de)
3804
                break;
3805
            if (strcmp(de->d_name, ".") != 0 &&
3806
                strcmp(de->d_name, "..") != 0) {
3807
                snprintf(filename, sizeof(filename), "%s/%s",
3808
                         smb_dir, de->d_name);
3809
                if (unlink(filename) != 0)  /* is it a directory? */
3810
                    erase_dir(filename);
3811
            }
3812
        }
3813
        closedir(d);
3814
        rmdir(dir_name);
3815
    }
3816
}
3817

    
3818
/* automatic user mode samba server configuration */
3819
static void smb_exit(void)
3820
{
3821
    erase_dir(smb_dir);
3822
}
3823

    
3824
/* automatic user mode samba server configuration */
3825
static void net_slirp_smb(const char *exported_dir)
3826
{
3827
    char smb_conf[1024];
3828
    char smb_cmdline[1024];
3829
    FILE *f;
3830

    
3831
    if (!slirp_inited) {
3832
        slirp_inited = 1;
3833
        slirp_init();
3834
    }
3835

    
3836
    /* XXX: better tmp dir construction */
3837
    snprintf(smb_dir, sizeof(smb_dir), "/tmp/qemu-smb.%d", getpid());
3838
    if (mkdir(smb_dir, 0700) < 0) {
3839
        fprintf(stderr, "qemu: could not create samba server dir '%s'\n", smb_dir);
3840
        exit(1);
3841
    }
3842
    snprintf(smb_conf, sizeof(smb_conf), "%s/%s", smb_dir, "smb.conf");
3843

    
3844
    f = fopen(smb_conf, "w");
3845
    if (!f) {
3846
        fprintf(stderr, "qemu: could not create samba server configuration file '%s'\n", smb_conf);
3847
        exit(1);
3848
    }
3849
    fprintf(f,
3850
            "[global]\n"
3851
            "private dir=%s\n"
3852
            "smb ports=0\n"
3853
            "socket address=127.0.0.1\n"
3854
            "pid directory=%s\n"
3855
            "lock directory=%s\n"
3856
            "log file=%s/log.smbd\n"
3857
            "smb passwd file=%s/smbpasswd\n"
3858
            "security = share\n"
3859
            "[qemu]\n"
3860
            "path=%s\n"
3861
            "read only=no\n"
3862
            "guest ok=yes\n",
3863
            smb_dir,
3864
            smb_dir,
3865
            smb_dir,
3866
            smb_dir,
3867
            smb_dir,
3868
            exported_dir
3869
            );
3870
    fclose(f);
3871
    atexit(smb_exit);
3872

    
3873
    snprintf(smb_cmdline, sizeof(smb_cmdline), "%s -s %s",
3874
             SMBD_COMMAND, smb_conf);
3875

    
3876
    slirp_add_exec(0, smb_cmdline, 4, 139);
3877
}
3878

    
3879
#endif /* !defined(_WIN32) */
3880
void do_info_slirp(void)
3881
{
3882
    slirp_stats();
3883
}
3884

    
3885
#endif /* CONFIG_SLIRP */
3886

    
3887
#if !defined(_WIN32)
3888

    
3889
typedef struct TAPState {
3890
    VLANClientState *vc;
3891
    int fd;
3892
    char down_script[1024];
3893
} TAPState;
3894

    
3895
static void tap_receive(void *opaque, const uint8_t *buf, int size)
3896
{
3897
    TAPState *s = opaque;
3898
    int ret;
3899
    for(;;) {
3900
        ret = write(s->fd, buf, size);
3901
        if (ret < 0 && (errno == EINTR || errno == EAGAIN)) {
3902
        } else {
3903
            break;
3904
        }
3905
    }
3906
}
3907

    
3908
static void tap_send(void *opaque)
3909
{
3910
    TAPState *s = opaque;
3911
    uint8_t buf[4096];
3912
    int size;
3913

    
3914
#ifdef __sun__
3915
    struct strbuf sbuf;
3916
    int f = 0;
3917
    sbuf.maxlen = sizeof(buf);
3918
    sbuf.buf = buf;
3919
    size = getmsg(s->fd, NULL, &sbuf, &f) >=0 ? sbuf.len : -1;
3920
#else
3921
    size = read(s->fd, buf, sizeof(buf));
3922
#endif
3923
    if (size > 0) {
3924
        qemu_send_packet(s->vc, buf, size);
3925
    }
3926
}
3927

    
3928
/* fd support */
3929

    
3930
static TAPState *net_tap_fd_init(VLANState *vlan, int fd)
3931
{
3932
    TAPState *s;
3933

    
3934
    s = qemu_mallocz(sizeof(TAPState));
3935
    if (!s)
3936
        return NULL;
3937
    s->fd = fd;
3938
    s->vc = qemu_new_vlan_client(vlan, tap_receive, NULL, s);
3939
    qemu_set_fd_handler(s->fd, tap_send, NULL, s);
3940
    snprintf(s->vc->info_str, sizeof(s->vc->info_str), "tap: fd=%d", fd);
3941
    return s;
3942
}
3943

    
3944
#if defined (_BSD) || defined (__FreeBSD_kernel__)
3945
static int tap_open(char *ifname, int ifname_size)
3946
{
3947
    int fd;
3948
    char *dev;
3949
    struct stat s;
3950

    
3951
    TFR(fd = open("/dev/tap", O_RDWR));
3952
    if (fd < 0) {
3953
        fprintf(stderr, "warning: could not open /dev/tap: no virtual network emulation\n");
3954
        return -1;
3955
    }
3956

    
3957
    fstat(fd, &s);
3958
    dev = devname(s.st_rdev, S_IFCHR);
3959
    pstrcpy(ifname, ifname_size, dev);
3960

    
3961
    fcntl(fd, F_SETFL, O_NONBLOCK);
3962
    return fd;
3963
}
3964
#elif defined(__sun__)
3965
#define TUNNEWPPA       (('T'<<16) | 0x0001)
3966
/*
3967
 * Allocate TAP device, returns opened fd.
3968
 * Stores dev name in the first arg(must be large enough).
3969
 */
3970
int tap_alloc(char *dev)
3971
{
3972
    int tap_fd, if_fd, ppa = -1;
3973
    static int ip_fd = 0;
3974
    char *ptr;
3975

    
3976
    static int arp_fd = 0;
3977
    int ip_muxid, arp_muxid;
3978
    struct strioctl  strioc_if, strioc_ppa;
3979
    int link_type = I_PLINK;;
3980
    struct lifreq ifr;
3981
    char actual_name[32] = "";
3982

    
3983
    memset(&ifr, 0x0, sizeof(ifr));
3984

    
3985
    if( *dev ){
3986
       ptr = dev;
3987
       while( *ptr && !isdigit((int)*ptr) ) ptr++;
3988
       ppa = atoi(ptr);
3989
    }
3990

    
3991
    /* Check if IP device was opened */
3992
    if( ip_fd )
3993
       close(ip_fd);
3994

    
3995
    TFR(ip_fd = open("/dev/udp", O_RDWR, 0));
3996
    if (ip_fd < 0) {
3997
       syslog(LOG_ERR, "Can't open /dev/ip (actually /dev/udp)");
3998
       return -1;
3999
    }
4000

    
4001
    TFR(tap_fd = open("/dev/tap", O_RDWR, 0));
4002
    if (tap_fd < 0) {
4003
       syslog(LOG_ERR, "Can't open /dev/tap");
4004
       return -1;
4005
    }
4006

    
4007
    /* Assign a new PPA and get its unit number. */
4008
    strioc_ppa.ic_cmd = TUNNEWPPA;
4009
    strioc_ppa.ic_timout = 0;
4010
    strioc_ppa.ic_len = sizeof(ppa);
4011
    strioc_ppa.ic_dp = (char *)&ppa;
4012
    if ((ppa = ioctl (tap_fd, I_STR, &strioc_ppa)) < 0)
4013
       syslog (LOG_ERR, "Can't assign new interface");
4014

    
4015
    TFR(if_fd = open("/dev/tap", O_RDWR, 0));
4016
    if (if_fd < 0) {
4017
       syslog(LOG_ERR, "Can't open /dev/tap (2)");
4018
       return -1;
4019
    }
4020
    if(ioctl(if_fd, I_PUSH, "ip") < 0){
4021
       syslog(LOG_ERR, "Can't push IP module");
4022
       return -1;
4023
    }
4024

    
4025
    if (ioctl(if_fd, SIOCGLIFFLAGS, &ifr) < 0)
4026
        syslog(LOG_ERR, "Can't get flags\n");
4027

    
4028
    snprintf (actual_name, 32, "tap%d", ppa);
4029
    strncpy (ifr.lifr_name, actual_name, sizeof (ifr.lifr_name));
4030

    
4031
    ifr.lifr_ppa = ppa;
4032
    /* Assign ppa according to the unit number returned by tun device */
4033

    
4034
    if (ioctl (if_fd, SIOCSLIFNAME, &ifr) < 0)
4035
        syslog (LOG_ERR, "Can't set PPA %d", ppa);
4036
    if (ioctl(if_fd, SIOCGLIFFLAGS, &ifr) <0)
4037
        syslog (LOG_ERR, "Can't get flags\n");
4038
    /* Push arp module to if_fd */
4039
    if (ioctl (if_fd, I_PUSH, "arp") < 0)
4040
        syslog (LOG_ERR, "Can't push ARP module (2)");
4041

    
4042
    /* Push arp module to ip_fd */
4043
    if (ioctl (ip_fd, I_POP, NULL) < 0)
4044
        syslog (LOG_ERR, "I_POP failed\n");
4045
    if (ioctl (ip_fd, I_PUSH, "arp") < 0)
4046
        syslog (LOG_ERR, "Can't push ARP module (3)\n");
4047
    /* Open arp_fd */
4048
    TFR(arp_fd = open ("/dev/tap", O_RDWR, 0));
4049
    if (arp_fd < 0)
4050
       syslog (LOG_ERR, "Can't open %s\n", "/dev/tap");
4051

    
4052
    /* Set ifname to arp */
4053
    strioc_if.ic_cmd = SIOCSLIFNAME;
4054
    strioc_if.ic_timout = 0;
4055
    strioc_if.ic_len = sizeof(ifr);
4056
    strioc_if.ic_dp = (char *)&ifr;
4057
    if (ioctl(arp_fd, I_STR, &strioc_if) < 0){
4058
        syslog (LOG_ERR, "Can't set ifname to arp\n");
4059
    }
4060

    
4061
    if((ip_muxid = ioctl(ip_fd, I_LINK, if_fd)) < 0){
4062
       syslog(LOG_ERR, "Can't link TAP device to IP");
4063
       return -1;
4064
    }
4065

    
4066
    if ((arp_muxid = ioctl (ip_fd, link_type, arp_fd)) < 0)
4067
        syslog (LOG_ERR, "Can't link TAP device to ARP");
4068

    
4069
    close (if_fd);
4070

    
4071
    memset(&ifr, 0x0, sizeof(ifr));
4072
    strncpy (ifr.lifr_name, actual_name, sizeof (ifr.lifr_name));
4073
    ifr.lifr_ip_muxid  = ip_muxid;
4074
    ifr.lifr_arp_muxid = arp_muxid;
4075

    
4076
    if (ioctl (ip_fd, SIOCSLIFMUXID, &ifr) < 0)
4077
    {
4078
      ioctl (ip_fd, I_PUNLINK , arp_muxid);
4079
      ioctl (ip_fd, I_PUNLINK, ip_muxid);
4080
      syslog (LOG_ERR, "Can't set multiplexor id");
4081
    }
4082

    
4083
    sprintf(dev, "tap%d", ppa);
4084
    return tap_fd;
4085
}
4086

    
4087
static int tap_open(char *ifname, int ifname_size)
4088
{
4089
    char  dev[10]="";
4090
    int fd;
4091
    if( (fd = tap_alloc(dev)) < 0 ){
4092
       fprintf(stderr, "Cannot allocate TAP device\n");
4093
       return -1;
4094
    }
4095
    pstrcpy(ifname, ifname_size, dev);
4096
    fcntl(fd, F_SETFL, O_NONBLOCK);
4097
    return fd;
4098
}
4099
#else
4100
static int tap_open(char *ifname, int ifname_size)
4101
{
4102
    struct ifreq ifr;
4103
    int fd, ret;
4104

    
4105
    TFR(fd = open("/dev/net/tun", O_RDWR));
4106
    if (fd < 0) {
4107
        fprintf(stderr, "warning: could not open /dev/net/tun: no virtual network emulation\n");
4108
        return -1;
4109
    }
4110
    memset(&ifr, 0, sizeof(ifr));
4111
    ifr.ifr_flags = IFF_TAP | IFF_NO_PI;
4112
    if (ifname[0] != '\0')
4113
        pstrcpy(ifr.ifr_name, IFNAMSIZ, ifname);
4114
    else
4115
        pstrcpy(ifr.ifr_name, IFNAMSIZ, "tap%d");
4116
    ret = ioctl(fd, TUNSETIFF, (void *) &ifr);
4117
    if (ret != 0) {
4118
        fprintf(stderr, "warning: could not configure /dev/net/tun: no virtual network emulation\n");
4119
        close(fd);
4120
        return -1;
4121
    }
4122
    pstrcpy(ifname, ifname_size, ifr.ifr_name);
4123
    fcntl(fd, F_SETFL, O_NONBLOCK);
4124
    return fd;
4125
}
4126
#endif
4127

    
4128
static int launch_script(const char *setup_script, const char *ifname, int fd)
4129
{
4130
    int pid, status;
4131
    char *args[3];
4132
    char **parg;
4133

    
4134
        /* try to launch network script */
4135
        pid = fork();
4136
        if (pid >= 0) {
4137
            if (pid == 0) {
4138
                int open_max = sysconf (_SC_OPEN_MAX), i;
4139
                for (i = 0; i < open_max; i++)
4140
                    if (i != STDIN_FILENO &&
4141
                        i != STDOUT_FILENO &&
4142
                        i != STDERR_FILENO &&
4143
                        i != fd)
4144
                        close(i);
4145

    
4146
                parg = args;
4147
                *parg++ = (char *)setup_script;
4148
                *parg++ = (char *)ifname;
4149
                *parg++ = NULL;
4150
                execv(setup_script, args);
4151
                _exit(1);
4152
            }
4153
            while (waitpid(pid, &status, 0) != pid);
4154
            if (!WIFEXITED(status) ||
4155
                WEXITSTATUS(status) != 0) {
4156
                fprintf(stderr, "%s: could not launch network script\n",
4157
                        setup_script);
4158
                return -1;
4159
            }
4160
        }
4161
    return 0;
4162
}
4163

    
4164
static int net_tap_init(VLANState *vlan, const char *ifname1,
4165
                        const char *setup_script, const char *down_script)
4166
{
4167
    TAPState *s;
4168
    int fd;
4169
    char ifname[128];
4170

    
4171
    if (ifname1 != NULL)
4172
        pstrcpy(ifname, sizeof(ifname), ifname1);
4173
    else
4174
        ifname[0] = '\0';
4175
    TFR(fd = tap_open(ifname, sizeof(ifname)));
4176
    if (fd < 0)
4177
        return -1;
4178

    
4179
    if (!setup_script || !strcmp(setup_script, "no"))
4180
        setup_script = "";
4181
    if (setup_script[0] != '\0') {
4182
        if (launch_script(setup_script, ifname, fd))
4183
            return -1;
4184
    }
4185
    s = net_tap_fd_init(vlan, fd);
4186
    if (!s)
4187
        return -1;
4188
    snprintf(s->vc->info_str, sizeof(s->vc->info_str),
4189
             "tap: ifname=%s setup_script=%s", ifname, setup_script);
4190
    if (down_script && strcmp(down_script, "no"))
4191
        snprintf(s->down_script, sizeof(s->down_script), "%s", down_script);
4192
    return 0;
4193
}
4194

    
4195
#endif /* !_WIN32 */
4196

    
4197
/* network connection */
4198
typedef struct NetSocketState {
4199
    VLANClientState *vc;
4200
    int fd;
4201
    int state; /* 0 = getting length, 1 = getting data */
4202
    int index;
4203
    int packet_len;
4204
    uint8_t buf[4096];
4205
    struct sockaddr_in dgram_dst; /* contains inet host and port destination iff connectionless (SOCK_DGRAM) */
4206
} NetSocketState;
4207

    
4208
typedef struct NetSocketListenState {
4209
    VLANState *vlan;
4210
    int fd;
4211
} NetSocketListenState;
4212

    
4213
/* XXX: we consider we can send the whole packet without blocking */
4214
static void net_socket_receive(void *opaque, const uint8_t *buf, int size)
4215
{
4216
    NetSocketState *s = opaque;
4217
    uint32_t len;
4218
    len = htonl(size);
4219

    
4220
    send_all(s->fd, (const uint8_t *)&len, sizeof(len));
4221
    send_all(s->fd, buf, size);
4222
}
4223

    
4224
static void net_socket_receive_dgram(void *opaque, const uint8_t *buf, int size)
4225
{
4226
    NetSocketState *s = opaque;
4227
    sendto(s->fd, buf, size, 0,
4228
           (struct sockaddr *)&s->dgram_dst, sizeof(s->dgram_dst));
4229
}
4230

    
4231
static void net_socket_send(void *opaque)
4232
{
4233
    NetSocketState *s = opaque;
4234
    int l, size, err;
4235
    uint8_t buf1[4096];
4236
    const uint8_t *buf;
4237

    
4238
    size = recv(s->fd, buf1, sizeof(buf1), 0);
4239
    if (size < 0) {
4240
        err = socket_error();
4241
        if (err != EWOULDBLOCK)
4242
            goto eoc;
4243
    } else if (size == 0) {
4244
        /* end of connection */
4245
    eoc:
4246
        qemu_set_fd_handler(s->fd, NULL, NULL, NULL);
4247
        closesocket(s->fd);
4248
        return;
4249
    }
4250
    buf = buf1;
4251
    while (size > 0) {
4252
        /* reassemble a packet from the network */
4253
        switch(s->state) {
4254
        case 0:
4255
            l = 4 - s->index;
4256
            if (l > size)
4257
                l = size;
4258
            memcpy(s->buf + s->index, buf, l);
4259
            buf += l;
4260
            size -= l;
4261
            s->index += l;
4262
            if (s->index == 4) {
4263
                /* got length */
4264
                s->packet_len = ntohl(*(uint32_t *)s->buf);
4265
                s->index = 0;
4266
                s->state = 1;
4267
            }
4268
            break;
4269
        case 1:
4270
            l = s->packet_len - s->index;
4271
            if (l > size)
4272
                l = size;
4273
            memcpy(s->buf + s->index, buf, l);
4274
            s->index += l;
4275
            buf += l;
4276
            size -= l;
4277
            if (s->index >= s->packet_len) {
4278
                qemu_send_packet(s->vc, s->buf, s->packet_len);
4279
                s->index = 0;
4280
                s->state = 0;
4281
            }
4282
            break;
4283
        }
4284
    }
4285
}
4286

    
4287
static void net_socket_send_dgram(void *opaque)
4288
{
4289
    NetSocketState *s = opaque;
4290
    int size;
4291

    
4292
    size = recv(s->fd, s->buf, sizeof(s->buf), 0);
4293
    if (size < 0)
4294
        return;
4295
    if (size == 0) {
4296
        /* end of connection */
4297
        qemu_set_fd_handler(s->fd, NULL, NULL, NULL);
4298
        return;
4299
    }
4300
    qemu_send_packet(s->vc, s->buf, size);
4301
}
4302

    
4303
static int net_socket_mcast_create(struct sockaddr_in *mcastaddr)
4304
{
4305
    struct ip_mreq imr;
4306
    int fd;
4307
    int val, ret;
4308
    if (!IN_MULTICAST(ntohl(mcastaddr->sin_addr.s_addr))) {
4309
        fprintf(stderr, "qemu: error: specified mcastaddr \"%s\" (0x%08x) does not contain a multicast address\n",
4310
                inet_ntoa(mcastaddr->sin_addr),
4311
                (int)ntohl(mcastaddr->sin_addr.s_addr));
4312
        return -1;
4313

    
4314
    }
4315
    fd = socket(PF_INET, SOCK_DGRAM, 0);
4316
    if (fd < 0) {
4317
        perror("socket(PF_INET, SOCK_DGRAM)");
4318
        return -1;
4319
    }
4320

    
4321
    val = 1;
4322
    ret=setsockopt(fd, SOL_SOCKET, SO_REUSEADDR,
4323
                   (const char *)&val, sizeof(val));
4324
    if (ret < 0) {
4325
        perror("setsockopt(SOL_SOCKET, SO_REUSEADDR)");
4326
        goto fail;
4327
    }
4328

    
4329
    ret = bind(fd, (struct sockaddr *)mcastaddr, sizeof(*mcastaddr));
4330
    if (ret < 0) {
4331
        perror("bind");
4332
        goto fail;
4333
    }
4334

    
4335
    /* Add host to multicast group */
4336
    imr.imr_multiaddr = mcastaddr->sin_addr;
4337
    imr.imr_interface.s_addr = htonl(INADDR_ANY);
4338

    
4339
    ret = setsockopt(fd, IPPROTO_IP, IP_ADD_MEMBERSHIP,
4340
                     (const char *)&imr, sizeof(struct ip_mreq));
4341
    if (ret < 0) {
4342
        perror("setsockopt(IP_ADD_MEMBERSHIP)");
4343
        goto fail;
4344
    }
4345

    
4346
    /* Force mcast msgs to loopback (eg. several QEMUs in same host */
4347
    val = 1;
4348
    ret=setsockopt(fd, IPPROTO_IP, IP_MULTICAST_LOOP,
4349
                   (const char *)&val, sizeof(val));
4350
    if (ret < 0) {
4351
        perror("setsockopt(SOL_IP, IP_MULTICAST_LOOP)");
4352
        goto fail;
4353
    }
4354

    
4355
    socket_set_nonblock(fd);
4356
    return fd;
4357
fail:
4358
    if (fd >= 0)
4359
        closesocket(fd);
4360
    return -1;
4361
}
4362

    
4363
static NetSocketState *net_socket_fd_init_dgram(VLANState *vlan, int fd,
4364
                                          int is_connected)
4365
{
4366
    struct sockaddr_in saddr;
4367
    int newfd;
4368
    socklen_t saddr_len;
4369
    NetSocketState *s;
4370

    
4371
    /* fd passed: multicast: "learn" dgram_dst address from bound address and save it
4372
     * Because this may be "shared" socket from a "master" process, datagrams would be recv()
4373
     * by ONLY ONE process: we must "clone" this dgram socket --jjo
4374
     */
4375

    
4376
    if (is_connected) {
4377
        if (getsockname(fd, (struct sockaddr *) &saddr, &saddr_len) == 0) {
4378
            /* must be bound */
4379
            if (saddr.sin_addr.s_addr==0) {
4380
                fprintf(stderr, "qemu: error: init_dgram: fd=%d unbound, cannot setup multicast dst addr\n",
4381
                        fd);
4382
                return NULL;
4383
            }
4384
            /* clone dgram socket */
4385
            newfd = net_socket_mcast_create(&saddr);
4386
            if (newfd < 0) {
4387
                /* error already reported by net_socket_mcast_create() */
4388
                close(fd);
4389
                return NULL;
4390
            }
4391
            /* clone newfd to fd, close newfd */
4392
            dup2(newfd, fd);
4393
            close(newfd);
4394

    
4395
        } else {
4396
            fprintf(stderr, "qemu: error: init_dgram: fd=%d failed getsockname(): %s\n",
4397
                    fd, strerror(errno));
4398
            return NULL;
4399
        }
4400
    }
4401

    
4402
    s = qemu_mallocz(sizeof(NetSocketState));
4403
    if (!s)
4404
        return NULL;
4405
    s->fd = fd;
4406

    
4407
    s->vc = qemu_new_vlan_client(vlan, net_socket_receive_dgram, NULL, s);
4408
    qemu_set_fd_handler(s->fd, net_socket_send_dgram, NULL, s);
4409

    
4410
    /* mcast: save bound address as dst */
4411
    if (is_connected) s->dgram_dst=saddr;
4412

    
4413
    snprintf(s->vc->info_str, sizeof(s->vc->info_str),
4414
            "socket: fd=%d (%s mcast=%s:%d)",
4415
            fd, is_connected? "cloned" : "",
4416
            inet_ntoa(saddr.sin_addr), ntohs(saddr.sin_port));
4417
    return s;
4418
}
4419

    
4420
static void net_socket_connect(void *opaque)
4421
{
4422
    NetSocketState *s = opaque;
4423
    qemu_set_fd_handler(s->fd, net_socket_send, NULL, s);
4424
}
4425

    
4426
static NetSocketState *net_socket_fd_init_stream(VLANState *vlan, int fd,
4427
                                          int is_connected)
4428
{
4429
    NetSocketState *s;
4430
    s = qemu_mallocz(sizeof(NetSocketState));
4431
    if (!s)
4432
        return NULL;
4433
    s->fd = fd;
4434
    s->vc = qemu_new_vlan_client(vlan,
4435
                                 net_socket_receive, NULL, s);
4436
    snprintf(s->vc->info_str, sizeof(s->vc->info_str),
4437
             "socket: fd=%d", fd);
4438
    if (is_connected) {
4439
        net_socket_connect(s);
4440
    } else {
4441
        qemu_set_fd_handler(s->fd, NULL, net_socket_connect, s);
4442
    }
4443
    return s;
4444
}
4445

