Statistics
| Branch: | Revision:

root / cpu-all.h @ a1c7273b

History | View | Annotate | Download (24.1 kB)

1
/*
2
 * defines common to all virtual CPUs
3
 *
4
 *  Copyright (c) 2003 Fabrice Bellard
5
 *
6
 * This library is free software; you can redistribute it and/or
7
 * modify it under the terms of the GNU Lesser General Public
8
 * License as published by the Free Software Foundation; either
9
 * version 2 of the License, or (at your option) any later version.
10
 *
11
 * This library is distributed in the hope that it will be useful,
12
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14
 * Lesser General Public License for more details.
15
 *
16
 * You should have received a copy of the GNU Lesser General Public
17
 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18
 */
19
#ifndef CPU_ALL_H
20
#define CPU_ALL_H
21

    
22
#include "qemu-common.h"
23
#include "cpu-common.h"
24

    
25
/* some important defines:
26
 *
27
 * WORDS_ALIGNED : if defined, the host cpu can only make word aligned
28
 * memory accesses.
29
 *
30
 * HOST_WORDS_BIGENDIAN : if defined, the host cpu is big endian and
31
 * otherwise little endian.
32
 *
33
 * (TARGET_WORDS_ALIGNED : same for target cpu (not supported yet))
34
 *
35
 * TARGET_WORDS_BIGENDIAN : same for target cpu
36
 */
37

    
38
#include "softfloat.h"
39

    
40
#if defined(HOST_WORDS_BIGENDIAN) != defined(TARGET_WORDS_BIGENDIAN)
41
#define BSWAP_NEEDED
42
#endif
43

    
44
#ifdef BSWAP_NEEDED
45

    
46
static inline uint16_t tswap16(uint16_t s)
47
{
48
    return bswap16(s);
49
}
50

    
51
static inline uint32_t tswap32(uint32_t s)
52
{
53
    return bswap32(s);
54
}
55

    
56
static inline uint64_t tswap64(uint64_t s)
57
{
58
    return bswap64(s);
59
}
60

    
61
static inline void tswap16s(uint16_t *s)
62
{
63
    *s = bswap16(*s);
64
}
65

    
66
static inline void tswap32s(uint32_t *s)
67
{
68
    *s = bswap32(*s);
69
}
70

    
71
static inline void tswap64s(uint64_t *s)
72
{
73
    *s = bswap64(*s);
74
}
75

    
76
#else
77

    
78
static inline uint16_t tswap16(uint16_t s)
79
{
80
    return s;
81
}
82

    
83
static inline uint32_t tswap32(uint32_t s)
84
{
85
    return s;
86
}
87

    
88
static inline uint64_t tswap64(uint64_t s)
89
{
90
    return s;
91
}
92

    
93
static inline void tswap16s(uint16_t *s)
94
{
95
}
96

    
97
static inline void tswap32s(uint32_t *s)
98
{
99
}
100

    
101
static inline void tswap64s(uint64_t *s)
102
{
103
}
104

    
105
#endif
106

    
107
#if TARGET_LONG_SIZE == 4
108
#define tswapl(s) tswap32(s)
109
#define tswapls(s) tswap32s((uint32_t *)(s))
110
#define bswaptls(s) bswap32s(s)
111
#else
112
#define tswapl(s) tswap64(s)
113
#define tswapls(s) tswap64s((uint64_t *)(s))
114
#define bswaptls(s) bswap64s(s)
115
#endif
116

    
117
typedef union {
118
    float32 f;
119
    uint32_t l;
120
} CPU_FloatU;
121

    
122
/* NOTE: arm FPA is horrible as double 32 bit words are stored in big
123
   endian ! */
124
typedef union {
125
    float64 d;
126
#if defined(HOST_WORDS_BIGENDIAN) \
127
    || (defined(__arm__) && !defined(__VFP_FP__) && !defined(CONFIG_SOFTFLOAT))
128
    struct {
129
        uint32_t upper;
130
        uint32_t lower;
131
    } l;
132
#else
133
    struct {
134
        uint32_t lower;
135
        uint32_t upper;
136
    } l;
137
#endif
138
    uint64_t ll;
139
} CPU_DoubleU;
140

    
141
#if defined(FLOATX80)
142
typedef union {
143
     floatx80 d;
144
     struct {
145
         uint64_t lower;
146
         uint16_t upper;
147
     } l;
148
} CPU_LDoubleU;
149
#endif
150