    
4446
static NetSocketState *net_socket_fd_init(VLANState *vlan, int fd,
4447
                                          int is_connected)
4448
{
4449
    int so_type=-1, optlen=sizeof(so_type);
4450

    
4451
    if(getsockopt(fd, SOL_SOCKET, SO_TYPE, (char *)&so_type,
4452
        (socklen_t *)&optlen)< 0) {
4453
        fprintf(stderr, "qemu: error: getsockopt(SO_TYPE) for fd=%d failed\n", fd);
4454
        return NULL;
4455
    }
4456
    switch(so_type) {
4457
    case SOCK_DGRAM:
4458
        return net_socket_fd_init_dgram(vlan, fd, is_connected);
4459
    case SOCK_STREAM:
4460
        return net_socket_fd_init_stream(vlan, fd, is_connected);
4461
    default:
4462
        /* who knows ... this could be a eg. a pty, do warn and continue as stream */
4463
        fprintf(stderr, "qemu: warning: socket type=%d for fd=%d is not SOCK_DGRAM or SOCK_STREAM\n", so_type, fd);
4464
        return net_socket_fd_init_stream(vlan, fd, is_connected);
4465
    }
4466
    return NULL;
4467
}
4468

    
4469
static void net_socket_accept(void *opaque)
4470
{
4471
    NetSocketListenState *s = opaque;
4472
    NetSocketState *s1;
4473
    struct sockaddr_in saddr;
4474
    socklen_t len;
4475
    int fd;
4476

    
4477
    for(;;) {
4478
        len = sizeof(saddr);
4479
        fd = accept(s->fd, (struct sockaddr *)&saddr, &len);
4480
        if (fd < 0 && errno != EINTR) {
4481
            return;
4482
        } else if (fd >= 0) {
4483
            break;
4484
        }
4485
    }
4486
    s1 = net_socket_fd_init(s->vlan, fd, 1);
4487
    if (!s1) {
4488
        closesocket(fd);
4489
    } else {
4490
        snprintf(s1->vc->info_str, sizeof(s1->vc->info_str),
4491
                 "socket: connection from %s:%d",
4492
                 inet_ntoa(saddr.sin_addr), ntohs(saddr.sin_port));
4493
    }
4494
}
4495

    
4496
static int net_socket_listen_init(VLANState *vlan, const char *host_str)
4497
{
4498
    NetSocketListenState *s;
4499
    int fd, val, ret;
4500
    struct sockaddr_in saddr;
4501

    
4502
    if (parse_host_port(&saddr, host_str) < 0)
4503
        return -1;
4504

    
4505
    s = qemu_mallocz(sizeof(NetSocketListenState));
4506
    if (!s)
4507
        return -1;
4508

    
4509
    fd = socket(PF_INET, SOCK_STREAM, 0);
4510
    if (fd < 0) {
4511
        perror("socket");
4512
        return -1;
4513
    }
4514
    socket_set_nonblock(fd);
4515

    
4516
    /* allow fast reuse */
4517
    val = 1;
4518
    setsockopt(fd, SOL_SOCKET, SO_REUSEADDR, (const char *)&val, sizeof(val));
4519

    
4520
    ret = bind(fd, (struct sockaddr *)&saddr, sizeof(saddr));
4521
    if (ret < 0) {
4522
        perror("bind");
4523
        return -1;
4524
    }
4525
    ret = listen(fd, 0);
4526
    if (ret < 0) {
4527
        perror("listen");
4528
        return -1;
4529
    }
4530
    s->vlan = vlan;
4531
    s->fd = fd;
4532
    qemu_set_fd_handler(fd, net_socket_accept, NULL, s);
4533
    return 0;
4534
}
4535

    
4536
static int net_socket_connect_init(VLANState *vlan, const char *host_str)
4537
{
4538
    NetSocketState *s;
4539
    int fd, connected, ret, err;
4540
    struct sockaddr_in saddr;
4541

    
4542
    if (parse_host_port(&saddr, host_str) < 0)
4543
        return -1;
4544

    
4545
    fd = socket(PF_INET, SOCK_STREAM, 0);
4546
    if (fd < 0) {
4547
        perror("socket");
4548
        return -1;
4549
    }
4550
    socket_set_nonblock(fd);
4551

    
4552
    connected = 0;
4553
    for(;;) {
4554
        ret = connect(fd, (struct sockaddr *)&saddr, sizeof(saddr));
4555
        if (ret < 0) {
4556
            err = socket_error();
4557
            if (err == EINTR || err == EWOULDBLOCK) {
4558
            } else if (err == EINPROGRESS) {
4559
                break;
4560
#ifdef _WIN32
4561
            } else if (err == WSAEALREADY) {
4562
                break;
4563
#endif
4564
            } else {
4565
                perror("connect");
4566
                closesocket(fd);
4567
                return -1;
4568
            }
4569
        } else {
4570
            connected = 1;
4571
            break;
4572
        }
4573
    }
4574
    s = net_socket_fd_init(vlan, fd, connected);
4575
    if (!s)
4576
        return -1;
4577
    snprintf(s->vc->info_str, sizeof(s->vc->info_str),
4578
             "socket: connect to %s:%d",
4579
             inet_ntoa(saddr.sin_addr), ntohs(saddr.sin_port));
4580
    return 0;
4581
}
4582

    
4583
static int net_socket_mcast_init(VLANState *vlan, const char *host_str)
4584
{
4585
    NetSocketState *s;
4586
    int fd;
4587
    struct sockaddr_in saddr;
4588

    
4589
    if (parse_host_port(&saddr, host_str) < 0)
4590
        return -1;
4591

    
4592

    
4593
    fd = net_socket_mcast_create(&saddr);
4594
    if (fd < 0)
4595
        return -1;
4596

    
4597
    s = net_socket_fd_init(vlan, fd, 0);
4598
    if (!s)
4599
        return -1;
4600

    
4601
    s->dgram_dst = saddr;
4602

    
4603
    snprintf(s->vc->info_str, sizeof(s->vc->info_str),
4604
             "socket: mcast=%s:%d",
4605
             inet_ntoa(saddr.sin_addr), ntohs(saddr.sin_port));
4606
    return 0;
4607

    
4608
}
4609

    
4610
static const char *get_opt_name(char *buf, int buf_size, const char *p)
4611
{
4612
    char *q;
4613

    
4614
    q = buf;
4615
    while (*p != '\0' && *p != '=') {
4616
        if (q && (q - buf) < buf_size - 1)
4617
            *q++ = *p;
4618
        p++;
4619
    }
4620
    if (q)
4621
        *q = '\0';
4622

    
4623
    return p;
4624
}
4625

    
4626
static const char *get_opt_value(char *buf, int buf_size, const char *p)
4627
{
4628
    char *q;
4629

    
4630
    q = buf;
4631
    while (*p != '\0') {
4632
        if (*p == ',') {
4633
            if (*(p + 1) != ',')
4634
                break;
4635
            p++;
4636
        }
4637
        if (q && (q - buf) < buf_size - 1)
4638
            *q++ = *p;
4639
        p++;
4640
    }
4641
    if (q)
4642
        *q = '\0';
4643

    
4644
    return p;
4645
}
4646

    
4647
static int get_param_value(char *buf, int buf_size,
4648
                           const char *tag, const char *str)
4649
{
4650
    const char *p;
4651
    char option[128];
4652

    
4653
    p = str;
4654
    for(;;) {
4655
        p = get_opt_name(option, sizeof(option), p);
4656
        if (*p != '=')
4657
            break;
4658
        p++;
4659
        if (!strcmp(tag, option)) {
4660
            (void)get_opt_value(buf, buf_size, p);
4661
            return strlen(buf);
4662
        } else {
4663
            p = get_opt_value(NULL, 0, p);
4664
        }
4665
        if (*p != ',')
4666
            break;
4667
        p++;
4668
    }
4669
    return 0;
4670
}
4671

    
4672
static int check_params(char *buf, int buf_size,
4673
                        char **params, const char *str)
4674
{
4675
    const char *p;
4676
    int i;
4677

    
4678
    p = str;
4679
    for(;;) {
4680
        p = get_opt_name(buf, buf_size, p);
4681
        if (*p != '=')
4682
            return -1;
4683
        p++;
4684
        for(i = 0; params[i] != NULL; i++)
4685
            if (!strcmp(params[i], buf))
4686
                break;
4687
        if (params[i] == NULL)
4688
            return -1;
4689
        p = get_opt_value(NULL, 0, p);
4690
        if (*p != ',')
4691
            break;
4692
        p++;
4693
    }
4694
    return 0;
4695
}
4696

    
4697

    
4698
static int net_client_init(const char *str)
4699
{
4700
    const char *p;
4701
    char *q;
4702
    char device[64];
4703
    char buf[1024];
4704
    int vlan_id, ret;
4705
    VLANState *vlan;
4706

    
4707
    p = str;
4708
    q = device;
4709
    while (*p != '\0' && *p != ',') {
4710
        if ((q - device) < sizeof(device) - 1)
4711
            *q++ = *p;
4712
        p++;
4713
    }
4714
    *q = '\0';
4715
    if (*p == ',')
4716
        p++;
4717
    vlan_id = 0;
4718
    if (get_param_value(buf, sizeof(buf), "vlan", p)) {
4719
        vlan_id = strtol(buf, NULL, 0);
4720
    }
4721
    vlan = qemu_find_vlan(vlan_id);
4722
    if (!vlan) {
4723
        fprintf(stderr, "Could not create vlan %d\n", vlan_id);
4724
        return -1;
4725
    }
4726
    if (!strcmp(device, "nic")) {
4727
        NICInfo *nd;
4728
        uint8_t *macaddr;
4729

    
4730
        if (nb_nics >= MAX_NICS) {
4731
            fprintf(stderr, "Too Many NICs\n");
4732
            return -1;
4733
        }
4734
        nd = &nd_table[nb_nics];
4735
        macaddr = nd->macaddr;
4736
        macaddr[0] = 0x52;
4737
        macaddr[1] = 0x54;
4738
        macaddr[2] = 0x00;
4739
        macaddr[3] = 0x12;
4740
        macaddr[4] = 0x34;
4741
        macaddr[5] = 0x56 + nb_nics;
4742

    
4743
        if (get_param_value(buf, sizeof(buf), "macaddr", p)) {
4744
            if (parse_macaddr(macaddr, buf) < 0) {
4745
                fprintf(stderr, "invalid syntax for ethernet address\n");
4746
                return -1;
4747
            }
4748
        }
4749
        if (get_param_value(buf, sizeof(buf), "model", p)) {
4750
            nd->model = strdup(buf);
4751
        }
4752
        nd->vlan = vlan;
4753
        nb_nics++;
4754
        vlan->nb_guest_devs++;
4755
        ret = 0;
4756
    } else
4757
    if (!strcmp(device, "none")) {
4758
        /* does nothing. It is needed to signal that no network cards
4759
           are wanted */
4760
        ret = 0;
4761
    } else
4762
#ifdef CONFIG_SLIRP
4763
    if (!strcmp(device, "user")) {
4764
        if (get_param_value(buf, sizeof(buf), "hostname", p)) {
4765
            pstrcpy(slirp_hostname, sizeof(slirp_hostname), buf);
4766
        }
4767
        vlan->nb_host_devs++;
4768
        ret = net_slirp_init(vlan);
4769
    } else
4770
#endif
4771
#ifdef _WIN32
4772
    if (!strcmp(device, "tap")) {
4773
        char ifname[64];
4774
        if (get_param_value(ifname, sizeof(ifname), "ifname", p) <= 0) {
4775
            fprintf(stderr, "tap: no interface name\n");
4776
            return -1;
4777
        }
4778
        vlan->nb_host_devs++;
4779
        ret = tap_win32_init(vlan, ifname);
4780
    } else
4781
#else
4782
    if (!strcmp(device, "tap")) {
4783
        char ifname[64];
4784
        char setup_script[1024], down_script[1024];
4785
        int fd;
4786
        vlan->nb_host_devs++;
4787
        if (get_param_value(buf, sizeof(buf), "fd", p) > 0) {
4788
            fd = strtol(buf, NULL, 0);
4789
            ret = -1;
4790
            if (net_tap_fd_init(vlan, fd))
4791
                ret = 0;
4792
        } else {
4793
            if (get_param_value(ifname, sizeof(ifname), "ifname", p) <= 0) {
4794
                ifname[0] = '\0';
4795
            }
4796
            if (get_param_value(setup_script, sizeof(setup_script), "script", p) == 0) {
4797
                pstrcpy(setup_script, sizeof(setup_script), DEFAULT_NETWORK_SCRIPT);
4798
            }
4799
            if (get_param_value(down_script, sizeof(down_script), "downscript", p) == 0) {
4800
                pstrcpy(down_script, sizeof(down_script), DEFAULT_NETWORK_DOWN_SCRIPT);
4801
            }
4802
            ret = net_tap_init(vlan, ifname, setup_script, down_script);
4803
        }
4804
    } else
4805
#endif
4806
    if (!strcmp(device, "socket")) {
4807
        if (get_param_value(buf, sizeof(buf), "fd", p) > 0) {
4808
            int fd;
4809
            fd = strtol(buf, NULL, 0);
4810
            ret = -1;
4811
            if (net_socket_fd_init(vlan, fd, 1))
4812
                ret = 0;
4813
        } else if (get_param_value(buf, sizeof(buf), "listen", p) > 0) {
4814
            ret = net_socket_listen_init(vlan, buf);
4815
        } else if (get_param_value(buf, sizeof(buf), "connect", p) > 0) {
4816
            ret = net_socket_connect_init(vlan, buf);
4817
        } else if (get_param_value(buf, sizeof(buf), "mcast", p) > 0) {
4818
            ret = net_socket_mcast_init(vlan, buf);
4819
        } else {
4820
            fprintf(stderr, "Unknown socket options: %s\n", p);
4821
            return -1;
4822
        }
4823
        vlan->nb_host_devs++;
4824
    } else
4825
    {
4826
        fprintf(stderr, "Unknown network device: %s\n", device);
4827
        return -1;
4828
    }
4829
    if (ret < 0) {
4830
        fprintf(stderr, "Could not initialize device '%s'\n", device);
4831
    }
4832

    
4833
    return ret;
4834
}
4835

    
4836
void do_info_network(void)
4837
{
4838
    VLANState *vlan;
4839
    VLANClientState *vc;
4840

    
4841
    for(vlan = first_vlan; vlan != NULL; vlan = vlan->next) {
4842
        term_printf("VLAN %d devices:\n", vlan->id);
4843
        for(vc = vlan->first_client; vc != NULL; vc = vc->next)
4844
            term_printf("  %s\n", vc->info_str);
4845
    }
4846
}
4847

    
4848
#define HD_ALIAS "index=%d,media=disk"
4849
#ifdef TARGET_PPC
4850
#define CDROM_ALIAS "index=1,media=cdrom"
4851
#else
4852
#define CDROM_ALIAS "index=2,media=cdrom"
4853
#endif
4854
#define FD_ALIAS "index=%d,if=floppy"
4855
#define PFLASH_ALIAS "if=pflash"
4856
#define MTD_ALIAS "if=mtd"
4857
#define SD_ALIAS "index=0,if=sd"
4858

    
4859
static int drive_add(const char *file, const char *fmt, ...)
4860
{
4861
    va_list ap;
4862

    
4863
    if (nb_drives_opt >= MAX_DRIVES) {
4864
        fprintf(stderr, "qemu: too many drives\n");
4865
        exit(1);
4866
    }
4867

    
4868
    drives_opt[nb_drives_opt].file = file;
4869
    va_start(ap, fmt);
4870
    vsnprintf(drives_opt[nb_drives_opt].opt,
4871
              sizeof(drives_opt[0].opt), fmt, ap);
4872
    va_end(ap);
4873

    
4874
    return nb_drives_opt++;
4875
}
4876

    
4877
int drive_get_index(BlockInterfaceType type, int bus, int unit)
4878
{
4879
    int index;
4880

    
4881
    /* seek interface, bus and unit */
4882

    
4883
    for (index = 0; index < nb_drives; index++)
4884
        if (drives_table[index].type == type &&
4885
            drives_table[index].bus == bus &&
4886
            drives_table[index].unit == unit)
4887
        return index;
4888

    
4889
    return -1;
4890
}
4891

    
4892
int drive_get_max_bus(BlockInterfaceType type)
4893
{
4894
    int max_bus;
4895
    int index;
4896

    
4897
    max_bus = -1;
4898
    for (index = 0; index < nb_drives; index++) {
4899
        if(drives_table[index].type == type &&
4900
           drives_table[index].bus > max_bus)
4901
            max_bus = drives_table[index].bus;
4902
    }
4903
    return max_bus;
4904
}
4905

    
4906
static int drive_init(struct drive_opt *arg, int snapshot,
4907
                      QEMUMachine *machine)
4908
{
4909
    char buf[128];
4910
    char file[1024];
4911
    char devname[128];
4912
    const char *mediastr = "";
4913
    BlockInterfaceType type;
4914
    enum { MEDIA_DISK, MEDIA_CDROM } media;
4915
    int bus_id, unit_id;
4916
    int cyls, heads, secs, translation;
4917
    BlockDriverState *bdrv;
4918
    int max_devs;
4919
    int index;
4920
    int cache;
4921
    int bdrv_flags;
4922
    char *str = arg->opt;
4923
    char *params[] = { "bus", "unit", "if", "index", "cyls", "heads",
4924
                       "secs", "trans", "media", "snapshot", "file",
4925
                       "cache", NULL };
4926

    
4927
    if (check_params(buf, sizeof(buf), params, str) < 0) {
4928
         fprintf(stderr, "qemu: unknowm parameter '%s' in '%s'\n",
4929
                         buf, str);
4930
         return -1;
4931
    }
4932

    
4933
    file[0] = 0;
4934
    cyls = heads = secs = 0;
4935
    bus_id = 0;
4936
    unit_id = -1;
4937
    translation = BIOS_ATA_TRANSLATION_AUTO;
4938
    index = -1;
4939
    cache = 1;
4940

    
4941
    if (!strcmp(machine->name, "realview") ||
4942
        !strcmp(machine->name, "SS-5") ||
4943
        !strcmp(machine->name, "SS-10") ||
4944
        !strcmp(machine->name, "SS-600MP") ||
4945
        !strcmp(machine->name, "versatilepb") ||
4946
        !strcmp(machine->name, "versatileab")) {
4947
        type = IF_SCSI;
4948
        max_devs = MAX_SCSI_DEVS;
4949
        strcpy(devname, "scsi");
4950
    } else {
4951
        type = IF_IDE;
4952
        max_devs = MAX_IDE_DEVS;
4953
        strcpy(devname, "ide");
4954
    }
4955
    media = MEDIA_DISK;
4956

    
4957
    /* extract parameters */
4958

    
4959
    if (get_param_value(buf, sizeof(buf), "bus", str)) {
4960
        bus_id = strtol(buf, NULL, 0);
4961
        if (bus_id < 0) {
4962
            fprintf(stderr, "qemu: '%s' invalid bus id\n", str);
4963
            return -1;
4964
        }
4965
    }
4966

    
4967
    if (get_param_value(buf, sizeof(buf), "unit", str)) {
4968
        unit_id = strtol(buf, NULL, 0);
4969
        if (unit_id < 0) {
4970
            fprintf(stderr, "qemu: '%s' invalid unit id\n", str);
4971
            return -1;
4972
        }
4973
    }
4974

    
4975
    if (get_param_value(buf, sizeof(buf), "if", str)) {
4976
        strncpy(devname, buf, sizeof(devname));
4977
        if (!strcmp(buf, "ide")) {
4978
            type = IF_IDE;
4979
            max_devs = MAX_IDE_DEVS;
4980
        } else if (!strcmp(buf, "scsi")) {
4981
            type = IF_SCSI;
4982
            max_devs = MAX_SCSI_DEVS;
4983
        } else if (!strcmp(buf, "floppy")) {
4984
            type = IF_FLOPPY;
4985
            max_devs = 0;
4986
        } else if (!strcmp(buf, "pflash")) {
4987
            type = IF_PFLASH;
4988
            max_devs = 0;
4989
        } else if (!strcmp(buf, "mtd")) {
4990
            type = IF_MTD;
4991
            max_devs = 0;
4992
        } else if (!strcmp(buf, "sd")) {
4993
            type = IF_SD;
4994
            max_devs = 0;
4995
        } else {
4996
            fprintf(stderr, "qemu: '%s' unsupported bus type '%s'\n", str, buf);
4997
            return -1;
4998
        }
4999
    }
5000

    
5001
    if (get_param_value(buf, sizeof(buf), "index", str)) {
5002
        index = strtol(buf, NULL, 0);
5003
        if (index < 0) {
5004
            fprintf(stderr, "qemu: '%s' invalid index\n", str);
5005
            return -1;
5006
        }
5007
    }
5008

    
5009
    if (get_param_value(buf, sizeof(buf), "cyls", str)) {
5010
        cyls = strtol(buf, NULL, 0);
5011
    }
5012

    
5013
    if (get_param_value(buf, sizeof(buf), "heads", str)) {
5014
        heads = strtol(buf, NULL, 0);
5015
    }
5016

    
5017
    if (get_param_value(buf, sizeof(buf), "secs", str)) {
5018
        secs = strtol(buf, NULL, 0);
5019
    }
5020

    
5021
    if (cyls || heads || secs) {
5022
        if (cyls < 1 || cyls > 16383) {
5023
            fprintf(stderr, "qemu: '%s' invalid physical cyls number\n", str);
5024
            return -1;
5025
        }
5026
        if (heads < 1 || heads > 16) {
5027
            fprintf(stderr, "qemu: '%s' invalid physical heads number\n", str);
5028
            return -1;
5029
        }
5030
        if (secs < 1 || secs > 63) {
5031
            fprintf(stderr, "qemu: '%s' invalid physical secs number\n", str);
5032
            return -1;
5033
        }
5034
    }
5035

    
5036
    if (get_param_value(buf, sizeof(buf), "trans", str)) {
5037
        if (!cyls) {
5038
            fprintf(stderr,
5039
                    "qemu: '%s' trans must be used with cyls,heads and secs\n",
5040
                    str);
5041
            return -1;
5042
        }
5043
        if (!strcmp(buf, "none"))
5044
            translation = BIOS_ATA_TRANSLATION_NONE;
5045
        else if (!strcmp(buf, "lba"))
5046
            translation = BIOS_ATA_TRANSLATION_LBA;
5047
        else if (!strcmp(buf, "auto"))
5048
            translation = BIOS_ATA_TRANSLATION_AUTO;
5049
        else {
5050
            fprintf(stderr, "qemu: '%s' invalid translation type\n", str);
5051
            return -1;
5052
        }
5053
    }
5054

    
5055
    if (get_param_value(buf, sizeof(buf), "media", str)) {
5056
        if (!strcmp(buf, "disk")) {
5057
            media = MEDIA_DISK;
5058
        } else if (!strcmp(buf, "cdrom")) {
5059
            if (cyls || secs || heads) {
5060
                fprintf(stderr,
5061
                        "qemu: '%s' invalid physical CHS format\n", str);
5062
                return -1;
5063
            }
5064
            media = MEDIA_CDROM;
5065
        } else {
5066
            fprintf(stderr, "qemu: '%s' invalid media\n", str);
5067
            return -1;
5068
        }
5069
    }
5070

    
5071
    if (get_param_value(buf, sizeof(buf), "snapshot", str)) {
5072
        if (!strcmp(buf, "on"))
5073
            snapshot = 1;
5074
        else if (!strcmp(buf, "off"))
5075
            snapshot = 0;
5076
        else {
5077
            fprintf(stderr, "qemu: '%s' invalid snapshot option\n", str);
5078
            return -1;
5079
        }
5080
    }
5081

    
5082
    if (get_param_value(buf, sizeof(buf), "cache", str)) {
5083
        if (!strcmp(buf, "off"))
5084
            cache = 0;
5085
        else if (!strcmp(buf, "on"))
5086
            cache = 1;
5087
        else {
5088
           fprintf(stderr, "qemu: invalid cache option\n");
5089
           return -1;
5090
        }
5091
    }
5092

    
5093
    if (arg->file == NULL)
5094
        get_param_value(file, sizeof(file), "file", str);
5095
    else
5096
        pstrcpy(file, sizeof(file), arg->file);
5097

    
5098
    /* compute bus and unit according index */
5099

    
5100
    if (index != -1) {
5101
        if (bus_id != 0 || unit_id != -1) {
5102
            fprintf(stderr,
5103
                    "qemu: '%s' index cannot be used with bus and unit\n", str);
5104
            return -1;
5105
        }
5106
        if (max_devs == 0)
5107
        {
5108
            unit_id = index;
5109
            bus_id = 0;
5110
        } else {
5111
            unit_id = index % max_devs;
5112
            bus_id = index / max_devs;
5113
        }
5114
    }
5115

    
5116
    /* if user doesn't specify a unit_id,
5117
     * try to find the first free
5118
     */
5119

    
5120
    if (unit_id == -1) {
5121
       unit_id = 0;
5122
       while (drive_get_index(type, bus_id, unit_id) != -1) {
5123
           unit_id++;
5124
           if (max_devs && unit_id >= max_devs) {
5125
               unit_id -= max_devs;
5126
               bus_id++;
5127
           }
5128
       }
5129
    }
5130

    
5131
    /* check unit id */
5132

    
5133
    if (max_devs && unit_id >= max_devs) {
5134
        fprintf(stderr, "qemu: '%s' unit %d too big (max is %d)\n",
5135
                        str, unit_id, max_devs - 1);
5136
        return -1;
5137
    }
5138

    
5139
    /*
5140
     * ignore multiple definitions
5141
     */
5142

    
5143
    if (drive_get_index(type, bus_id, unit_id) != -1)
5144
        return 0;
5145

    
5146
    /* init */
5147

    
5148
    if (type == IF_IDE || type == IF_SCSI)
5149
        mediastr = (media == MEDIA_CDROM) ? "-cd" : "-hd";
5150
    if (max_devs)
5151
        snprintf(buf, sizeof(buf), "%s%i%s%i",
5152
                 devname, bus_id, mediastr, unit_id);
5153
    else
5154
        snprintf(buf, sizeof(buf), "%s%s%i",
5155
                 devname, mediastr, unit_id);
5156
    bdrv = bdrv_new(buf);
5157
    drives_table[nb_drives].bdrv = bdrv;
5158
    drives_table[nb_drives].type = type;
5159
    drives_table[nb_drives].bus = bus_id;
5160
    drives_table[nb_drives].unit = unit_id;
5161
    nb_drives++;
5162

    
5163
    switch(type) {
5164
    case IF_IDE:
5165
    case IF_SCSI:
5166
        switch(media) {
5167
        case MEDIA_DISK:
5168
            if (cyls != 0) {
5169
                bdrv_set_geometry_hint(bdrv, cyls, heads, secs);
5170
                bdrv_set_translation_hint(bdrv, translation);
5171
            }
5172
            break;
5173
        case MEDIA_CDROM:
5174
            bdrv_set_type_hint(bdrv, BDRV_TYPE_CDROM);
5175
            break;
5176
        }
5177
        break;
5178
    case IF_SD:
5179
        /* FIXME: This isn't really a floppy, but it's a reasonable
5180
           approximation.  */
5181
    case IF_FLOPPY:
5182
        bdrv_set_type_hint(bdrv, BDRV_TYPE_FLOPPY);
5183
        break;
5184
    case IF_PFLASH:
5185
    case IF_MTD:
5186
        break;
5187
    }
5188
    if (!file[0])
5189
        return 0;
5190
    bdrv_flags = 0;
5191
    if (snapshot)
5192
        bdrv_flags |= BDRV_O_SNAPSHOT;
5193
    if (!cache)
5194
        bdrv_flags |= BDRV_O_DIRECT;
5195
    if (bdrv_open(bdrv, file, bdrv_flags) < 0 || qemu_key_check(bdrv, file)) {
5196
        fprintf(stderr, "qemu: could not open disk image %s\n",
5197
                        file);
5198
        return -1;
5199
    }
5200
    return 0;
5201
}
5202

    
5203
/***********************************************************/
5204
/* USB devices */
5205

    
5206
static USBPort *used_usb_ports;
5207
static USBPort *free_usb_ports;
5208

    
5209
/* ??? Maybe change this to register a hub to keep track of the topology.  */
5210
void qemu_register_usb_port(USBPort *port, void *opaque, int index,
5211
                            usb_attachfn attach)
5212
{
5213
    port->opaque = opaque;
5214
    port->index = index;
5215
    port->attach = attach;
5216
    port->next = free_usb_ports;
5217
    free_usb_ports = port;
5218
}
5219

    
5220
static int usb_device_add(const char *devname)
5221
{
5222
    const char *p;
5223
    USBDevice *dev;
5224
    USBPort *port;
5225

    
5226
    if (!free_usb_ports)
5227
        return -1;
5228

    
5229
    if (strstart(devname, "host:", &p)) {
5230
        dev = usb_host_device_open(p);
5231
    } else if (!strcmp(devname, "mouse")) {
5232
        dev = usb_mouse_init();
5233
    } else if (!strcmp(devname, "tablet")) {
5234
        dev = usb_tablet_init();
5235
    } else if (!strcmp(devname, "keyboard")) {
5236
        dev = usb_keyboard_init();
5237
    } else if (strstart(devname, "disk:", &p)) {
5238
        dev = usb_msd_init(p);
5239
    } else if (!strcmp(devname, "wacom-tablet")) {
5240
        dev = usb_wacom_init();
5241
    } else if (strstart(devname, "serial:", &p)) {
5242
        dev = usb_serial_init(p);
5243
    } else {
5244
        return -1;
5245
    }
5246
    if (!dev)
5247
        return -1;
5248

    
5249
    /* Find a USB port to add the device to.  */
5250
    port = free_usb_ports;
5251
    if (!port->next) {
5252
        USBDevice *hub;
5253

    
5254
        /* Create a new hub and chain it on.  */
5255
        free_usb_ports = NULL;
5256
        port->next = used_usb_ports;
5257
        used_usb_ports = port;
5258

    
5259
        hub = usb_hub_init(VM_USB_HUB_SIZE);
5260
        usb_attach(port, hub);
5261
        port = free_usb_ports;
5262
    }
5263

    
5264
    free_usb_ports = port->next;
5265
    port->next = used_usb_ports;
5266
    used_usb_ports = port;
5267
    usb_attach(port, dev);
5268
    return 0;
5269
}
5270

    
5271
static int usb_device_del(const char *devname)
5272
{
5273
    USBPort *port;
5274
    USBPort **lastp;
5275
    USBDevice *dev;
5276
    int bus_num, addr;
5277
    const char *p;
5278

    
5279
    if (!used_usb_ports)
5280
        return -1;
5281

    
5282
    p = strchr(devname, '.');
5283
    if (!p)
5284
        return -1;
5285
    bus_num = strtoul(devname, NULL, 0);
5286
    addr = strtoul(p + 1, NULL, 0);
5287
    if (bus_num != 0)
5288
        return -1;
5289

    
5290
    lastp = &used_usb_ports;
5291
    port = used_usb_ports;
5292
    while (port && port->dev->addr != addr) {
5293
        lastp = &port->next;
5294
        port = port->next;
5295
    }
5296

    
5297
    if (!port)
5298
        return -1;
5299

    
5300
    dev = port->dev;
5301
    *lastp = port->next;
5302
    usb_attach(port, NULL);
5303
    dev->handle_destroy(dev);
5304
    port->next = free_usb_ports;
5305
    free_usb_ports = port;
5306
    return 0;
5307
}
5308

    
5309
void do_usb_add(const char *devname)
5310
{
5311
    int ret;
5312
    ret = usb_device_add(devname);
5313
    if (ret < 0)
5314
        term_printf("Could not add USB device '%s'\n", devname);
5315
}
5316

    
5317
void do_usb_del(const char *devname)
5318
{
5319
    int ret;
5320
    ret = usb_device_del(devname);
5321
    if (ret < 0)
5322
        term_printf("Could not remove USB device '%s'\n", devname);
5323
}
5324

    
5325
void usb_info(void)
5326
{
5327
    USBDevice *dev;
5328
    USBPort *port;
5329
    const char *speed_str;
5330

    
5331
    if (!usb_enabled) {
5332
        term_printf("USB support not enabled\n");
5333
        return;
5334
    }
5335

    
5336
    for (port = used_usb_ports; port; port = port->next) {
5337
        dev = port->dev;
5338
        if (!dev)
5339
            continue;
5340
        switch(dev->speed) {
5341
        case USB_SPEED_LOW:
5342
            speed_str = "1.5";
5343
            break;
5344
        case USB_SPEED_FULL:
5345
            speed_str = "12";
5346
            break;
5347
        case USB_SPEED_HIGH:
5348
            speed_str = "480";
5349
            break;
5350
        default:
5351
            speed_str = "?";
5352
            break;
5353
        }
5354
        term_printf("  Device %d.%d, Speed %s Mb/s, Product %s\n",
5355
                    0, dev->addr, speed_str, dev->devname);
5356
    }
5357
}
5358

    
5359
/***********************************************************/
5360
/* PCMCIA/Cardbus */
5361

    
5362
static struct pcmcia_socket_entry_s {
5363
    struct pcmcia_socket_s *socket;
5364
    struct pcmcia_socket_entry_s *next;
5365
} *pcmcia_sockets = 0;
5366

    
5367
void pcmcia_socket_register(struct pcmcia_socket_s *socket)
5368
{
5369
    struct pcmcia_socket_entry_s *entry;
5370

    
5371
    entry = qemu_malloc(sizeof(struct pcmcia_socket_entry_s));
5372
    entry->socket = socket;
5373
    entry->next = pcmcia_sockets;
5374
    pcmcia_sockets = entry;
5375
}
5376

    
5377
void pcmcia_socket_unregister(struct pcmcia_socket_s *socket)
5378
{
5379
    struct pcmcia_socket_entry_s *entry, **ptr;
5380

    
5381
    ptr = &pcmcia_sockets;
5382
    for (entry = *ptr; entry; ptr = &entry->next, entry = *ptr)
5383
        if (entry->socket == socket) {
5384
            *ptr = entry->next;
5385
            qemu_free(entry);
5386
        }
5387
}
5388

    
5389
void pcmcia_info(void)
5390
{
5391
    struct pcmcia_socket_entry_s *iter;
5392
    if (!pcmcia_sockets)
5393
        term_printf("No PCMCIA sockets\n");
5394

    
5395
    for (iter = pcmcia_sockets; iter; iter = iter->next)
5396
        term_printf("%s: %s\n", iter->socket->slot_string,
5397
                    iter->socket->attached ? iter->socket->card_string :
5398
                    "Empty");
5399
}
5400

    
5401
/***********************************************************/
5402
/* dumb display */
5403

    
5404
static void dumb_update(DisplayState *ds, int x, int y, int w, int h)
5405
{
5406
}
5407

    
5408
static void dumb_resize(DisplayState *ds, int w, int h)
5409
{
5410
}
5411

    
5412
static void dumb_refresh(DisplayState *ds)
5413
{
5414
#if defined(CONFIG_SDL)
5415
    vga_hw_update();
5416
#endif
5417
}
5418

    
5419
static void dumb_display_init(DisplayState *ds)
5420
{
5421
    ds->data = NULL;
5422
    ds->linesize = 0;
5423
    ds->depth = 0;
5424
    ds->dpy_update = dumb_update;
5425
    ds->dpy_resize = dumb_resize;
5426
    ds->dpy_refresh = dumb_refresh;
5427
}
5428

    
5429
/***********************************************************/
5430
/* I/O handling */
5431

    
5432
#define MAX_IO_HANDLERS 64
5433

    
5434
typedef struct IOHandlerRecord {
5435
    int fd;
5436
    IOCanRWHandler *fd_read_poll;
5437
    IOHandler *fd_read;
5438
    IOHandler *fd_write;
5439
    int deleted;
5440
    void *opaque;
5441
    /* temporary data */
5442
    struct pollfd *ufd;
5443
    struct IOHandlerRecord *next;
5444
} IOHandlerRecord;
5445

    
5446
static IOHandlerRecord *first_io_handler;
5447

    
5448
/* XXX: fd_read_poll should be suppressed, but an API change is
5449
   necessary in the character devices to suppress fd_can_read(). */
5450
int qemu_set_fd_handler2(int fd,
5451
                         IOCanRWHandler *fd_read_poll,
5452
                         IOHandler *fd_read,
5453
                         IOHandler *fd_write,
5454
                         void *opaque)
5455
{
5456
    IOHandlerRecord **pioh, *ioh;
5457

    
5458
    if (!fd_read && !fd_write) {
5459
        pioh = &first_io_handler;
5460
        for(;;) {
5461
            ioh = *pioh;
5462
            if (ioh == NULL)
5463
                break;
5464
            if (ioh->fd == fd) {
5465
                ioh->deleted = 1;
5466
                break;
5467
            }
5468
            pioh = &ioh->next;
5469
        }
5470
    } else {
5471
        for(ioh = first_io_handler; ioh != NULL; ioh = ioh->next) {
5472
            if (ioh->fd == fd)
5473
                goto found;
5474
        }
5475
        ioh = qemu_mallocz(sizeof(IOHandlerRecord));
5476
        if (!ioh)
5477
            return -1;
5478
        ioh->next = first_io_handler;
5479
        first_io_handler = ioh;
5480
    found:
5481
        ioh->fd = fd;
5482
        ioh->fd_read_poll = fd_read_poll;
5483
        ioh->fd_read = fd_read;
5484
        ioh->fd_write = fd_write;
5485
        ioh->opaque = opaque;
5486
        ioh->deleted = 0;
5487
    }
5488
    return 0;
5489
}
5490

    
5491
int qemu_set_fd_handler(int fd,
5492
                        IOHandler *fd_read,
5493
                        IOHandler *fd_write,
5494
                        void *opaque)
5495
{
5496
    return qemu_set_fd_handler2(fd, NULL, fd_read, fd_write, opaque);
5497
}
5498

    
5499
/***********************************************************/
5500
/* Polling handling */
5501

    
5502
typedef struct PollingEntry {
5503
    PollingFunc *func;
5504
    void *opaque;
5505
    struct PollingEntry *next;
5506
} PollingEntry;
5507

    
5508
static PollingEntry *first_polling_entry;
5509

    
5510
int qemu_add_polling_cb(PollingFunc *func, void *opaque)
5511
{
5512
    PollingEntry **ppe, *pe;
5513
    pe = qemu_mallocz(sizeof(PollingEntry));
5514
    if (!pe)
5515
        return -1;
5516
    pe->func = func;
5517
    pe->opaque = opaque;
5518
    for(ppe = &first_polling_entry; *ppe != NULL; ppe = &(*ppe)->next);
5519
    *ppe = pe;
5520
    return 0;
5521
}
5522

    
5523
void qemu_del_polling_cb(PollingFunc *func, void *opaque)
5524
{
5525
    PollingEntry **ppe, *pe;
5526
    for(ppe = &first_polling_entry; *ppe != NULL; ppe = &(*ppe)->next) {
5527
        pe = *ppe;
5528
        if (pe->func == func && pe->opaque == opaque) {
5529
            *ppe = pe->next;
5530
            qemu_free(pe);
5531
            break;
5532
        }
5533
    }
5534
}
5535

    
5536
#ifdef _WIN32
5537
/***********************************************************/
5538
/* Wait objects support */
5539
typedef struct WaitObjects {
5540
    int num;
5541
    HANDLE events[MAXIMUM_WAIT_OBJECTS + 1];
5542
    WaitObjectFunc *func[MAXIMUM_WAIT_OBJECTS + 1];
5543
    void *opaque[MAXIMUM_WAIT_OBJECTS + 1];
5544
} WaitObjects;
5545

    
5546
static WaitObjects wait_objects = {0};
5547

    
5548
int qemu_add_wait_object(HANDLE handle, WaitObjectFunc *func, void *opaque)
5549
{
5550
    WaitObjects *w = &wait_objects;
5551

    
5552
    if (w->num >= MAXIMUM_WAIT_OBJECTS)
5553
        return -1;
5554
    w->events[w->num] = handle;
5555
    w->func[w->num] = func;
5556
    w->opaque[w->num] = opaque;
5557
    w->num++;
5558
    return 0;
5559
}
5560

    
5561
void qemu_del_wait_object(HANDLE handle, WaitObjectFunc *func, void *opaque)
5562
{
5563
    int i, found;
5564
    WaitObjects *w = &wait_objects;
5565

    
5566
    found = 0;
5567
    for (i = 0; i < w->num; i++) {
5568
        if (w->events[i] == handle)
5569
            found = 1;
5570
        if (found) {
5571
            w->events[i] = w->events[i + 1];
5572
            w->func[i] = w->func[i + 1];
5573
            w->opaque[i] = w->opaque[i + 1];
5574
        }
5575
    }
5576
    if (found)
5577
        w->num--;
5578
}
5579
#endif
5580

    
5581
/***********************************************************/
5582
/* savevm/loadvm support */
5583

    
5584
#define IO_BUF_SIZE 32768
5585

    
5586
struct QEMUFile {
5587
    FILE *outfile;
5588
    BlockDriverState *bs;
5589
    int is_file;
5590
    int is_writable;
5591
    int64_t base_offset;
5592
    int64_t buf_offset; /* start of buffer when writing, end of buffer
5593
                           when reading */
5594
    int buf_index;
5595
    int buf_size; /* 0 when writing */
5596
    uint8_t buf[IO_BUF_SIZE];
5597
};
5598

    
5599
QEMUFile *qemu_fopen(const char *filename, const char *mode)
5600
{
5601
    QEMUFile *f;
5602

    
5603
    f = qemu_mallocz(sizeof(QEMUFile));
5604
    if (!f)
5605
        return NULL;
5606
    if (!strcmp(mode, "wb")) {
5607
        f->is_writable = 1;
5608
    } else if (!strcmp(mode, "rb")) {
5609
        f->is_writable = 0;
5610
    } else {
5611
        goto fail;
5612
    }
5613
    f->outfile = fopen(filename, mode);
5614
    if (!f->outfile)
5615
        goto fail;
5616
    f->is_file = 1;
5617
    return f;
5618
 fail:
5619
    if (f->outfile)
5620
        fclose(f->outfile);
5621
    qemu_free(f);
5622
    return NULL;
5623
}
5624

    
5625
static QEMUFile *qemu_fopen_bdrv(BlockDriverState *bs, int64_t offset, int is_writable)
5626
{
5627
    QEMUFile *f;
5628

    
5629
    f = qemu_mallocz(sizeof(QEMUFile));
5630
    if (!f)
5631
        return NULL;
5632
    f->is_file = 0;
5633
    f->bs = bs;
5634
    f->is_writable = is_writable;
5635
    f->base_offset = offset;
5636
    return f;
5637
}
5638

    
5639
void qemu_fflush(QEMUFile *f)
5640
{
5641
    if (!f->is_writable)
5642
        return;
5643
    if (f->buf_index > 0) {
5644
        if (f->is_file) {
5645
            fseek(f->outfile, f->buf_offset, SEEK_SET);
5646
            fwrite(f->buf, 1, f->buf_index, f->outfile);
5647
        } else {
5648
            bdrv_pwrite(f->bs, f->base_offset + f->buf_offset,
5649
                        f->buf, f->buf_index);
5650
        }
5651
        f->buf_offset += f->buf_index;
5652
        f->buf_index = 0;
5653
    }
5654
}
5655

    
5656
static void qemu_fill_buffer(QEMUFile *f)
5657
{
5658
    int len;
5659

    
5660
    if (f->is_writable)
5661
        return;
5662
    if (f->is_file) {
5663
        fseek(f->outfile, f->buf_offset, SEEK_SET);
5664
        len = fread(f->buf, 1, IO_BUF_SIZE, f->outfile);
5665
        if (len < 0)
5666
            len = 0;
5667
    } else {
5668
        len = bdrv_pread(f->bs, f->base_offset + f->buf_offset,
5669
                         f->buf, IO_BUF_SIZE);
5670
        if (len < 0)
5671
            len = 0;
5672
    }
5673
    f->buf_index = 0;
5674
    f->buf_size = len;
5675
    f->buf_offset += len;
5676
}
5677

    
5678
void qemu_fclose(QEMUFile *f)
5679
{
5680
    if (f->is_writable)
5681
        qemu_fflush(f);
5682
    if (f->is_file) {
5683
        fclose(f->outfile);
5684
    }
5685
    qemu_free(f);
5686
}
5687

    
5688
void qemu_put_buffer(QEMUFile *f, const uint8_t *buf, int size)
5689
{
5690
    int l;
5691
    while (size > 0) {
5692
        l = IO_BUF_SIZE - f->buf_index;
5693
        if (l > size)
5694
            l = size;
5695
        memcpy(f->buf + f->buf_index, buf, l);
5696
        f->buf_index += l;
5697
        buf += l;
5698
        size -= l;
5699
        if (f->buf_index >= IO_BUF_SIZE)
5700
            qemu_fflush(f);
5701
    }
5702
}
5703

    
5704
void qemu_put_byte(QEMUFile *f, int v)
5705
{
5706
    f->buf[f->buf_index++] = v;
5707
    if (f->buf_index >= IO_BUF_SIZE)
5708
        qemu_fflush(f);
5709
}
5710

    
5711
int qemu_get_buffer(QEMUFile *f, uint8_t *buf, int size1)
5712
{
5713
    int size, l;
5714

    
5715
    size = size1;
5716
    while (size > 0) {
5717
        l = f->buf_size - f->buf_index;
5718
        if (l == 0) {
5719
            qemu_fill_buffer(f);
5720
            l = f->buf_size - f->buf_index;
5721
            if (l == 0)
5722
                break;
5723
        }
5724
        if (l > size)
5725
            l = size;
5726
        memcpy(buf, f->buf + f->buf_index, l);
5727
        f->buf_index += l;
5728
        buf += l;
5729
        size -= l;
5730
    }
5731
    return size1 - size;
5732
}
5733

    
5734
int qemu_get_byte(QEMUFile *f)
5735
{
5736
    if (f->buf_index >= f->buf_size) {
5737
        qemu_fill_buffer(f);
5738
        if (f->buf_index >= f->buf_size)
5739
            return 0;
5740
    }
5741
    return f->buf[f->buf_index++];
5742
}
5743

    
5744
int64_t qemu_ftell(QEMUFile *f)
5745
{
5746
    return f->buf_offset - f->buf_size + f->buf_index;
5747
}
5748

    
5749
int64_t qemu_fseek(QEMUFile *f, int64_t pos, int whence)
5750
{
5751
    if (whence == SEEK_SET) {
5752
        /* nothing to do */
5753
    } else if (whence == SEEK_CUR) {
5754
        pos += qemu_ftell(f);
5755
    } else {
5756
        /* SEEK_END not supported */
5757
        return -1;
5758
    }
5759
    if (f->is_writable) {
5760
        qemu_fflush(f);
5761
        f->buf_offset = pos;
5762
    } else {
5763
        f->buf_offset = pos;
5764
        f->buf_index = 0;
5765
        f->buf_size = 0;
5766
    }
5767
    return pos;
5768
}
5769

    
5770
void qemu_put_be16(QEMUFile *f, unsigned int v)
5771
{
5772
    qemu_put_byte(f, v >> 8);
5773
    qemu_put_byte(f, v);
5774
}
5775

    
5776
void qemu_put_be32(QEMUFile *f, unsigned int v)
5777
{
5778
    qemu_put_byte(f, v >> 24);
5779
    qemu_put_byte(f, v >> 16);
5780
    qemu_put_byte(f, v >> 8);
5781
    qemu_put_byte(f, v);
5782
}
5783

    
5784
void qemu_put_be64(QEMUFile *f, uint64_t v)
5785
{
5786
    qemu_put_be32(f, v >> 32);
5787
    qemu_put_be32(f, v);
5788
}
5789

    
5790
unsigned int qemu_get_be16(QEMUFile *f)
5791
{
5792
    unsigned int v;
5793
    v = qemu_get_byte(f) << 8;
5794
    v |= qemu_get_byte(f);
5795
    return v;
5796
}
5797

    
5798
unsigned int qemu_get_be32(QEMUFile *f)
5799
{
5800
    unsigned int v;
5801
    v = qemu_get_byte(f) << 24;
5802
    v |= qemu_get_byte(f) << 16;
5803
    v |= qemu_get_byte(f) << 8;
5804
    v |= qemu_get_byte(f);
5805
    return v;
5806
}
5807

    
5808
uint64_t qemu_get_be64(QEMUFile *f)
5809
{
5810
    uint64_t v;
5811
    v = (uint64_t)qemu_get_be32(f) << 32;
5812
    v |= qemu_get_be32(f);
5813
    return v;
5814
}
5815

    
5816
typedef struct SaveStateEntry {
5817
    char idstr[256];
5818
    int instance_id;
5819
    int version_id;
5820
    SaveStateHandler *save_state;
5821
    LoadStateHandler *load_state;
5822
    void *opaque;
5823
    struct SaveStateEntry *next;
5824
} SaveStateEntry;
5825

    
5826
static SaveStateEntry *first_se;
5827

    
5828
int register_savevm(const char *idstr,
5829
                    int instance_id,
5830
                    int version_id,
5831
                    SaveStateHandler *save_state,
5832
                    LoadStateHandler *load_state,
5833
                    void *opaque)
5834
{
5835
    SaveStateEntry *se, **pse;
5836

    
5837
    se = qemu_malloc(sizeof(SaveStateEntry));
5838
    if (!se)
5839
        return -1;
5840
    pstrcpy(se->idstr, sizeof(se->idstr), idstr);
5841
    se->instance_id = instance_id;
5842
    se->version_id = version_id;
5843
    se->save_state = save_state;
5844
    se->load_state = load_state;
5845
    se->opaque = opaque;
5846
    se->next = NULL;
5847

    
5848
    /* add at the end of list */
5849
    pse = &first_se;
5850
    while (*pse != NULL)
5851
        pse = &(*pse)->next;
5852
    *pse = se;
5853
    return 0;
5854
}
5855

    
5856
#define QEMU_VM_FILE_MAGIC   0x5145564d
5857
#define QEMU_VM_FILE_VERSION 0x00000002
5858

    
5859
static int qemu_savevm_state(QEMUFile *f)
5860
{
5861
    SaveStateEntry *se;
5862
    int len, ret;
5863
    int64_t cur_pos, len_pos, total_len_pos;
5864

    
5865
    qemu_put_be32(f, QEMU_VM_FILE_MAGIC);
5866
    qemu_put_be32(f, QEMU_VM_FILE_VERSION);
5867
    total_len_pos = qemu_ftell(f);
5868
    qemu_put_be64(f, 0); /* total size */
5869

    
5870
    for(se = first_se; se != NULL; se = se->next) {
5871
        /* ID string */
5872
        len = strlen(se->idstr);
5873
        qemu_put_byte(f, len);
5874
        qemu_put_buffer(f, (uint8_t *)se->idstr, len);
5875