    
151
#if defined(CONFIG_SOFTFLOAT)
152
typedef union {
153
    float128 q;
154
#if defined(HOST_WORDS_BIGENDIAN)
155
    struct {
156
        uint32_t upmost;
157
        uint32_t upper;
158
        uint32_t lower;
159
        uint32_t lowest;
160
    } l;
161
    struct {
162
        uint64_t upper;
163
        uint64_t lower;
164
    } ll;
165
#else
166
    struct {
167
        uint32_t lowest;
168
        uint32_t lower;
169
        uint32_t upper;
170
        uint32_t upmost;
171
    } l;
172
    struct {
173
        uint64_t lower;
174
        uint64_t upper;
175
    } ll;
176
#endif
177
} CPU_QuadU;
178
#endif
179

    
180
/* CPU memory access without any memory or io remapping */
181

    
182
/*
183
 * the generic syntax for the memory accesses is:
184
 *
185
 * load: ld{type}{sign}{size}{endian}_{access_type}(ptr)
186
 *
187
 * store: st{type}{size}{endian}_{access_type}(ptr, val)
188
 *
189
 * type is:
190
 * (empty): integer access
191
 *   f    : float access
192
 *
193
 * sign is:
194
 * (empty): for floats or 32 bit size
195
 *   u    : unsigned
196
 *   s    : signed
197
 *
198
 * size is:
199
 *   b: 8 bits
200
 *   w: 16 bits
201
 *   l: 32 bits
202
 *   q: 64 bits
203
 *
204
 * endian is:
205
 * (empty): target cpu endianness or 8 bit access
206
 *   r    : reversed target cpu endianness (not implemented yet)
207
 *   be   : big endian (not implemented yet)
208
 *   le   : little endian (not implemented yet)
209
 *
210
 * access_type is:
211
 *   raw    : host memory access
212
 *   user   : user mode access using soft MMU
213
 *   kernel : kernel mode access using soft MMU
214
 */
215
static inline int ldub_p(const void *ptr)
216
{
217
    return *(uint8_t *)ptr;
218
}
219

    
220
static inline int ldsb_p(const void *ptr)
221
{
222
    return *(int8_t *)ptr;
223
}
224

    
225
static inline void stb_p(void *ptr, int v)
226
{
227
    *(uint8_t *)ptr = v;
228
}
229

    
230
/* NOTE: on arm, putting 2 in /proc/sys/debug/alignment so that the
231
   kernel handles unaligned load/stores may give better results, but
232
   it is a system wide setting : bad */
233
#if defined(HOST_WORDS_BIGENDIAN) || defined(WORDS_ALIGNED)
234

    
235
/* conservative code for little endian unaligned accesses */
236
static inline int lduw_le_p(const void *ptr)
237
{
238
#ifdef _ARCH_PPC
239
    int val;
240
    __asm__ __volatile__ ("lhbrx %0,0,%1" : "=r" (val) : "r" (ptr));
241
    return val;
242
#else
243
    const uint8_t *p = ptr;
244
    return p[0] | (p[1] << 8);
245
#endif
246
}
247

    
248
static inline int ldsw_le_p(const void *ptr)
249
{
250
#ifdef _ARCH_PPC
251
    int val;
252
    __asm__ __volatile__ ("lhbrx %0,0,%1" : "=r" (val) : "r" (ptr));
253
    return (int16_t)val;
254
#else
255
    const uint8_t *p = ptr;
256
    return (int16_t)(p[0] | (p[1] << 8));
257
#endif
258
}
259

    
260
static inline int ldl_le_p(const void *ptr)
261
{
262
#ifdef _ARCH_PPC
263
    int val;
264
    __asm__ __volatile__ ("lwbrx %0,0,%1" : "=r" (val) : "r" (ptr));
265
    return val;
266
#else
267
    const uint8_t *p = ptr;
268
    return p[0] | (p[1] << 8) | (p[2] << 16) | (p[3] << 24);
269
#endif
270
}
271

    
272
static inline uint64_t ldq_le_p(const void *ptr)
273
{
274
    const uint8_t *p = ptr;
275
    uint32_t v1, v2;
276
    v1 = ldl_le_p(p);
277
    v2 = ldl_le_p(p + 4);
278
    return v1 | ((uint64_t)v2 << 32);
279
}
280

    
281
static inline void stw_le_p(void *ptr, int v)
282
{
283
#ifdef _ARCH_PPC
284
    __asm__ __volatile__ ("sthbrx %1,0,%2" : "=m" (*(uint16_t *)ptr) : "r" (v), "r" (ptr));
285
#else
286
    uint8_t *p = ptr;
287
    p[0] = v;
288
    p[1] = v >> 8;
289
#endif
290
}
291

    
292
static inline void stl_le_p(void *ptr, int v)
293
{
294
#ifdef _ARCH_PPC
295
    __asm__ __volatile__ ("stwbrx %1,0,%2" : "=m" (*(uint32_t *)ptr) : "r" (v), "r" (ptr));
296
#else
297
    uint8_t *p = ptr;
298
    p[0] = v;
299
    p[1] = v >> 8;
300
    p[2] = v >> 16;
301
    p[3] = v >> 24;
302
#endif
303
}
304

    
305
static inline void stq_le_p(void *ptr, uint64_t v)
306
{
307
    uint8_t *p = ptr;
308
    stl_le_p(p, (uint32_t)v);
309
    stl_le_p(p + 4, v >> 32);
310
}
311

    
312
/* float access */
313

    
314
static inline float32 ldfl_le_p(const void *ptr)
315
{
316
    union {
317
        float32 f;
318
        uint32_t i;
319
    } u;
320
    u.i = ldl_le_p(ptr);
321
    return u.f;
322
}
323

    
324
static inline void stfl_le_p(void *ptr, float32 v)
325
{
326
    union {
327
        float32 f;
328
        uint32_t i;
329
    } u;
330
    u.f = v;
331
    stl_le_p(ptr, u.i);
332
}
333

    
334
static inline float64 ldfq_le_p(const void *ptr)
335
{
336
    CPU_DoubleU u;
337
    u.l.lower = ldl_le_p(ptr);
338
    u.l.upper = ldl_le_p(ptr + 4);
339
    return u.d;
340
}
341

    
342
static inline void stfq_le_p(void *ptr, float64 v)
343
{
344
    CPU_DoubleU u;
345
    u.d = v;
346
    stl_le_p(ptr, u.l.lower);
347
    stl_le_p(ptr + 4, u.l.upper);
348
}
349

    
350
#else
351

    
352
static inline int lduw_le_p(const void *ptr)
353
{
354
    return *(uint16_t *)ptr;
355
}
356

    
357
static inline int ldsw_le_p(const void *ptr)
358
{
359
    return *(int16_t *)ptr;
360
}
361

    
362
static inline int ldl_le_p(const void *ptr)
363
{
364
    return *(uint32_t *)ptr;
365
}
366

    
367
static inline uint64_t ldq_le_p(const void *ptr)
368
{
369
    return *(uint64_t *)ptr;
370
}
371

    
372
static inline void stw_le_p(void *ptr, int v)
373
{
374
    *(uint16_t *)ptr = v;
375
}
376

    
377
static inline void stl_le_p(void *ptr, int v)
378
{
379
    *(uint32_t *)ptr = v;
380
}
381

    
382
static inline void stq_le_p(void *ptr, uint64_t v)
383
{
384
    *(uint64_t *)ptr = v;
385
}
386

    
387
/* float access */
388

    
389
static inline float32 ldfl_le_p(const void *ptr)
390
{
391
    return *(float32 *)ptr;
392
}
393

    
394
static inline float64 ldfq_le_p(const void *ptr)
395
{
396
    return *(float64 *)ptr;
397
}
398

    
399
static inline void stfl_le_p(void *ptr, float32 v)
400
{
401
    *(float32 *)ptr = v;
402
}
403

    
404
static inline void stfq_le_p(void *ptr, float64 v)
405
{
406
    *(float64 *)ptr = v;
407
}
408
#endif
409

    
410
#if !defined(HOST_WORDS_BIGENDIAN) || defined(WORDS_ALIGNED)
411

    
412
static inline int lduw_be_p(const void *ptr)
413
{
414
#if defined(__i386__)
415
    int val;
416
    asm volatile ("movzwl %1, %0\n"
417
                  "xchgb %b0, %h0\n"
418
                  : "=q" (val)
419
                  : "m" (*(uint16_t *)ptr));
420
    return val;
421
#else
422
    const uint8_t *b = ptr;
423
    return ((b[0] << 8) | b[1]);
424
#endif
425
}
426

    
427
static inline int ldsw_be_p(const void *ptr)
428
{
429
#if defined(__i386__)
430
    int val;
431
    asm volatile ("movzwl %1, %0\n"
432
                  "xchgb %b0, %h0\n"
433
                  : "=q" (val)
434
                  : "m" (*(uint16_t *)ptr));
435
    return (int16_t)val;
436
#else
437
    const uint8_t *b = ptr;
438
    return (int16_t)((b[0] << 8) | b[1]);
439
#endif
440
}
441

    
442
static inline int ldl_be_p(const void *ptr)
443
{
444
#if defined(__i386__) || defined(__x86_64__)
445
    int val;
446
    asm volatile ("movl %1, %0\n"
447
                  "bswap %0\n"
448
                  : "=r" (val)
449
                  : "m" (*(uint32_t *)ptr));
450
    return val;
451
#else
452
    const uint8_t *b = ptr;
453
    return (b[0] << 24) | (b[1] << 16) | (b[2] << 8) | b[3];
454
#endif
455
}
456