    
5876
        qemu_put_be32(f, se->instance_id);
5877
        qemu_put_be32(f, se->version_id);
5878

    
5879
        /* record size: filled later */
5880
        len_pos = qemu_ftell(f);
5881
        qemu_put_be32(f, 0);
5882
        se->save_state(f, se->opaque);
5883

    
5884
        /* fill record size */
5885
        cur_pos = qemu_ftell(f);
5886
        len = cur_pos - len_pos - 4;
5887
        qemu_fseek(f, len_pos, SEEK_SET);
5888
        qemu_put_be32(f, len);
5889
        qemu_fseek(f, cur_pos, SEEK_SET);
5890
    }
5891
    cur_pos = qemu_ftell(f);
5892
    qemu_fseek(f, total_len_pos, SEEK_SET);
5893
    qemu_put_be64(f, cur_pos - total_len_pos - 8);
5894
    qemu_fseek(f, cur_pos, SEEK_SET);
5895

    
5896
    ret = 0;
5897
    return ret;
5898
}
5899

    
5900
static SaveStateEntry *find_se(const char *idstr, int instance_id)
5901
{
5902
    SaveStateEntry *se;
5903

    
5904
    for(se = first_se; se != NULL; se = se->next) {
5905
        if (!strcmp(se->idstr, idstr) &&
5906
            instance_id == se->instance_id)
5907
            return se;
5908
    }
5909
    return NULL;
5910
}
5911

    
5912
static int qemu_loadvm_state(QEMUFile *f)
5913
{
5914
    SaveStateEntry *se;
5915
    int len, ret, instance_id, record_len, version_id;
5916
    int64_t total_len, end_pos, cur_pos;
5917
    unsigned int v;
5918
    char idstr[256];
5919

    
5920
    v = qemu_get_be32(f);
5921
    if (v != QEMU_VM_FILE_MAGIC)
5922
        goto fail;
5923
    v = qemu_get_be32(f);
5924
    if (v != QEMU_VM_FILE_VERSION) {
5925
    fail:
5926
        ret = -1;
5927
        goto the_end;
5928
    }
5929
    total_len = qemu_get_be64(f);
5930
    end_pos = total_len + qemu_ftell(f);
5931
    for(;;) {
5932
        if (qemu_ftell(f) >= end_pos)
5933
            break;
5934
        len = qemu_get_byte(f);
5935
        qemu_get_buffer(f, (uint8_t *)idstr, len);
5936
        idstr[len] = '\0';
5937
        instance_id = qemu_get_be32(f);
5938
        version_id = qemu_get_be32(f);
5939
        record_len = qemu_get_be32(f);
5940
#if 0
5941
        printf("idstr=%s instance=0x%x version=%d len=%d\n",
5942
               idstr, instance_id, version_id, record_len);
5943
#endif
5944
        cur_pos = qemu_ftell(f);
5945
        se = find_se(idstr, instance_id);
5946
        if (!se) {
5947
            fprintf(stderr, "qemu: warning: instance 0x%x of device '%s' not present in current VM\n",
5948
                    instance_id, idstr);
5949
        } else {
5950
            ret = se->load_state(f, se->opaque, version_id);
5951
            if (ret < 0) {
5952
                fprintf(stderr, "qemu: warning: error while loading state for instance 0x%x of device '%s'\n",
5953
                        instance_id, idstr);
5954
            }
5955
        }
5956
        /* always seek to exact end of record */
5957
        qemu_fseek(f, cur_pos + record_len, SEEK_SET);
5958
    }
5959
    ret = 0;
5960
 the_end:
5961
    return ret;
5962
}
5963

    
5964
/* device can contain snapshots */
5965
static int bdrv_can_snapshot(BlockDriverState *bs)
5966
{
5967
    return (bs &&
5968
            !bdrv_is_removable(bs) &&
5969
            !bdrv_is_read_only(bs));
5970
}
5971

    
5972
/* device must be snapshots in order to have a reliable snapshot */
5973
static int bdrv_has_snapshot(BlockDriverState *bs)
5974
{
5975
    return (bs &&
5976
            !bdrv_is_removable(bs) &&
5977
            !bdrv_is_read_only(bs));
5978
}
5979

    
5980
static BlockDriverState *get_bs_snapshots(void)
5981
{
5982
    BlockDriverState *bs;
5983
    int i;
5984

    
5985
    if (bs_snapshots)
5986
        return bs_snapshots;
5987
    for(i = 0; i <= nb_drives; i++) {
5988
        bs = drives_table[i].bdrv;
5989
        if (bdrv_can_snapshot(bs))
5990
            goto ok;
5991
    }
5992
    return NULL;
5993
 ok:
5994
    bs_snapshots = bs;
5995
    return bs;
5996
}
5997

    
5998
static int bdrv_snapshot_find(BlockDriverState *bs, QEMUSnapshotInfo *sn_info,
5999
                              const char *name)
6000
{
6001
    QEMUSnapshotInfo *sn_tab, *sn;
6002
    int nb_sns, i, ret;
6003

    
6004
    ret = -ENOENT;
6005
    nb_sns = bdrv_snapshot_list(bs, &sn_tab);
6006
    if (nb_sns < 0)
6007
        return ret;
6008
    for(i = 0; i < nb_sns; i++) {
6009
        sn = &sn_tab[i];
6010
        if (!strcmp(sn->id_str, name) || !strcmp(sn->name, name)) {
6011
            *sn_info = *sn;
6012
            ret = 0;
6013
            break;
6014
        }
6015
    }
6016
    qemu_free(sn_tab);
6017
    return ret;
6018
}
6019

    
6020
void do_savevm(const char *name)
6021
{
6022
    BlockDriverState *bs, *bs1;
6023
    QEMUSnapshotInfo sn1, *sn = &sn1, old_sn1, *old_sn = &old_sn1;
6024
    int must_delete, ret, i;
6025
    BlockDriverInfo bdi1, *bdi = &bdi1;
6026
    QEMUFile *f;
6027
    int saved_vm_running;
6028
#ifdef _WIN32
6029
    struct _timeb tb;
6030
#else
6031
    struct timeval tv;
6032
#endif
6033

    
6034
    bs = get_bs_snapshots();
6035
    if (!bs) {
6036
        term_printf("No block device can accept snapshots\n");
6037
        return;
6038
    }
6039

    
6040
    /* ??? Should this occur after vm_stop?  */
6041
    qemu_aio_flush();
6042

    
6043
    saved_vm_running = vm_running;
6044
    vm_stop(0);
6045

    
6046
    must_delete = 0;
6047
    if (name) {
6048
        ret = bdrv_snapshot_find(bs, old_sn, name);
6049
        if (ret >= 0) {
6050
            must_delete = 1;
6051
        }
6052
    }
6053
    memset(sn, 0, sizeof(*sn));
6054
    if (must_delete) {
6055
        pstrcpy(sn->name, sizeof(sn->name), old_sn->name);
6056
        pstrcpy(sn->id_str, sizeof(sn->id_str), old_sn->id_str);
6057
    } else {
6058
        if (name)
6059
            pstrcpy(sn->name, sizeof(sn->name), name);
6060
    }
6061

    
6062
    /* fill auxiliary fields */
6063
#ifdef _WIN32
6064
    _ftime(&tb);
6065
    sn->date_sec = tb.time;
6066
    sn->date_nsec = tb.millitm * 1000000;
6067
#else
6068
    gettimeofday(&tv, NULL);
6069
    sn->date_sec = tv.tv_sec;
6070
    sn->date_nsec = tv.tv_usec * 1000;
6071
#endif
6072
    sn->vm_clock_nsec = qemu_get_clock(vm_clock);
6073

    
6074
    if (bdrv_get_info(bs, bdi) < 0 || bdi->vm_state_offset <= 0) {
6075
        term_printf("Device %s does not support VM state snapshots\n",
6076
                    bdrv_get_device_name(bs));
6077
        goto the_end;
6078
    }
6079

    
6080
    /* save the VM state */
6081
    f = qemu_fopen_bdrv(bs, bdi->vm_state_offset, 1);
6082
    if (!f) {
6083
        term_printf("Could not open VM state file\n");
6084
        goto the_end;
6085
    }
6086
    ret = qemu_savevm_state(f);
6087
    sn->vm_state_size = qemu_ftell(f);
6088
    qemu_fclose(f);
6089
    if (ret < 0) {
6090
        term_printf("Error %d while writing VM\n", ret);
6091
        goto the_end;
6092
    }
6093

    
6094
    /* create the snapshots */
6095

    
6096
    for(i = 0; i < nb_drives; i++) {
6097
        bs1 = drives_table[i].bdrv;
6098
        if (bdrv_has_snapshot(bs1)) {
6099
            if (must_delete) {
6100
                ret = bdrv_snapshot_delete(bs1, old_sn->id_str);
6101
                if (ret < 0) {
6102
                    term_printf("Error while deleting snapshot on '%s'\n",
6103
                                bdrv_get_device_name(bs1));
6104
                }
6105
            }
6106
            ret = bdrv_snapshot_create(bs1, sn);
6107
            if (ret < 0) {
6108
                term_printf("Error while creating snapshot on '%s'\n",
6109
                            bdrv_get_device_name(bs1));
6110
            }
6111
        }
6112
    }
6113

    
6114
 the_end:
6115
    if (saved_vm_running)
6116
        vm_start();
6117
}
6118

    
6119
void do_loadvm(const char *name)
6120
{
6121
    BlockDriverState *bs, *bs1;
6122
    BlockDriverInfo bdi1, *bdi = &bdi1;
6123
    QEMUFile *f;
6124
    int i, ret;
6125
    int saved_vm_running;
6126

    
6127
    bs = get_bs_snapshots();
6128
    if (!bs) {
6129
        term_printf("No block device supports snapshots\n");
6130
        return;
6131
    }
6132

    
6133
    /* Flush all IO requests so they don't interfere with the new state.  */
6134
    qemu_aio_flush();
6135

    
6136
    saved_vm_running = vm_running;
6137
    vm_stop(0);
6138

    
6139
    for(i = 0; i <= nb_drives; i++) {
6140
        bs1 = drives_table[i].bdrv;
6141
        if (bdrv_has_snapshot(bs1)) {
6142
            ret = bdrv_snapshot_goto(bs1, name);
6143
            if (ret < 0) {
6144
                if (bs != bs1)
6145
                    term_printf("Warning: ");
6146
                switch(ret) {
6147
                case -ENOTSUP:
6148
                    term_printf("Snapshots not supported on device '%s'\n",
6149
                                bdrv_get_device_name(bs1));
6150
                    break;
6151
                case -ENOENT:
6152
                    term_printf("Could not find snapshot '%s' on device '%s'\n",
6153
                                name, bdrv_get_device_name(bs1));
6154
                    break;
6155
                default:
6156
                    term_printf("Error %d while activating snapshot on '%s'\n",
6157
                                ret, bdrv_get_device_name(bs1));
6158
                    break;
6159
                }
6160
                /* fatal on snapshot block device */
6161
                if (bs == bs1)
6162
                    goto the_end;
6163
            }
6164
        }
6165
    }
6166

    
6167
    if (bdrv_get_info(bs, bdi) < 0 || bdi->vm_state_offset <= 0) {
6168
        term_printf("Device %s does not support VM state snapshots\n",
6169
                    bdrv_get_device_name(bs));
6170
        return;
6171
    }
6172

    
6173
    /* restore the VM state */
6174
    f = qemu_fopen_bdrv(bs, bdi->vm_state_offset, 0);
6175
    if (!f) {
6176
        term_printf("Could not open VM state file\n");
6177
        goto the_end;
6178
    }
6179
    ret = qemu_loadvm_state(f);
6180
    qemu_fclose(f);
6181
    if (ret < 0) {
6182
        term_printf("Error %d while loading VM state\n", ret);
6183
    }
6184
 the_end:
6185
    if (saved_vm_running)
6186
        vm_start();
6187
}
6188

    
6189
void do_delvm(const char *name)
6190
{
6191
    BlockDriverState *bs, *bs1;
6192
    int i, ret;
6193

    
6194
    bs = get_bs_snapshots();
6195
    if (!bs) {
6196
        term_printf("No block device supports snapshots\n");
6197
        return;
6198
    }
6199

    
6200
    for(i = 0; i <= nb_drives; i++) {
6201
        bs1 = drives_table[i].bdrv;
6202
        if (bdrv_has_snapshot(bs1)) {
6203
            ret = bdrv_snapshot_delete(bs1, name);
6204
            if (ret < 0) {
6205
                if (ret == -ENOTSUP)
6206
                    term_printf("Snapshots not supported on device '%s'\n",
6207
                                bdrv_get_device_name(bs1));
6208
                else
6209
                    term_printf("Error %d while deleting snapshot on '%s'\n",
6210
                                ret, bdrv_get_device_name(bs1));
6211
            }
6212
        }
6213
    }
6214
}
6215

    
6216
void do_info_snapshots(void)
6217
{
6218
    BlockDriverState *bs, *bs1;
6219
    QEMUSnapshotInfo *sn_tab, *sn;
6220
    int nb_sns, i;
6221
    char buf[256];
6222

    
6223
    bs = get_bs_snapshots();
6224
    if (!bs) {
6225
        term_printf("No available block device supports snapshots\n");
6226
        return;
6227
    }
6228
    term_printf("Snapshot devices:");
6229
    for(i = 0; i <= nb_drives; i++) {
6230
        bs1 = drives_table[i].bdrv;
6231
        if (bdrv_has_snapshot(bs1)) {
6232
            if (bs == bs1)
6233
                term_printf(" %s", bdrv_get_device_name(bs1));
6234
        }
6235
    }
6236
    term_printf("\n");
6237

    
6238
    nb_sns = bdrv_snapshot_list(bs, &sn_tab);
6239
    if (nb_sns < 0) {
6240
        term_printf("bdrv_snapshot_list: error %d\n", nb_sns);
6241
        return;
6242
    }
6243
    term_printf("Snapshot list (from %s):\n", bdrv_get_device_name(bs));
6244
    term_printf("%s\n", bdrv_snapshot_dump(buf, sizeof(buf), NULL));
6245
    for(i = 0; i < nb_sns; i++) {
6246
        sn = &sn_tab[i];
6247
        term_printf("%s\n", bdrv_snapshot_dump(buf, sizeof(buf), sn));
6248
    }
6249
    qemu_free(sn_tab);
6250
}
6251

    
6252
/***********************************************************/
6253
/* cpu save/restore */
6254

    
6255
#if defined(TARGET_I386)
6256

    
6257
static void cpu_put_seg(QEMUFile *f, SegmentCache *dt)
6258
{
6259
    qemu_put_be32(f, dt->selector);
6260
    qemu_put_betl(f, dt->base);
6261
    qemu_put_be32(f, dt->limit);
6262
    qemu_put_be32(f, dt->flags);
6263
}
6264

    
6265
static void cpu_get_seg(QEMUFile *f, SegmentCache *dt)
6266
{
6267
    dt->selector = qemu_get_be32(f);
6268
    dt->base = qemu_get_betl(f);
6269
    dt->limit = qemu_get_be32(f);
6270
    dt->flags = qemu_get_be32(f);
6271
}
6272

    
6273
void cpu_save(QEMUFile *f, void *opaque)
6274
{
6275
    CPUState *env = opaque;
6276
    uint16_t fptag, fpus, fpuc, fpregs_format;
6277
    uint32_t hflags;
6278
    int i;
6279

    
6280
    for(i = 0; i < CPU_NB_REGS; i++)
6281
        qemu_put_betls(f, &env->regs[i]);
6282
    qemu_put_betls(f, &env->eip);
6283
    qemu_put_betls(f, &env->eflags);
6284
    hflags = env->hflags; /* XXX: suppress most of the redundant hflags */
6285
    qemu_put_be32s(f, &hflags);
6286

    
6287
    /* FPU */
6288
    fpuc = env->fpuc;
6289
    fpus = (env->fpus & ~0x3800) | (env->fpstt & 0x7) << 11;
6290
    fptag = 0;
6291
    for(i = 0; i < 8; i++) {
6292
        fptag |= ((!env->fptags[i]) << i);
6293
    }
6294

    
6295
    qemu_put_be16s(f, &fpuc);
6296
    qemu_put_be16s(f, &fpus);
6297
    qemu_put_be16s(f, &fptag);
6298

    
6299
#ifdef USE_X86LDOUBLE
6300
    fpregs_format = 0;
6301
#else
6302
    fpregs_format = 1;
6303
#endif
6304
    qemu_put_be16s(f, &fpregs_format);
6305

    
6306
    for(i = 0; i < 8; i++) {
6307
#ifdef USE_X86LDOUBLE
6308
        {
6309
            uint64_t mant;
6310
            uint16_t exp;
6311
            /* we save the real CPU data (in case of MMX usage only 'mant'
6312
               contains the MMX register */
6313
            cpu_get_fp80(&mant, &exp, env->fpregs[i].d);
6314
            qemu_put_be64(f, mant);
6315
            qemu_put_be16(f, exp);
6316
        }
6317
#else
6318
        /* if we use doubles for float emulation, we save the doubles to
6319
           avoid losing information in case of MMX usage. It can give
6320
           problems if the image is restored on a CPU where long
6321
           doubles are used instead. */
6322
        qemu_put_be64(f, env->fpregs[i].mmx.MMX_Q(0));
6323
#endif
6324
    }
6325

    
6326
    for(i = 0; i < 6; i++)
6327
        cpu_put_seg(f, &env->segs[i]);
6328
    cpu_put_seg(f, &env->ldt);
6329
    cpu_put_seg(f, &env->tr);
6330
    cpu_put_seg(f, &env->gdt);
6331
    cpu_put_seg(f, &env->idt);
6332

    
6333
    qemu_put_be32s(f, &env->sysenter_cs);
6334
    qemu_put_be32s(f, &env->sysenter_esp);
6335
    qemu_put_be32s(f, &env->sysenter_eip);
6336

    
6337
    qemu_put_betls(f, &env->cr[0]);
6338
    qemu_put_betls(f, &env->cr[2]);
6339
    qemu_put_betls(f, &env->cr[3]);
6340
    qemu_put_betls(f, &env->cr[4]);
6341

    
6342
    for(i = 0; i < 8; i++)
6343
        qemu_put_betls(f, &env->dr[i]);
6344

    
6345
    /* MMU */
6346
    qemu_put_be32s(f, &env->a20_mask);
6347

    
6348
    /* XMM */
6349
    qemu_put_be32s(f, &env->mxcsr);
6350
    for(i = 0; i < CPU_NB_REGS; i++) {
6351
        qemu_put_be64s(f, &env->xmm_regs[i].XMM_Q(0));
6352
        qemu_put_be64s(f, &env->xmm_regs[i].XMM_Q(1));
6353
    }
6354

    
6355
#ifdef TARGET_X86_64
6356
    qemu_put_be64s(f, &env->efer);
6357
    qemu_put_be64s(f, &env->star);
6358
    qemu_put_be64s(f, &env->lstar);
6359
    qemu_put_be64s(f, &env->cstar);
6360
    qemu_put_be64s(f, &env->fmask);
6361
    qemu_put_be64s(f, &env->kernelgsbase);
6362
#endif
6363
    qemu_put_be32s(f, &env->smbase);
6364
}
6365

    
6366
#ifdef USE_X86LDOUBLE
6367
/* XXX: add that in a FPU generic layer */
6368
union x86_longdouble {
6369
    uint64_t mant;
6370
    uint16_t exp;
6371
};
6372

    
6373
#define MANTD1(fp)        (fp & ((1LL << 52) - 1))
6374
#define EXPBIAS1 1023
6375
#define EXPD1(fp)        ((fp >> 52) & 0x7FF)
6376
#define SIGND1(fp)        ((fp >> 32) & 0x80000000)
6377

    
6378
static void fp64_to_fp80(union x86_longdouble *p, uint64_t temp)
6379
{
6380
    int e;
6381
    /* mantissa */
6382
    p->mant = (MANTD1(temp) << 11) | (1LL << 63);
6383
    /* exponent + sign */
6384
    e = EXPD1(temp) - EXPBIAS1 + 16383;
6385
    e |= SIGND1(temp) >> 16;
6386
    p->exp = e;
6387
}
6388
#endif
6389

    
6390
int cpu_load(QEMUFile *f, void *opaque, int version_id)
6391
{
6392
    CPUState *env = opaque;
6393
    int i, guess_mmx;
6394
    uint32_t hflags;
6395
    uint16_t fpus, fpuc, fptag, fpregs_format;
6396

    
6397
    if (version_id != 3 && version_id != 4)
6398
        return -EINVAL;
6399
    for(i = 0; i < CPU_NB_REGS; i++)
6400
        qemu_get_betls(f, &env->regs[i]);
6401
    qemu_get_betls(f, &env->eip);
6402
    qemu_get_betls(f, &env->eflags);
6403
    qemu_get_be32s(f, &hflags);
6404

    
6405
    qemu_get_be16s(f, &fpuc);
6406
    qemu_get_be16s(f, &fpus);
6407
    qemu_get_be16s(f, &fptag);
6408
    qemu_get_be16s(f, &fpregs_format);
6409

    
6410
    /* NOTE: we cannot always restore the FPU state if the image come
6411
       from a host with a different 'USE_X86LDOUBLE' define. We guess
6412
       if we are in an MMX state to restore correctly in that case. */
6413
    guess_mmx = ((fptag == 0xff) && (fpus & 0x3800) == 0);
6414
    for(i = 0; i < 8; i++) {
6415
        uint64_t mant;
6416
        uint16_t exp;
6417

    
6418
        switch(fpregs_format) {
6419
        case 0:
6420
            mant = qemu_get_be64(f);
6421
            exp = qemu_get_be16(f);
6422
#ifdef USE_X86LDOUBLE
6423
            env->fpregs[i].d = cpu_set_fp80(mant, exp);
6424
#else
6425
            /* difficult case */
6426
            if (guess_mmx)
6427
                env->fpregs[i].mmx.MMX_Q(0) = mant;
6428
            else
6429
                env->fpregs[i].d = cpu_set_fp80(mant, exp);
6430
#endif
6431
            break;
6432
        case 1:
6433
            mant = qemu_get_be64(f);
6434
#ifdef USE_X86LDOUBLE
6435
            {
6436
                union x86_longdouble *p;
6437
                /* difficult case */
6438
                p = (void *)&env->fpregs[i];
6439
                if (guess_mmx) {
6440
                    p->mant = mant;
6441
                    p->exp = 0xffff;
6442
                } else {
6443
                    fp64_to_fp80(p, mant);
6444
                }
6445
            }
6446
#else
6447
            env->fpregs[i].mmx.MMX_Q(0) = mant;
6448
#endif
6449
            break;
6450
        default:
6451
            return -EINVAL;
6452
        }
6453
    }
6454

    
6455
    env->fpuc = fpuc;
6456
    /* XXX: restore FPU round state */
6457
    env->fpstt = (fpus >> 11) & 7;
6458
    env->fpus = fpus & ~0x3800;
6459
    fptag ^= 0xff;
6460
    for(i = 0; i < 8; i++) {
6461
        env->fptags[i] = (fptag >> i) & 1;
6462
    }
6463

    
6464
    for(i = 0; i < 6; i++)
6465
        cpu_get_seg(f, &env->segs[i]);
6466
    cpu_get_seg(f, &env->ldt);
6467
    cpu_get_seg(f, &env->tr);
6468
    cpu_get_seg(f, &env->gdt);
6469
    cpu_get_seg(f, &env->idt);
6470

    
6471
    qemu_get_be32s(f, &env->sysenter_cs);
6472
    qemu_get_be32s(f, &env->sysenter_esp);
6473
    qemu_get_be32s(f, &env->sysenter_eip);
6474

    
6475
    qemu_get_betls(f, &env->cr[0]);
6476
    qemu_get_betls(f, &env->cr[2]);
6477
    qemu_get_betls(f, &env->cr[3]);
6478
    qemu_get_betls(f, &env->cr[4]);
6479

    
6480
    for(i = 0; i < 8; i++)
6481
        qemu_get_betls(f, &env->dr[i]);
6482

    
6483
    /* MMU */
6484
    qemu_get_be32s(f, &env->a20_mask);
6485

    
6486
    qemu_get_be32s(f, &env->mxcsr);
6487
    for(i = 0; i < CPU_NB_REGS; i++) {
6488
        qemu_get_be64s(f, &env->xmm_regs[i].XMM_Q(0));
6489
        qemu_get_be64s(f, &env->xmm_regs[i].XMM_Q(1));
6490
    }
6491

    
6492
#ifdef TARGET_X86_64
6493
    qemu_get_be64s(f, &env->efer);
6494
    qemu_get_be64s(f, &env->star);
6495
    qemu_get_be64s(f, &env->lstar);
6496
    qemu_get_be64s(f, &env->cstar);
6497
    qemu_get_be64s(f, &env->fmask);
6498
    qemu_get_be64s(f, &env->kernelgsbase);
6499
#endif
6500
    if (version_id >= 4)
6501
        qemu_get_be32s(f, &env->smbase);
6502

    
6503
    /* XXX: compute hflags from scratch, except for CPL and IIF */
6504
    env->hflags = hflags;
6505
    tlb_flush(env, 1);
6506
    return 0;
6507
}
6508

    
6509
#elif defined(TARGET_PPC)
6510
void cpu_save(QEMUFile *f, void *opaque)
6511
{
6512
}
6513

    
6514
int cpu_load(QEMUFile *f, void *opaque, int version_id)
6515
{
6516
    return 0;
6517
}
6518