    
457
static inline uint64_t ldq_be_p(const void *ptr)
458
{
459
    uint32_t a,b;
460
    a = ldl_be_p(ptr);
461
    b = ldl_be_p((uint8_t *)ptr + 4);
462
    return (((uint64_t)a<<32)|b);
463
}
464

    
465
static inline void stw_be_p(void *ptr, int v)
466
{
467
#if defined(__i386__)
468
    asm volatile ("xchgb %b0, %h0\n"
469
                  "movw %w0, %1\n"
470
                  : "=q" (v)
471
                  : "m" (*(uint16_t *)ptr), "0" (v));
472
#else
473
    uint8_t *d = (uint8_t *) ptr;
474
    d[0] = v >> 8;
475
    d[1] = v;
476
#endif
477
}
478

    
479
static inline void stl_be_p(void *ptr, int v)
480
{
481
#if defined(__i386__) || defined(__x86_64__)
482
    asm volatile ("bswap %0\n"
483
                  "movl %0, %1\n"
484
                  : "=r" (v)
485
                  : "m" (*(uint32_t *)ptr), "0" (v));
486
#else
487
    uint8_t *d = (uint8_t *) ptr;
488
    d[0] = v >> 24;
489
    d[1] = v >> 16;
490
    d[2] = v >> 8;
491
    d[3] = v;
492
#endif
493
}
494

    
495
static inline void stq_be_p(void *ptr, uint64_t v)
496
{
497
    stl_be_p(ptr, v >> 32);
498
    stl_be_p((uint8_t *)ptr + 4, v);
499
}
500

    
501
/* float access */
502

    
503
static inline float32 ldfl_be_p(const void *ptr)
504
{
505
    union {
506
        float32 f;
507
        uint32_t i;
508
    } u;
509
    u.i = ldl_be_p(ptr);
510
    return u.f;
511
}
512

    
513
static inline void stfl_be_p(void *ptr, float32 v)
514
{
515
    union {
516
        float32 f;
517
        uint32_t i;
518
    } u;
519
    u.f = v;
520
    stl_be_p(ptr, u.i);
521
}
522

    
523
static inline float64 ldfq_be_p(const void *ptr)
524
{
525
    CPU_DoubleU u;
526
    u.l.upper = ldl_be_p(ptr);
527
    u.l.lower = ldl_be_p((uint8_t *)ptr + 4);
528
    return u.d;
529
}
530

    
531
static inline void stfq_be_p(void *ptr, float64 v)
532
{
533
    CPU_DoubleU u;
534
    u.d = v;
535
    stl_be_p(ptr, u.l.upper);
536
    stl_be_p((uint8_t *)ptr + 4, u.l.lower);
537
}
538

    
539
#else
540

    
541
static inline int lduw_be_p(const void *ptr)
542
{
543
    return *(uint16_t *)ptr;
544
}
545

    
546
static inline int ldsw_be_p(const void *ptr)
547
{
548
    return *(int16_t *)ptr;
549
}
550

    
551
static inline int ldl_be_p(const void *ptr)
552
{
553
    return *(uint32_t *)ptr;
554
}
555

    
556
static inline uint64_t ldq_be_p(const void *ptr)
557
{
558
    return *(uint64_t *)ptr;
559
}
560

    
561
static inline void stw_be_p(void *ptr, int v)
562
{
563
    *(uint16_t *)ptr = v;
564
}
565

    
566
static inline void stl_be_p(void *ptr, int v)
567
{
568
    *(uint32_t *)ptr = v;
569
}
570

    
571
static inline void stq_be_p(void *ptr, uint64_t v)
572
{
573
    *(uint64_t *)ptr = v;
574
}
575

    
576
/* float access */
577

    
578
static inline float32 ldfl_be_p(const void *ptr)
579
{
580
    return *(float32 *)ptr;
581
}
582

    
583
static inline float64 ldfq_be_p(const void *ptr)
584
{
585
    return *(float64 *)ptr;
586
}
587

    
588
static inline void stfl_be_p(void *ptr, float32 v)
589
{
590
    *(float32 *)ptr = v;
591
}
592

    
593
static inline void stfq_be_p(void *ptr, float64 v)
594
{
595
    *(float64 *)ptr = v;
596
}
597

    
598
#endif
599

    
600
/* target CPU memory access functions */
601
#if defined(TARGET_WORDS_BIGENDIAN)
602
#define lduw_p(p) lduw_be_p(p)
603
#define ldsw_p(p) ldsw_be_p(p)
604
#define ldl_p(p) ldl_be_p(p)
605
#define ldq_p(p) ldq_be_p(p)
606
#define ldfl_p(p) ldfl_be_p(p)
607
#define ldfq_p(p) ldfq_be_p(p)
608
#define stw_p(p, v) stw_be_p(p, v)
609
#define stl_p(p, v) stl_be_p(p, v)
610
#define stq_p(p, v) stq_be_p(p, v)
611
#define stfl_p(p, v) stfl_be_p(p, v)
612
#define stfq_p(p, v) stfq_be_p(p, v)
613
#else
614
#define lduw_p(p) lduw_le_p(p)
615
#define ldsw_p(p) ldsw_le_p(p)
616
#define ldl_p(p) ldl_le_p(p)
617
#define ldq_p(p) ldq_le_p(p)
618
#define ldfl_p(p) ldfl_le_p(p)
619
#define ldfq_p(p) ldfq_le_p(p)
620
#define stw_p(p, v) stw_le_p(p, v)
621
#define stl_p(p, v) stl_le_p(p, v)
622
#define stq_p(p, v) stq_le_p(p, v)
623
#define stfl_p(p, v) stfl_le_p(p, v)
624
#define stfq_p(p, v) stfq_le_p(p, v)
625
#endif
626

    
627
/* MMU memory access macros */
628

    
629
#if defined(CONFIG_USER_ONLY)
630
#include <assert.h>
631
#include "qemu-types.h"
632

    
633
/* On some host systems the guest address space is reserved on the host.
634
 * This allows the guest address space to be offset to a convenient location.
635
 */
636
#if defined(CONFIG_USE_GUEST_BASE)
637
extern unsigned long guest_base;
638
extern int have_guest_base;
639
extern unsigned long reserved_va;
640
#define GUEST_BASE guest_base
641
#define RESERVED_VA reserved_va
642
#else
643
#define GUEST_BASE 0ul
644
#define RESERVED_VA 0ul
645
#endif
646

    
647
/* All direct uses of g2h and h2g need to go away for usermode softmmu.  */
648
#define g2h(x) ((void *)((unsigned long)(x) + GUEST_BASE))
649

    
650
#if HOST_LONG_BITS <= TARGET_VIRT_ADDR_SPACE_BITS
651
#define h2g_valid(x) 1
652
#else
653
#define h2g_valid(x) ({ \
654
    unsigned long __guest = (unsigned long)(x) - GUEST_BASE; \
655
    __guest < (1ul << TARGET_VIRT_ADDR_SPACE_BITS); \
656
})
657
#endif
658

    
659
#define h2g(x) ({ \
660
    unsigned long __ret = (unsigned long)(x) - GUEST_BASE; \
661
    /* Check if given address fits target address space */ \
662
    assert(h2g_valid(x)); \
663
    (abi_ulong)__ret; \
664
})
665

    
666
#define saddr(x) g2h(x)
667
#define laddr(x) g2h(x)
668

    
669
#else /* !CONFIG_USER_ONLY */
670
/* NOTE: we use double casts if pointers and target_ulong have
671
   different sizes */
672
#define saddr(x) (uint8_t *)(long)(x)
673
#define laddr(x) (uint8_t *)(long)(x)
674
#endif
675

    
676
#define ldub_raw(p) ldub_p(laddr((p)))
677
#define ldsb_raw(p) ldsb_p(laddr((p)))
678
#define lduw_raw(p) lduw_p(laddr((p)))
679
#define ldsw_raw(p) ldsw_p(laddr((p)))
680
#define ldl_raw(p) ldl_p(laddr((p)))
681
#define ldq_raw(p) ldq_p(laddr((p)))
682
#define ldfl_raw(p) ldfl_p(laddr((p)))
683
#define ldfq_raw(p) ldfq_p(laddr((p)))
684
#define stb_raw(p, v) stb_p(saddr((p)), v)
685
#define stw_raw(p, v) stw_p(saddr((p)), v)
686
#define stl_raw(p, v) stl_p(saddr((p)), v)
687
#define stq_raw(p, v) stq_p(saddr((p)), v)
688
#define stfl_raw(p, v) stfl_p(saddr((p)), v)
689
#define stfq_raw(p, v) stfq_p(saddr((p)), v)
690

    
691

    
692
#if defined(CONFIG_USER_ONLY)
693

    
694
/* if user mode, no other memory access functions */
695
#define ldub(p) ldub_raw(p)
696
#define ldsb(p) ldsb_raw(p)
697
#define lduw(p) lduw_raw(p)
698
#define ldsw(p) ldsw_raw(p)
699
#define ldl(p) ldl_raw(p)
700
#define ldq(p) ldq_raw(p)
701
#define ldfl(p) ldfl_raw(p)
702
#define ldfq(p) ldfq_raw(p)
703
#define stb(p, v) stb_raw(p, v)
704
#define stw(p, v) stw_raw(p, v)
705
#define stl(p, v) stl_raw(p, v)
706
#define stq(p, v) stq_raw(p, v)
707
#define stfl(p, v) stfl_raw(p, v)
708
#define stfq(p, v) stfq_raw(p, v)
709