    
6519
#elif defined(TARGET_MIPS)
6520
void cpu_save(QEMUFile *f, void *opaque)
6521
{
6522
}
6523

    
6524
int cpu_load(QEMUFile *f, void *opaque, int version_id)
6525
{
6526
    return 0;
6527
}
6528

    
6529
#elif defined(TARGET_SPARC)
6530
void cpu_save(QEMUFile *f, void *opaque)
6531
{
6532
    CPUState *env = opaque;
6533
    int i;
6534
    uint32_t tmp;
6535

    
6536
    for(i = 0; i < 8; i++)
6537
        qemu_put_betls(f, &env->gregs[i]);
6538
    for(i = 0; i < NWINDOWS * 16; i++)
6539
        qemu_put_betls(f, &env->regbase[i]);
6540

    
6541
    /* FPU */
6542
    for(i = 0; i < TARGET_FPREGS; i++) {
6543
        union {
6544
            float32 f;
6545
            uint32_t i;
6546
        } u;
6547
        u.f = env->fpr[i];
6548
        qemu_put_be32(f, u.i);
6549
    }
6550

    
6551
    qemu_put_betls(f, &env->pc);
6552
    qemu_put_betls(f, &env->npc);
6553
    qemu_put_betls(f, &env->y);
6554
    tmp = GET_PSR(env);
6555
    qemu_put_be32(f, tmp);
6556
    qemu_put_betls(f, &env->fsr);
6557
    qemu_put_betls(f, &env->tbr);
6558
#ifndef TARGET_SPARC64
6559
    qemu_put_be32s(f, &env->wim);
6560
    /* MMU */
6561
    for(i = 0; i < 16; i++)
6562
        qemu_put_be32s(f, &env->mmuregs[i]);
6563
#endif
6564
}
6565

    
6566
int cpu_load(QEMUFile *f, void *opaque, int version_id)
6567
{
6568
    CPUState *env = opaque;
6569
    int i;
6570
    uint32_t tmp;
6571

    
6572
    for(i = 0; i < 8; i++)
6573
        qemu_get_betls(f, &env->gregs[i]);
6574
    for(i = 0; i < NWINDOWS * 16; i++)
6575
        qemu_get_betls(f, &env->regbase[i]);
6576

    
6577
    /* FPU */
6578
    for(i = 0; i < TARGET_FPREGS; i++) {
6579
        union {
6580
            float32 f;
6581
            uint32_t i;
6582
        } u;
6583
        u.i = qemu_get_be32(f);
6584
        env->fpr[i] = u.f;
6585
    }
6586

    
6587
    qemu_get_betls(f, &env->pc);
6588
    qemu_get_betls(f, &env->npc);
6589
    qemu_get_betls(f, &env->y);
6590
    tmp = qemu_get_be32(f);
6591
    env->cwp = 0; /* needed to ensure that the wrapping registers are
6592
                     correctly updated */
6593
    PUT_PSR(env, tmp);
6594
    qemu_get_betls(f, &env->fsr);
6595
    qemu_get_betls(f, &env->tbr);
6596
#ifndef TARGET_SPARC64
6597
    qemu_get_be32s(f, &env->wim);
6598
    /* MMU */
6599
    for(i = 0; i < 16; i++)
6600
        qemu_get_be32s(f, &env->mmuregs[i]);
6601
#endif
6602
    tlb_flush(env, 1);
6603
    return 0;
6604
}
6605

    
6606
#elif defined(TARGET_ARM)
6607

    
6608
void cpu_save(QEMUFile *f, void *opaque)
6609
{
6610
    int i;
6611
    CPUARMState *env = (CPUARMState *)opaque;
6612

    
6613
    for (i = 0; i < 16; i++) {
6614
        qemu_put_be32(f, env->regs[i]);
6615
    }
6616
    qemu_put_be32(f, cpsr_read(env));
6617
    qemu_put_be32(f, env->spsr);
6618
    for (i = 0; i < 6; i++) {
6619
        qemu_put_be32(f, env->banked_spsr[i]);
6620
        qemu_put_be32(f, env->banked_r13[i]);
6621
        qemu_put_be32(f, env->banked_r14[i]);
6622
    }
6623
    for (i = 0; i < 5; i++) {
6624
        qemu_put_be32(f, env->usr_regs[i]);
6625
        qemu_put_be32(f, env->fiq_regs[i]);
6626
    }
6627
    qemu_put_be32(f, env->cp15.c0_cpuid);
6628
    qemu_put_be32(f, env->cp15.c0_cachetype);
6629
    qemu_put_be32(f, env->cp15.c1_sys);
6630
    qemu_put_be32(f, env->cp15.c1_coproc);
6631
    qemu_put_be32(f, env->cp15.c1_xscaleauxcr);
6632
    qemu_put_be32(f, env->cp15.c2_base0);
6633
    qemu_put_be32(f, env->cp15.c2_base1);
6634
    qemu_put_be32(f, env->cp15.c2_mask);
6635
    qemu_put_be32(f, env->cp15.c2_data);
6636
    qemu_put_be32(f, env->cp15.c2_insn);
6637
    qemu_put_be32(f, env->cp15.c3);
6638
    qemu_put_be32(f, env->cp15.c5_insn);
6639
    qemu_put_be32(f, env->cp15.c5_data);
6640
    for (i = 0; i < 8; i++) {
6641
        qemu_put_be32(f, env->cp15.c6_region[i]);
6642
    }
6643
    qemu_put_be32(f, env->cp15.c6_insn);
6644
    qemu_put_be32(f, env->cp15.c6_data);
6645
    qemu_put_be32(f, env->cp15.c9_insn);
6646
    qemu_put_be32(f, env->cp15.c9_data);
6647
    qemu_put_be32(f, env->cp15.c13_fcse);
6648
    qemu_put_be32(f, env->cp15.c13_context);
6649
    qemu_put_be32(f, env->cp15.c13_tls1);
6650
    qemu_put_be32(f, env->cp15.c13_tls2);
6651
    qemu_put_be32(f, env->cp15.c13_tls3);
6652
    qemu_put_be32(f, env->cp15.c15_cpar);
6653

    
6654
    qemu_put_be32(f, env->features);
6655

    
6656
    if (arm_feature(env, ARM_FEATURE_VFP)) {
6657
        for (i = 0;  i < 16; i++) {
6658
            CPU_DoubleU u;
6659
            u.d = env->vfp.regs[i];
6660
            qemu_put_be32(f, u.l.upper);
6661
            qemu_put_be32(f, u.l.lower);
6662
        }
6663
        for (i = 0; i < 16; i++) {
6664
            qemu_put_be32(f, env->vfp.xregs[i]);
6665
        }
6666

    
6667
        /* TODO: Should use proper FPSCR access functions.  */
6668
        qemu_put_be32(f, env->vfp.vec_len);
6669
        qemu_put_be32(f, env->vfp.vec_stride);
6670

    
6671
        if (arm_feature(env, ARM_FEATURE_VFP3)) {
6672
            for (i = 16;  i < 32; i++) {
6673
                CPU_DoubleU u;
6674
                u.d = env->vfp.regs[i];
6675
                qemu_put_be32(f, u.l.upper);
6676
                qemu_put_be32(f, u.l.lower);
6677
            }
6678
        }
6679
    }
6680

    
6681
    if (arm_feature(env, ARM_FEATURE_IWMMXT)) {
6682
        for (i = 0; i < 16; i++) {
6683
            qemu_put_be64(f, env->iwmmxt.regs[i]);
6684
        }
6685
        for (i = 0; i < 16; i++) {
6686
            qemu_put_be32(f, env->iwmmxt.cregs[i]);
6687
        }
6688
    }
6689

    
6690
    if (arm_feature(env, ARM_FEATURE_M)) {
6691
        qemu_put_be32(f, env->v7m.other_sp);
6692
        qemu_put_be32(f, env->v7m.vecbase);
6693
        qemu_put_be32(f, env->v7m.basepri);
6694
        qemu_put_be32(f, env->v7m.control);
6695
        qemu_put_be32(f, env->v7m.current_sp);
6696
        qemu_put_be32(f, env->v7m.exception);
6697
    }
6698
}
6699

    
6700
int cpu_load(QEMUFile *f, void *opaque, int version_id)
6701
{
6702
    CPUARMState *env = (CPUARMState *)opaque;
6703
    int i;
6704

    
6705
    if (version_id != ARM_CPU_SAVE_VERSION)
6706
        return -EINVAL;
6707

    
6708
    for (i = 0; i < 16; i++) {
6709
        env->regs[i] = qemu_get_be32(f);
6710
    }
6711
    cpsr_write(env, qemu_get_be32(f), 0xffffffff);
6712
    env->spsr = qemu_get_be32(f);
6713
    for (i = 0; i < 6; i++) {
6714
        env->banked_spsr[i] = qemu_get_be32(f);
6715
        env->banked_r13[i] = qemu_get_be32(f);
6716
        env->banked_r14[i] = qemu_get_be32(f);
6717
    }
6718
    for (i = 0; i < 5; i++) {
6719
        env->usr_regs[i] = qemu_get_be32(f);
6720
        env->fiq_regs[i] = qemu_get_be32(f);
6721
    }
6722
    env->cp15.c0_cpuid = qemu_get_be32(f);
6723
    env->cp15.c0_cachetype = qemu_get_be32(f);
6724
    env->cp15.c1_sys = qemu_get_be32(f);
6725
    env->cp15.c1_coproc = qemu_get_be32(f);
6726
    env->cp15.c1_xscaleauxcr = qemu_get_be32(f);
6727
    env->cp15.c2_base0 = qemu_get_be32(f);
6728
    env->cp15.c2_base1 = qemu_get_be32(f);
6729
    env->cp15.c2_mask = qemu_get_be32(f);
6730
    env->cp15.c2_data = qemu_get_be32(f);
6731
    env->cp15.c2_insn = qemu_get_be32(f);
6732
    env->cp15.c3 = qemu_get_be32(f);
6733
    env->cp15.c5_insn = qemu_get_be32(f);
6734
    env->cp15.c5_data = qemu_get_be32(f);
6735
    for (i = 0; i < 8; i++) {
6736
        env->cp15.c6_region[i] = qemu_get_be32(f);
6737
    }
6738
    env->cp15.c6_insn = qemu_get_be32(f);
6739
    env->cp15.c6_data = qemu_get_be32(f);
6740
    env->cp15.c9_insn = qemu_get_be32(f);
6741
    env->cp15.c9_data = qemu_get_be32(f);
6742
    env->cp15.c13_fcse = qemu_get_be32(f);
6743
    env->cp15.c13_context = qemu_get_be32(f);
6744
    env->cp15.c13_tls1 = qemu_get_be32(f);
6745
    env->cp15.c13_tls2 = qemu_get_be32(f);
6746
    env->cp15.c13_tls3 = qemu_get_be32(f);
6747
    env->cp15.c15_cpar = qemu_get_be32(f);
6748

    
6749
    env->features = qemu_get_be32(f);
6750

    
6751
    if (arm_feature(env, ARM_FEATURE_VFP)) {
6752
        for (i = 0;  i < 16; i++) {
6753
            CPU_DoubleU u;
6754
            u.l.upper = qemu_get_be32(f);
6755
            u.l.lower = qemu_get_be32(f);
6756
            env->vfp.regs[i] = u.d;
6757
        }
6758
        for (i = 0; i < 16; i++) {
6759
            env->vfp.xregs[i] = qemu_get_be32(f);
6760
        }
6761

    
6762
        /* TODO: Should use proper FPSCR access functions.  */
6763
        env->vfp.vec_len = qemu_get_be32(f);
6764
        env->vfp.vec_stride = qemu_get_be32(f);
6765

    
6766
        if (arm_feature(env, ARM_FEATURE_VFP3)) {
6767
            for (i = 0;  i < 16; i++) {
6768
                CPU_DoubleU u;
6769
                u.l.upper = qemu_get_be32(f);
6770
                u.l.lower = qemu_get_be32(f);
6771
                env->vfp.regs[i] = u.d;
6772
            }
6773
        }
6774
    }
6775

    
6776
    if (arm_feature(env, ARM_FEATURE_IWMMXT)) {
6777
        for (i = 0; i < 16; i++) {
6778
            env->iwmmxt.regs[i] = qemu_get_be64(f);
6779
        }
6780
        for (i = 0; i < 16; i++) {
6781
            env->iwmmxt.cregs[i] = qemu_get_be32(f);
6782
        }
6783
    }
6784

    
6785
    if (arm_feature(env, ARM_FEATURE_M)) {
6786
        env->v7m.other_sp = qemu_get_be32(f);
6787
        env->v7m.vecbase = qemu_get_be32(f);
6788
        env->v7m.basepri = qemu_get_be32(f);
6789
        env->v7m.control = qemu_get_be32(f);
6790
        env->v7m.current_sp = qemu_get_be32(f);
6791
        env->v7m.exception = qemu_get_be32(f);
6792
    }
6793

    
6794
    return 0;
6795
}
6796

    
6797
#else
6798

    
6799
//#warning No CPU save/restore functions
6800

    
6801
#endif
6802

    
6803
/***********************************************************/
6804
/* ram save/restore */
6805

    
6806
static int ram_get_page(QEMUFile *f, uint8_t *buf, int len)
6807
{
6808
    int v;
6809

    
6810
    v = qemu_get_byte(f);
6811
    switch(v) {
6812
    case 0:
6813
        if (qemu_get_buffer(f, buf, len) != len)
6814
            return -EIO;
6815
        break;
6816
    case 1:
6817
        v = qemu_get_byte(f);
6818
        memset(buf, v, len);
6819
        break;
6820
    default:
6821
        return -EINVAL;
6822
    }
6823
    return 0;
6824
}
6825

    
6826
static int ram_load_v1(QEMUFile *f, void *opaque)
6827
{
6828
    int i, ret;
6829

    
6830
    if (qemu_get_be32(f) != phys_ram_size)
6831
        return -EINVAL;
6832
    for(i = 0; i < phys_ram_size; i+= TARGET_PAGE_SIZE) {
6833
        ret = ram_get_page(f, phys_ram_base + i, TARGET_PAGE_SIZE);
6834
        if (ret)
6835
            return ret;
6836
    }
6837
    return 0;
6838
}
6839

    
6840
#define BDRV_HASH_BLOCK_SIZE 1024
6841
#define IOBUF_SIZE 4096
6842
#define RAM_CBLOCK_MAGIC 0xfabe
6843

    
6844
typedef struct RamCompressState {
6845
    z_stream zstream;
6846
    QEMUFile *f;
6847
    uint8_t buf[IOBUF_SIZE];
6848
} RamCompressState;
6849

    
6850
static int ram_compress_open(RamCompressState *s, QEMUFile *f)
6851
{
6852
    int ret;
6853
    memset(s, 0, sizeof(*s));
6854
    s->f = f;
6855
    ret = deflateInit2(&s->zstream, 1,
6856
                       Z_DEFLATED, 15,
6857
                       9, Z_DEFAULT_STRATEGY);
6858
    if (ret != Z_OK)
6859
        return -1;
6860
    s->zstream.avail_out = IOBUF_SIZE;
6861
    s->zstream.next_out = s->buf;
6862
    return 0;
6863
}
6864

    
6865
static void ram_put_cblock(RamCompressState *s, const uint8_t *buf, int len)
6866
{
6867
    qemu_put_be16(s->f, RAM_CBLOCK_MAGIC);
6868
    qemu_put_be16(s->f, len);
6869
    qemu_put_buffer(s->f, buf, len);
6870
}
6871

    
6872
static int ram_compress_buf(RamCompressState *s, const uint8_t *buf, int len)
6873
{
6874
    int ret;
6875

    
6876
    s->zstream.avail_in = len;
6877
    s->zstream.next_in = (uint8_t *)buf;
6878
    while (s->zstream.avail_in > 0) {
6879
        ret = deflate(&s->zstream, Z_NO_FLUSH);
6880
        if (ret != Z_OK)
6881
            return -1;
6882
        if (s->zstream.avail_out == 0) {
6883
            ram_put_cblock(s, s->buf, IOBUF_SIZE);
6884
            s->zstream.avail_out = IOBUF_SIZE;
6885
            s->zstream.next_out = s->buf;
6886
        }
6887
    }
6888
    return 0;
6889
}
6890

    
6891
static void ram_compress_close(RamCompressState *s)
6892
{
6893
    int len, ret;
6894

    
6895
    /* compress last bytes */
6896
    for(;;) {
6897
        ret = deflate(&s->zstream, Z_FINISH);
6898
        if (ret == Z_OK || ret == Z_STREAM_END) {
6899
            len = IOBUF_SIZE - s->zstream.avail_out;
6900
            if (len > 0) {
6901
                ram_put_cblock(s, s->buf, len);
6902
            }
6903
            s->zstream.avail_out = IOBUF_SIZE;
6904
            s->zstream.next_out = s->buf;
6905
            if (ret == Z_STREAM_END)
6906
                break;
6907
        } else {
6908
            goto fail;
6909
        }
6910
    }
6911
fail:
6912
    deflateEnd(&s->zstream);
6913
}
6914

    
6915
typedef struct RamDecompressState {
6916
    z_stream zstream;
6917
    QEMUFile *f;
6918
    uint8_t buf[IOBUF_SIZE];
6919
} RamDecompressState;
6920

    
6921
static int ram_decompress_open(RamDecompressState *s, QEMUFile *f)
6922
{
6923
    int ret;
6924
    memset(s, 0, sizeof(*s));
6925
    s->f = f;
6926
    ret = inflateInit(&s->zstream);
6927
    if (ret != Z_OK)
6928
        return -1;
6929
    return 0;
6930
}
6931

    
6932
static int ram_decompress_buf(RamDecompressState *s, uint8_t *buf, int len)
6933
{
6934
    int ret, clen;
6935

    
6936
    s->zstream.avail_out = len;
6937
    s->zstream.next_out = buf;
6938
    while (s->zstream.avail_out > 0) {
6939
        if (s->zstream.avail_in == 0) {
6940
            if (qemu_get_be16(s->f) != RAM_CBLOCK_MAGIC)
6941
                return -1;
6942
            clen = qemu_get_be16(s->f);
6943
            if (clen > IOBUF_SIZE)
6944
                return -1;
6945
            qemu_get_buffer(s->f, s->buf, clen);
6946
            s->zstream.avail_in = clen;
6947
            s->zstream.next_in = s->buf;
6948
        }
6949
        ret = inflate(&s->zstream, Z_PARTIAL_FLUSH);
6950
        if (ret != Z_OK && ret != Z_STREAM_END) {
6951
            return -1;
6952
        }
6953
    }
6954
    return 0;
6955
}
6956

    
6957
static void ram_decompress_close(RamDecompressState *s)
6958
{
6959
    inflateEnd(&s->zstream);
6960
}
6961

    
6962
static void ram_save(QEMUFile *f, void *opaque)
6963
{
6964
    int i;
6965
    RamCompressState s1, *s = &s1;
6966
    uint8_t buf[10];
6967

    
6968
    qemu_put_be32(f, phys_ram_size);
6969
    if (ram_compress_open(s, f) < 0)
6970
        return;
6971
    for(i = 0; i < phys_ram_size; i+= BDRV_HASH_BLOCK_SIZE) {
6972
#if 0
6973
        if (tight_savevm_enabled) {
6974
            int64_t sector_num;
6975
            int j;
6976

6977
            /* find if the memory block is available on a virtual
6978
               block device */
6979
            sector_num = -1;
6980
            for(j = 0; j < nb_drives; j++) {
6981
                sector_num = bdrv_hash_find(drives_table[j].bdrv,
6982
                                            phys_ram_base + i,
6983
                                            BDRV_HASH_BLOCK_SIZE);
6984
                if (sector_num >= 0)
6985
                    break;
6986
            }
6987
            if (j == nb_drives)
6988
                goto normal_compress;
6989
            buf[0] = 1;
6990
            buf[1] = j;
6991
            cpu_to_be64wu((uint64_t *)(buf + 2), sector_num);
6992
            ram_compress_buf(s, buf, 10);
6993
        } else
6994
#endif
6995
        {
6996
            //        normal_compress:
6997
            buf[0] = 0;
6998
            ram_compress_buf(s, buf, 1);
6999
            ram_compress_buf(s, phys_ram_base + i, BDRV_HASH_BLOCK_SIZE);
7000
        }
7001
    }
7002
    ram_compress_close(s);
7003
}
7004

    
7005
static int ram_load(QEMUFile *f, void *opaque, int version_id)
7006
{
7007
    RamDecompressState s1, *s = &s1;
7008
    uint8_t buf[10];
7009
    int i;
7010

    
7011
    if (version_id == 1)
7012
        return ram_load_v1(f, opaque);
7013
    if (version_id != 2)
7014
        return -EINVAL;
7015
    if (qemu_get_be32(f) != phys_ram_size)
7016
        return -EINVAL;
7017
    if (ram_decompress_open(s, f) < 0)
7018
        return -EINVAL;
7019
    for(i = 0; i < phys_ram_size; i+= BDRV_HASH_BLOCK_SIZE) {
7020
        if (ram_decompress_buf(s, buf, 1) < 0) {
7021
            fprintf(stderr, "Error while reading ram block header\n");
7022
            goto error;
7023
        }
7024
        if (buf[0] == 0) {
7025
            if (ram_decompress_buf(s, phys_ram_base + i, BDRV_HASH_BLOCK_SIZE) < 0) {
7026
                fprintf(stderr, "Error while reading ram block address=0x%08x", i);
7027
                goto error;
7028
            }
7029
        } else
7030
#if 0
7031
        if (buf[0] == 1) {
7032
            int bs_index;
7033
            int64_t sector_num;
7034

7035
            ram_decompress_buf(s, buf + 1, 9);
7036
            bs_index = buf[1];
7037
            sector_num = be64_to_cpupu((const uint64_t *)(buf + 2));
7038
            if (bs_index >= nb_drives) {
7039
                fprintf(stderr, "Invalid block device index %d\n", bs_index);
7040
                goto error;
7041
            }
7042
            if (bdrv_read(drives_table[bs_index].bdrv, sector_num,
7043
                          phys_ram_base + i,
7044
                          BDRV_HASH_BLOCK_SIZE / 512) < 0) {
7045
                fprintf(stderr, "Error while reading sector %d:%" PRId64 "\n",
7046
                        bs_index, sector_num);
7047
                goto error;
7048
            }
7049
        } else
7050
#endif
7051
        {
7052
        error:
7053
            printf("Error block header\n");
7054
            return -EINVAL;
7055
        }
7056
    }
7057
    ram_decompress_close(s);
7058
    return 0;
7059
}
7060

    
7061
/***********************************************************/
7062
/* bottom halves (can be seen as timers which expire ASAP) */
7063

    
7064
struct QEMUBH {
7065
    QEMUBHFunc *cb;
7066
    void *opaque;
7067
    int scheduled;
7068
    QEMUBH *next;
7069
};
7070

    
7071
static QEMUBH *first_bh = NULL;
7072

    
7073
QEMUBH *qemu_bh_new(QEMUBHFunc *cb, void *opaque)
7074
{
7075
    QEMUBH *bh;
7076
    bh = qemu_mallocz(sizeof(QEMUBH));
7077
    if (!bh)
7078
        return NULL;
7079
    bh->cb = cb;
7080
    bh->opaque = opaque;
7081
    return bh;
7082
}
7083

    
7084
int qemu_bh_poll(void)
7085
{
7086
    QEMUBH *bh, **pbh;
7087
    int ret;
7088

    
7089
    ret = 0;
7090
    for(;;) {
7091
        pbh = &first_bh;
7092
        bh = *pbh;
7093
        if (!bh)
7094
            break;
7095
        ret = 1;
7096
        *pbh = bh->next;
7097
        bh->scheduled = 0;
7098
        bh->cb(bh->opaque);
7099
    }
7100
    return ret;
7101
}
7102

    
7103
void qemu_bh_schedule(QEMUBH *bh)
7104
{
7105
    CPUState *env = cpu_single_env;
7106
    if (bh->scheduled)
7107
        return;
7108
    bh->scheduled = 1;
7109
    bh->next = first_bh;
7110
    first_bh = bh;
7111

    
7112
    /* stop the currently executing CPU to execute the BH ASAP */
7113
    if (env) {
7114
        cpu_interrupt(env, CPU_INTERRUPT_EXIT);
7115
    }
7116
}
7117

    
7118
void qemu_bh_cancel(QEMUBH *bh)
7119
{
7120
    QEMUBH **pbh;
7121
    if (bh->scheduled) {
7122
        pbh = &first_bh;
7123
        while (*pbh != bh)
7124
            pbh = &(*pbh)->next;
7125
        *pbh = bh->next;
7126
        bh->scheduled = 0;
7127
    }
7128
}
7129

    
7130
void qemu_bh_delete(QEMUBH *bh)
7131
{
7132
    qemu_bh_cancel(bh);
7133
    qemu_free(bh);
7134
}
7135

    
7136
/***********************************************************/
7137
/* machine registration */
7138

    
7139
QEMUMachine *first_machine = NULL;
7140

    
7141
int qemu_register_machine(QEMUMachine *m)
7142
{
7143
    QEMUMachine **pm;
7144
    pm = &first_machine;
7145
    while (*pm != NULL)
7146
        pm = &(*pm)->next;
7147
    m->next = NULL;
7148
    *pm = m;
7149
    return 0;
7150
}
7151

    
7152
static QEMUMachine *find_machine(const char *name)
7153
{
7154
    QEMUMachine *m;
7155

    
7156
    for(m = first_machine; m != NULL; m = m->next) {
7157
        if (!strcmp(m->name, name))
7158
            return m;
7159
    }
7160
    return NULL;
7161
}
7162

    
7163
/***********************************************************/
7164
/* main execution loop */
7165

    
7166
static void gui_update(void *opaque)
7167
{
7168
    DisplayState *ds = opaque;
7169
    ds->dpy_refresh(ds);
7170
    qemu_mod_timer(ds->gui_timer, GUI_REFRESH_INTERVAL + qemu_get_clock(rt_clock));
7171
}
7172

    
7173
struct vm_change_state_entry {
7174
    VMChangeStateHandler *cb;
7175
    void *opaque;
7176
    LIST_ENTRY (vm_change_state_entry) entries;
7177
};
7178

    
7179
static LIST_HEAD(vm_change_state_head, vm_change_state_entry) vm_change_state_head;
7180

    
7181
VMChangeStateEntry *qemu_add_vm_change_state_handler(VMChangeStateHandler *cb,
7182
                                                     void *opaque)
7183
{
7184
    VMChangeStateEntry *e;
7185

    
7186
    e = qemu_mallocz(sizeof (*e));
7187
    if (!e)
7188
        return NULL;
7189

    
7190
    e->cb = cb;
7191
    e->opaque = opaque;
7192
    LIST_INSERT_HEAD(&vm_change_state_head, e, entries);
7193
    return e;
7194
}
7195

    
7196
void qemu_del_vm_change_state_handler(VMChangeStateEntry *e)
7197
{
7198
    LIST_REMOVE (e, entries);
7199
    qemu_free (e);
7200
}
7201

    
7202
static void vm_state_notify(int running)
7203
{
7204
    VMChangeStateEntry *e;
7205

    
7206
    for (e = vm_change_state_head.lh_first; e; e = e->entries.le_next) {
7207
        e->cb(e->opaque, running);
7208
    }
7209
}
7210

    
7211
/* XXX: support several handlers */
7212
static VMStopHandler *vm_stop_cb;
7213
static void *vm_stop_opaque;
7214

    
7215
int qemu_add_vm_stop_handler(VMStopHandler *cb, void *opaque)
7216
{
7217
    vm_stop_cb = cb;
7218
    vm_stop_opaque = opaque;
7219
    return 0;
7220
}
7221

    
7222
void qemu_del_vm_stop_handler(VMStopHandler *cb, void *opaque)
7223
{
7224
    vm_stop_cb = NULL;
7225
}
7226

    
7227
void vm_start(void)
7228
{
7229
    if (!vm_running) {
7230
        cpu_enable_ticks();
7231
        vm_running = 1;
7232
        vm_state_notify(1);
7233
        qemu_rearm_alarm_timer(alarm_timer);
7234
    }
7235
}
7236

    
7237
void vm_stop(int reason)
7238
{
7239
    if (vm_running) {
7240
        cpu_disable_ticks();
7241
        vm_running = 0;
7242
        if (reason != 0) {
7243
            if (vm_stop_cb) {
7244
                vm_stop_cb(vm_stop_opaque, reason);
7245
            }
7246
        }
7247
        vm_state_notify(0);
7248
    }
7249
}
7250

    
7251
/* reset/shutdown handler */
7252

    
7253
typedef struct QEMUResetEntry {
7254
    QEMUResetHandler *func;
7255
    void *opaque;
7256
    struct QEMUResetEntry *next;
7257
} QEMUResetEntry;
7258

    
7259
static QEMUResetEntry *first_reset_entry;
7260
static int reset_requested;
7261
static int shutdown_requested;
7262
static int powerdown_requested;
7263

    
7264
void qemu_register_reset(QEMUResetHandler *func, void *opaque)
7265
{
7266
    QEMUResetEntry **pre, *re;
7267

    
7268
    pre = &first_reset_entry;
7269
    while (*pre != NULL)
7270
        pre = &(*pre)->next;
7271
    re = qemu_mallocz(sizeof(QEMUResetEntry));
7272
    re->func = func;
7273
    re->opaque = opaque;
7274
    re->next = NULL;
7275
    *pre = re;
7276
}
7277

    
7278
static void qemu_system_reset(void)
7279
{
7280
    QEMUResetEntry *re;
7281

    
7282
    /* reset all devices */
7283
    for(re = first_reset_entry; re != NULL; re = re->next) {
7284
        re->func(re->opaque);
7285
    }
7286
}
7287

    
7288
void qemu_system_reset_request(void)
7289
{
7290
    if (no_reboot) {
7291
        shutdown_requested = 1;
7292
    } else {
7293
        reset_requested = 1;
7294
    }
7295
    if (cpu_single_env)
7296
        cpu_interrupt(cpu_single_env, CPU_INTERRUPT_EXIT);
7297
}
7298

    
7299
void qemu_system_shutdown_request(void)
7300
{
7301
    shutdown_requested = 1;
7302
    if (cpu_single_env)
7303
        cpu_interrupt(cpu_single_env, CPU_INTERRUPT_EXIT);
7304
}
7305

    
7306
void qemu_system_powerdown_request(void)
7307
{
7308
    powerdown_requested = 1;
7309
    if (cpu_single_env)
7310
        cpu_interrupt(cpu_single_env, CPU_INTERRUPT_EXIT);
7311
}
7312

    
7313
void main_loop_wait(int timeout)
7314
{
7315
    IOHandlerRecord *ioh;
7316
    fd_set rfds, wfds, xfds;
7317
    int ret, nfds;
7318
#ifdef _WIN32
7319
    int ret2, i;
7320
#endif
7321
    struct timeval tv;
7322
    PollingEntry *pe;
7323

    
7324

    
7325
    /* XXX: need to suppress polling by better using win32 events */
7326
    ret = 0;
7327
    for(pe = first_polling_entry; pe != NULL; pe = pe->next) {
7328
        ret |= pe->func(pe->opaque);
7329
    }
7330
#ifdef _WIN32
7331
    if (ret == 0) {
7332
        int err;
7333
        WaitObjects *w = &wait_objects;
7334

    
7335
        ret = WaitForMultipleObjects(w->num, w->events, FALSE, timeout);
7336
        if (WAIT_OBJECT_0 + 0 <= ret && ret <= WAIT_OBJECT_0 + w->num - 1) {
7337
            if (w->func[ret - WAIT_OBJECT_0])
7338
                w->func[ret - WAIT_OBJECT_0](w->opaque[ret - WAIT_OBJECT_0]);
7339

    
7340
            /* Check for additional signaled events */
7341
            for(i = (ret - WAIT_OBJECT_0 + 1); i < w->num; i++) {
7342

    
7343
                /* Check if event is signaled */
7344
                ret2 = WaitForSingleObject(w->events[i], 0);
7345
                if(ret2 == WAIT_OBJECT_0) {
7346
                    if (w->func[i])
7347
                        w->func[i](w->opaque[i]);
7348
                } else if (ret2 == WAIT_TIMEOUT) {
7349
                } else {
7350
                    err = GetLastError();
7351
                    fprintf(stderr, "WaitForSingleObject error %d %d\n", i, err);
7352
                }
7353
            }
7354
        } else if (ret == WAIT_TIMEOUT) {
7355
        } else {
7356
            err = GetLastError();
7357
            fprintf(stderr, "WaitForMultipleObjects error %d %d\n", ret, err);
7358
        }
7359
    }
7360
#endif
7361
    /* poll any events */
7362
    /* XXX: separate device handlers from system ones */
7363
    nfds = -1;
7364
    FD_ZERO(&rfds);
7365
    FD_ZERO(&wfds);
7366
    FD_ZERO(&xfds);
7367
    for(ioh = first_io_handler; ioh != NULL; ioh = ioh->next) {
7368
        if (ioh->deleted)
7369
            continue;
7370
        if (ioh->fd_read &&
7371
            (!ioh->fd_read_poll ||
7372
             ioh->fd_read_poll(ioh->opaque) != 0)) {
7373
            FD_SET(ioh->fd, &rfds);
7374
            if (ioh->fd > nfds)
7375
                nfds = ioh->fd;
7376
        }
7377
        if (ioh->fd_write) {
7378
            FD_SET(ioh->fd, &wfds);
7379
            if (ioh->fd > nfds)
7380
                nfds = ioh->fd;
7381
        }
7382
    }
7383

    
7384
    tv.tv_sec = 0;
7385
#ifdef _WIN32
7386
    tv.tv_usec = 0;
7387
#else
7388
    tv.tv_usec = timeout * 1000;
7389
#endif
7390
#if defined(CONFIG_SLIRP)
7391
    if (slirp_inited) {
7392
        slirp_select_fill(&nfds, &rfds, &wfds, &xfds);
7393
    }
7394
#endif
7395
    ret = select(nfds + 1, &rfds, &wfds, &xfds, &tv);
7396
    if (ret > 0) {
7397
        IOHandlerRecord **pioh;
7398

    
7399
        for(ioh = first_io_handler; ioh != NULL; ioh = ioh->next) {
7400
            if (!ioh->deleted && ioh->fd_read && FD_ISSET(ioh->fd, &rfds)) {
7401
                ioh->fd_read(ioh->opaque);
7402
            }
7403
            if (!ioh->deleted && ioh->fd_write && FD_ISSET(ioh->fd, &wfds)) {
7404
                ioh->fd_write(ioh->opaque);
7405
            }
7406
        }
7407

    
7408
        /* remove deleted IO handlers */
7409
        pioh = &first_io_handler;
7410
        while (*pioh) {
7411
            ioh = *pioh;
7412
            if (ioh->deleted) {
7413
                *pioh = ioh->next;
7414
                qemu_free(ioh);
7415
            } else
7416
                pioh = &ioh->next;
7417
        }
7418
    }
7419
#if defined(CONFIG_SLIRP)
7420
    if (slirp_inited) {
7421
        if (ret < 0) {
7422
            FD_ZERO(&rfds);
7423
            FD_ZERO(&wfds);
7424
            FD_ZERO(&xfds);
7425
        }
7426
        slirp_select_poll(&rfds, &wfds, &xfds);
7427
    }
7428
#endif
7429
    qemu_aio_poll();
7430

    
7431
    if (vm_running) {
7432
        qemu_run_timers(&active_timers[QEMU_TIMER_VIRTUAL],
7433
                        qemu_get_clock(vm_clock));
7434
        /* run dma transfers, if any */
7435
        DMA_run();
7436
    }
7437

    
7438
    /* real time timers */
7439
    qemu_run_timers(&active_timers[QEMU_TIMER_REALTIME],
7440
                    qemu_get_clock(rt_clock));
7441

    
7442
    if (alarm_timer->flags & ALARM_FLAG_EXPIRED) {
7443
        alarm_timer->flags &= ~(ALARM_FLAG_EXPIRED);
7444
        qemu_rearm_alarm_timer(alarm_timer);
7445
    }
7446

    
7447
    /* Check bottom-halves last in case any of the earlier events triggered
7448
       them.  */
7449
    qemu_bh_poll();
7450

    
7451
}
7452

    
7453
static int main_loop(void)
7454
{
7455
    int ret, timeout;
7456
#ifdef CONFIG_PROFILER
7457
    int64_t ti;
7458
#endif
7459
    CPUState *env;
7460

    
7461
    cur_cpu = first_cpu;
7462
    next_cpu = cur_cpu->next_cpu ?: first_cpu;
7463
    for(;;) {
7464
        if (vm_running) {
7465

    
7466
            for(;;) {
7467
                /* get next cpu */
7468
                env = next_cpu;
7469
#ifdef CONFIG_PROFILER
7470
                ti = profile_getclock();
7471
#endif
7472
                ret = cpu_exec(env);
7473
#ifdef CONFIG_PROFILER
7474
                qemu_time += profile_getclock() - ti;
7475
#endif
7476
                next_cpu = env->next_cpu ?: first_cpu;
7477
                if (event_pending) {
7478
                    ret = EXCP_INTERRUPT;
7479
                    event_pending = 0;
7480
                    break;
7481
                }
7482
                if (ret == EXCP_HLT) {
7483
                    /* Give the next CPU a chance to run.  */
7484
                    cur_cpu = env;
7485
                    continue;
7486
                }
7487
                if (ret != EXCP_HALTED)
7488
                    break;
7489
                /* all CPUs are halted ? */
7490
                if (env == cur_cpu)
7491
                    break;
7492
            }
7493
            cur_cpu = env;
7494

    
7495
            if (shutdown_requested) {
7496
                ret = EXCP_INTERRUPT;
7497
                break;
7498
            }
7499
            if (reset_requested) {
7500
                reset_requested = 0;
7501
                qemu_system_reset();
7502
                ret = EXCP_INTERRUPT;
7503
            }
7504
            if (powerdown_requested) {
7505
                powerdown_requested = 0;
7506
                qemu_system_powerdown();
7507
                ret = EXCP_INTERRUPT;
7508
            }
7509
            if (ret == EXCP_DEBUG) {
7510
                vm_stop(EXCP_DEBUG);
7511
            }
7512
            /* If all cpus are halted then wait until the next IRQ */
7513
            /* XXX: use timeout computed from timers */
7514
            if (ret == EXCP_HALTED)
7515
                timeout = 10;
7516
            else
7517
                timeout = 0;
7518
        } else {
7519
            timeout = 10;
7520
        }
7521
#ifdef CONFIG_PROFILER
7522
        ti = profile_getclock();
7523
#endif
7524
        main_loop_wait(timeout);
7525
#ifdef CONFIG_PROFILER
7526
        dev_time += profile_getclock() - ti;
7527
#endif
7528
    }
7529
    cpu_disable_ticks();
7530
    return ret;
7531
}
7532

    
7533
static void help(int exitcode)
7534
{
7535
    printf("QEMU PC emulator version " QEMU_VERSION ", Copyright (c) 2003-2008 Fabrice Bellard\n"
7536
           "usage: %s [options] [disk_image]\n"
7537
           "\n"
7538
           "'disk_image' is a raw hard image image for IDE hard disk 0\n"
7539
           "\n"
7540
           "Standard options:\n"
7541
           "-M machine      select emulated machine (-M ? for list)\n"
7542
           "-cpu cpu        select CPU (-cpu ? for list)\n"
7543
           "-fda/-fdb file  use 'file' as floppy disk 0/1 image\n"
7544
           "-hda/-hdb file  use 'file' as IDE hard disk 0/1 image\n"
7545
           "-hdc/-hdd file  use 'file' as IDE hard disk 2/3 image\n"
7546
           "-cdrom file     use 'file' as IDE cdrom image (cdrom is ide1 master)\n"
7547
           "-drive [file=file][,if=type][,bus=n][,unit=m][,media=d][index=i]\n"
7548
           "       [,cyls=c,heads=h,secs=s[,trans=t]][snapshot=on|off]"
7549
           "       [,cache=on|off]\n"
7550
           "                use 'file' as a drive image\n"
7551
           "-mtdblock file  use 'file' as on-board Flash memory image\n"
7552
           "-sd file        use 'file' as SecureDigital card image\n"
7553
           "-pflash file    use 'file' as a parallel flash image\n"
7554
           "-boot [a|c|d|n] boot on floppy (a), hard disk (c), CD-ROM (d), or network (n)\n"
7555
           "-snapshot       write to temporary files instead of disk image files\n"
7556
#ifdef CONFIG_SDL
7557
           "-no-frame       open SDL window without a frame and window decorations\n"
7558
           "-alt-grab       use Ctrl-Alt-Shift to grab mouse (instead of Ctrl-Alt)\n"
7559
           "-no-quit        disable SDL window close capability\n"
7560
#endif
7561
#ifdef TARGET_I386
7562
           "-no-fd-bootchk  disable boot signature checking for floppy disks\n"
7563
#endif
7564
           "-m megs         set virtual RAM size to megs MB [default=%d]\n"
7565
           "-smp n          set the number of CPUs to 'n' [default=1]\n"
7566
           "-nographic      disable graphical output and redirect serial I/Os to console\n"
7567
           "-portrait       rotate graphical output 90 deg left (only PXA LCD)\n"
7568
#ifndef _WIN32
7569
           "-k language     use keyboard layout (for example \"fr\" for French)\n"
7570
#endif
7571
#ifdef HAS_AUDIO
7572
           "-audio-help     print list of audio drivers and their options\n"
7573
           "-soundhw c1,... enable audio support\n"
7574
           "                and only specified sound cards (comma separated list)\n"
7575
           "                use -soundhw ? to get the list of supported cards\n"
7576
           "                use -soundhw all to enable all of them\n"
7577
#endif
7578
           "-localtime      set the real time clock to local time [default=utc]\n"
7579
           "-full-screen    start in full screen\n"
7580
#ifdef TARGET_I386
7581
           "-win2k-hack     use it when installing Windows 2000 to avoid a disk full bug\n"
7582
#endif
7583
           "-usb            enable the USB driver (will be the default soon)\n"
7584
           "-usbdevice name add the host or guest USB device 'name'\n"
7585
#if defined(TARGET_PPC) || defined(TARGET_SPARC)
7586
           "-g WxH[xDEPTH]  Set the initial graphical resolution and depth\n"
7587
#endif
7588
           "-name string    set the name of the guest\n"
7589
           "\n"
7590
           "Network options:\n"
7591
           "-net nic[,vlan=n][,macaddr=addr][,model=type]\n"
7592
           "                create a new Network Interface Card and connect it to VLAN 'n'\n"
7593
#ifdef CONFIG_SLIRP
7594
           "-net user[,vlan=n][,hostname=host]\n"
7595
           "                connect the user mode network stack to VLAN 'n' and send\n"
7596
           "                hostname 'host' to DHCP clients\n"
7597
#endif
7598
#ifdef _WIN32
7599
           "-net tap[,vlan=n],ifname=name\n"
7600
           "                connect the host TAP network interface to VLAN 'n'\n"
7601
#else
7602
           "-net tap[,vlan=n][,fd=h][,ifname=name][,script=file][,downscript=dfile]\n"
7603
           "                connect the host TAP network interface to VLAN 'n' and use the\n"
7604
           "                network scripts 'file' (default=%s)\n"
7605
           "                and 'dfile' (default=%s);\n"
7606
           "                use '[down]script=no' to disable script execution;\n"
7607
           "                use 'fd=h' to connect to an already opened TAP interface\n"
7608
#endif
7609
           "-net socket[,vlan=n][,fd=h][,listen=[host]:port][,connect=host:port]\n"
7610
           "                connect the vlan 'n' to another VLAN using a socket connection\n"
7611
           "-net socket[,vlan=n][,fd=h][,mcast=maddr:port]\n"
7612
           "                connect the vlan 'n' to multicast maddr and port\n"
7613
           "-net none       use it alone to have zero network devices; if no -net option\n"
7614
           "                is provided, the default is '-net nic -net user'\n"
7615
           "\n"
7616
#ifdef CONFIG_SLIRP
7617
           "-tftp dir       allow tftp access to files in dir [-net user]\n"
7618
           "-bootp file     advertise file in BOOTP replies\n"
7619
#ifndef _WIN32
7620
           "-smb dir        allow SMB access to files in 'dir' [-net user]\n"
7621
#endif
7622
           "-redir [tcp|udp]:host-port:[guest-host]:guest-port\n"
7623
           "                redirect TCP or UDP connections from host to guest [-net user]\n"
7624
#endif
7625
           "\n"
7626
           "Linux boot specific:\n"
7627
           "-kernel bzImage use 'bzImage' as kernel image\n"
7628
           "-append cmdline use 'cmdline' as kernel command line\n"
7629
           "-initrd file    use 'file' as initial ram disk\n"
7630
           "\n"
7631
           "Debug/Expert options:\n"
7632
           "-monitor dev    redirect the monitor to char device 'dev'\n"
7633
           "-serial dev     redirect the serial port to char device 'dev'\n"
7634
           "-parallel dev   redirect the parallel port to char device 'dev'\n"
7635
           "-pidfile file   Write PID to 'file'\n"
7636
           "-S              freeze CPU at startup (use 'c' to start execution)\n"
7637
           "-s              wait gdb connection to port\n"
7638
           "-p port         set gdb connection port [default=%s]\n"
7639
           "-d item1,...    output log to %s (use -d ? for a list of log items)\n"
7640
           "-hdachs c,h,s[,t]  force hard disk 0 physical geometry and the optional BIOS\n"
7641
           "                translation (t=none or lba) (usually qemu can guess them)\n"
7642
           "-L path         set the directory for the BIOS, VGA BIOS and keymaps\n"
7643
#ifdef USE_KQEMU
7644
           "-kernel-kqemu   enable KQEMU full virtualization (default is user mode only)\n"
7645
           "-no-kqemu       disable KQEMU kernel module usage\n"
7646
#endif
7647
#ifdef TARGET_I386
7648
           "-std-vga        simulate a standard VGA card with VESA Bochs Extensions\n"
7649
           "                (default is CL-GD5446 PCI VGA)\n"
7650
           "-no-acpi        disable ACPI\n"
7651
#endif
7652
           "-no-reboot      exit instead of rebooting\n"
7653
           "-loadvm file    start right away with a saved state (loadvm in monitor)\n"
7654
           "-vnc display    start a VNC server on display\n"
7655
#ifndef _WIN32
7656
           "-daemonize      daemonize QEMU after initializing\n"
7657
#endif
7658
           "-option-rom rom load a file, rom, into the option ROM space\n"
7659
#ifdef TARGET_SPARC
7660
           "-prom-env variable=value  set OpenBIOS nvram variables\n"
7661
#endif
7662
           "-clock          force the use of the given methods for timer alarm.\n"
7663
           "                To see what timers are available use -clock help\n"
7664
           "\n"
7665
           "During emulation, the following keys are useful:\n"
7666
           "ctrl-alt-f      toggle full screen\n"
7667
           "ctrl-alt-n      switch to virtual console 'n'\n"
7668
           "ctrl-alt        toggle mouse and keyboard grab\n"
7669
           "\n"
7670
           "When using -nographic, press 'ctrl-a h' to get some help.\n"
7671
           ,
7672
           "qemu",
7673
           DEFAULT_RAM_SIZE,
7674
#ifndef _WIN32
7675
           DEFAULT_NETWORK_SCRIPT,
7676
           DEFAULT_NETWORK_DOWN_SCRIPT,
7677
#endif
7678
           DEFAULT_GDBSTUB_PORT,
7679
           "/tmp/qemu.log");
7680
    exit(exitcode);
7681
}
7682

    
7683
#define HAS_ARG 0x0001
7684

    
7685
enum {
7686
    QEMU_OPTION_h,
7687

    
7688
    QEMU_OPTION_M,
7689
    QEMU_OPTION_cpu,
7690
    QEMU_OPTION_fda,
7691
    QEMU_OPTION_fdb,
7692
    QEMU_OPTION_hda,
7693
    QEMU_OPTION_hdb,
7694
    QEMU_OPTION_hdc,
7695
    QEMU_OPTION_hdd,
7696
    QEMU_OPTION_drive,
7697
    QEMU_OPTION_cdrom,
7698
    QEMU_OPTION_mtdblock,
7699
    QEMU_OPTION_sd,
7700
    QEMU_OPTION_pflash,
7701
    QEMU_OPTION_boot,
7702
    QEMU_OPTION_snapshot,
7703
#ifdef TARGET_I386
7704
    QEMU_OPTION_no_fd_bootchk,
7705
#endif
7706
    QEMU_OPTION_m,
7707
    QEMU_OPTION_nographic,
7708
    QEMU_OPTION_portrait,
7709
#ifdef HAS_AUDIO
7710
    QEMU_OPTION_audio_help,
7711
    QEMU_OPTION_soundhw,
7712
#endif
7713

    
7714
    QEMU_OPTION_net,
7715
    QEMU_OPTION_tftp,
7716
    QEMU_OPTION_bootp,
7717
    QEMU_OPTION_smb,
7718
    QEMU_OPTION_redir,
7719

    
7720
    QEMU_OPTION_kernel,
7721
    QEMU_OPTION_append,
7722
    QEMU_OPTION_initrd,
7723

    
7724
    QEMU_OPTION_S,
7725
    QEMU_OPTION_s,
7726
    QEMU_OPTION_p,
7727
    QEMU_OPTION_d,
7728
    QEMU_OPTION_hdachs,
7729
    QEMU_OPTION_L,
7730
    QEMU_OPTION_bios,
7731
    QEMU_OPTION_no_code_copy,
7732
    QEMU_OPTION_k,
7733
    QEMU_OPTION_localtime,
7734
    QEMU_OPTION_cirrusvga,
7735
    QEMU_OPTION_vmsvga,
7736
    QEMU_OPTION_g,
7737
    QEMU_OPTION_std_vga,
7738
    QEMU_OPTION_echr,
7739
    QEMU_OPTION_monitor,
7740
    QEMU_OPTION_serial,
7741
    QEMU_OPTION_parallel,
7742
    QEMU_OPTION_loadvm,
7743
    QEMU_OPTION_full_screen,
7744
    QEMU_OPTION_no_frame,
7745
    QEMU_OPTION_alt_grab,
7746
    QEMU_OPTION_no_quit,
7747
    QEMU_OPTION_pidfile,
7748
    QEMU_OPTION_no_kqemu,
7749
    QEMU_OPTION_kernel_kqemu,
7750
    QEMU_OPTION_win2k_hack,
7751
    QEMU_OPTION_usb,
7752
    QEMU_OPTION_usbdevice,
7753
    QEMU_OPTION_smp,
7754
    QEMU_OPTION_vnc,
7755
    QEMU_OPTION_no_acpi,
7756
    QEMU_OPTION_no_reboot,
7757
    QEMU_OPTION_show_cursor,
7758
    QEMU_OPTION_daemonize,
7759
    QEMU_OPTION_option_rom,
7760
    QEMU_OPTION_semihosting,
7761
    QEMU_OPTION_name,
7762
    QEMU_OPTION_prom_env,
7763
    QEMU_OPTION_old_param,
7764
    QEMU_OPTION_clock,
7765
    QEMU_OPTION_startdate,
7766
};
7767