    
710
#define ldub_code(p) ldub_raw(p)
711
#define ldsb_code(p) ldsb_raw(p)
712
#define lduw_code(p) lduw_raw(p)
713
#define ldsw_code(p) ldsw_raw(p)
714
#define ldl_code(p) ldl_raw(p)
715
#define ldq_code(p) ldq_raw(p)
716

    
717
#define ldub_kernel(p) ldub_raw(p)
718
#define ldsb_kernel(p) ldsb_raw(p)
719
#define lduw_kernel(p) lduw_raw(p)
720
#define ldsw_kernel(p) ldsw_raw(p)
721
#define ldl_kernel(p) ldl_raw(p)
722
#define ldq_kernel(p) ldq_raw(p)
723
#define ldfl_kernel(p) ldfl_raw(p)
724
#define ldfq_kernel(p) ldfq_raw(p)
725
#define stb_kernel(p, v) stb_raw(p, v)
726
#define stw_kernel(p, v) stw_raw(p, v)
727
#define stl_kernel(p, v) stl_raw(p, v)
728
#define stq_kernel(p, v) stq_raw(p, v)
729
#define stfl_kernel(p, v) stfl_raw(p, v)
730
#define stfq_kernel(p, vt) stfq_raw(p, v)
731

    
732
#endif /* defined(CONFIG_USER_ONLY) */
733

    
734
/* page related stuff */
735

    
736
#define TARGET_PAGE_SIZE (1 << TARGET_PAGE_BITS)
737
#define TARGET_PAGE_MASK ~(TARGET_PAGE_SIZE - 1)
738
#define TARGET_PAGE_ALIGN(addr) (((addr) + TARGET_PAGE_SIZE - 1) & TARGET_PAGE_MASK)
739

    
740
/* ??? These should be the larger of unsigned long and target_ulong.  */
741
extern unsigned long qemu_real_host_page_size;
742
extern unsigned long qemu_host_page_bits;
743
extern unsigned long qemu_host_page_size;
744
extern unsigned long qemu_host_page_mask;
745

    
746
#define HOST_PAGE_ALIGN(addr) (((addr) + qemu_host_page_size - 1) & qemu_host_page_mask)
747

    
748
/* same as PROT_xxx */
749
#define PAGE_READ      0x0001
750
#define PAGE_WRITE     0x0002
751
#define PAGE_EXEC      0x0004
752
#define PAGE_BITS      (PAGE_READ | PAGE_WRITE | PAGE_EXEC)
753
#define PAGE_VALID     0x0008
754
/* original state of the write flag (used when tracking self-modifying
755
   code */
756
#define PAGE_WRITE_ORG 0x0010
757
#if defined(CONFIG_BSD) && defined(CONFIG_USER_ONLY)
758
/* FIXME: Code that sets/uses this is broken and needs to go away.  */
759
#define PAGE_RESERVED  0x0020
760
#endif
761

    
762
#if defined(CONFIG_USER_ONLY)
763
void page_dump(FILE *f);
764

    
765
typedef int (*walk_memory_regions_fn)(void *, abi_ulong,
766
                                      abi_ulong, unsigned long);
767
int walk_memory_regions(void *, walk_memory_regions_fn);
768

    
769
int page_get_flags(target_ulong address);
770
void page_set_flags(target_ulong start, target_ulong end, int flags);
771
int page_check_range(target_ulong start, target_ulong len, int flags);
772
#endif
773

    
774
CPUState *cpu_copy(CPUState *env);
775
CPUState *qemu_get_cpu(int cpu);
776

    
777
#define CPU_DUMP_CODE 0x00010000
778

    
779
void cpu_dump_state(CPUState *env, FILE *f, fprintf_function cpu_fprintf,
780
                    int flags);
781
void cpu_dump_statistics(CPUState *env, FILE *f, fprintf_function cpu_fprintf,
782
                         int flags);
783

    
784
void QEMU_NORETURN cpu_abort(CPUState *env, const char *fmt, ...)
785
    GCC_FMT_ATTR(2, 3);
786
extern CPUState *first_cpu;
787
extern CPUState *cpu_single_env;
788

    
789
#define CPU_INTERRUPT_HARD   0x02 /* hardware interrupt pending */
790
#define CPU_INTERRUPT_EXITTB 0x04 /* exit the current TB (use for x86 a20 case) */
791
#define CPU_INTERRUPT_TIMER  0x08 /* internal timer exception pending */
792
#define CPU_INTERRUPT_FIQ    0x10 /* Fast interrupt pending.  */
793
#define CPU_INTERRUPT_HALT   0x20 /* CPU halt wanted */
794
#define CPU_INTERRUPT_SMI    0x40 /* (x86 only) SMI interrupt pending */
795
#define CPU_INTERRUPT_DEBUG  0x80 /* Debug event occurred.  */
796
#define CPU_INTERRUPT_VIRQ   0x100 /* virtual interrupt pending.  */
797
#define CPU_INTERRUPT_NMI    0x200 /* NMI pending. */
798
#define CPU_INTERRUPT_INIT   0x400 /* INIT pending. */
799
#define CPU_INTERRUPT_SIPI   0x800 /* SIPI pending. */
800
#define CPU_INTERRUPT_MCE    0x1000 /* (x86 only) MCE pending. */
801