    
7768
typedef struct QEMUOption {
7769
    const char *name;
7770
    int flags;
7771
    int index;
7772
} QEMUOption;
7773

    
7774
const QEMUOption qemu_options[] = {
7775
    { "h", 0, QEMU_OPTION_h },
7776
    { "help", 0, QEMU_OPTION_h },
7777

    
7778
    { "M", HAS_ARG, QEMU_OPTION_M },
7779
    { "cpu", HAS_ARG, QEMU_OPTION_cpu },
7780
    { "fda", HAS_ARG, QEMU_OPTION_fda },
7781
    { "fdb", HAS_ARG, QEMU_OPTION_fdb },
7782
    { "hda", HAS_ARG, QEMU_OPTION_hda },
7783
    { "hdb", HAS_ARG, QEMU_OPTION_hdb },
7784
    { "hdc", HAS_ARG, QEMU_OPTION_hdc },
7785
    { "hdd", HAS_ARG, QEMU_OPTION_hdd },
7786
    { "drive", HAS_ARG, QEMU_OPTION_drive },
7787
    { "cdrom", HAS_ARG, QEMU_OPTION_cdrom },
7788
    { "mtdblock", HAS_ARG, QEMU_OPTION_mtdblock },
7789
    { "sd", HAS_ARG, QEMU_OPTION_sd },
7790
    { "pflash", HAS_ARG, QEMU_OPTION_pflash },
7791
    { "boot", HAS_ARG, QEMU_OPTION_boot },
7792
    { "snapshot", 0, QEMU_OPTION_snapshot },
7793
#ifdef TARGET_I386
7794
    { "no-fd-bootchk", 0, QEMU_OPTION_no_fd_bootchk },
7795
#endif
7796
    { "m", HAS_ARG, QEMU_OPTION_m },
7797
    { "nographic", 0, QEMU_OPTION_nographic },
7798
    { "portrait", 0, QEMU_OPTION_portrait },
7799
    { "k", HAS_ARG, QEMU_OPTION_k },
7800
#ifdef HAS_AUDIO
7801
    { "audio-help", 0, QEMU_OPTION_audio_help },
7802
    { "soundhw", HAS_ARG, QEMU_OPTION_soundhw },
7803
#endif
7804

    
7805
    { "net", HAS_ARG, QEMU_OPTION_net},
7806
#ifdef CONFIG_SLIRP
7807
    { "tftp", HAS_ARG, QEMU_OPTION_tftp },
7808
    { "bootp", HAS_ARG, QEMU_OPTION_bootp },
7809
#ifndef _WIN32
7810
    { "smb", HAS_ARG, QEMU_OPTION_smb },
7811
#endif
7812
    { "redir", HAS_ARG, QEMU_OPTION_redir },
7813
#endif
7814

    
7815
    { "kernel", HAS_ARG, QEMU_OPTION_kernel },
7816
    { "append", HAS_ARG, QEMU_OPTION_append },
7817
    { "initrd", HAS_ARG, QEMU_OPTION_initrd },
7818

    
7819
    { "S", 0, QEMU_OPTION_S },
7820
    { "s", 0, QEMU_OPTION_s },
7821
    { "p", HAS_ARG, QEMU_OPTION_p },
7822
    { "d", HAS_ARG, QEMU_OPTION_d },
7823
    { "hdachs", HAS_ARG, QEMU_OPTION_hdachs },
7824
    { "L", HAS_ARG, QEMU_OPTION_L },
7825
    { "bios", HAS_ARG, QEMU_OPTION_bios },
7826
    { "no-code-copy", 0, QEMU_OPTION_no_code_copy },
7827
#ifdef USE_KQEMU
7828
    { "no-kqemu", 0, QEMU_OPTION_no_kqemu },
7829
    { "kernel-kqemu", 0, QEMU_OPTION_kernel_kqemu },
7830
#endif
7831
#if defined(TARGET_PPC) || defined(TARGET_SPARC)
7832
    { "g", 1, QEMU_OPTION_g },
7833
#endif
7834
    { "localtime", 0, QEMU_OPTION_localtime },
7835
    { "std-vga", 0, QEMU_OPTION_std_vga },
7836
    { "echr", HAS_ARG, QEMU_OPTION_echr },
7837
    { "monitor", HAS_ARG, QEMU_OPTION_monitor },
7838
    { "serial", HAS_ARG, QEMU_OPTION_serial },
7839
    { "parallel", HAS_ARG, QEMU_OPTION_parallel },
7840
    { "loadvm", HAS_ARG, QEMU_OPTION_loadvm },
7841
    { "full-screen", 0, QEMU_OPTION_full_screen },
7842
#ifdef CONFIG_SDL
7843
    { "no-frame", 0, QEMU_OPTION_no_frame },
7844
    { "alt-grab", 0, QEMU_OPTION_alt_grab },
7845
    { "no-quit", 0, QEMU_OPTION_no_quit },
7846
#endif
7847
    { "pidfile", HAS_ARG, QEMU_OPTION_pidfile },
7848
    { "win2k-hack", 0, QEMU_OPTION_win2k_hack },
7849
    { "usbdevice", HAS_ARG, QEMU_OPTION_usbdevice },
7850
    { "smp", HAS_ARG, QEMU_OPTION_smp },
7851
    { "vnc", HAS_ARG, QEMU_OPTION_vnc },
7852

    
7853
    /* temporary options */
7854
    { "usb", 0, QEMU_OPTION_usb },
7855
    { "cirrusvga", 0, QEMU_OPTION_cirrusvga },
7856
    { "vmwarevga", 0, QEMU_OPTION_vmsvga },
7857
    { "no-acpi", 0, QEMU_OPTION_no_acpi },
7858
    { "no-reboot", 0, QEMU_OPTION_no_reboot },
7859
    { "show-cursor", 0, QEMU_OPTION_show_cursor },
7860
    { "daemonize", 0, QEMU_OPTION_daemonize },
7861
    { "option-rom", HAS_ARG, QEMU_OPTION_option_rom },
7862
#if defined(TARGET_ARM) || defined(TARGET_M68K)
7863
    { "semihosting", 0, QEMU_OPTION_semihosting },
7864
#endif
7865
    { "name", HAS_ARG, QEMU_OPTION_name },
7866
#if defined(TARGET_SPARC)
7867
    { "prom-env", HAS_ARG, QEMU_OPTION_prom_env },
7868
#endif
7869
#if defined(TARGET_ARM)
7870
    { "old-param", 0, QEMU_OPTION_old_param },
7871
#endif
7872
    { "clock", HAS_ARG, QEMU_OPTION_clock },
7873
    { "startdate", HAS_ARG, QEMU_OPTION_startdate },
7874
    { NULL },
7875
};
7876

    
7877
/* password input */
7878

    
7879
int qemu_key_check(BlockDriverState *bs, const char *name)
7880
{
7881
    char password[256];
7882
    int i;
7883

    
7884
    if (!bdrv_is_encrypted(bs))
7885
        return 0;
7886

    
7887
    term_printf("%s is encrypted.\n", name);
7888
    for(i = 0; i < 3; i++) {
7889
        monitor_readline("Password: ", 1, password, sizeof(password));
7890
        if (bdrv_set_key(bs, password) == 0)
7891
            return 0;
7892
        term_printf("invalid password\n");
7893
    }
7894
    return -EPERM;
7895
}
7896

    
7897
static BlockDriverState *get_bdrv(int index)
7898
{
7899
    if (index > nb_drives)
7900
        return NULL;
7901
    return drives_table[index].bdrv;
7902
}
7903

    
7904
static void read_passwords(void)
7905
{
7906
    BlockDriverState *bs;
7907
    int i;
7908

    
7909
    for(i = 0; i < 6; i++) {
7910
        bs = get_bdrv(i);
7911
        if (bs)
7912
            qemu_key_check(bs, bdrv_get_device_name(bs));
7913
    }
7914
}
7915

    
7916
/* XXX: currently we cannot use simultaneously different CPUs */
7917
static void register_machines(void)
7918
{
7919
#if defined(TARGET_I386)
7920
    qemu_register_machine(&pc_machine);
7921
    qemu_register_machine(&isapc_machine);
7922
#elif defined(TARGET_PPC)
7923
    qemu_register_machine(&heathrow_machine);
7924
    qemu_register_machine(&core99_machine);
7925
    qemu_register_machine(&prep_machine);
7926
    qemu_register_machine(&ref405ep_machine);
7927
    qemu_register_machine(&taihu_machine);
7928
#elif defined(TARGET_MIPS)
7929
    qemu_register_machine(&mips_machine);
7930
    qemu_register_machine(&mips_malta_machine);
7931
    qemu_register_machine(&mips_pica61_machine);
7932
    qemu_register_machine(&mips_mipssim_machine);
7933
#elif defined(TARGET_SPARC)
7934
#ifdef TARGET_SPARC64
7935
    qemu_register_machine(&sun4u_machine);
7936
#else
7937
    qemu_register_machine(&ss5_machine);
7938
    qemu_register_machine(&ss10_machine);
7939
    qemu_register_machine(&ss600mp_machine);
7940
    qemu_register_machine(&ss20_machine);
7941
    qemu_register_machine(&ss2_machine);
7942
    qemu_register_machine(&ss1000_machine);
7943
    qemu_register_machine(&ss2000_machine);
7944
#endif
7945
#elif defined(TARGET_ARM)
7946
    qemu_register_machine(&integratorcp_machine);
7947
    qemu_register_machine(&versatilepb_machine);
7948
    qemu_register_machine(&versatileab_machine);
7949
    qemu_register_machine(&realview_machine);
7950
    qemu_register_machine(&akitapda_machine);
7951
    qemu_register_machine(&spitzpda_machine);
7952
    qemu_register_machine(&borzoipda_machine);
7953
    qemu_register_machine(&terrierpda_machine);
7954
    qemu_register_machine(&palmte_machine);
7955
    qemu_register_machine(&lm3s811evb_machine);
7956
    qemu_register_machine(&lm3s6965evb_machine);
7957
    qemu_register_machine(&connex_machine);
7958
    qemu_register_machine(&verdex_machine);
7959
    qemu_register_machine(&mainstone2_machine);
7960
#elif defined(TARGET_SH4)
7961
    qemu_register_machine(&shix_machine);
7962
    qemu_register_machine(&r2d_machine);
7963
#elif defined(TARGET_ALPHA)
7964
    /* XXX: TODO */
7965
#elif defined(TARGET_M68K)
7966
    qemu_register_machine(&mcf5208evb_machine);
7967
    qemu_register_machine(&an5206_machine);
7968
    qemu_register_machine(&dummy_m68k_machine);
7969
#elif defined(TARGET_CRIS)
7970
    qemu_register_machine(&bareetraxfs_machine);
7971
#else
7972
#error unsupported CPU
7973
#endif
7974
}
7975

    
7976
#ifdef HAS_AUDIO
7977
struct soundhw soundhw[] = {
7978
#ifdef HAS_AUDIO_CHOICE
7979
#ifdef TARGET_I386
7980
    {
7981
        "pcspk",
7982
        "PC speaker",
7983
        0,
7984
        1,
7985
        { .init_isa = pcspk_audio_init }
7986
    },
7987
#endif
7988
    {
7989
        "sb16",
7990
        "Creative Sound Blaster 16",
7991
        0,
7992
        1,
7993
        { .init_isa = SB16_init }
7994
    },
7995

    
7996
#ifdef CONFIG_ADLIB
7997
    {
7998
        "adlib",
7999
#ifdef HAS_YMF262
8000
        "Yamaha YMF262 (OPL3)",
8001
#else
8002
        "Yamaha YM3812 (OPL2)",
8003
#endif
8004
        0,
8005
        1,
8006
        { .init_isa = Adlib_init }
8007
    },
8008
#endif
8009

    
8010
#ifdef CONFIG_GUS
8011
    {
8012
        "gus",
8013
        "Gravis Ultrasound GF1",
8014
        0,
8015
        1,
8016
        { .init_isa = GUS_init }
8017
    },
8018
#endif
8019

    
8020
#ifdef CONFIG_AC97
8021
    {
8022
        "ac97",
8023
        "Intel 82801AA AC97 Audio",
8024
        0,
8025
        0,
8026
        { .init_pci = ac97_init }
8027
    },
8028
#endif
8029

    
8030
    {
8031
        "es1370",
8032
        "ENSONIQ AudioPCI ES1370",
8033
        0,
8034
        0,
8035
        { .init_pci = es1370_init }
8036
    },
8037
#endif
8038

    
8039
    { NULL, NULL, 0, 0, { NULL } }
8040
};
8041

    
8042
static void select_soundhw (const char *optarg)
8043
{
8044
    struct soundhw *c;
8045

    
8046
    if (*optarg == '?') {
8047
    show_valid_cards:
8048

    
8049
        printf ("Valid sound card names (comma separated):\n");
8050
        for (c = soundhw; c->name; ++c) {
8051
            printf ("%-11s %s\n", c->name, c->descr);
8052
        }
8053
        printf ("\n-soundhw all will enable all of the above\n");
8054
        exit (*optarg != '?');
8055
    }
8056
    else {
8057
        size_t l;
8058
        const char *p;
8059
        char *e;
8060
        int bad_card = 0;
8061

    
8062
        if (!strcmp (optarg, "all")) {
8063
            for (c = soundhw; c->name; ++c) {
8064
                c->enabled = 1;
8065
            }
8066
            return;
8067
        }
8068

    
8069
        p = optarg;
8070
        while (*p) {
8071
            e = strchr (p, ',');
8072
            l = !e ? strlen (p) : (size_t) (e - p);
8073

    
8074
            for (c = soundhw; c->name; ++c) {
8075
                if (!strncmp (c->name, p, l)) {
8076
                    c->enabled = 1;
8077
                    break;
8078
                }
8079
            }
8080

    
8081
            if (!c->name) {
8082
                if (l > 80) {
8083
                    fprintf (stderr,
8084
                             "Unknown sound card name (too big to show)\n");
8085
                }
8086
                else {
8087
                    fprintf (stderr, "Unknown sound card name `%.*s'\n",
8088
                             (int) l, p);
8089
                }
8090
                bad_card = 1;
8091
            }
8092
            p += l + (e != NULL);
8093
        }
8094

    
8095
        if (bad_card)
8096
            goto show_valid_cards;
8097
    }
8098
}
8099
#endif
8100

    
8101
#ifdef _WIN32
8102
static BOOL WINAPI qemu_ctrl_handler(DWORD type)
8103
{
8104
    exit(STATUS_CONTROL_C_EXIT);
8105
    return TRUE;
8106
}
8107
#endif
8108

    
8109
#define MAX_NET_CLIENTS 32
8110

    
8111
int main(int argc, char **argv)
8112
{
8113
#ifdef CONFIG_GDBSTUB
8114
    int use_gdbstub;
8115
    const char *gdbstub_port;
8116
#endif
8117
    uint32_t boot_devices_bitmap = 0;
8118
    int i;
8119
    int snapshot, linux_boot, net_boot;
8120
    const char *initrd_filename;
8121
    const char *kernel_filename, *kernel_cmdline;
8122
    const char *boot_devices = "";
8123
    DisplayState *ds = &display_state;
8124
    int cyls, heads, secs, translation;
8125
    char net_clients[MAX_NET_CLIENTS][256];
8126
    int nb_net_clients;
8127
    int hda_index;
8128
    int optind;
8129
    const char *r, *optarg;
8130
    CharDriverState *monitor_hd;
8131
    char monitor_device[128];
8132
    char serial_devices[MAX_SERIAL_PORTS][128];
8133
    int serial_device_index;
8134
    char parallel_devices[MAX_PARALLEL_PORTS][128];
8135
    int parallel_device_index;
8136
    const char *loadvm = NULL;
8137
    QEMUMachine *machine;
8138
    const char *cpu_model;
8139
    char usb_devices[MAX_USB_CMDLINE][128];
8140
    int usb_devices_index;
8141
    int fds[2];
8142
    const char *pid_file = NULL;
8143
    VLANState *vlan;
8144

    
8145
    LIST_INIT (&vm_change_state_head);
8146
#ifndef _WIN32
8147
    {
8148
        struct sigaction act;
8149
        sigfillset(&act.sa_mask);
8150
        act.sa_flags = 0;
8151
        act.sa_handler = SIG_IGN;
8152
        sigaction(SIGPIPE, &act, NULL);
8153
    }
8154
#else
8155
    SetConsoleCtrlHandler(qemu_ctrl_handler, TRUE);
8156
    /* Note: cpu_interrupt() is currently not SMP safe, so we force
8157
       QEMU to run on a single CPU */
8158
    {
8159
        HANDLE h;
8160
        DWORD mask, smask;
8161
        int i;
8162
        h = GetCurrentProcess();
8163
        if (GetProcessAffinityMask(h, &mask, &smask)) {
8164
            for(i = 0; i < 32; i++) {
8165
                if (mask & (1 << i))
8166
                    break;
8167
            }
8168
            if (i != 32) {
8169
                mask = 1 << i;
8170
                SetProcessAffinityMask(h, mask);
8171
            }
8172
        }
8173
    }
8174
#endif
8175

    
8176
    register_machines();
8177
    machine = first_machine;
8178
    cpu_model = NULL;
8179
    initrd_filename = NULL;
8180
    ram_size = DEFAULT_RAM_SIZE * 1024 * 1024;
8181
    vga_ram_size = VGA_RAM_SIZE;
8182
#ifdef CONFIG_GDBSTUB
8183
    use_gdbstub = 0;
8184
    gdbstub_port = DEFAULT_GDBSTUB_PORT;
8185
#endif
8186
    snapshot = 0;
8187
    nographic = 0;
8188
    kernel_filename = NULL;
8189
    kernel_cmdline = "";
8190
    cyls = heads = secs = 0;
8191
    translation = BIOS_ATA_TRANSLATION_AUTO;
8192
    pstrcpy(monitor_device, sizeof(monitor_device), "vc");
8193

    
8194
    pstrcpy(serial_devices[0], sizeof(serial_devices[0]), "vc");
8195
    for(i = 1; i < MAX_SERIAL_PORTS; i++)
8196
        serial_devices[i][0] = '\0';
8197
    serial_device_index = 0;
8198

    
8199
    pstrcpy(parallel_devices[0], sizeof(parallel_devices[0]), "vc");
8200
    for(i = 1; i < MAX_PARALLEL_PORTS; i++)
8201
        parallel_devices[i][0] = '\0';
8202
    parallel_device_index = 0;
8203

    
8204
    usb_devices_index = 0;
8205

    
8206
    nb_net_clients = 0;
8207
    nb_drives = 0;
8208
    nb_drives_opt = 0;
8209
    hda_index = -1;
8210

    
8211
    nb_nics = 0;
8212
    /* default mac address of the first network interface */
8213

    
8214
    optind = 1;
8215
    for(;;) {
8216
        if (optind >= argc)
8217
            break;
8218
        r = argv[optind];
8219
        if (r[0] != '-') {
8220
            hda_index = drive_add(argv[optind++], HD_ALIAS, 0);
8221
        } else {
8222
            const QEMUOption *popt;
8223

    
8224
            optind++;
8225
            /* Treat --foo the same as -foo.  */
8226
            if (r[1] == '-')
8227
                r++;
8228
            popt = qemu_options;
8229
            for(;;) {
8230
                if (!popt->name) {
8231
                    fprintf(stderr, "%s: invalid option -- '%s'\n",
8232
                            argv[0], r);
8233
                    exit(1);
8234
                }
8235
                if (!strcmp(popt->name, r + 1))
8236
                    break;
8237
                popt++;
8238
            }
8239
            if (popt->flags & HAS_ARG) {
8240
                if (optind >= argc) {
8241
                    fprintf(stderr, "%s: option '%s' requires an argument\n",
8242
                            argv[0], r);
8243
                    exit(1);
8244
                }
8245
                optarg = argv[optind++];
8246
            } else {
8247
                optarg = NULL;
8248
            }
8249

    
8250
            switch(popt->index) {
8251
            case QEMU_OPTION_M:
8252
                machine = find_machine(optarg);
8253
                if (!machine) {
8254
                    QEMUMachine *m;
8255
                    printf("Supported machines are:\n");
8256
                    for(m = first_machine; m != NULL; m = m->next) {
8257
                        printf("%-10s %s%s\n",
8258
                               m->name, m->desc,
8259
                               m == first_machine ? " (default)" : "");
8260
                    }
8261
                    exit(*optarg != '?');
8262
                }
8263
                break;
8264
            case QEMU_OPTION_cpu:
8265
                /* hw initialization will check this */
8266
                if (*optarg == '?') {
8267
/* XXX: implement xxx_cpu_list for targets that still miss it */
8268
#if defined(cpu_list)
8269
                    cpu_list(stdout, &fprintf);
8270
#endif
8271
                    exit(0);
8272
                } else {
8273
                    cpu_model = optarg;
8274
                }
8275
                break;
8276
            case QEMU_OPTION_initrd:
8277
                initrd_filename = optarg;
8278
                break;
8279
            case QEMU_OPTION_hda:
8280
                if (cyls == 0)
8281
                    hda_index = drive_add(optarg, HD_ALIAS, 0);
8282
                else
8283
                    hda_index = drive_add(optarg, HD_ALIAS
8284
                             ",cyls=%d,heads=%d,secs=%d%s",
8285
                             0, cyls, heads, secs,
8286
                             translation == BIOS_ATA_TRANSLATION_LBA ?
8287
                                 ",trans=lba" :
8288
                             translation == BIOS_ATA_TRANSLATION_NONE ?
8289
                                 ",trans=none" : "");
8290
                 break;
8291
            case QEMU_OPTION_hdb:
8292
            case QEMU_OPTION_hdc:
8293
            case QEMU_OPTION_hdd:
8294
                drive_add(optarg, HD_ALIAS, popt->index - QEMU_OPTION_hda);
8295
                break;
8296
            case QEMU_OPTION_drive:
8297
                drive_add(NULL, "%s", optarg);
8298
                break;
8299
            case QEMU_OPTION_mtdblock:
8300
                drive_add(optarg, MTD_ALIAS);
8301
                break;
8302
            case QEMU_OPTION_sd:
8303
                drive_add(optarg, SD_ALIAS);
8304
                break;
8305
            case QEMU_OPTION_pflash:
8306
                drive_add(optarg, PFLASH_ALIAS);
8307
                break;
8308
            case QEMU_OPTION_snapshot:
8309
                snapshot = 1;
8310
                break;
8311
            case QEMU_OPTION_hdachs:
8312
                {
8313
                    const char *p;
8314
                    p = optarg;
8315
                    cyls = strtol(p, (char **)&p, 0);
8316
                    if (cyls < 1 || cyls > 16383)
8317
                        goto chs_fail;
8318
                    if (*p != ',')
8319
                        goto chs_fail;
8320
                    p++;
8321
                    heads = strtol(p, (char **)&p, 0);
8322
                    if (heads < 1 || heads > 16)
8323
                        goto chs_fail;
8324
                    if (*p != ',')
8325
                        goto chs_fail;
8326
                    p++;
8327
                    secs = strtol(p, (char **)&p, 0);
8328
                    if (secs < 1 || secs > 63)
8329
                        goto chs_fail;
8330
                    if (*p == ',') {
8331
                        p++;
8332
                        if (!strcmp(p, "none"))
8333
                            translation = BIOS_ATA_TRANSLATION_NONE;
8334
                        else if (!strcmp(p, "lba"))
8335
                            translation = BIOS_ATA_TRANSLATION_LBA;
8336
                        else if (!strcmp(p, "auto"))
8337
                            translation = BIOS_ATA_TRANSLATION_AUTO;
8338
                        else
8339
                            goto chs_fail;
8340
                    } else if (*p != '\0') {
8341
                    chs_fail:
8342
                        fprintf(stderr, "qemu: invalid physical CHS format\n");
8343
                        exit(1);
8344
                    }
8345
                    if (hda_index != -1)
8346
                        snprintf(drives_opt[hda_index].opt,
8347
                                 sizeof(drives_opt[hda_index].opt),
8348
                                 HD_ALIAS ",cyls=%d,heads=%d,secs=%d%s",
8349
                                 0, cyls, heads, secs,
8350
                                 translation == BIOS_ATA_TRANSLATION_LBA ?
8351
                                         ",trans=lba" :
8352
                                 translation == BIOS_ATA_TRANSLATION_NONE ?
8353
                                     ",trans=none" : "");
8354
                }
8355
                break;
8356
            case QEMU_OPTION_nographic:
8357
                pstrcpy(serial_devices[0], sizeof(serial_devices[0]), "stdio");
8358
                pstrcpy(parallel_devices[0], sizeof(parallel_devices[0]), "null");
8359
                pstrcpy(monitor_device, sizeof(monitor_device), "stdio");
8360
                nographic = 1;
8361
                break;
8362
            case QEMU_OPTION_portrait:
8363
                graphic_rotate = 1;
8364
                break;
8365
            case QEMU_OPTION_kernel:
8366
                kernel_filename = optarg;
8367
                break;
8368
            case QEMU_OPTION_append:
8369
                kernel_cmdline = optarg;
8370
                break;
8371
            case QEMU_OPTION_cdrom:
8372
                drive_add(optarg, CDROM_ALIAS);
8373
                break;
8374
            case QEMU_OPTION_boot:
8375
                boot_devices = optarg;
8376
                /* We just do some generic consistency checks */
8377
                {
8378
                    /* Could easily be extended to 64 devices if needed */
8379
                    const char *p;
8380
                    