    
802
#ifndef CONFIG_USER_ONLY
803
typedef void (*CPUInterruptHandler)(CPUState *, int);
804

    
805
extern CPUInterruptHandler cpu_interrupt_handler;
806

    
807
static inline void cpu_interrupt(CPUState *s, int mask)
808
{
809
    cpu_interrupt_handler(s, mask);
810
}
811
#else /* USER_ONLY */
812
void cpu_interrupt(CPUState *env, int mask);
813
#endif /* USER_ONLY */
814

    
815
void cpu_reset_interrupt(CPUState *env, int mask);
816

    
817
void cpu_exit(CPUState *s);
818

    
819
int qemu_cpu_has_work(CPUState *env);
820

    
821
/* Breakpoint/watchpoint flags */
822
#define BP_MEM_READ           0x01
823
#define BP_MEM_WRITE          0x02
824
#define BP_MEM_ACCESS         (BP_MEM_READ | BP_MEM_WRITE)
825
#define BP_STOP_BEFORE_ACCESS 0x04
826
#define BP_WATCHPOINT_HIT     0x08
827
#define BP_GDB                0x10
828
#define BP_CPU                0x20
829

    
830
int cpu_breakpoint_insert(CPUState *env, target_ulong pc, int flags,
831
                          CPUBreakpoint **breakpoint);
832
int cpu_breakpoint_remove(CPUState *env, target_ulong pc, int flags);
833
void cpu_breakpoint_remove_by_ref(CPUState *env, CPUBreakpoint *breakpoint);
834
void cpu_breakpoint_remove_all(CPUState *env, int mask);
835
int cpu_watchpoint_insert(CPUState *env, target_ulong addr, target_ulong len,
836
                          int flags, CPUWatchpoint **watchpoint);
837
int cpu_watchpoint_remove(CPUState *env, target_ulong addr,
838
                          target_ulong len, int flags);
839
void cpu_watchpoint_remove_by_ref(CPUState *env, CPUWatchpoint *watchpoint);
840
void cpu_watchpoint_remove_all(CPUState *env, int mask);
841

    
842
#define SSTEP_ENABLE  0x1  /* Enable simulated HW single stepping */
843
#define SSTEP_NOIRQ   0x2  /* Do not use IRQ while single stepping */
844
#define SSTEP_NOTIMER 0x4  /* Do not Timers while single stepping */
845

    
846
void cpu_single_step(CPUState *env, int enabled);
847
void cpu_reset(CPUState *s);
848
int cpu_is_stopped(CPUState *env);
849
void run_on_cpu(CPUState *env, void (*func)(void *data), void *data);
850

    
851
#define CPU_LOG_TB_OUT_ASM (1 << 0)
852
#define CPU_LOG_TB_IN_ASM  (1 << 1)
853
#define CPU_LOG_TB_OP      (1 << 2)
854
#define CPU_LOG_TB_OP_OPT  (1 << 3)
855
#define CPU_LOG_INT        (1 << 4)
856
#define CPU_LOG_EXEC       (1 << 5)
857
#define CPU_LOG_PCALL      (1 << 6)
858
#define CPU_LOG_IOPORT     (1 << 7)
859
#define CPU_LOG_TB_CPU     (1 << 8)
860
#define CPU_LOG_RESET      (1 << 9)
861

    
862
/* define log items */
863
typedef struct CPULogItem {
864
    int mask;
865
    const char *name;
866
    const char *help;
867
} CPULogItem;
868

    
869
extern const CPULogItem cpu_log_items[];
870

    
871
void cpu_set_log(int log_flags);
872
void cpu_set_log_filename(const char *filename);
873
int cpu_str_to_log_mask(const char *str);
874

    
875
#if !defined(CONFIG_USER_ONLY)
876

    
877
/* Return the physical page corresponding to a virtual one. Use it
878
   only for debugging because no protection checks are done. Return -1
879
   if no page found. */
880
target_phys_addr_t cpu_get_phys_page_debug(CPUState *env, target_ulong addr);
881

    
882
/* memory API */
883

    
884
extern int phys_ram_fd;
885
extern ram_addr_t ram_size;
886

    
887
/* RAM is pre-allocated and passed into qemu_ram_alloc_from_ptr */
888
#define RAM_PREALLOC_MASK   (1 << 0)
889