8381
                    boot_devices_bitmap = 0;
8382
                    for (p = boot_devices; *p != '\0'; p++) {
8383
                        /* Allowed boot devices are:
8384
                         * a b     : floppy disk drives
8385
                         * c ... f : IDE disk drives
8386
                         * g ... m : machine implementation dependant drives
8387
                         * n ... p : network devices
8388
                         * It's up to each machine implementation to check
8389
                         * if the given boot devices match the actual hardware
8390
                         * implementation and firmware features.
8391
                         */
8392
                        if (*p < 'a' || *p > 'q') {
8393
                            fprintf(stderr, "Invalid boot device '%c'\n", *p);
8394
                            exit(1);
8395
                        }
8396
                        if (boot_devices_bitmap & (1 << (*p - 'a'))) {
8397
                            fprintf(stderr,
8398
                                    "Boot device '%c' was given twice\n",*p);
8399
                            exit(1);
8400
                        }
8401
                        boot_devices_bitmap |= 1 << (*p - 'a');
8402
                    }
8403
                }
8404
                break;
8405
            case QEMU_OPTION_fda:
8406
            case QEMU_OPTION_fdb:
8407
                drive_add(optarg, FD_ALIAS, popt->index - QEMU_OPTION_fda);
8408
                break;
8409
#ifdef TARGET_I386
8410
            case QEMU_OPTION_no_fd_bootchk:
8411
                fd_bootchk = 0;
8412
                break;
8413
#endif
8414
            case QEMU_OPTION_no_code_copy:
8415
                code_copy_enabled = 0;
8416
                break;
8417
            case QEMU_OPTION_net:
8418
                if (nb_net_clients >= MAX_NET_CLIENTS) {
8419
                    fprintf(stderr, "qemu: too many network clients\n");
8420
                    exit(1);
8421
                }
8422
                pstrcpy(net_clients[nb_net_clients],
8423
                        sizeof(net_clients[0]),
8424
                        optarg);
8425
                nb_net_clients++;
8426
                break;
8427
#ifdef CONFIG_SLIRP
8428
            case QEMU_OPTION_tftp:
8429
                tftp_prefix = optarg;
8430
                break;
8431
            case QEMU_OPTION_bootp:
8432
                bootp_filename = optarg;
8433
                break;
8434
#ifndef _WIN32
8435
            case QEMU_OPTION_smb:
8436
                net_slirp_smb(optarg);
8437
                break;
8438
#endif
8439
            case QEMU_OPTION_redir:
8440
                net_slirp_redir(optarg);
8441
                break;
8442
#endif
8443
#ifdef HAS_AUDIO
8444
            case QEMU_OPTION_audio_help:
8445
                AUD_help ();
8446
                exit (0);
8447
                break;
8448
            case QEMU_OPTION_soundhw:
8449
                select_soundhw (optarg);
8450
                break;
8451
#endif
8452
            case QEMU_OPTION_h:
8453
                help(0);
8454
                break;
8455
            case QEMU_OPTION_m:
8456
                ram_size = atoi(optarg) * 1024 * 1024;
8457
                if (ram_size <= 0)
8458
                    help(1);
8459
                if (ram_size > PHYS_RAM_MAX_SIZE) {
8460
                    fprintf(stderr, "qemu: at most %d MB RAM can be simulated\n",
8461
                            PHYS_RAM_MAX_SIZE / (1024 * 1024));
8462
                    exit(1);
8463
                }
8464
                break;
8465
            case QEMU_OPTION_d:
8466
                {
8467
                    int mask;
8468
                    CPULogItem *item;
8469

    
8470
                    mask = cpu_str_to_log_mask(optarg);
8471
                    if (!mask) {
8472
                        printf("Log items (comma separated):\n");
8473
                    for(item = cpu_log_items; item->mask != 0; item++) {
8474
                        printf("%-10s %s\n", item->name, item->help);
8475
                    }
8476
                    exit(1);
8477
                    }
8478
                    cpu_set_log(mask);
8479
                }
8480
                break;
8481
#ifdef CONFIG_GDBSTUB
8482
            case QEMU_OPTION_s:
8483
                use_gdbstub = 1;
8484
                break;
8485
            case QEMU_OPTION_p:
8486
                gdbstub_port = optarg;
8487
                break;
8488
#endif
8489
            case QEMU_OPTION_L:
8490
                bios_dir = optarg;
8491
                break;
8492
            case QEMU_OPTION_bios:
8493
                bios_name = optarg;
8494
                break;
8495
            case QEMU_OPTION_S:
8496
                autostart = 0;
8497
                break;
8498
            case QEMU_OPTION_k:
8499
                keyboard_layout = optarg;
8500
                break;
8501
            case QEMU_OPTION_localtime:
8502
                rtc_utc = 0;
8503
                break;
8504
            case QEMU_OPTION_cirrusvga:
8505
                cirrus_vga_enabled = 1;
8506
                vmsvga_enabled = 0;
8507
                break;
8508
            case QEMU_OPTION_vmsvga:
8509
                cirrus_vga_enabled = 0;
8510
                vmsvga_enabled = 1;
8511
                break;
8512
            case QEMU_OPTION_std_vga:
8513
                cirrus_vga_enabled = 0;
8514
                vmsvga_enabled = 0;
8515
                break;
8516
            case QEMU_OPTION_g:
8517
                {
8518
                    const char *p;
8519
                    int w, h, depth;
8520
                    p = optarg;
8521
                    w = strtol(p, (char **)&p, 10);
8522
                    if (w <= 0) {
8523
                    graphic_error:
8524
                        fprintf(stderr, "qemu: invalid resolution or depth\n");
8525
                        exit(1);
8526
                    }
8527
                    if (*p != 'x')
8528
                        goto graphic_error;
8529
                    p++;
8530
                    h = strtol(p, (char **)&p, 10);
8531
                    if (h <= 0)
8532
                        goto graphic_error;
8533
                    if (*p == 'x') {
8534
                        p++;
8535
                        depth = strtol(p, (char **)&p, 10);
8536
                        if (depth != 8 && depth != 15 && depth != 16 &&
8537
                            depth != 24 && depth != 32)
8538
                            goto graphic_error;
8539
                    } else if (*p == '\0') {
8540
                        depth = graphic_depth;
8541
                    } else {
8542
                        goto graphic_error;
8543
                    }
8544

    
8545
                    graphic_width = w;
8546
                    graphic_height = h;
8547
                    graphic_depth = depth;
8548
                }
8549
                break;
8550
            case QEMU_OPTION_echr:
8551
                {
8552
                    char *r;
8553
                    term_escape_char = strtol(optarg, &r, 0);
8554
                    if (r == optarg)
8555
                        printf("Bad argument to echr\n");
8556
                    break;
8557
                }
8558
            case QEMU_OPTION_monitor:
8559
                pstrcpy(monitor_device, sizeof(monitor_device), optarg);
8560
                break;
8561
            case QEMU_OPTION_serial:
8562
                if (serial_device_index >= MAX_SERIAL_PORTS) {
8563
                    fprintf(stderr, "qemu: too many serial ports\n");
8564
                    exit(1);
8565
                }
8566
                pstrcpy(serial_devices[serial_device_index],
8567
                        sizeof(serial_devices[0]), optarg);
8568
                serial_device_index++;
8569
                break;
8570
            case QEMU_OPTION_parallel:
8571
                if (parallel_device_index >= MAX_PARALLEL_PORTS) {
8572
                    fprintf(stderr, "qemu: too many parallel ports\n");
8573
                    exit(1);
8574
                }
8575
                pstrcpy(parallel_devices[parallel_device_index],
8576
                        sizeof(parallel_devices[0]), optarg);
8577
                parallel_device_index++;
8578
                break;
8579
            case QEMU_OPTION_loadvm:
8580
                loadvm = optarg;
8581
                break;
8582
            case QEMU_OPTION_full_screen:
8583
                full_screen = 1;
8584
                break;
8585
#ifdef CONFIG_SDL
8586
            case QEMU_OPTION_no_frame:
8587
                no_frame = 1;
8588
                break;
8589
            case QEMU_OPTION_alt_grab:
8590
                alt_grab = 1;
8591
                break;
8592
            case QEMU_OPTION_no_quit:
8593
                no_quit = 1;
8594
                break;
8595
#endif
8596
            case QEMU_OPTION_pidfile:
8597
                pid_file = optarg;
8598
                break;
8599
#ifdef TARGET_I386
8600
            case QEMU_OPTION_win2k_hack:
8601
                win2k_install_hack = 1;
8602
                break;
8603
#endif
8604
#ifdef USE_KQEMU
8605
            case QEMU_OPTION_no_kqemu:
8606
                kqemu_allowed = 0;
8607
                break;
8608
            case QEMU_OPTION_kernel_kqemu:
8609
                kqemu_allowed = 2;
8610
                break;
8611
#endif
8612
            case QEMU_OPTION_usb:
8613
                usb_enabled = 1;
8614
                break;
8615
            case QEMU_OPTION_usbdevice:
8616
                usb_enabled = 1;
8617
                if (usb_devices_index >= MAX_USB_CMDLINE) {
8618
                    fprintf(stderr, "Too many USB devices\n");
8619
                    exit(1);
8620
                }
8621
                pstrcpy(usb_devices[usb_devices_index],
8622
                        sizeof(usb_devices[usb_devices_index]),
8623
                        optarg);
8624
                usb_devices_index++;
8625
                break;
8626
            case QEMU_OPTION_smp:
8627
                smp_cpus = atoi(optarg);
8628
                if (smp_cpus < 1 || smp_cpus > MAX_CPUS) {
8629
                    fprintf(stderr, "Invalid number of CPUs\n");
8630
                    exit(1);
8631
                }
8632
                break;
8633
            case QEMU_OPTION_vnc:
8634
                vnc_display = optarg;
8635
                break;
8636
            case QEMU_OPTION_no_acpi:
8637
                acpi_enabled = 0;
8638
                break;
8639
            case QEMU_OPTION_no_reboot:
8640
                no_reboot = 1;
8641
                break;
8642
            case QEMU_OPTION_show_cursor:
8643
                cursor_hide = 0;
8644
                break;
8645
            case QEMU_OPTION_daemonize:
8646
                daemonize = 1;
8647
                break;
8648
            case QEMU_OPTION_option_rom:
8649
                if (nb_option_roms >= MAX_OPTION_ROMS) {
8650
                    fprintf(stderr, "Too many option ROMs\n");
8651
                    exit(1);
8652
                }
8653
                option_rom[nb_option_roms] = optarg;
8654
                nb_option_roms++;
8655
                break;
8656
            case QEMU_OPTION_semihosting:
8657
                semihosting_enabled = 1;
8658
                break;
8659
            case QEMU_OPTION_name:
8660
                qemu_name = optarg;
8661
                break;
8662
#ifdef TARGET_SPARC
8663
            case QEMU_OPTION_prom_env:
8664
                if (nb_prom_envs >= MAX_PROM_ENVS) {
8665
                    fprintf(stderr, "Too many prom variables\n");
8666
                    exit(1);
8667
                }
8668
                prom_envs[nb_prom_envs] = optarg;
8669
                nb_prom_envs++;
8670
                break;
8671
#endif
8672
#ifdef TARGET_ARM
8673
            case QEMU_OPTION_old_param:
8674
                old_param = 1;
8675
                break;
8676
#endif
8677
            case QEMU_OPTION_clock:
8678
                configure_alarms(optarg);
8679
                break;
8680
            case QEMU_OPTION_startdate:
8681
                {
8682
                    struct tm tm;
8683
                    if (!strcmp(optarg, "now")) {
8684
                        rtc_start_date = -1;
8685
                    } else {
8686
                        if (sscanf(optarg, "%d-%d-%dT%d:%d:%d",
8687
                               &tm.tm_year,
8688
                               &tm.tm_mon,
8689
                               &tm.tm_mday,
8690
                               &tm.tm_hour,
8691
                               &tm.tm_min,
8692
                               &tm.tm_sec) == 6) {
8693
                            /* OK */
8694
                        } else if (sscanf(optarg, "%d-%d-%d",
8695
                                          &tm.tm_year,
8696
                                          &tm.tm_mon,
8697
                                          &tm.tm_mday) == 3) {
8698
                            tm.tm_hour = 0;
8699
                            tm.tm_min = 0;
8700
                            tm.tm_sec = 0;
8701
                        } else {
8702
                            goto date_fail;
8703
                        }
8704
                        tm.tm_year -= 1900;
8705
                        tm.tm_mon--;
8706
                        rtc_start_date = mktimegm(&tm);
8707
                        if (rtc_start_date == -1) {
8708
                        date_fail:
8709
                            fprintf(stderr, "Invalid date format. Valid format are:\n"
8710
                                    "'now' or '2006-06-17T16:01:21' or '2006-06-17'\n");
8711
                            exit(1);
8712
                        }
8713
                    }
8714
                }
8715
                break;
8716
            }
8717
        }
8718
    }
8719

    
8720
#ifndef _WIN32
8721
    if (daemonize && !nographic && vnc_display == NULL) {
8722
        fprintf(stderr, "Can only daemonize if using -nographic or -vnc\n");
8723
        daemonize = 0;
8724
    }
8725

    
8726
    if (daemonize) {
8727
        pid_t pid;
8728

    
8729
        if (pipe(fds) == -1)
8730
            exit(1);
8731

    
8732
        pid = fork();
8733
        if (pid > 0) {
8734
            uint8_t status;
8735
            ssize_t len;
8736

    
8737
            close(fds[1]);
8738

    
8739
        again:
8740
            len = read(fds[0], &status, 1);
8741
            if (len == -1 && (errno == EINTR))
8742
                goto again;
8743

    
8744
            if (len != 1)
8745
                exit(1);
8746
            else if (status == 1) {
8747
                fprintf(stderr, "Could not acquire pidfile\n");
8748
                exit(1);
8749
            } else
8750
                exit(0);
8751
        } else if (pid < 0)
8752
            exit(1);
8753

    
8754
        setsid();
8755

    
8756
        pid = fork();
8757
        if (pid > 0)
8758
            exit(0);
8759
        else if (pid < 0)
8760
            exit(1);
8761

    
8762
        umask(027);
8763
        chdir("/");
8764

    
8765
        signal(SIGTSTP, SIG_IGN);
8766
        signal(SIGTTOU, SIG_IGN);
8767
        signal(SIGTTIN, SIG_IGN);
8768
    }
8769
#endif
8770

    
8771
    if (pid_file && qemu_create_pidfile(pid_file) != 0) {
8772
        if (daemonize) {
8773
            uint8_t status = 1;
8774
            write(fds[1], &status, 1);
8775
        } else
8776
            fprintf(stderr, "Could not acquire pid file\n");
8777
        exit(1);
8778
    }
8779

    
8780
#ifdef USE_KQEMU
8781
    if (smp_cpus > 1)
8782
        kqemu_allowed = 0;
8783
#endif
8784
    linux_boot = (kernel_filename != NULL);
8785
    net_boot = (boot_devices_bitmap >> ('n' - 'a')) & 0xF;
8786

    
8787
    /* XXX: this should not be: some embedded targets just have flash */
8788
    if (!linux_boot && net_boot == 0 &&
8789
        nb_drives_opt == 0)
8790
        help(1);
8791

    
8792
    /* boot to floppy or the default cd if no hard disk defined yet */
8793
    if (!boot_devices[0]) {
8794
        boot_devices = "cad";
8795
    }
8796
    setvbuf(stdout, NULL, _IOLBF, 0);
8797

    
8798
    init_timers();
8799
    init_timer_alarm();
8800
    qemu_aio_init();
8801

    
8802
#ifdef _WIN32
8803
    socket_init();
8804
#endif
8805

    
8806
    /* init network clients */
8807
    if (nb_net_clients == 0) {
8808
        /* if no clients, we use a default config */
8809
        pstrcpy(net_clients[0], sizeof(net_clients[0]),
8810
                "nic");
8811
        pstrcpy(net_clients[1], sizeof(net_clients[0]),
8812
                "user");
8813
        nb_net_clients = 2;
8814
    }
8815

    
8816
    for(i = 0;i < nb_net_clients; i++) {
8817
        if (net_client_init(net_clients[i]) < 0)
8818
            exit(1);
8819
    }
8820
    for(vlan = first_vlan; vlan != NULL; vlan = vlan->next) {
8821
        if (vlan->nb_guest_devs == 0 && vlan->nb_host_devs == 0)
8822
            continue;
8823
        if (vlan->nb_guest_devs == 0) {
8824
            fprintf(stderr, "Invalid vlan (%d) with no nics\n", vlan->id);
8825
            exit(1);
8826
        }
8827
        if (vlan->nb_host_devs == 0)
8828
            fprintf(stderr,
8829
                    "Warning: vlan %d is not connected to host network\n",
8830
                    vlan->id);
8831
    }
8832

    
8833
#ifdef TARGET_I386
8834
    /* XXX: this should be moved in the PC machine instantiation code */
8835
    if (net_boot != 0) {
8836
        int netroms = 0;
8837
        for (i = 0; i < nb_nics && i < 4; i++) {
8838
            const char *model = nd_table[i].model;
8839
            char buf[1024];
8840
            if (net_boot & (1 << i)) {
8841
                if (model == NULL)
8842
                    model = "ne2k_pci";
8843
                snprintf(buf, sizeof(buf), "%s/pxe-%s.bin", bios_dir, model);
8844
                if (get_image_size(buf) > 0) {
8845
                    if (nb_option_roms >= MAX_OPTION_ROMS) {
8846
                        fprintf(stderr, "Too many option ROMs\n");
8847
                        exit(1);
8848
                    }
8849
                    option_rom[nb_option_roms] = strdup(buf);
8850
                    nb_option_roms++;
8851
                    netroms++;
8852
                }
8853
            }
8854
        }
8855
        if (netroms == 0) {
8856
            fprintf(stderr, "No valid PXE rom found for network device\n");
8857
            exit(1);
8858
        }
8859
    }
8860
#endif
8861

    
8862
    /* init the memory */
8863
    phys_ram_size = ram_size + vga_ram_size + MAX_BIOS_SIZE;
8864

    
8865
    phys_ram_base = qemu_vmalloc(phys_ram_size);
8866
    if (!phys_ram_base) {
8867
        fprintf(stderr, "Could not allocate physical memory\n");
8868
        exit(1);
8869
    }
8870

    
8871
    bdrv_init();
8872

    
8873
    /* we always create the cdrom drive, even if no disk is there */
8874

    
8875
    if (nb_drives_opt < MAX_DRIVES)
8876
        drive_add(NULL, CDROM_ALIAS);
8877

    
8878
    /* we always create at least one floppy */
8879

    
8880
    if (nb_drives_opt < MAX_DRIVES)
8881
        drive_add(NULL, FD_ALIAS, 0);
8882

    
8883
    /* we always create one sd slot, even if no card is in it */
8884

    
8885
    if (nb_drives_opt < MAX_DRIVES)
8886
        drive_add(NULL, SD_ALIAS);
8887

    
8888
    /* open the virtual block devices */
8889

    
8890
    for(i = 0; i < nb_drives_opt; i++)
8891
        if (drive_init(&drives_opt[i], snapshot, machine) == -1)
8892
            exit(1);
8893

    
8894
    register_savevm("timer", 0, 2, timer_save, timer_load, NULL);
8895
    register_savevm("ram", 0, 2, ram_save, ram_load, NULL);
8896

    
8897
    init_ioports();
8898

    
8899
    /* terminal init */
8900
    memset(&display_state, 0, sizeof(display_state));
8901
    if (nographic) {
8902
        /* nearly nothing to do */
8903
        dumb_display_init(ds);
8904
    } else if (vnc_display != NULL) {
8905
        vnc_display_init(ds);
8906
        if (vnc_display_open(ds, vnc_display) < 0)
8907
            exit(1);
8908
    } else {
8909
#if defined(CONFIG_SDL)
8910
        sdl_display_init(ds, full_screen, no_frame);
8911
#elif defined(CONFIG_COCOA)
8912
        cocoa_display_init(ds, full_screen);
8913
#else
8914
        dumb_display_init(ds);
8915
#endif
8916
    }
8917

    
8918
    /* Maintain compatibility with multiple stdio monitors */
8919
    if (!strcmp(monitor_device,"stdio")) {
8920
        for (i = 0; i < MAX_SERIAL_PORTS; i++) {
8921
            if (!strcmp(serial_devices[i],"mon:stdio")) {
8922
                monitor_device[0] = '\0';
8923
                break;
8924
            } else if (!strcmp(serial_devices[i],"stdio")) {
8925
                monitor_device[0] = '\0';
8926
                pstrcpy(serial_devices[0], sizeof(serial_devices[0]), "mon:stdio");
8927
                break;
8928
            }
8929
        }
8930
    }
8931
    if (monitor_device[0] != '\0') {
8932
        monitor_hd = qemu_chr_open(monitor_device);
8933
        if (!monitor_hd) {
8934
            fprintf(stderr, "qemu: could not open monitor device '%s'\n", monitor_device);
8935
            exit(1);
8936
        }
8937
        monitor_init(monitor_hd, !nographic);
8938
    }
8939

    
8940
    for(i = 0; i < MAX_SERIAL_PORTS; i++) {
8941
        const char *devname = serial_devices[i];
8942
        if (devname[0] != '\0' && strcmp(devname, "none")) {
8943
            serial_hds[i] = qemu_chr_open(devname);
8944
            if (!serial_hds[i]) {
8945
                fprintf(stderr, "qemu: could not open serial device '%s'\n",
8946
                        devname);
8947
                exit(1);
8948
            }
8949
            if (strstart(devname, "vc", 0))
8950
                qemu_chr_printf(serial_hds[i], "serial%d console\r\n", i);
8951
        }
8952
    }
8953

    
8954
    for(i = 0; i < MAX_PARALLEL_PORTS; i++) {
8955
        const char *devname = parallel_devices[i];
8956
        if (devname[0] != '\0' && strcmp(devname, "none")) {
8957
            parallel_hds[i] = qemu_chr_open(devname);
8958
            if (!parallel_hds[i]) {
8959
                fprintf(stderr, "qemu: could not open parallel device '%s'\n",
8960
                        devname);
8961
                exit(1);
8962
            }
8963
            if (strstart(devname, "vc", 0))
8964
                qemu_chr_printf(parallel_hds[i], "parallel%d console\r\n", i);
8965
        }
8966
    }
8967

    
8968
    machine->init(ram_size, vga_ram_size, boot_devices, ds,
8969
                  kernel_filename, kernel_cmdline, initrd_filename, cpu_model);
8970

    
8971
    /* init USB devices */
8972
    if (usb_enabled) {
8973
        for(i = 0; i < usb_devices_index; i++) {
8974
            if (usb_device_add(usb_devices[i]) < 0) {
8975
                fprintf(stderr, "Warning: could not add USB device %s\n",
8976
                        usb_devices[i]);
8977
            }
8978
        }
8979
    }
8980

    
8981
    if (display_state.dpy_refresh) {
8982
        display_state.gui_timer = qemu_new_timer(rt_clock, gui_update, &display_state);
8983
        qemu_mod_timer(display_state.gui_timer, qemu_get_clock(rt_clock));
8984
    }
8985

    
8986
#ifdef CONFIG_GDBSTUB
8987
    if (use_gdbstub) {
8988
        /* XXX: use standard host:port notation and modify options
8989
           accordingly. */
8990
        if (gdbserver_start(gdbstub_port) < 0) {
8991
            fprintf(stderr, "qemu: could not open gdbstub device on port '%s'\n",
8992
                    gdbstub_port);
8993
            exit(1);
8994
        }
8995
    }
8996
#endif
8997

    
8998
    if (loadvm)
8999
        do_loadvm(loadvm);
9000

    
9001
    {
9002
        /* XXX: simplify init */
9003
        read_passwords();
9004
        if (autostart) {
9005
            vm_start();
9006
        }
9007
    }
9008

    
9009
    if (daemonize) {
9010
        uint8_t status = 0;
9011
        ssize_t len;
9012
        int fd;
9013

    
9014
    again1:
9015
        len = write(fds[1], &status, 1);
9016
        if (len == -1 && (errno == EINTR))
9017
            goto again1;
9018

    
9019
        if (len != 1)
9020
            exit(1);
9021

    
9022
        TFR(fd = open("/dev/null", O_RDWR));
9023
        if (fd == -1)
9024
            exit(1);
9025

    
9026
        dup2(fd, 0);
9027
        dup2(fd, 1);
9028
        dup2(fd, 2);
9029

    
9030
        close(fd);
9031
    }
9032

    
9033
    main_loop();
9034
    quit_timers();
9035

    
9036
#if !defined(_WIN32)
9037
    /* close network clients */
9038
    for(vlan = first_vlan; vlan != NULL; vlan = vlan->next) {
9039
        VLANClientState *vc;
9040

    
9041
        for(vc = vlan->first_client; vc != NULL; vc = vc->next) {
9042
            if (vc->fd_read == tap_receive) {
9043
                char ifname[64];
9044
                TAPState *s = vc->opaque;
9045

    
9046
                if (sscanf(vc->info_str, "tap: ifname=%63s ", ifname) == 1 &&
9047
                    s->down_script[0])
9048
                    launch_script(s->down_script, ifname, s->fd);
9049
            }
9050
        }
9051
    }
9052
#endif
9053
    return 0;
9054
}