    
890
typedef struct RAMBlock {
891
    uint8_t *host;
892
    ram_addr_t offset;
893
    ram_addr_t length;
894
    uint32_t flags;
895
    char idstr[256];
896
    QLIST_ENTRY(RAMBlock) next;
897
#if defined(__linux__) && !defined(TARGET_S390X)
898
    int fd;
899
#endif
900
} RAMBlock;
901

    
902
typedef struct RAMList {
903
    uint8_t *phys_dirty;
904
    QLIST_HEAD(ram, RAMBlock) blocks;
905
} RAMList;
906
extern RAMList ram_list;
907

    
908
extern const char *mem_path;
909
extern int mem_prealloc;
910

    
911
/* physical memory access */
912

    
913
/* MMIO pages are identified by a combination of an IO device index and
914
   3 flags.  The ROMD code stores the page ram offset in iotlb entry, 
915
   so only a limited number of ids are avaiable.  */
916

    
917
#define IO_MEM_NB_ENTRIES  (1 << (TARGET_PAGE_BITS  - IO_MEM_SHIFT))
918

    
919
/* Flags stored in the low bits of the TLB virtual address.  These are
920
   defined so that fast path ram access is all zeros.  */
921
/* Zero if TLB entry is valid.  */
922
#define TLB_INVALID_MASK   (1 << 3)
923
/* Set if TLB entry references a clean RAM page.  The iotlb entry will
924
   contain the page physical address.  */
925
#define TLB_NOTDIRTY    (1 << 4)
926
/* Set if TLB entry is an IO callback.  */
927
#define TLB_MMIO        (1 << 5)
928

    
929
#define VGA_DIRTY_FLAG       0x01
930
#define CODE_DIRTY_FLAG      0x02
931
#define MIGRATION_DIRTY_FLAG 0x08
932

    
933
/* read dirty bit (return 0 or 1) */
934
static inline int cpu_physical_memory_is_dirty(ram_addr_t addr)
935
{
936
    return ram_list.phys_dirty[addr >> TARGET_PAGE_BITS] == 0xff;
937
}
938

    
939
static inline int cpu_physical_memory_get_dirty_flags(ram_addr_t addr)
940
{
941
    return ram_list.phys_dirty[addr >> TARGET_PAGE_BITS];
942
}
943

    
944
static inline int cpu_physical_memory_get_dirty(ram_addr_t addr,
945
                                                int dirty_flags)
946
{
947
    return ram_list.phys_dirty[addr >> TARGET_PAGE_BITS] & dirty_flags;
948
}
949

    
950
static inline void cpu_physical_memory_set_dirty(ram_addr_t addr)
951
{
952
    ram_list.phys_dirty[addr >> TARGET_PAGE_BITS] = 0xff;
953
}
954

    
955
static inline int cpu_physical_memory_set_dirty_flags(ram_addr_t addr,
956
                                                      int dirty_flags)
957
{
958
    return ram_list.phys_dirty[addr >> TARGET_PAGE_BITS] |= dirty_flags;
959
}
960

    
961
static inline void cpu_physical_memory_mask_dirty_range(ram_addr_t start,
962
                                                        int length,
963
                                                        int dirty_flags)
964
{
965
    int i, mask, len;
966
    uint8_t *p;
967

    
968
    len = length >> TARGET_PAGE_BITS;
969
    mask = ~dirty_flags;
970
    p = ram_list.phys_dirty + (start >> TARGET_PAGE_BITS);
971
    for (i = 0; i < len; i++) {
972
        p[i] &= mask;
973
    }
974
}
975

    
976
void cpu_physical_memory_reset_dirty(ram_addr_t start, ram_addr_t end,
977
                                     int dirty_flags);
978
void cpu_tlb_update_dirty(CPUState *env);
979

    
980
int cpu_physical_memory_set_dirty_tracking(int enable);
981

    
982
int cpu_physical_memory_get_dirty_tracking(void);
983

    
984
int cpu_physical_sync_dirty_bitmap(target_phys_addr_t start_addr,
985
                                   target_phys_addr_t end_addr);
986

    
987
int cpu_physical_log_start(target_phys_addr_t start_addr,
988
                           ram_addr_t size);
989

    
990
int cpu_physical_log_stop(target_phys_addr_t start_addr,
991
                          ram_addr_t size);
992

    
993
void dump_exec_info(FILE *f, fprintf_function cpu_fprintf);
994
#endif /* !CONFIG_USER_ONLY */
995

    
996
int cpu_memory_rw_debug(CPUState *env, target_ulong addr,
997
                        uint8_t *buf, int len, int is_write);
998

    
999
#endif /* CPU_ALL_H */